
STIELTJES-VOLTERRA INTEGRAL EQUATIONS

BY
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This paper extends the work of D. B. Hinton [1] who contributed to an inte-
gral equation theory developed by J. S. Mac Nerney [2] and [3] and H. S. Wall
[4]. In each case a unique reversible function a is established which maps a
class of functions onto a class of functions in such a manner that each
member F of ff together with its image (F) satisfies a certain linear integral
equation. I have extended Hinton’s theory by changing the underlying space
S from a number interval to a non-degenerate set with any linear ordering and
by relaxing the axioms used to define the class ff of functions. The last is best
illustrated by thinking of S as a number interval and defining a neighborhood
of the diagonal of S X S to be the union of any finite collection of squares which
cover the diagonal. Then each function in the class investigated in this paper
will agree with a function in Hinton’s class on some neighborhood of the diag-
onal but may be different outside of the neighborhood.
The theory presented in this paper is in fact a generalization of the study of

the existence and the properties of functions U which satisfy equations of the
form U (t) K + (L) f dF[t, I]. U. A discussion of this may be found at the
end of Section 5.

I am deeply indebted to Professor J. S. Mac Nerney for his many suggestions
and for his encouragement.

1. Left and right integrals
Throughout this paper S will denote a non-degenerate set which is linearly

ordered by <_ with < having its usual meaning and (N, -,., I" [) will de-
note a complete normed ring with unity 1. The letter "I" will denote the
identity function whose range of definition will be clear from the context. To
a large extent, definitions and theorems which are analogous to those of Hinton
[1] are stated with the same letters and wording which Hinton used. It is
hoped that this will facilitate the reading of both papers.
The statement that [a, b] is an interval of S means that a and b are in S, a b,

and [a, b] is the set to which x belongs only in case a _< x _< b. Suppose
(M, , I) is a normed ring and g is a function mapping S into M. The
function g is said to be uniformly quasi-continuous on an interval of S only in
case it is the uniform limit of step functions on that interval. If [a, b] is an
interval of S and g is of bounded variation on [a, b] then either fa dg[ or
fldglwill denote the total variation of g on [a, b], and if c is in S then fJdg
is the number 0. Suppose (K, , , is a normed ring and f is a function
mapping S into K. The statement that s is an (f g ) chain means that
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e is a positive number, there is a positive integer n such that s is a monotone
sequence from the integers in [0, 2n] to S, if p is an integer and
then

L’’+’ II d.f II <
and if p is an integer and s+l _< x <_ y < s,+ then

g(y) <
If e is a positive number and [a, b] is an interval of S such that f is of bounded
variation on [a, b] and g is uniformly quasi-continuous on [a, b] then it can be
shown that there are (f g e) chains {s} and {r} such that so r2 a
and s r0 b. Since g is uniformly quasi-continuous on [a, b], there is an
increasing sequence {t} ’ such that to a, t b, and if p is a non-negative
integer less than n and t < x < y < t+l then g (x) g (y) < . For each
integer p in [0, n] define s to be For each non-negative integer p less than
n define s2+1 to be a member y of S such that s < y _< s+ and if s < x _< y
then f II df il < e/n. The sequence r may be defined in an analogous manner.
This result will help to establish the existence of certain integrals which are
defined next.
Suppose (a, b) is in S S; s} ’ is a subdivision of (a, b), that is, a monotone

sequence whose final set is a subset of S such that so a and s b; and each
of $ and g is a function mapping S into N. (L) a df.g is defined by

[f0 ) f
The integral (L) f dr. g, when it exists, is the member of N which is pproxi-
mated by sums of the form (L) a df.g in the manner of successive refine-
ments of subdivisions. Each of (L ) f g df (R f df g, and (R ) f g df is
defined in similar wy with

THEOREM 1.1. If each off and g is a function from S to N, [a, b] is an interval
of S such that g is bounded by K on [a, b] and f is of bounded variation on [a, b],
s is an (f g e) chain which is a subdivision of either (a, b) or (b, a), and
refines s then each of

(L) tdf’g- (n) ,df.g[ and (L) tg.df- (L) ,g.dfl
is less than 2K + f dr I} .
Each term of (L) , df.g can be expressed in the form

By observing that the first term of the sum is the same as the corresponding
term of (L) dr. g, the required inequality is readily obtained. Similar re-
marks hold for (L) g. df and (L) g. dr.
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COROLLARY 1.1. If each of f and g is a function from S to N and [a, b] is an
interval of S such that g is uniformly quasi-continuous on [a, b] andf is of bounded
variation on [a, b] then each of the following integrals exists:

() ., () .af, () ., () .af.

