ON THE ASYMPTOTIC BEHAVIOR OF THE SPECTRAL FUNCTION OF ELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS

BY
But An Ton ${ }^{1}$

Let A be an elliptic pseudo-differential operator of order $\alpha>0$ on a bounded open set Ω of R^{n} with symbol $\widetilde{A}(x, \xi)$. Let $\widetilde{A}_{j}\left(x^{j}, \xi\right)$ be the principal part of the symbol of A in a local coordinates system and suppose that $\tilde{A}_{j}\left(x^{j}, \xi\right)$ admits a Wiener-Hopf type of factorization:

$$
\tilde{A}_{j}\left(x^{j}, \xi\right)=\tilde{A}_{j}^{+}\left(x^{j}, \xi\right) \tilde{A}_{j}^{-}\left(x^{j}, \xi\right)
$$

for $x_{n}^{j}=0$ where $\widetilde{A}_{j}^{+}\left(x^{j}, \xi\right)$ is homogeneous of order k in ξ, (k is a non-negative integer independent of x^{j}), analytic in $\operatorname{Im} \xi_{n}>0 ; \tilde{A}_{j}^{-}\left(x^{j}, \xi\right)$ is homogeneous of order $\alpha-k$ in ξ, analytic in $\operatorname{Im} \xi_{n} \leq 0$.

Let $B_{r} ; r=1, \cdots, k$ (if $k>0$) be a system of pseudo-differential operators of orders $\alpha_{r}, 0 \leq \alpha_{r}<\alpha$ and $\widetilde{B}_{r j}\left(x^{j}, \xi\right)$ be the symbol of the principal part of B_{r} in a local coordinates system.

Suppose
(i) $\widetilde{A}_{j}^{+}\left(x^{j}, \xi\right)+t ; \widetilde{B}_{r j}\left(x^{j}, \xi\right)$ satisfy a Shapiro-Lopatinskii type of condition for each j and for all $t \geq t_{0}>0$,
(ii) A_{2} as an operator on $L^{2}(\Omega)$ defined by

$$
D\left(A_{2}\right)=\left\{u: u \text { in } H_{+}^{\alpha}(\Omega) ; B_{r} u=0 \text { on } \partial \Omega ; r=1, \cdots, k\right\}
$$

with

$$
A_{2} u=A u \quad \text { if } \quad u \in D\left(A_{2}\right)
$$

is self-adjoint.
(iii) $\alpha>n$

Then it can be shown that

$$
\begin{equation*}
t^{-n / \alpha} e(x, y, t)=t^{-n / \alpha} \sum_{\lambda_{j} \leq t} \varphi_{j}(x) \overline{\varphi_{j}(y)} \rightarrow 0 \tag{1}
\end{equation*}
$$

as $t \rightarrow+\infty ; x \neq y$

$$
e(x, x, t) \sim(2 \pi)^{-n_{t} n / \alpha} \alpha(n \pi)^{-1} \sin (n \pi / \alpha) \int_{R^{n}}(\widetilde{A}(x, \xi)+1)^{-1} d \xi
$$

as $t \rightarrow+\infty, x$ in Ω
If $k=0$, then

$$
\begin{equation*}
N(t)=\sum_{\lambda_{j} \leq t} 1 \sim(2 \pi)^{-n_{t} n / \alpha} \alpha(n \pi)^{-1} \sin (n \pi / \alpha) \int_{\Omega} \int_{\tilde{\Lambda}(x, \xi)<1} d \xi d x \tag{2}
\end{equation*}
$$

as $t \rightarrow+\infty . \quad \lambda_{j}, \varphi_{j}$ are the eigenvalues and eigenfunctions of A_{2}.

[^0]The above results are well known in the case of elliptic differential operators; cf. Carleman [5], Garding [8], Browder [4], Agmon [1], [2], the writer [10]. For a more complete bibliography, we refer to [6].

The elliptic pseudo-differential operators considered in this paper are those studied recently by Eskin-Visik [7].

In Section 1, the notations, the definitions (which are essentially those of Eskin-Visik [7]) and the main assumption of the paper are given. In Section 2, the asymptotic behavior of the Green's function associated with $\{A+t I$; $\left.B_{r} ; r=1, \cdots, k\right\}$ is studied. Finally in Section 3, by a standard argument, the asymptotic behavior of the spectral function is obtained and in the special case when $k=0$, the asymptotic distribution of the eigenvalues is studied.

Section 1

Let s be an arbitrary real number and $H^{s}\left(R^{n}\right)$ be the Sobolev-Slobodetskii space of generalized functions f such that

$$
\|f\|_{s}^{2}=\int_{R^{n}}\left(1+|\xi|^{2}\right)^{s}|\tilde{f}(\xi)|^{2} d \xi<\infty
$$

where \tilde{f} is the Fourier transform of f.
Let Ω be a bounded open set of R^{n} with a smooth boundary $\partial \Omega$. $H^{s}(\Omega)$ denotes the restriction to Ω of functions in $H^{s}\left(R^{n}\right)$ with the norm

$$
\|u\|_{s}=\inf \|v\|_{H^{*}\left(R^{n}\right)} ; \quad v=u \quad \text { on } \quad \Omega ; \quad s \geq 0
$$

By $H_{+}^{s}(\Omega)$, we denote the space of functions f defined on all of R^{n}, equal to 0 on $R^{n} / \mathrm{cl} \Omega$ and coinciding in $\mathrm{cl} \Omega$ with functions in $H^{2}(\Omega)$.
$H^{s}(\partial \Omega)$ is defined as the completion of $C^{\infty}(\partial \Omega)$ with respect to

$$
\|f\|_{\mathbb{H}^{s}(\partial \Omega)}=\left\{\sum_{j}\left\|\varphi_{j} f\right\|_{H^{s}\left(R^{n-1}\right)}^{2}\right\}^{1 / 2}
$$

where $\left\|\varphi_{j} f\right\|_{\mathbb{H}^{\bullet}\left(R^{n-1}\right)}$ is taken in local coordinates and the φ_{j} are those functions of a finite partition of unity whose supports intersect the boundary $\partial \Omega$. One may show that with different φ_{j}, one gets equivalent norms.

