ON THE ASYMPTOTIC BEHAVIOR OF THE SPECTRAL FUNCTION
OF ELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS

BY
Bur AN Tont

Let A be an elliptic pseudo-differential operator of order @ > 0 on a bounded
open set © of R” with symbol 4 (z, £). Let A;(2’, £) be the principal part of
the symbol of A in a local coordinates system and suppose that A;(x’, £)
admits a Wiener-Hopf type of factorization:

A, 8) = AT @, £)A7 @ 8)
for o, = 0 where A7 (27, £) is homogeneous of order k in £, (k is a non-negative
integer independent of z’), analytic in Im &, > 0; A7 (27, £) is homogeneous of
order @ — kin £, analytic in Im £, < 0.

LetB,;r =1, -+« ,k (if k£ > 0) be a system of pseudo-differential operators
of orders a,, 0 < o < a and B,;(z’, £) be the symbol of the principal part of
B, in a local coordinates system.

Suppose

(i) AF @ &) + t; B,; (@', £) satisfy a Shapiro-Lopatinskii type of con-
dition for each j and forall¢ > & > 0,
(ii) A: as an operator on L’ (2) defined by

D(4;) = {u:uin Hi(Q); B,u = Oon 6Q;r = 1, -+, k}
with
Asu = Au if ueD(4y)
is self-adjoint.

@) e>n
Then it can be shown that
(1) t—”/ae (x: Y, t) = t_nla Zl\jsl (2] (37 )¢1’Zy) —0

ast— 4oz #Fy
o(z, 7, 1) ~ (20)""*a(nr)" sin (nr/a) fa (A, §) + 1) g

ast— +o,2xinQ
If £ = 0, then

= ~ —nanle 1 s 7/
(2) N(@) —?;1 (20)™"a(nr)™ sin (nx/ )-/;j::(a.aqudx

ast— +o. )\, ¢;are the eigenvalues and eigenfunctions of 4,.
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The above results are well known in the case of elliptic differential operators;
cf. Carleman [5], Garding [8], Browder [4], Agmon [1], [2], the writer [10]. For
a more complete bibliography, we refer to [6].

The elliptic pseudo-differential operators considered in this paper are those
studied recently by Eskin-Visik [7].

In Section 1, the notations, the definitions (which are essentially those of
Eskin-Visik [7]) and the main assumption of the paper are given. In Section
2, the asymptotic behavior of the Green’s function associated with {A + tI;
B,;r=1,.--,k}isstudied. Finally in Section 3, by a standard argument,
the asymptotic behavior of the spectral function is obtained and in the special
case when k = 0, the asymptotic distribution of the eigenvalues is studied.

Section 1

Let s be an arbitrary real number and H* (R") be the Sobolev-Slobodetskii
space of generalized functions f such that

171t = [+ e i@ P <

where f is the Fourier transform of .
Let @ be a bounded open set of R" with a smooth boundary Q. H’(Q)
denotes the restriction to @ of functions in H*(R"™) with the norm

lwlle = inf||v]lze@m; v=u on @ s20.

By H%(Q), we denote the space of functions f defined on all of R", equal to 0
on R"/cl @ and coinciding in ¢l @ with functions in H* (2).
H’ (0Q) is defined as the completion of C” (0Q) with respect to

I llasony = £205 1 @5 f a1}

where || ¢; f ||zezn—1y is taken in local coordinates and the ¢; are those functions
of a finite partition of unity whose supports intersect the boundary 9.
One may show that with different ¢;, one gets equivalent norms.

Let J (¢) be a smooth decreasing function. The operator [[* is defined by

IT* 76) = 4, &) + i@ v, [ 1€, ma) (o — ma)™ dne

where £’ = (&1, -+, £am1). For any f, the above relation is understood as the
result of the closure of the operator ][ defined on the set of smooth and de-
creasing functions.
Set
b=t —idlf]; & =& +¥]
DerintTionN 1.1, A (¢) is in E, iff
i) A () is a homogeneous function of order « in &,
@) A)=0for|t| =0,
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(i) A¢) has for |¢ | 5 0, continuous first order derivatives bounded if
&l =1,[¢]=0.
DeriniTioN 1.2, A, (¢)is in CF iff
(i) A, (&) is homogeneous of order k in £, is continuous for |£| # 0 and
has an analytic continuation with respect to &, in Im £, > 0 for each ¢/,
(i) A, () = 0for|£]| # 0and for any integer p > 0, there is an expansion