THEOREM 1.2. If a and b are in S and each off and g is afunctionfrom S to N
then (i ) f df.g exists only in case (R ) f f. dg exists, in which case

(L) df.g - (R) f.dg f(b).g(b) f(a).g(a).

The theorem becomes clear upon considering approximating sums for the
integrals with respect to a common subdivision.

THEOREM 1.3. If [a, b] is an interval of S, h is a non-decreasing function from
[a, b to the non-negative numbers, and n is a positive integer then, for each x in
[a, b],

(L) h’*.dh <_ (h’*+l(x) h’+l(a))/(n - 1).

With respect to a subdivision s of (a, b), h"+(x) h"+ (a) can be written
as a sum of terms of the form h"+(s,) h"+(s_). By factoring
h (s) h (s_) from each term the desired result may be obtained for approxi-
mating sums for (L) f h’*.dh.

THEOREM 1.4. If [a, b] is an interval of S, each of h and m is afunctionfrom
[a, b] to the numbers such that h is non-decreasing andm is bounded above, andK is
a non-negative number such that

m(x) <_ K - (L) m.dh

for each x in [a, b] then

re(x) <_ K.exp (h(x) h(a))
for each x in [a, b].

Without loss of generality it may be assumed that h (a) is 0. By repeated
application of the inequality ia the hypothesis and the one in the preceding
theorem, a series expansion for K.exp [h] is obtained which bounds m.

It is evident that the statements of the preceding two theorems are true if h
is non-increasing instead of non-decreasing and the limits of the integrals are
from b to x instead of from a to x. These alternatives as well as the theorems
themselves will be useful.

2. The class of functions
DEFINITION 2.1. Suppose s} is an increasing sequence with final set a sub-

set of S and n is a positive integer. The statement that r is a triple refinement
of s means that
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(i)
(ii)
(iii)

(iv)

r is a sequence from the integers in [0, 3n] to S,
r s for each integer p in [0, n],
if p is an integer in [0, n] and there is no member of S between sp and
sp+l then r+l s and r+ s+, and
if p is a non-negative integer less than n and there is a member of S
between s and s+ then s < r+ _< r+ < s+

If r is a triple refinement of s then A (r) will denote the set to which belongs
only in case there is an integer p such that either s or r+l _< _< rs+.
DEFINITIO 2.2. The statement that s is an [a, x, b] F-chain means that F

maps S S into N, [a, b] is an interval of S such that a _< x _< b, and s is the
minimal increasing subdivision of (a, b) with x in its final set such that if c is a
positive number and r is a triple refinement of then there is a y less than x--
if x is not the first member of Sand a z greater than xif x is not the last
member of S--such that if w is in A (r) and either y _< u _< v < x or x < u _<
v _< z then [dF[w, I][ < c.

DEFINITION 2.3. The statement that r is an s-complete [a, x, b] F-chain
means that F maps S S into N, [a, b] is an interval of S such that a _< x _< b,
r is an increasing subdivision of [a, b], s is a subsequence of r, there is an [a, x, b]
F-chain which is a subsequence of r, if y is in the final set of r and a < y _< x
then there is an [a, y, y] F-chain which is a subsequence of r, and if y is in the
final set of r such that x _< y < b then there is a [y, y, b] F-chain which is a
subsequence of r.

DEFINITIO 2.4. The statement that g is a super function for F on [a, b]
means that F maps S S into N, [a, b] is an interval of S, g is a non-decreasing
function from [a, b] to the numbers, and there is an increasing subdivision
{s} ’ of (a, b) such that if p is a non-negative integer less than n and each of
(x, u) and (x, v) is in [s, s+] [%, s+] then

IF(x, u) F(x, v)[ _< lg(u) g(v)I.

THEOREM 2.1. Suppose F is a function from S X S to N such that, for each
interval [a, b] of S and each x in [a, b], there is an [a, x, b] F-chain. If there is a
super function g for F on [a, b], x is in [a, b], and s is a non-decreasing finite
sequence with final set a subset of [a, b] then there is an s-complete [a, x, b] F-chain.