Let $\tilde{f}(\xi)$ be a smooth decreasing function. The operator I^{+}is defined by

$$
\Pi^{+} \tilde{f}(\xi)=\frac{1}{2} f\left(\xi^{\prime}, \xi_{n}\right)+i(2 \pi)^{-1} \text { v.p. } \int \tilde{f}\left(\xi^{\prime}, \eta_{n}\right)\left(\xi_{n}-\eta_{n}\right)^{-1} d \eta_{n}
$$

where $\xi^{\prime}=\left(\xi_{1}, \cdots, \xi_{n-1}\right)$. For any \tilde{f}, the above relation is understood as the result of the closure of the operator Π^{+}defined on the set of smooth and decreasing functions.

Set

$$
\xi_{-}=\xi_{n}-i\left|\xi^{\prime}\right| ; \quad \xi_{+}=\xi_{n}+i\left|\xi^{\prime}\right|
$$

Definition 1.1. $\tilde{A}(\xi)$ is in E_{α} iff
(i) $\tilde{A}(\xi)$ is a homogeneous function of order α in ξ,
(ii) $\tilde{A}(\xi) \neq 0$ for $|\xi| \neq 0$,
(iii) $\tilde{A} \xi$) has for $\left|\xi^{\prime}\right| \not \equiv 0$, continuous first order derivatives bounded if $|\xi|=1,\left|\xi^{\prime}\right| \neq 0$.

Definition 1.2. $\tilde{A}_{+}(\xi)$ is in C_{k}^{+}iff
(i) $\tilde{A}_{+}(\xi)$ is homogeneous of order k in ξ, is continuous for $|\xi| \neq 0$ and has an analytic continuation with respect to ξ_{n} in $\operatorname{Im} \xi_{n}>0$ for each ξ^{\prime},
(ii) $\widetilde{A}_{+}(\xi) \neq 0$ for $|\xi| \neq 0$ and for any integer $p \geq 0$, there is an expansion

$$
\tilde{A}_{+}(\xi)=\sum_{s=0}^{p} c_{s}\left(\xi^{\prime}\right) \xi_{+}^{k-s}+R_{k, p+1-k}\left(\xi^{\prime}, \xi_{n}\right)
$$

where all the terms are homogeneous of order k in ξ, with analytic continuation in $\operatorname{Im} \xi_{n}>0$ and

$$
\left|R_{k, p+1-k}\left(\xi^{\prime}, \xi_{n}\right)\right| \leq C\left|\xi^{\prime}\right|^{p+1}\left(\left|\xi^{\prime}\right|+\left|\xi_{n}\right|\right)^{k-p-1}
$$

Definition 1.3. $\tilde{A}(x, \xi)$ is in D_{α}^{0} iff
(i) $\tilde{A}(x, \xi)$ is infinitely differentiable in x and $\xi,|\xi| \neq 0$,
(ii) $\widetilde{A}(x, \xi)$ is homogeneous of order α in ξ for x in R^{n},
(iii) $\frac{\partial^{k}}{\left(\partial \xi^{\prime}\right)^{k}} \tilde{A}(x, 0,-1)=(-1)^{k} \exp (-i \pi \alpha) \frac{\partial^{k}}{\left(\partial \xi^{\prime}\right)^{k}} \widetilde{A}(x, 0,1)$,

$$
0 \leq|k|<\infty
$$

Definition 1.4. $\tilde{A}(x, \xi)$ is in $\hat{D}_{\alpha, 1}^{1}$ iff the following hold.
(i) $\left|D_{x}^{p} \widetilde{A}(x, \xi)\right| \leq C_{p}(1+|\xi|)^{\alpha}, \quad 0 \leq|p|<\infty$.
(ii) For any x in R^{n} and for any $s \geq-\alpha$, there is a decomposition

$$
\left(\xi_{-}-i\right)^{s} \tilde{A}(x, \xi)=\tilde{A}_{-}(x, \xi)+R(x, \xi)
$$

$\tilde{A}_{-}(x, \xi) ; R(x, \xi)$ are infinitely differentiable with respect to $x, \tilde{A}_{-}(x, \xi)$ is analytic in $\operatorname{Im} \xi_{n}<0$ and, for $0 \leq|p|<\infty$,

$$
\begin{aligned}
\left|D_{x}^{p} \tilde{A}_{-}(x, \xi)\right| & \leq C_{p}(1+|\xi|)^{\alpha+s} ; \quad\left|D_{x}^{p} D_{\xi} \tilde{A}_{-}(x, \xi)\right| \leq c_{p}(1+|\xi|)^{\alpha+s-1} \\
\left|D_{x}^{p} R(x, \xi)\right| & \leq C_{p}\left(1+\left|\xi^{\prime}\right|\right)^{\alpha+s+1}(1+|\xi|)^{-1} \\
\left|D_{x}^{p} D_{\xi} R(x, \xi)\right| & \leq c_{p}\left(1+\left|\xi^{\prime}\right|\right)^{s+\alpha}(1+|\xi|)^{-1}
\end{aligned}
$$

Let $\left\{\varphi_{j}\right\}$ be a finite partition of unity corresponding to an open covering $\left\{N_{j}\right\}$ of cl Ω. Let $\left\{\psi_{j}\right\}$ be the infinitely differentiable functions with compact supports in $\left\{N_{j}\right\}$ and such that $\varphi_{j} \psi_{j}=\varphi_{j}$.
P^{+}denotes the restriction operator of (generalized) functions from R^{n} to Ω and $\boldsymbol{\gamma}$ denotes the passage to $\partial \Omega$.

