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Let ,4 be an elliptic pseudo-differential operator of order 0 on a bounded
open set 2 of R with symbol/ (x, ). Let j(xj, ) be the principal pa of
the symbol of in a local coordinates system and suppose that (, )
adts a iener-Hopf type of factozaton:

for x 0 where (x, ) is homogeneous of order k in , (k is a non-negative
integer independent of x), analytic Im > O; (x ) homogeneous of
order a k in $, analic in Im $= O.

Let B, r 1, ..., k (if k > O) be a system of pseudo-derenial operators
of orders a,, 0 a, < a and ,(x, ) be the symbol of the pcipal part of
B, in a local coordinates system.
Suppose
(i) (x, ) + t; ,(x ) satisfy a Shapiro-Lopatinskii type of con-

dition for each j and for all t0 > O,
(ii) A as an operator on ff () defined by

D(A) {u:uH$(); Bu 0 on0;r 1, ..., k}
th

Au= Au if ueD(A)
is self-adjot.

Then it cn be sho thgt

y,

asW;x y

(2)’(n)-’ sin (n/a) f ((, ) + 1)- d

gs +, xin
If k 0, then

d
$ Z(,$)<

s +. X, re the eigenvglues gnd eigenfctio of A.

Received May 22, 1968.
Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace

Research, United States Air Force.

452



SPECTRAL FUNCTION OF ELLIPTIC OPERATORS 453

The above results are well known in the case of elliptic differential operators;
cf. Carleman [5], Garding [8], Browder [4], Agmon [1], [2], the writer [10]. For
a more complete bibliography, we refer to [6].
The elliptic pseudo-differential operators considered in this paper are those

studied recently by Eskin-Visik [7].
In Section 1, the notations, the definitions (which are essentially those of

Eskin-Visik [7]) and the main assumption of the paper are given. In Section
2, the asymptotic behavior of the Green’s function associated with {A -t- tI;
Br r 1, ...,/} is studied. Finally in Section 3, by a standard argument,
the asymptotic behavior of the spectral function is obtained and in the special
case when/ 0, the asymptotic distribution of the eigenvalues is studied.

Section 1
Let s be an arbitrary real number and H (R) be the Sobolev-Slobodetskii

space of generalized functions f such that

[Ifl[8 fR- (1 + I 12)1]()! d < oo

where ] is the Fourier transform of j’.
Let be a bounded open set of R" with a smooth boundary 02. H(2)

denotes the restriction to Z of functions in H’ (R) with the norm

By H(2), we denote the space of functions f defined on all of R", equal to 0
on R"/cl a and coinciding in cl 2 with functions in H’ (2).
H* (0a) is defined as the completion of C (0a) with respect to

Dzzzo 1.1. (if) is ia E iff
(i) (E) is homogeneous function of order a in ,
(ii) Ofor o,
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(iii) ) has for I’I 0, continuous first order derivatives bounded if

DEFINITION 1.2. +() is in C+ iff
(i) +() is homogeneous of order in , is continuo for 0 and

has an analytic contuation th respect to Im 0 for each ,
(ii) +() 0 for 0 and for any integer p O, there is an expansion

+() -0 c, (’)g-" + R,.+_ (’, )

where all the terms are homogeneous of order k , with analytic continua-
tion in Im > 0 and

R,,+- (’, )1 Cl ’ "+ (I ’! + I )-’-.
DEFXNTIO 1.3. (X, ) is in D iff

(i) (x, ) is infinitely differentiable in x and , 0,
(ii) (x, ) is homogeneous of order a in for z in R",

0 0
(ifi) (0,) (x, 0, 1 ( 1 ) exp (-ia) (0,) (z, 0, 1 ),

o
D;NTO 1.4. (x, ) is in . iff the following hold.
(i) lD(x,)l C(1 + 1]), 0 N IPl < .
(ii) For any x R" and for any s -a, there is deoomposition

(_ i)’2 (, ) _(, ) + R(, ),_
(x, );R (x, ) are infinitely dNerentiable Mth respect to x,

_
(x, ) is

analytic in Im < 0 and, for 0 N Pl < ,
lD_(x,)l C(1 + 1)+’; lDD_(x,)l %(1

IDDR(x,)I c(1 + ’ )’+"(1 + )-.
Let {e} be a finite petition of uity corresponding to an open covering

{N} of el e. Le {#} be the infiitely dNerentiable functions with compact
suppos in {N} and such that # e.
P+ denotes the restriction operator of (generalized) functions from R to

fl and 7 denotes the passage to Off.
Let () be in E,, (a > 0), and u be an element of H’ (R) with u (x) 0

for x < 0. We define

Au f-’ (X () () )

where the inverse Fourier transform is understood in the sense of the theory
of distributions. Let (z, ) be in E, for x in el fl and (x, ) be infinitely
dNerentiable with respect to x and . We extend (z, ) with respect to x
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to R with preservation of homogeneity with respect to .
in the Fourier series

We expand (x, )

(x, ) _.bo (x) exp (-i.kx/p)[, (),
and

() (2p)-’* ,exp (--6rlx/p),(x, ) dx

(x) . C: (R");0 (x) 1 for x p e, 0 (x) 0 for x >_ p.
We have ]k ()[ _< CI ] (1 + I/1)-M for large positive M.
For u in H$ (t2), we define

P+Au P+(--. bo (x exp (ikxr/p)L u).