AL () = D tmics()ET + Ruppi (¥, £n)

where all the terms are homogeneous of order k in £, with analytic continua-
tion in Im & > 0 and

| Repiss (8 8] < CLEPHAE ]+ 18D

Derinmrion 1.3, A (z, £) is in DY iff
(i) A4 (x, £) is infinitely differentiable in x and 2 FHEX)
G) 4 (x, £) is homogeneous of order « in £ for 2 m R",

(iii) (ag')k A(x,0, —1) = (—1)* exp (—ira) ~— A(2,0, 1),

(65')’°
0<|k| < o.
DeriNtTioN 14. A (z, £) is in DL, iff the following hold.
() |D2A@, 8| <CA+]EDY 0L [p| < .
(ii) For any zin R" and for any s > —a, there is a decomposition
& — ) A@ &) = A-(2,§) + R(», §),
A_(z, £); R(z, £) are infinitely differentiable with respect to =, A (=, £) is
analytic in Im £, < 0 and, for0 < |p| < =,
|ID2A_(2,8)| < Co(L+ £ |DID:A-(, )| < (1 + )
|IDZR (=, £)| < Co( + £+ [6D7
|IDID:R (=, £)| < e+ |1 Q + |ED)7

Let {¢;} be a finite partition of unity corresponding to an open covering
{N;} of el Q. Let {¢,} be the infinitely differentiable functions with compact
supports in {N;} and such that ¢;¢; = ¢;.

P* denotes the restriction operator of (generalized) functions from R" to
Q and v denotes the passage to 9Q.

Let A (¢) bein E., (e > 0), and u be an element of H* (R}) with u (x) = 0
for z, < 0. We define

Au = FUA ()% ()

where the inverse Fourier transform is understood in the sense of the theory
of distributions. Let A (z, £) be in E, for z incl @ and 4 (z, £) be infinitely
differentiable with respect to z and £&. We extend A (z, £) with respect to
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to R" with preservation of homogeneity with respect to £&. We expand 4 (z, £)
in the Fourier series

A@, &) = 2im—wto(®) exp (—inke/p)Lat), & = (b, --+, ka)

and

Lue) = (2p)™ [ exp (—inka/p)A(s,8) do

() e CT(R");¢o(x) = 1for|z| < p — &, ¢o(x) = Ofor|z| > p.
We have | Lz (¢) | < C|£|*(1 4 | k|)™ for large positive M.
For u in H$(Q), we define

PtAu = PY(Q pmwto(z) exp (har/p)Liu).
DerintTion 1.5. (1) Let

P*A = 3 iPYoi AYi + 2 iPYo; A(L — ¥))

be an elliptic pseudo-differential operator of order a on @ with the following
properties:

(a) If p; A;¥;is the principal part of ¢; Ay; in a local coordinates system,
then 4;(2’, £) e E, and for #, = 0 admits the factorization

A;@ 8) = A7 @, 0)A7 @) 8)

where A7 € C7 ; k is a non-negative integer independent of #’ and 47 is homo-
geneous of order @« — k in £ with an analytic continuation with respect to &,
inImé, <O0.

®) A;@ £)eDin Dy for zeN;noQ = 6.

2) Ifk > 0,let

P*B, = 3 ;P%i B,y + D_iPYe; B,(1 — ¥;); r=1,--,k

be a system of pseudo-differential operators of orders o, with 0 < a, < @
having the following properties:
If ¢; B,jy; is the principal part of B, in a local coordinate system, then
B, £) e D%, n D, for x e Nyn o = 0,
The elliptic problem {P*A; yP*B,;r = 1, ---, k} is said to be uniformly
regular on Q if
Det (b (', £)) = 0

for all 2’ ¢ N; n 92 5 @ where b,, are determined by
IT" B @, £)e (A7 @, )™ = Ru(@, §) + dba (@, ¥)E,

ord (bys) =+ k —s;r,8=1,---,k
The main assumption of the paper is the following condition.
AssumprioN (I). Let {PTA;yP*B,;r = 1, - -+, k} be a uniformly regular
elliptic problem on Q in the sense of Definition 1.5. We assume
G) A;@E) +t=0forallt >t > 0andallj;
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@) 4k > 0, Det (b (z’, &, ¢)) 5= O for all 2’ and all t > ty > 0 where
brs (7, &, t) are given by
IT* B @, )67 (AT @, &, )™ = Ru(@, £, ) + b @, &, ) 1)
with
A e) +t = A7 @ g, )AT@ g 1) and & = & — (¢ + &%),
DrriNiTION 1.6. Let A, be the operator on L*(Q) defined as follows:
D(4:) = {u:uin H}(@) and yP™B,u =0if k> 0; r=1,---,k},
Az u = PYAu if uwisin D (4,)
Section 2
First, we have the following theorem.