Let $\widetilde{A}(\xi)$ be in $E_{\alpha},(\alpha>0)$, and u be an element of $H^{s}\left(R_{+}^{n}\right)$ with $u(x)=0$ for $x_{n}<0$. We define

$$
A u=F^{-1}(\tilde{A}(\xi) \tilde{u}(\xi))
$$

where the inverse Fourier transform is understood in the sense of the theory of distributions. Let $\widetilde{A}(x, \xi)$ be in E_{α} for x in cl Ω and $\widetilde{A}(x, \xi)$ be infinitely differentiable with respect to x and ξ. We extend $\tilde{A}(x, \xi)$ with respect to x
to R^{n} with preservation of homogeneity with respect to ξ. We expand $\widetilde{A}(x, \xi)$ in the Fourier series

$$
\tilde{A}(x, \xi)=\sum_{k=-\infty}^{\infty} \psi_{0}(x) \exp (-i \pi k x / p) \mathcal{L}_{k}(\xi), \quad k=\left(k_{1}, \cdots, k_{n}\right)
$$

and

$$
\tilde{L}_{k}(\xi)=(2 p)^{-n} \int_{-p}^{p} \exp (-i \pi k x / p) \tilde{A}(x, \xi) d x
$$

$\psi_{0}(x) \in C_{c}^{\infty}\left(R^{n}\right) ; \psi_{0}(x)=1$ for $|x| \leq p-\varepsilon, \psi_{0}(x)=0$ for $|x| \geq p$.
We have $\left|\tilde{L}_{k}(\xi)\right| \leq C|\xi|^{\alpha}(1+|k|)^{-\mu}$ for large positive M.
For u in $H_{+}^{\alpha}(\Omega)$, we define

$$
P^{+} A u=P^{+}\left(\sum_{k=-\infty}^{\infty} \psi_{0}(x) \exp (i k x \pi / p) L_{k} u\right) .
$$

Definition 1.5. (1) Let

$$
P^{+} A=\sum_{j} P^{+} \varphi_{j} A \psi_{j}+\sum_{j} P^{+} \varphi_{j} A\left(1-\psi_{j}\right)
$$

be an elliptic pseudo-differential operator of order α on Ω with the following properties:
(a) If $\varphi_{j} A_{j} \psi_{j}$ is the principal part of $\varphi_{j} A \psi_{j}$ in a local coordinates system, then $\widetilde{A}_{j}\left(x^{j}, \xi\right) \in E_{\alpha}$ and for $x_{n}^{j}=0$ admits the factorization

$$
\tilde{A}_{j}\left(x^{j}, \xi\right)=\tilde{A}_{j}^{+}\left(x^{j}, \xi\right) \tilde{A}_{j}^{-}\left(x^{j}, \xi\right)
$$

where $\tilde{A}_{j}^{+} \epsilon C_{k}^{+} ; k$ is a non-negative integer independent of x^{j} and A_{j}^{-}is homogeneous of order $\alpha-k$ in ξ with an analytic continuation with respect to ξ_{n} in $\operatorname{Im} \xi_{n} \leq 0$.
(b) $\widehat{A_{j}}\left(x^{j}, \xi\right) \in D_{\alpha}^{0} \cap \hat{D}_{\alpha, 1}^{1}$ for $x \in N_{j} \cap \partial \Omega \neq \emptyset$.
(2) If $k>0$, let

$$
P^{+} B_{r}=\sum_{j} P^{+} \varphi_{j} B_{r} \psi_{j}+\sum_{j} P^{+} \varphi_{j} B_{r}\left(1-\psi_{j}\right) ; \quad r=1, \cdots, k
$$

be a system of pseudo-differential operators of orders α_{r} with $0 \leq \alpha_{r}<\alpha$ having the following properties:

If $\varphi_{j} B_{r j} \psi_{j}$ is the principal part of B_{r} in a local coordinate system, then $\widetilde{B}_{r j}\left(x^{j}, \xi\right) \in D_{\alpha_{r}}^{0} \cap \widehat{D}_{\alpha_{r}, 1}^{1}$ for $x \in N_{j} \cap \partial \Omega \neq \emptyset$.

The elliptic problem $\left\{P^{+} A ; \gamma P^{+} B_{r} ; r=1, \cdots, k\right\}$ is said to be uniformly regular on Ω if

$$
\operatorname{Det}\left(b_{r s}\left(x^{j}, \xi^{\prime}\right)\right) \neq 0
$$

for all $x^{j} \in N_{j} \cap \partial \Omega \neq \emptyset$ where $b_{r s}$ are determined by

$$
\Pi^{+} \widetilde{B}_{r s}\left(x^{j}, \xi\right) \xi_{n}^{s-1}\left(\widetilde{A}_{j}^{+}\left(x^{j}, \xi\right)\right)^{-1}=R_{r s}\left(x^{j}, \xi\right)+i b_{r s}\left(x^{j}, \xi^{\prime}\right) \xi_{+}^{-1}
$$