Proof. Let F, [a, b], x, g, and s be as in the hypothesis of the theorem. Sup-
pose x < b. Let be an increasing subdivision of (x, b) such that if p is an
integer and each of (y, u) and (y, v) is in

t,] x
then

IF(y, u) F(y, < Ig(u) g(v)I.

Define the sequence R as follows" R0 is the increasing sequence whose final set
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is the subset of [x, b] to which y belongs only in case y is in the final set of
either s or or the [x, x, b] F-chain. If p is a non-negative integer then
is the increasing sequence whose fmal set is the set to which y belongs only in
case y is in the final set of R or there is a z in the final set of R such that y is
in the final set of the [z, z, b] F-chain. By observing that if t_l < z < t and
r is the [z, z, b] F-chain then t _< rl, an inductive argument may be used to
demonstrate that if y is in the final set of R+I and y is in [to, t+] then y is in
the final set of R. Therefore, if m is an integer not less than n then R is
Rn. If a < x then a subdivision analogous toRmay be constructed for (x, a).
Combining these results one obtains an s-complete [a, x, b] F-chain.
In the definition which follows, F[I, x -t-] is the function f from So N such

thatf() is the limit of F (t, h) as h approaches x from the right. The analogous
definition of F[I, x-] is evident.

DEFiNitiON 2.5. $ denotes the set to which the function F from S S to N
belongs only in case

(i) ifxisinSthenF(x,x) 1,
(ii) if x is in S and [a, b] is an interval of S then each of F[I, x] and F[I, x-

--if x is not the last member of Sand F[I, x-]--if x is not the first member
of Smis uniformly quasi-continuous on [a, b],

(iii) if [a, b] is an interval of S then there is a number K such that if x is
in [a, b] then f dF[x, Ill < K,

(iv) if [a, b] is an interval of S then there is a super function for F on [a, b],
and

(v) if [a, b] is an interval of S and x is in [a, b] then there is an [a, x, b]
F-chain.

THEOREM 2.2. IfF is in , [a, b] is an interval of S, Q is a function from [a, b]
to N which is uniformly quasi-continuous, x is a or x is b, X is L or X is R, and
the function P from [a, b] to N is defined by P (t) (X) f dF[t, I] .Q then P is
uniformly quasi-continuous.

Proof. The conclusion is true if Q is a step function. Since Q is the uniform
limit of a sequence of step functions and ]1 dF[t, Ill is uniformly bounded for
in [a, b], P is the uniform limi of a sequence of uniformly quasi-continuous

functions. Consequently, P is uniformly quasi-continuous.

3. The mapping
THEOREM 3.1. If F is in then there is only one function Mfrom S X S to N

such that
(i) M is bounded on each square of S S and
(ii) M (t, x) 1 - (L) f dF[t, I].M [I, x] ]or each (t, x) in S S.

Moreover, if x is in S then M[I, x] is uniformly quasi-continuous on each interval
o/S.

Proof. Let [a, b] be an interval of S. Define the sequence G each value of
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which is a function from [a, b] X [a, b] to N as follows" Go 1 and if p is a
non-negative integer then

O,+l(t, x) (L) dF [4 II. O,[i, xl.

Let g be a super function for F on [a, b] such that g (a) >_ 1, and let {s} * be a
subdivision of (a, b) such that if p is a positive integer not greater than n and
(x, u) and (x, v) are in

then
IF(x, u) F(x, v)[ _< Ig(u) g(v)I.

Let K be a number such that 1 q- f,[dF[x, I][ <_ K for each x in ta, b].
Suppose p is a positive integer not greater than n. Define the function k
from [s_l, b] to the numbers as follows" (i) if y is in [sv_l, sv] then k (y) g (y);
(ii) if q is an integer such that p _< q < n and sq < y _< sq+, then

k (y) k (s) + g.exp (/ (s) + g (s+) g (s)).