TaeoreM 2.1. Let {PTA; yP*B,;r = 1, -+, k} be a uniformly regular
problem on Q in the sense of Definition 1.5.
Suppose that
i) Assumption (1) s satisfied,
(i) o > m,isthe order of A.
Then for t > to > 0, (A + tI)™ exists and i of Hilbert-Schmidt type

(4s + t1)7f(a) = [ 6(a,9, 0F) ay

fin L’ (@) and G(z, y, t) e L’ (@) X L*(Q)

Proof. In [12], the writer has proved that under the hypotheses of the
theorem, (4s + tI)™ exists and is a bounded linear mapping from L* () into
H5(Q). The following estimate was established:

lulle +tl|ul < Cll Az + tHule foralluinD (4,)

Since a > n and 2 is a bounded open set of B" with a smooth boundary, the
injection mapping of H$ () into L?(Q) is compact. Hence by a standard
argument, it follows that (4, + ¢I)™ is of Hilbert-Schmidt type and

(4s + () = [ 6s, 4, 05(0) o,

fin L} (@), G, y, t) in L*(Q) X L’(@) QE.D.

In the remainder of this section we shall study the asymptotic behavior of
G, y,t)ast— + o,

Lemma 2.1. Let A(¢) be in Eo, « > 0 and such that A (¢) + t = 0 for
t >t > 0. Supposethata > n. Then

E(z,y,t) = (2r)™ fkn exp (—i <a—y t>)AE) + )7 dt
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18 infinitely differentiable for x £ y. Moreover
| B, y, 1) | < M1+ & o — y|")7,
|IDE (=, y,8)| < M |@ — y [P + 7% |2 — y ")

for —n + a < |B|;0 < & < 1 and N 1is any positive number. E(z,y,t)1sa
fundamental solution of P*(A + tI);ie., PY(A + tI)E = §,,y in Q.

Proof. Cf. Garding [8]

LemMa 2.2. Let P*A be an elliptic pseudo-differential operator of order o on
Q with symbol A (x, £) infinstely differentiable in x and §. Let P*A, be the opera-
tor P*A with symbol evaluated at z. Let E, (x, 2, t) be the fundamental solution of
PY(A, + tI). Set

(i) w,2t) =P — A)E.(z,21)
() Tv(z,z1t) = faw, y (@, z2t)dy.

Then the integral equation v + Tv + w = 0 may be solved by the Neumann
series for large t. Moreover

v(z, 2,8) = 0 |2 — 2| 4+ & |z — 2|")
where 0 < ¢ < 1 and N s a large positive number.

Proof. The proof is easy and follows from the previous lemma and the
definition of P*A4.

TaEOREM 2.2. Suppose the hypotheses of Lemmas 2.1, 2.2 are satisfied. Then
B(5,2 1) = Ba, 1) + [ Bs,9, 004, 1) dy
where v s the solution of the integral equation of Lemma 2,2 and z in Q; 18 a funda-

mental solution of PT(A + tI)

Proof. We have to verify that PT(4 + tI)E(x, 2,t) = 8,;2in Q.

E(-,2t)isin I*(R"), so (A + tI)E(z, 2, t) is well defined as an element of
H*(R").

We may write

P*(A + t1E(x, 2,t)
= P+(Ag -+ tI)E;(CU, 2, t) + P+(A - A-)E‘(?}, %, t)

+ P*(A +¢I) j; E(x, y, t)o(y, 2, t) dy
Let ¢ € C7 (2), then we have

((zrea + > ([ 5w 00t 5,0 20), )
= (((A + tI) ( fn E, (-, y, )o(y, 2, ¢) dy>, ¢))~
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(1) We show that

@ (@ ([ 8w 000050 ), 6))

= ;};( v(+)e™ "L, ( fa Ey(-, 9, )0(y, 2, t) dy), ¢>)

We have

[(ORGEATR IR )]

S M " (4 "H“(R")' Z Lc (va( Y, t)v(y’ 2, t) dy) ”
s=j+1 Q

0

<M Y /(14 )"

<&+

—a

for some large positive m. Similarly for:
(( :f::f' \be‘ﬂ./pLﬂ (fﬂ Eﬂ(' » Y t)v (Z/, 2, t) dy); ¢))

It follows that (*) holds.
(2) Next, we show

((L. ( fn Ey(+,y, )u(y, 2, 1) dy), ¢))

= j;z v(y, 2, t)((Lc Ey( Y, t); 99)) dy

Taking Fourier transform, we obtain

(ARIFRIATINEY)