ord $\left(b_{r s}\right)=\alpha_{r}+k-s ; r, s=1, \cdots, k$
The main assumption of the paper is the following condition.
Assumption (I). Let $\left\{P^{+} A ; \gamma P^{+} B_{r} ; r=1, \cdots, k\right\}$ be a uniformly regular elliptic problem on Ω in the sense of Definition 1.5. We assume
(i) $\widetilde{A}_{j}\left(x^{j}, \xi\right)+t \neq 0$ for all $t \geq t_{0}>0$ and all j;
(ii) if $k>0$, Det $\left(b_{r s}\left(x^{j}, \xi^{\prime}, t\right)\right) \neq 0$ for all x^{j} and all $t \geq t_{0}>0$ where $b_{r s}\left(x^{j}, \xi^{\prime}, t\right)$ are given by

$$
\Pi^{+} \widetilde{B}_{r s}\left(x^{j}, \xi\right) \xi_{n}^{s-1}\left(A_{j}^{+}\left(x^{j}, \xi, t\right)\right)^{-1}=R_{r s}\left(x^{j}, \xi, t\right)+i b_{r s}\left(x^{j}, \xi^{\prime}, t\right)\left(\xi_{+}^{t}\right)^{-1}
$$

with
$\tilde{A}_{j}\left(x^{j}, \xi\right)+t=\tilde{A}_{j}^{+}\left(x^{j}, \xi, t\right) \tilde{A}_{j}^{-}\left(x^{j}, \xi, t\right) \quad$ and $\quad \xi_{+}^{t}=\xi_{n}-i\left(\left|\xi^{\prime}\right|+t^{1 / \alpha}\right)$.
Definition 1.6. Let A_{2} be the operator on $L^{2}(\Omega)$ defined as follows:
$D\left(A_{2}\right)=\left\{u: u\right.$ in $H_{+}^{\alpha}(\Omega)$ and $\gamma P^{+} B_{r} u=0$ if $\left.k>0 ; r=1, \cdots, k\right\}$, $A_{2} u=P^{+} A u \quad$ if u is in $D\left(A_{2}\right)$

Section 2

First, we have the following theorem.
Theorem 2.1. Let $\left\{P^{+} A ; \gamma P^{+} B_{r} ; r=1, \cdots, k\right\}$ be a uniformly regular problem on Ω in the sense of Definition 1.5.

Suppose that
(i) Assumption (I) is satisfied,
(ii) $\alpha>n$, is the order of A.

Then for $t \geq t_{0}>0,\left(A_{2}+t I\right)^{-1}$ exists and is of Hilbert-Schmidt type

$$
\left(A_{2}+t I\right)^{-1} f(x)=\int_{\Omega} G(x, y, t) f(y) d y
$$

f in $L^{2}(\Omega)$ and $G(x, y, t) \in L^{2}(\Omega) \times L^{2}(\Omega)$
Proof. In [12], the writer has proved that under the hypotheses of the theorem, $\left(A_{2}+t I\right)^{-1}$ exists and is a bounded linear mapping from $L^{2}(\Omega)$ into $H_{+}^{\alpha}(\Omega)$. The following estimate was established:

$$
\|u\|_{\alpha}+t\|u\|_{0} \leq C\left\|\left(A_{2}+t I\right) u\right\|_{0} \quad \text { for all } u \operatorname{in} D\left(A_{2}\right)
$$

Since $\alpha>n$ and Ω is a bounded open set of R^{n} with a smooth boundary, the injection mapping of $H_{+}^{\alpha}(\Omega)$ into $L^{2}(\Omega)$ is compact. Hence by a standard argument, it follows that $\left(A_{2}+t I\right)^{-1}$ is of Hilbert-Schmidt type and

$$
\left(A_{2}+t I\right)^{-1} f(x)=\int_{\Omega} G(x, y, t) f(y) d y
$$

f in $L^{2}(\Omega), G(x, y, t)$ in $L^{2}(\Omega) \times L^{2}(\Omega) \quad$ Q.E.D.
In the remainder of this section we shall study the asymptotic behavior of $G(x, y, t)$ as $t \rightarrow+\infty$.

Lemma 2.1. Let $\tilde{A}(\xi)$ be in $E_{\alpha}, \alpha>0$ and such that $\tilde{A}(\xi)+t \neq 0$ for $t \geq t_{0}>0$. Suppose that $\alpha>n$. Then

$$
E(x, y, t)=(2 \pi)^{-n} \int_{R^{n}} \exp (-i<x-y, \xi>)(\widetilde{A}(\xi)+t)^{-1} d \xi
$$

is infinitely differentiable for $x \neq y$. Moreover

$$
\begin{aligned}
|E(x, y, t)| & \leq M t^{-1+n / \alpha}\left(1+t^{N / \alpha}|x-y|^{N}\right)^{-1} \\
\left|D_{x}^{\beta} E(x, y, t)\right| & \leq M t^{-\varepsilon / \alpha}|x-y|^{-n-\varepsilon-|\beta|+\alpha}\left(1+t^{N / \alpha}|x-y|^{N}\right)^{-1}
\end{aligned}
$$

for $-n+\alpha \leq|\beta| ; 0<\varepsilon<1$ and N is any positive number. $E(x, y, t)$ is a fundamental solution of $P^{+}(A+t I)$; i.e., $P^{+}(A+t I) E=\delta_{y}, y$ in Ω.

Proof. Cf. Garding [8]
Lemma 2.2. Let $P^{+} A$ be an elliptic pseudo-differential operator of order α on Ω with symbol $\tilde{A}(x, \xi)$ infinitely differentiable in x and ξ. Let $P^{+} A_{z}$ be the operator $P^{+} A$ with symbol evaluated at z. Let $E_{z}(x, z, t)$ be the fundamental solution of $P^{+}\left(A_{z}+t I\right) . \quad$ Set
(i) $w(x, z, t)=P^{+}\left(A-A_{z}\right) E_{z}(x, z, t)$
(ii) $T v(x, z, t)=\int_{\Omega} w(x, y, t) v(y, z, t) d y$.