By observing that if y is a number not less than one and m is a positive integer
then y,,-1/(m 1 )! <_ exp (y)"/m! and by employing an induction argument
involving both q and m one may ascertain that if m is a positive integer,

x _< t, s_ _< x _< s, and s_ _< s _< _< s+
then

Since a similar result holds for _< x, the sequence G converges to P uni-
formly on In, b] X [a, b]. For each non.negative integer p and each x in [a, b],
G is bounded and G,[I, x] is uniformly quasi-continuous on [a, b]. There-
fore, P is bounded and P[I, x] is uniformly quasi-continuous on [a, b] for each
x in [a, b].
Suppose Q is a bounded function from [a, b] X [a, b] to N such that, for each

(t, x) in [a, b] X [a, b],

Q(t, x,) 1 -+- (L) dF It, II.Q[I, 1.

Suppose s_ _< x < s and the function m from [a, b] to the non-negative num-
bers is defined by m (t) P (t, x) Q (t, x) I. By using an inductive argu-
ment one can show that if q is an integer and x ,< _< s then

,,() < (L) ] d..
Consequently, m 0 on [x, b]. By employing similar methods it is evident
that ifa_<t_<xthenm(t) =0. Hencem= 0 on [a, b] and P Q. IfM
denotes the union of all such functions P then M is the desired function.

D.mToN 3.1. aC will denote the function to which the ordered pair
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(F, M) belongs only in case F is in ff and M is the function from S X S to N
which is bounded on each square of S X S and such that, for each (t, x) in
SXS,

M(, ) 1 -t- (L) dF [, I] .M[I, x].

THEOREM 3.2. If (F, M) is in g and [a, b] is an interval of S then there is a
super function for M on [a, b].

Proof. Let g and s be as in the proof of the preceding theorem and suppose
thats__<u_<v_<s. Ifv_t_sthen

M(t, u) M(t, v) <- (L) dF It, I].M[I, u]

+ () aF [, 1. I[, 1 [, ]1

Let K denote an upper bound for IMI on [, b] [, hi. If v
M(,) M(, v -< K. ((e) ()). Suppose v < e, and m

function from [v, e] to the non-negative numbers defined by m () IM (, )
21//(, v) i. For each in [v, e],

m(t) <_ K.(g(v) g(u)) + (L) dg.m,

hencem(t) _< g. (g(v) g(u))exp (g(t) g(v)) <_ K.exp (g(b) -g(a)).
( () (u)).
A similar result holds when s_ _< _< u.

Define the function h from [a, b] to the numbers by

h(t) K.exp (g(b) g(a)).g(t).

Suppose q is a positive integer not greater than n, (t, u) and (t, v) are in
[sq_,sq] X [sq_,sq],andu < v. If eithert_< uorv_< tthen

M(t, u) i(t, v) <_ h(v) h(u).
Ifu <t <vthen

IM(t,u)- M(t,v)l < Ii(t, u) M(t, t)l + IM(t, t) M(t,

<_ h(t) h(u) + h(v) h(t)

h(v) h(u).

Therefore h is a super function for M on [a, b].

THEOREM 3.3. /j’ (F, M) is in 3C and [a, b] is an interval of S then there is a
number R such that if x is in [a, b] then f dM[x, Ill <_ R.
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Proof. Let K’ be an upper bound for ]Mi on [a, b] X [a, b] and let K be a
number such that, for each x in [a, b],

K >_. 1 + K’ + dF[x, I1 I.
Let g denote super function for F nd M on [a, b]. Let {s} ’ be n increasing
subdivision of (a, b) such that if p is positive integer not greter thn n nd
(t, u) and (t, v) are in [s_, s] X [s_x, s] then

IM(t, u) M(t, v) <_ ig(u) g(v) I.
Define the non-decreasing number sequence {L}’ s follows" L0 0,
/a g (s) g (s0), nd if q is positive integer less thn n then

L+ (g(s+) g(s) -t- K + KL).exp (g(s+) g(s)).

If so _< _< s nd r is subdivision of [a, t] then, dM[t, I]1 <_ L.

Suppose q is positive integer less thn n such that if p is positive integer
not greter thn q, s_ _< _< s, nd r is subdivision of [a, t] then_, dM[t, I] <_ L.
Suppose s < _< s+, nd r is subdivision of (a, t) for which {s} is sub-
sequence. Define the function m from [a, t] to the non-negative numbers s
follows"

(i) if a _< x _< r then re(x) 0;
(ii) if r, < x _< and k is the largest integer p such that rv _< x then

re(x) lM(x,r) M(x,r_)l -b !M(x,x) M(x,r)l.