= ((Z.(g)F ( fn Ey(-, y, )o(y, 2, 1) dy>,¢>)
= ((F (j; E, (-, 4, )o(y, 2 t) dy), F(L, ¢))>

since L, (£)3(t) is in 8; L.(¢) being infinitely differentiable, | D°L, (¢) | <
C(1 + | £]%), a is a positive integer.
It is also equal to

((j; E,(-,y, t)u(y, 2 t) dy, L, ‘p))

= «I;n v/;g E’l(x’ Y, t)v(y’ %, t)Ln ¢(w> dy da,‘
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since [o By (-, y, t)0(y, 2, t) dyisin L' (R") n L*(R") and Ly p isin 8.
By the Fubini theorem, the right hand side integral may be written as

[ 0w s [ B u 0L o) doay.

We have
[ B, 3, 0L ol@) do = (FE,(-, 3, 0), F(Ly 9))
= (LB 3,0, 8))
= (P B 5,0), )
= (LB 5, 0), 9)).
Hence

((L. (fﬂ E,(-,y, t)o(y,2,¢) dy),so))
- j;v(y, 2, (L By -, 4, 1), 0)) dy

(3) Combining (1) and (2), we get

(((A + ) (fn Ey,(-,y, )o(y, 2, t) dy), so))

= [ o5 (A + DB, 5,0, 00) dy
The right hand side may be written as

[ 0w 2 004y + DB 3,0, 00) dy

+ [ o5 DA = 4B, 4,0, 0)) dy.

Hence it is equal to
fa o(9)0(y, 2, £) dy + fn o(y, 2, 1) fﬂ PHA — A)E,(s, 3, )e(x) do dy.

Taking into account the definition of v, we obtain
PY(A + tDE (z,y,t) = &, yinQ, Q.E.D.
The main result of this section is the following theorem:

TreoreM 2.3. Let {PTA; yP™B,;r = 1, .-+, k} be a uniformly regular
elliptic problem on Q in the sense of Definition 1.5 and satisfying Assumption (I).
Let G(z, 2, t) be the Green’s function associated with the boundary problem

(PY(A + tI);vP*B,;r = 1, -+, k}.
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Then G(z, 2, t) = E(z, 2, t) — u(z, 2, t) where E (z, 2, t) is the fundamental
solution of Theorem 2.2 and u (x, 2, t) 18 the unique solution of the boundary prob-
lem
PYA + tlu(z,2,t) =0 onQ,
P*B.u(x,2,t) = P*B,E(x,2,t) forr=1,+-+,k.
G (z, 2, t) s a continuous function of z and Him e £ ™ u
zinQ,zin Q.

(z, 2,t) = 0 for any

Proof. If u is the solution of the boundary-value problem
P'A+tu=00nQ; YyP'B,u=+P'B,EondQ; r=1,---,k

then it is clear that G(z, 2, t) = E (=, 2, t) — u (%, 2, ¢) is the Green’s function
associated with
(P*A +tI); P*B,; r=1,---,k

In [12], generalizing a result of Agranovich-Visik [3], we have shown that the
above boundary-value problem has a unique solution % and the following
estimate holds:

et ulle < M S L (| ¥P*B E(- , 2, 1) ||y + £

N ¥P*B.E(-, 2 0) |
where M is independent of 2, ¢.
Since a > n, using the Sobolev imbedding theorem, we get

£ w2, 2,6) | < M Tt {[YPTBE (-, 2 8) [laceyan
4 gDl PR (-, 8 8) |

We study the expressions inside of the bracket. We have
B, E(x,2,t) = B, E«(x,2,t) + B, (L E,(z,y, t)v(y, 2, t) dy).
Using the expansion of B, , we consider
B.E.z,2t) and B, ( L Ey(z, y, t)(y,2,t) d?/)

where the symbol B,, (¢) of B,, is a homogeneous function of order «, in # with
|Bu(®)| S CEF @+ [s])7
(1) By an easy computation, we get
| Bys E, (z, 2, 1) |
< cttttemala ) o — 2[R/ (L 4 6 |3 — 2|Y)

where0 < e <1,N > 0.
Let d(z) = dist (2, 0Q); for t > d(2) ™"+ ™/% we have

|vP*B,, B, (x, 2, 1) | < COHO (1 ||V + 7% |z — 2|")7
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where C is independent of z, 2, t, s. So
| YP*B, E,(z, 2,t) | < C{2H00leq 4 g¥% |5 — 2|¥)7
(2) Next, we show that

B" (fﬂ E”(x’ Y t)v(y’ ) t) dy) = j; Bn Eﬂ(w, Y, t)v(y, 2, t) dy.
Indeed, let ¢ € C; (R™) and consider