Then the integral equation $v+T v+w=0$ may be solved by the Neumann series for large t. Moreover

$$
v(x, z, t)=0(1) t^{-\varepsilon / \alpha}|x-z|^{-n+1-\varepsilon}\left(1+t^{N / \alpha}|x-z|^{N}\right)^{-1}
$$

where $0<\varepsilon<1$ and N is a large positive number.
Proof. The proof is easy and follows from the previous lemma and the definition of $P^{+} A$.

Theorem 2.2. Suppose the hypotheses of Lemmas 2.1, 2.2 are satisfied. Then

$$
E(x, z, t)=E_{z}(x, z, t)+\int_{\Omega} E_{y}(x, y, t) v(y, z, t) d y
$$

where v is the solution of the integral equation of Lemma 2.2 and z in Ω; is a fundamental solution of $P^{+}(A+t I)$

Proof. We have to verify that $P^{+}(A+t I) E(x, z, t)=\delta_{z} ; z$ in Ω.
$E(\cdot, z, t)$ is in $L^{2}\left(R^{n}\right)$, so $(A+t I) E(x, z, t)$ is well defined as an element of $H^{-\alpha}\left(R^{n}\right)$.

We may write

$$
\begin{aligned}
P^{+}(A+t I) & E(x, z, t) \\
=P^{+}\left(A_{z}+t I\right) E_{z}(x, z, t) & +P^{+}\left(A-A_{z}\right) E_{z}(y, z, t) \\
& +P^{+}(A+t I) \int_{\Omega} E_{y}(x, y, t) v(y, z, t) d y
\end{aligned}
$$

Let $\varphi \in C_{c}^{\infty}(\Omega)$, then we have

$$
\begin{aligned}
&\left(\left(P^{+}(A+t I)\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \varphi\right)\right) \\
&=\left(\left((A+t I)\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \varphi\right)\right)
\end{aligned}
$$

(1) We show that

$$
\begin{aligned}
& \text { (*) }\left(\left((A)\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \varphi\right)\right) \\
& =\sum_{s=-\infty}^{\infty}\left(\left(\psi(\cdot) e^{i \pi s \cdot / p} L_{s}\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \varphi\right)\right)
\end{aligned}
$$

We have

$$
\begin{aligned}
\mid\left(\left(\sum_{s=k+1}^{\infty} \psi e^{i \pi s \cdot / p} L_{s}\right.\right. & \left.\left.\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \varphi\right)\right) \mid \\
& \leq M\|\varphi\|_{\mathbb{B}^{\alpha}\left(R^{n}\right)} \cdot \sum_{s=k+1}^{\infty}\left\|L_{s}\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right)\right\|_{-\alpha} \\
& \leq M t^{-\varepsilon / \alpha} \sum_{s=k+1}^{\infty} 1 /(1+s)^{m}
\end{aligned}
$$

for some large positive m. Similarly for:

$$
\left(\left(\sum_{s=-\infty}^{-k-1} \psi e^{i \pi s \cdot / p} L_{s}\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \varphi\right)\right)
$$

It follows that (*) holds.
(2) Next, we show

$$
\begin{aligned}
\left(\left(L_{s}\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \varphi\right)\right) & \\
& =\int_{\Omega} v(y, z, t)\left(\left(L_{s} E_{y}(\cdot, y, t), \varphi\right)\right) d y
\end{aligned}
$$

Taking Fourier transform, we obtain

$$
\begin{aligned}
\left(\left(L _ { s } \left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t)\right.\right.\right. & d y), \varphi)) \\
& =\left(\left(\tilde{L}_{s}(\xi) F\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \tilde{\varphi}\right)\right) \\
& =\left(\left(F\left(\int_{\Omega} E_{\nu}(\cdot, y, t) v(y, z, t) d y\right), F\left(L_{s} \varphi\right)\right)\right)
\end{aligned}
$$

since $\tilde{L}_{s}(\xi) \tilde{\varphi}(\xi)$ is in $\delta ; \tilde{L}_{s}(\xi)$ being infinitely differentiable, $\left|D^{\beta} \tilde{L}_{s}(\xi)\right| \leq$ $C\left(1+|\xi|^{\alpha}\right), \alpha$ is a positive integer.
It is also equal to

$$
\left(\left(\int_{\Omega} E_{\nu}(\cdot, y, t) v(y, z, t) d y, L_{s} \varphi\right)\right)
$$

$$
=\int_{R^{n}} \int_{\Omega} E_{\nu}(x, y, t) v(y, z, t) L_{s} \varphi(x) d y d x
$$

since $\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y$ is in $L^{1}\left(R^{n}\right) \cap L^{2}\left(R^{n}\right)$ and $L_{2} \varphi$ is in δ.
By the Fubini theorem, the right hand side integral may be written as

$$
\int_{\Omega} v(y, z, t) \int_{R^{n}} E_{y}(x, y, t) L_{s} \varphi(x) d x d y
$$

We have

$$
\begin{aligned}
\int_{R^{n}} E_{y}(x, y, t) L_{s} \varphi(x) d x & =\left(F E_{y}(\cdot, y, t), F\left(L_{s} \varphi\right)\right) \\
& =\left(\left(\widetilde{L}_{s}(\xi) F E_{y}(\cdot, y, t), \tilde{\varphi}\right)\right) \\
& =\left(\left(F\left(L_{s} E_{y}(\cdot, y, t)\right), \tilde{\varphi}\right)\right) \\
& =\left(\left(L_{s} E_{y}(\cdot, y, t), \varphi\right)\right)
\end{aligned}
$$