DEFINITION1.5. (1) Let

+
be an elliptic pseudo-differential operator of order a on t2 with the following
properties:

(a) If A is the principal part of yA in a local coordinates system,
then (x, ) E,, and for x 0 admits the factorization

(x, f) I7
where e C+ k is a non-negative integer independt of x and A7 is homo-
geneous of order a k in with an analytic continuation with respect to
in Im 0.

(b) (x, ) eD n b. for x e N n 0fl 0.
(2) If k> 0, let

P+B P+S, + PS(1 ); r 1, ..., k

be a system of pseudo-differential operators of orders ar with 0 _< ar < a

having the following properties’
If B,.$ is the principal part of B in a local coordinate system, then

,.y (xy, 6) DO,, n/),.1 for x e Ny n 0t2 # O,
The elliptic problem {P+A; "P+B r 1, ..., k} is said to be uniformly

regular on t2 if
Det (b, (xy, ’)) # 0

for all x e N n 0t2 # 0 where b, are determined by

II+/, (x, $)$-1((xy, ) )-1 R, (x, $) + ibr, (x, ’ )1,ord (b,) a + k- s; r, s 1, .-., k
The main assumption of the paper is the following condition.
ASSUMPTION (I). Let {P+A; P+B r 1, ..., k} be a uniformly regular

elliptic probm on in the sense of Definition 1.5. We assume
(i) (x,) + t # O forall

_
to > Oandall j;
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(ii) if k > 0, Det (bra (x ’, t)) # 0 for all x and all >_ to > 0 where
bra (x, ’, t) are given by

II+,(x )-’(A (x, , t) )-1 R, (x , t) + ibm, (X, ’, t) ()-1
with

(x ) + .(x, , t)-(x
DmTo 1.6. Let A be the operator on L" (f) defined as follows:

D (A) u u in H$ (fi) and "P+B u

A u P+Au if u is in D (A)

Section 2
First, we have the following theorem.

THEORE 2.1. Let {P+A; "P+Br r 1, ..., k} be a uniformly regular
problem on in the sense of Definition 1.5.
Suppose that
(i) Assumption (I) is satisfied,
(ii) a > n, is the order of A.
Then for > to > O, (A + tI)-1 exists and is of Hilbert-Schmidt type

+ tI)-lf(x) /a G(x, y, t)f(y) dy,(A

f in L (fi) and G (x, y, t) e L (fl) X L (fl)

Proof. In [12], the writer has proved that under the hypotheses of the
theorem, (A W tI)-1 exists and is a bounded linear mapping from if () into
H$ (). The following estimate was established"

!] u I1 + t[[ u li0 < (7 l[ (A + tI)u l]o foralluinD(A)

Since a > n and t2 is a bounded open set of R" with a smooth boundary, the
injection mapping of H$ (2) into L" (t2) is compact. Hence by a standard
argument, it follows that (A + tI)-1 is of tIilbert-Sehmidt type and

+ tI)-lf(x) fo(A,

/inL(fl), G(x,y,t) inL(f) X L(f) Q.E.D.

In the remainder of this seetion we shall study the asymptotic behavior of
G (x, y, t) as --, +
Lm2.1. Let i () be in E,, a > O and such that () + # O for
>_ to> O. Suppose thata >n. Then

E(x, y, t) (2r)- [" exp (- i < x y, > )(($) + t)-x d
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is infinitely differentiable for x y. Moreover

E (x, y, t) <_ it-l+la (I + tmalx y I)-1,
D E (x, y, t) Mt-’" ix y -"-’-a (1 T m" x y ])-

f --n W a 0 < e < 1 and N is any positive numbs. E (x, y, t) is a
fundamental solution g P+(A W tI ) i.e., P+ (A T tI)E $ y in ft.

Proof. Cf. Garding [8]

LMMX 2.2. Let P+A be an elliptic psdo-differential opator ofd a
fl with symbol (x, ) infinitely differtiable in x and . Let P+A, be the opa-
t P+A th symbol evaluated at z. Let E, (x, z, t) be thefundatal soluti of
P+ (A, W tI). Set

(i) w(x, z, t) P+(A A,)E,(x, z, t)

() Tv(z, z, t) w(z, y, t)v(y, z, t) dy.