(B ([ 2w imtwm 0 ), ¢))-

Since [o Ey (-, y, t)0(y, 2, t) dy is an element of L*(R"), B, (fa) is in
H*(R"). Using Plancherel theorem, we obtain

((Butrr ([ 80w 00020 @), 2))

= ((B,, ( fn Ey(-,y,t)u(y,2,t) dy) , ¢))
= ((F ( fn Ey(-, y, )0(y, 2,t) dy),F(B,. so)))
= (( j; E(-, y,t)(y, 2, t) dy, B, ¢))‘

Since [o By (-, y, t)v(y, 2, t) dy is in L'(R") n L*(R"), we get

(( fn Ey(-, y, )(y, 2, 1) dy, Bre ¢))

= L» B,,,,(j; Ey (=, y, t)o(y, 2, t) dy)dw

= f v(y, 2, t) [ By, o(%)Ey(w, y, t) du dy
Q R®

by Fubini’s theorem. But the last integral may also be written as
j;” Bys o(2)Ey(2, y, t) dx = Ln B, B (x, y, t)o(x) dx.

Applying the Fubini theorem, we obtain

(( e ( fn E, (-, 9y, )0(y, 2,t) dy), ¢)>

= [ o) [ BuBya, v, 00y, 5,1) duds
R Q

- ((5o5c i)

for all ¢ in C7 (R™).
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So B, (fﬂ Eu(w: Y, t)v(y, 2, ) dy) = fﬂ B,, Eu(% Y, t)v(y’ %, t) dy in the
distribution sense. Since the right hand side of the equality is a continuous
function of x for z # #, the equality is true in the classical sense for x = 2.

We get

‘ ’YP+B" (‘[n Ey(, y, t)o(y, 2, t) dy) ‘
S Ct—2+(1+a,)la(1 + |8l )-—M/(l + tN/a l z — 2 ‘N)

for ¢ > d(z)"*®te** /e (' is a constant independent of z, z, .
Therefore

|78, ([ Bulo v, 000, 0) dy)| < OrPee e g7 — 5y

c (§+)1/2 Ff‘rom >(12l?,1;d ((2+)0‘,+W<13)ha,ve ferti®le | PR B (-, 2, t) ||o less than
T for ¢ ) e mtateDle
(4) Consider || yP*B, E( , 2 t) ”a—a,-—lﬂ < C|YP'B, E(-,2 t)|ew,.
Again, we look at || YP*Bu E(- , 2, t) || a—e,
By a computation as above, we get

|D* Pt E(x, 2,t)| < CC**Q + 7 |z — 2|")™

for t > d(z)”™ 9%, ( is again a constant independent of z, 2, £.
Hence || yPTB, E(- , 2,t) ||acay-12 < CE** for¢ > d(2)™®'*9%*, There-
fore

limyspe &% |u(z, 2, t) | — 0.

The theorem is proved.
Section 3

In this section, we apply the Hardy-Littlewood Tauberian theorem to get
the wanted results.

TreoreM 3.1. Suppose the hypotheses of Theorem 2.1 are satisfied. Sup-
pose further that A is self-adjoint. Let \;, ¢; be the eigenvalues and eigenfunc-
tions of A, respectively. Then

() %, y, 1) = £ Dcies @) 0i(y) > 0ast— 4+ forz,yinQ,
rHFEY
(i) e, z,t) ~ @r) ™" a(nr)™ sin (nr/a) [o (A (2, £) + 1) dé as
t— ;2 Q.
(i) Ifk = 0, then

N = 3 1~ (2r) ™% (nr)™ sin (nr/a) f f deda
A<t Q Yi(zt)<1

ast— 4o,

Proof. First we note that for o > n, the Green’s function G (z, y, t) for
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fixed y in @ may be represented as a uniformly convergent series:

G@, yt) = 2mei@eiy) N+ )7

Applying the Hardy-Littlewood Tauberian theorem [9] and taking into ac-
count the results of Theorem 2.3, we get the assertions (i), (ii) of the theorem.
If ¥ = 0, since no boundary conditions are required, we have

G(x’ Y, t) = E(x: Y, t)
and

|t1""°'G(m, x, t) ' = Itl—"/“E(x, z, t) | = (2’#).‘"./‘(1(% £) + 1)_1 dE <M

forallzin Q. By the Lebesgue bounded convergence theorem and the Hardy-
Littlewood Tauberian theorem, we obtain

N@) ~ (21r)—nmlaa(n7r)"1 sin (nr/a) j; -/:I(x£><1 dgdx

ast— oo,
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