Hence

$$
\left(\left(L_{s}\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \varphi\right)\right)
$$

$$
=\int_{\Omega} v(y, z, t)\left(\left(L_{s} E_{y}(\cdot, y, t), \varphi\right)\right) d y
$$

(3) Combining (1) and (2), we get

$$
\begin{aligned}
& \left(\left((A+t I)\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \varphi\right)\right) \\
& \quad=\int_{\Omega} v(y, z, t)\left(\left((A+t I) E_{y}(\cdot, y, t), \varphi\right)\right) d y
\end{aligned}
$$

The right hand side may be written as

$$
\begin{aligned}
& \int_{\Omega} v(y, z, t)\left(\left(\left(A_{y}+t I\right) E_{y}(\cdot, y, t), \varphi\right)\right) d y \\
& \quad+\int_{\Omega} v(y, z, t)\left(\left(\left(A-A_{y}\right) E_{y}(\cdot, y, t), \varphi\right)\right) d y
\end{aligned}
$$

Hence it is equal to

$$
\int_{\Omega} \varphi(y) v(y, z, t) d y+\int_{\Omega} v(y, z, t) \int_{\Omega} P^{+}\left(A-A_{y}\right) E_{y}(x, y, t) \varphi(x) d x d y
$$

Taking into account the definition of v, we obtain

$$
P^{+}(A+t I) E(x, y, t)=\delta_{y}, \quad y \text { in } \Omega, \quad \text { Q.E.D. }
$$

The main result of this section is the following theorem:
Theorem 2.3. Let $\left\{P^{+} A ; \gamma P^{+} B_{r} ; r=1, \cdots, k\right\}$ be a uniformly regular elliptic problem on Ω in the sense of Definition 1.5 and satisfying Assumption (I). Let $G(x, z, t)$ be the Green's function associated with the boundary problem

$$
\left\{P^{+}(A+t I) ; \gamma P^{+} B_{r} ; r=1, \cdots, k\right\}
$$

Then $G(x, z, t)=E(x, z, t)-u(x, z, t)$ where $E(x, z, t)$ is the fundamental solution of Theorem 2.2 and $u(x, z, t)$ is the unique solution of the boundary problem

$$
\begin{aligned}
P^{+}(A+t I) u(x, z, t) & =0 \quad \text { on } \Omega \\
P^{+} B_{r} u(x, z, t) & =P^{+} B_{r} E(x, z, t) \quad \text { for } r=1, \cdots, k .
\end{aligned}
$$

$G(x, z, t)$ is a continuous function of x and $\lim _{t \rightarrow+\infty} t^{1-n / \alpha} u(x, z, t)=0$ for any x in Ω, z in Ω.

Proof. If u is the solution of the boundary-value problem

$$
P^{+}(A+t I) u=0 \text { on } \Omega ; \quad \gamma P^{+} B_{r} u=\gamma P^{+} B_{r} E \text { on } \partial \Omega ; \quad r=1, \cdots, k
$$

then it is clear that $G(x, z, t)=E(x, z, t)-u(x, z, t)$ is the Green's function associated with

$$
\left\{P^{+}(A+t I) ; \quad P^{+} B_{r} ; \quad r=1, \cdots, k\right\}
$$

In [12], generalizing a result of Agranovich-Visik [3], we have shown that the above boundary-value problem has a unique solution u and the following estimate holds:
$\sum_{s=0}^{\alpha} t^{1-z / \alpha}\|u\|_{s} \leq M \sum_{r=1}^{k}\left\{\left\|\gamma P^{+} B_{r} E(\cdot, z, t)\right\|_{\alpha-\alpha_{r}-1 / 2}^{\prime}+t^{1-\left(\alpha_{r}+1 / 2\right) / \alpha}\right.$

$$
\cdot\left\|\gamma P^{+} B_{r} E(\cdot, z, t)\right\|^{\prime}
$$

where M is independent of z, t.
Since $\alpha>n$, using the Sobolev imbedding theorem, we get

$$
\begin{aligned}
& t^{1-n / \alpha}|u(x, z, t)| \leq M \sum_{r=1}^{k}\left\{\left\|\gamma P^{+} B_{r} E(\cdot, z, t)\right\|_{\alpha-\alpha_{r}-1 / 2}^{\prime}\right. \\
&+t^{1-\left(\alpha_{r}+1 / 2\right) / \alpha}\left\|\gamma P^{+} B_{r} E(\cdot, z, t)\right\|^{\prime}
\end{aligned}
$$

We study the expressions inside of the bracket. We have

$$
B_{r} E(x, z, t)=B_{r} E_{z}(x, z, t)+B_{r}\left(\int_{\Omega} E_{y}(x, y, t) v(y, z, t) d y\right)
$$

Using the expansion of B_{r}, we consider

$$
B_{r s} E_{z}(x, z, t) \quad \text { and } \quad B_{r s}\left(\int_{\Omega} E_{y}(x, y, t) v(y, z, t) d y\right)
$$

where the symbol $\widetilde{B}_{r s}(\xi)$ of $B_{r s}$ is a homogeneous function of order α_{r} in ξ with

$$
\left|\widetilde{B}_{r s}(\xi)\right| \leq C \xi^{\alpha} r(1+|s|)^{-M}
$$

(1) By an easy computation, we get

$$
\begin{aligned}
& \left|B_{r s} E_{z}(x, z, t)\right| \\
& \quad \leq C t^{-2+\left(1+\alpha_{r}-\varepsilon\right) / \alpha}(1+|s|)^{-M}|x-z|^{-n-\alpha-\varepsilon+1} /\left(1+t^{N / \alpha}|x-z|^{N}\right)
\end{aligned}
$$

where $0<\varepsilon<1, N \geq 0$.
Let $d(z)=\operatorname{dist}(z, \partial \Omega)$; for $t \geq d(z)^{-\varepsilon(n+\alpha+\varepsilon-1) / \alpha}$, we have

$$
\left|\gamma P^{+} B_{r s} E_{z}(x, z, t)\right| \leq C t^{-2+\left(1+\alpha_{r}\right) / \alpha}(1+|s|)^{-M}\left(1+t^{N / \alpha}|x-z|^{N}\right)^{-1}
$$

where C is independent of x, z, t, s. So

$$
\left|\gamma P^{+} B_{r} E_{z}(x, z, t)\right| \leq C t^{-2+\left(1+\alpha_{r}\right) / \alpha}\left(1+t^{N / \alpha}|x-z|^{N}\right)^{-1}
$$