T the integral equati v + Tv + w 0 may be solved by t Neumann
series for large t. Moreover

v (z, z, t) o(1)t-"" z z -"+-" (1 + "" I z ]
where 0 < e < 1 and N is a large positive number.

Proof. The proof is ey and foows from the preous lemma and the
detion of P+A.
THEOREM 2.2. Suppose the hypotheses ofLemmas 2.1, 2.2 are satisfied. Then

E(x, z, t) E,(x, z, t) + fa Eu(x, y, t)v(y, z, t) dy

where v is the solution of the integral equation ofLemma 2.2 and z in fl; is afunda-
mental solution of P+ (A + tI )

Proof. We have to verify that P+ (A q- tI)E (x, z, t) , z in ft.
E (., z, t) is in L (R"), so (A q- tI)E (x, z, t) is well defined as an element of

We may write

P+(A + a)(:, z, t)
P/(A. + tI)E.(z, z, t) + P+(A A.)E.(y, z, )

P+(A q- tI) f. E,(x,, y, ()v(y, z, t) dy+
Let C: (f), then we have

((P+(A + tI)(faE,(.,y,t)v(y,z,t)dy), ))
(((A q- tI)(foE,(., y,,)v(y, z,,)dy),
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(1) We show that

(.) (((A (f E( ., y, t)v(y, z, t) dy) ))
) ))., (. )e’"’’L, E,(., y, t)v(y, z, t) dy ,

We have

"ll (/,
-" /( + )

for some large positive m. Siarly for"

((27L e"*’/’L.(fu E,(., y, t)v(y, z, t) dy), ))

It follows that (,) holds.
(2) Nexg, we show

fn v(y, z, t)( (L, E(., y, t), ) ) dy

E(x, y, t)v(y, z, t)L, (x) dy dx

Taking Fourier transform, we obtain

sce ,()() is in 8; . () being infinitdy derentiable, D#. () S
C (1 W ), a is a positive teger.
It is ao equal to
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since f E (. y, t)v (y, z, t) dy is in L (R n L (R) and L. is in $.

By the Fubini theorem, the right hand side integral may be written as

We have
fay(y, z, t) f, E(x, y, t)L, (x) dx dy.

fR E(x, y, (FE( ., y, t), F(L, )dx

((,()FE(., y, t), ))

((F(L,E(., y, t)), ))

((L,E(., y, ), )).
Hence

fa v(y, z, t)( (L, E(., y, t), q) dy

(3) Combining (1) and (2), we get

(((A - tl) (f E( ., y, t)v(y, z, t) dy) ))
fa v(y, z, t)(((A -b tI)E(., y, t), )) dy

The fight hand side may be written as

fay(y, z, t)( (A -b tI)E(., y, t), dy

+ f v(y, z, t)(((A A)E(., y, t), )) dy.

Hence it is equal to

fo / fo fo P+(A A,)E,(x, y, t)q(x) dx dy.

Taking into account’ the definition of v, we obtain

P+ (A -b ti )E (x, y, t) y in f, Q.E.D.

The main result of this section is the following theorem"

T,oaEM 2.3. Let {P+A; ,P+B; r 1, ..., k} be a uniformly regular
elliptic problem on in the sense of Definition 1.5 and satisfying Assumption (I).
Let G (x, z, t) be the Green’s function associated with the boundary problem

{P+(A - tI); .P+B ; r 1, ...,
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Then G (x, z, t) E (x, z, t) u (x, z, t) where E (x, z, t) is the fundamental
solution of Theorem 2.2 and u (x, z, t) is the unique solution of the boundary prob-

P+ (A + tI)u (x, z, t) 0 on ,
P+Br u (x, z, t) P+Br E (x, z, t) for r 1, ..., k.

G (x, z, t) is a continuous function of x and lim,.+ tl-"/=u (x, z, t) 0 for any
x in fl, z in .

Proof. If u is the solution of the boundary-value problem

P+(A +tI)u 0 one2; "IP+B,u fP+B,E on02; r 1,....,k,

then it is clear that G (x, z, t) E (x, z, t) u (x, z, t) is the Green’s function
associated with

P+ (A -t-- tI ) P+B, r= 1,...,k}

In [12], generalizing a result of Agranovich-Visik [3], we have shown that the
above boundary-value problem has a unique solution u and the following
estimate holds:

,-o -"= !1 u 11. < M -z {11 "IP+B E (., z, ) ll’=-=-,z. + t-(=’+’=’z=

!1 P+B E (., z, t)
where M is independent of z, t.