(2) Next, we show that

$$
B_{r s}\left(\int_{\Omega} E_{y}(x, y, t) v(y, z, t) d y\right)=\int_{\Omega} B_{r s} E_{y}(x, y, t) v(y, z, t) d y
$$

Indeed, let $\varphi \in C_{c}^{\infty}\left(R^{n}\right)$ and consider

$$
\left(\left(B_{r s}\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \varphi\right)\right)
$$

Since $\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y$ is an element of $L^{2}\left(R^{n}\right), B_{r s}\left(\int_{\Omega}\right)$ is in $H^{\alpha}\left(R^{n}\right)$. Using Plancherel theorem, we obtain

$$
\begin{aligned}
\left(\left(\tilde { B } _ { r s } (\xi) F \left(\int_{\Omega} E_{y}(\cdot, y, t) v(y,\right.\right.\right. & z, t) d y), \tilde{\varphi})) \\
& =\left(\left(B_{r s}\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), \varphi\right)\right) \\
& =\left(\left(F\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right), F\left(B_{r s} \varphi\right)\right)\right) \\
& =\left(\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y, B_{r s} \varphi\right)\right)
\end{aligned}
$$

Since $\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y$ is in $L^{1}\left(R^{n}\right) \cap L^{2}\left(R^{n}\right)$, we get

$$
\begin{aligned}
&\left(\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y, B_{r s} \varphi\right)\right) \\
&=\int_{R^{n}} B_{r s} \varphi\left(\int_{\Omega} E_{y}(x, y, t) v(y, z, t) d y\right) d x \\
&=\int_{\Omega} v(y, z, t) \int_{R^{n}} B_{r s} \varphi(x) E_{y}(x, y, t) d x d y
\end{aligned}
$$

by Fubini's theorem. But the last integral may also be written as

$$
\int_{R^{n}} B_{r s} \varphi(x) E_{y}(x, y, t) d x=\int_{R^{n}} B_{r s} E_{\nu}(x, y, t) \varphi(x) d x
$$

Applying the Fubini theorem, we obtain

$$
\begin{aligned}
\left(\left(B_{r s}\left(\int_{\Omega} E_{y}(\cdot, y, t) v(y, z, t) d y\right)\right.\right. & , \varphi)) \\
& =\int_{R^{n}} \varphi(x) \int_{\Omega} B_{r s} E_{y}(x, y, t) v(y, z, t) d u d x \\
& =\left(\left(\int_{\Omega} B_{r s} E_{y}(\cdot, y, t) v(y, z, t) d y, \varphi\right)\right)
\end{aligned}
$$

for all φ in $C_{c}^{\infty}\left(R^{n}\right)$.

So $B_{r s}\left(\int_{\Omega} E_{y}(x, y, t) v(y, z, t) d y\right)=\int_{\Omega} B_{r s} E_{y}(x, y, t) v(y, z, t) d y$ in the distribution sense. Since the right hand side of the equality is a continuous function of x for $x \neq z$, the equality is true in the classical sense for $x \neq z$.

We get

$$
\begin{aligned}
& \left|\gamma P^{+} B_{r s}\left(\int_{\Omega} E_{y}(x, y, t) v(y, z, t) d y\right)\right| \\
& \quad \leq C t^{-2+\left(1+\alpha_{r}\right) / \alpha}(1+|s|)^{-M} /\left(1+t^{N / \alpha}|x-z|^{N}\right)
\end{aligned}
$$

for $t \geq d(z)^{-\alpha(n+\alpha+\varepsilon-1) / \varepsilon} . \quad C$ is a constant independent of x, z, t.
Therefore
$\left|\gamma P^{+} B_{r}\left(\int_{\Omega} E_{y}(x, y, t) v(y, z, t) d y\right)\right| \leq C t^{-2+\left(1+\alpha_{r}\right) / \alpha}\left(1+t^{N / \alpha}|x-z|^{N}\right)^{-1}$
(3) From (1) and (2), we have $t^{1-\left(\alpha_{r}+1 / 2\right) / \alpha}\left\|\gamma P^{+} B_{r} E(\cdot, z, t)\right\|_{0}^{\prime}$ less than $C t^{-1+1 / 2 \alpha}$ for $t \geq d(z)^{-\alpha(n+\alpha+\varepsilon-1) / \varepsilon}$.
(4) Consider $\left\|\gamma P^{+} B_{r} E(\cdot, z, t)\right\|_{\alpha-\alpha_{r-1} / 2}^{\prime} \leq C\left\|\gamma P^{+} B_{r} E(\cdot, z, t)\right\|_{\alpha-\alpha_{r}}^{\prime}$.

Again, we look at $\left\|\gamma P^{+} B_{r s} E(\cdot, z, t)\right\|_{\alpha-\alpha_{r}}^{1}$
By a computation as above, we get

$$
\left|D^{\alpha-\alpha_{r}} \gamma P^{+} E(x, z, t)\right| \leq C t^{-\varepsilon / 2 \alpha}\left(1+t^{N / \alpha}|x-z|^{N}\right)^{-1}
$$

for $t \geq d(z)^{-(n-1+\varepsilon) \alpha / 2 \varepsilon} ; C$ is again a constant independent of x, z, t.
Hence $\left\|\gamma P^{+} B_{r} E(\cdot, z, t)\right\|_{\alpha-\alpha_{r}-1 / 2}^{\prime} \leq C t^{-\varepsilon / 2 \alpha}$ for $t \geq d(z)^{-(n-1+\varepsilon) \alpha / 2 \varepsilon}$. Therefore

$$
\lim _{t \rightarrow+\infty} t^{1-n / \alpha}|u(x, z, t)| \rightarrow 0
$$

The theorem is proved.

Section 3

In this section, we apply the Hardy-Littlewood Tauberian theorem to get the wanted results.

Theorem 3.1. Suppose the hypotheses of Theorem 2.1 are satisfied. Suppose further that A_{2} is self-adjoint. Let λ_{j}, φ_{j} be the eigenvalues and eigenfunctions of A_{2} respectively. Then
(i) $t^{-n / \alpha} e(x, y, t)=t^{-n / \alpha} \sum_{\lambda_{j} \leq t} \varphi_{j}(x) \overline{\varphi_{j}(y)} \rightarrow 0$ as $t \rightarrow+\infty$ for x, y in Ω, $x \neq y$
(ii) $e(x, x, t) \sim(2 \pi)^{-n t^{n / \alpha}} \alpha(n \pi)^{-1} \sin (n \pi / \alpha) \int_{R^{n}}(\tilde{A}(x, \xi)+1)^{-1} d \xi$ as $t \rightarrow \infty ; x$ in Ω.
(iii) If $k=0$, then

$$
N(t)=\sum_{\lambda_{j} \leq t} 1 \sim(2 \pi)^{-n_{t} n / \alpha} \alpha(n \pi)^{-1} \sin (n \pi / \alpha) \int_{\Omega} \int_{\tilde{\Lambda}(x, \xi)<1} d \xi d x
$$

as $t \rightarrow+\infty$.
Proof. First we note that for $\alpha>n$, the Green's function $G(x, y, t)$ for
fixed y in Ω may be represented as a uniformly convergent series:

$$
G(x, y, t)=\sum_{j=1} \varphi_{j}(x) \varphi_{j}(y)\left(\lambda_{j}+t\right)^{-1}
$$

Applying the Hardy-Littlewood Tauberian theorem [9] and taking into account the results of Theorem 2.3, we get the assertions (i), (ii) of the theorem.

If $k=0$, since no boundary conditions are required, we have

$$
G(x, y, t)=E(x, y, t)
$$

and
$\left|t^{1-n / \alpha} G(x, x, t)\right|=\left|t^{1-n / \alpha} E(x, x, t)\right|=\left|(2 \pi)^{-n} \int(\widetilde{A}(x, \xi)+1)^{-1} d \xi\right| \leq M$
for all x in Ω. By the Lebesgue bounded convergence theorem and the HardyLittlewood Tauberian theorem, we obtain

$$
N(t) \sim(2 \pi)^{-n t n / \alpha} \alpha(n \pi)^{-1} \sin (n \pi / \alpha) \int_{\Omega} \int_{\tilde{\Lambda}(x, \xi)<1} d \xi d x
$$

as $t \rightarrow+\infty$.

Bibliography

1. S. Agmon, On kernels and eigenfunctions of operators related to elliptic problems, Comm. Pure Appl. Math. vol. 18 (1965), pp. 559-579.
2. S. Agmon and Y. Kannai, On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators, Israel J. Math., vol. 5 (1967), pp. 1-30.
3. M. S. Agranovich and M. I. Visir, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk, vol. 19 (1964), pp. 53-161 = Russian Math. Surveys, vol. 19, (1964), pp. 53-159.
4. F. E. Browder, Asymptotic distribution of eigenvalues and eigenfunctions for nonlocal elliptic boundary value problems I, Amer. J. Math. vol. 87 (1965), pp. 175-195.
5. T. Carleman, Proprietes asymptotiques des fonctions fondamentales des membranes vibrantes, Attonde Skand. Matematikerekongressen, Stockholm, 1934, pp. 34-44.
6. C. Clark, The asymptotic distribution of eigenvalues and eigenfunctions for elliptic boundary value problems, SIAM rev., vol. 9 (1967), 627-646.
7. G. I. Eskin and M. I. Visik, Equations in convolutions in a bounded region, Uspehi Mat. Nauk, vol. 20 (1965), pp. $90-152=$ Russian Math. Surveys, vol. 20 (1965), pp. 85-157.
8. L. Garding, On the asymptotic distribution of eigenvalues and eigenfunctions of elliptic differential operators, Math. Scand., vol. 1 (1953), pp. 237-255.
9. G. H. Hardy and T. E. Littlewood, Notes on the theory of series (XI); On tauberian theorem, Proc. London Math. Soc. (2), vol. 20 (1930), pp. 23-27.
10. B. A. Ton, Asymptotic distribution of eigenvalues and eigenfunctions for general linear elliptic boundary value problems, Trans. Amer. Math. Soc., vol. 122 (1966), pp. 516-546.
11. -_, Nonlinear elliptic convolution equations of Weiner-Hopf type in a bounded region, Pacific J. Math., vol. 24 (1968), pp. 577-587.
12. -—, Boundary value problems for elliptic convolution equations of Wiener-Hopf type in a bounded region, Pacific J. Math., vol. 26 (1968), pp. 395-413.

University of British Columbia
 Vancouver, British Columbia

[^0]: Received May 22, 1968.
 ${ }^{1}$ Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force.