Since a > n, using the Sobolev imbedng theorem, we get
-"= u (x, z, t) M =, {[[ P+B E (., z, t)

+ ’-(=+’)z= II P+B E (., z, t)!1’.
We study the expressions inside of the bracket. We have

B,E(x,z, t)= BE,(x,z, t)-t- B(f E(x, y, t)v(y,z, t)dye.
/

Using the expansion of B, we consider

B,,E,(x, z, t) and B. (fa E(x, y, t)v(y, z, t)dy)
where the symbol/, () of B, is a homogeneous function of order ar in with

I/-() -< Cr( + I I)-
(1) By an easy computation, we get

where0 < e < 1, N_> 0.
Let d (z) dist (z, 0); for >_ d (z)-e(+=+-l)l=, we have

I.P+B. E.(x, z, t) < t-+(’+)( + I I)-( + t ix z
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where C is independent of x, z, t, s. So

I’IP+B,. E,(x, z, t) < Ct-+a+"’)m(1 --1- m’ Ix z

(2) Next, we show that

Br, (foE.(z. y, t)v(y,z, t)dy)--- fo Br.E(z, y, t)v(y,z, ) dy.

Indeed, let C: (R) and consider

((B. (f( ., y, )(y, z, ) dy) )).
Since f E (., y, t)v (y, z, t) @ is an element of L (R), B, (fn) is in

*(R). Usg Plancherel theorem, we obta

((B.()F (f. E( ., y, t)v(y, z, t)dy),
((=.. (1. =,(’. ,. ’),,,,, ,) "0 ))
((. (1. =<., ,, ,>,<,,,, ,> #,

-((i =< .. ,, ,>,(,, ,, ,> +. =. ,)).--__
Sce = I, (., y, t)v (y, z, t) dy is in Z (R=) , L (I"), we get

((f, Eu( ", y, t)v(y, z, t)dy, B,. ))--__
f=.B,,(f. E,(x,y,t)v(y,z,t)dOdx
f. ,(y, z, ,)f=. B,. (x)E,(x, y, t)dx dy

by Fub’s theorem. But the last tegral may also be written as

ipplg the Fubi theorem, we obta

-((f,=,.=,<.,,,,,,<,,,,,, ,,,--,,
for all in f’ (R").



462 BUI AN TON

So B, (f E, (x, y, )v (y, z, t) dy) f B, E (x, y, )v (y, z, ) dy in the
distribution sense. Since the ght hand side of the equafity is a continuous
fction of x for x z, the equality is true in the classical sere for x z.
We get

P+Brs

for t d(z)-"+’-*’. C is constant independent of x, z, t.
Therefore

( B,(x, y, ,)(y, z, t)dy) Ct-’+"+’""(1 +7P+Br

(3) From (1) and (2), we hsve $-"’+ ] 7P+B E(. z, t) ] less than
Ct-*+* for d (z)-+=+-*

(4) Consider ] 7P+B, E (., z, $) II:-,r,z c I] P+S E <., z, z> !1
Again, we look at 1] 7P+B, E (., z, t)
By a computation as above, we get

]D-’P+ (x, z, t) Ct-’’ (1 + ’ x z )-
for d(z)-"-+; C is again a constant independent of x, z, t.
Hence ]] 7P+B, E(. z, t) ]]:_, Ct-’ for d (z)-"-+. There-

fore

The theorem is proved.
Section 3

In this section, we apply the Hurdy-Litflewood Taubefin theorem to get
the wanted results.

TEog 3.1. Suppose She hypotheses of Theorem 2.1 are satisfied. Sup-
pose further that A= is self-adjoint. Let X, be t eigvalues and eigvnfunc.
ts of A= respectively. Then

(i) t-"%(x,y,t) -" x,s,(z) (Y)Oast++ forx, yinn,
x#y

(fi) e (x, x, t) (2)-’"a(n)-* sin (nr/a ) f. ( (x, + 1)-’ d as
t ;xinR.

(fii) Uk 0, then

N(t) ddzx (,)<

Proof. Firs% we no%e %h% fo > , %he Green’s rune%ion G(z,
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fixed y in may be represented as a uniformly convergent series"

Applying the Hardy-Littlewood Tauberian theorem [9] and taking into ac-
count the results of Theorem 2.3, we get the assertions (i), (ii) of the theorem.

If k 0, since no boundary conditions are required, we have

G(x, y, t) E(x, y, t)
and

t-G(x, x, t) t-’E(x, x, t) (2)- f ((x, ) + 1)- d M

for M1 x in . By the Lebesgue bounded convergence theorem and the Hardy-
Litflewood Taubefian theorem, we obtain

ddx
(,,)<1
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