Note that ra <_ Lq oll In, 8q]. Let e be an integer such that ro sq. Suppose
x is in [sq, t]. If f is the function from [a, x] to the non-negative numbers
defined by f(y ) f dF[x, Ill then

re(x) <_ g(sq+) g(sq) + i(x, r,) i(x, r,)

< () () + (L) d[,,I].[I,
-1

(L) dF[x, I]. M[I, r] M[I, r-])

( L) dF[x, I]. M[I, r] M[I, r,-])



442 CARL W. BITZER

< e(+,) g() +

(+,) g() + E

+ () m a

N g(s+) g(,) + K’ + (L) "" g.m + (L) de.m

herefore, for each in [e, ],

In silr mnner it cn be shown that if is in [a, b] then

Therefore, 2L. is a number such that, for each in [a, b],

dM[t, I] 2L..

Toa 3.4. U (F, M) is in , [c, b] is an interval of S, and a is in [c, b]
th thee is a [c, a, b] M-chain.

Proof. Suppose [a, b] is an inteal of S. Let K’ denote an upper bound for
F] + ]MI on [a, b] X [a, b] and let K be number such that

K 1 + K’ + d[, I] + d[, II

for each in [, b]. Le be a super function for P and on [, b], and le e’
be a subdivision of (, b) such ha if (, ) and (, v) are in
[4-,, x 4]

IF(=, u) F(x, v) Ig(u) g(v)I,
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Let Is} be an g-complete [a, a, b] F-chain. If r is a non-decreasing finite
sequence with final set a subset of [a, b] then m will denote the function from
[a, b] to the non-negative numbers defined by m
Let e be a positive number. Suppose q is a non-negative integer less than

n 1 such that if is a triple refinement of {s}+ then there is a y in S such
that a < y _< s and such that if r is a non-decreasing finite sequence with
final set a subset of (a, y] then m < e on A (t). Evidently 0 is such an
integer if n 1. Suppose ’ is a triple refinement of {s} +. Let be a triple
refinement of s}+such that A (t’) is a subset ofA (t), g (&+) g (t+-i-)
and

f,,,,+,-,--o ,,,,,+
dF[x, Ill --I-’-

,+,,.

for each x in [ts+, t+]. Note that in the preceding g (&+ -t-) and the in-
tegrals of the form f,+ and f,- denote the usual limits. Let y be a member of
S such that

(i) a <y_< s,
(ii) f+ dM[s+, I]1 < e,
(iii) if r is a non-decreasing finite sequence with final set a subset of (a, y]

then m, < s/(q + 1) on A ({ t} +),
(iv) g (y ) g (a+ ) < e,
(v) +’ f+ dM[&-, I]1 < e,
(vi) f+ldF[x, I]] < e for each x in A (t).

Suppose {r} is a non-decreasing finite sequence with final set a subset of
(a, y] and x is in [t+, t+]. In order to abbreviate what follows, H (i)
will denote

Observe that

dF[x, I]. (M[I, r] M[/, r_]).

(L) H(i)
tSq+4

Since x is in A (t),

dF[x, I] < e
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and hence

(L) dF[x,, II.M[I,
i----1

Since g(y) g(a-{-) < e,

on In, ts] and hence

< eK.

,_ M[I, rd M[I, r,_] < e

ts

(L) H(i) < Ke.

If p is a positive integer not greater than q then

(L) H(i)
$sl+l

and hence

If p is a positive integer not eater than q then

[’"+’ H(i) K dF[x, I]

< 2Ke.

dF[x, I1

M(&-, -, n-,)

and hence

< K

(L) H(i)
,t t8+

< 2Ke.

dF[x, I1

M(ta -, r, )

dM[&a -, 11

< eK.

H(i)(L)
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Finally,

Therefore,

(r,) H(i) <_ dg "mr

mr(x) <_ 9Ke + (L) dg’mr
q+4

for each x in [t3q+4, tsq+] and hence

mr <_ 9Ke exp (g (tsq+5) g (taq+4))

on [tq+4, taq+5]. Therefore,

mr _< 9Ke exp (g (b) g (a))

on A[{tlq+6) and hence on A({t’lq+). Consequently, if e is a positive
number and is a triple refinement of s then there is a y in S such that a < y
and if a < u _< v < y and x is in A (tp) then f, dM[x, I]1 < e.

In a similar manner it may be shown that if e is a positive number, is a
triple refmement of s, and a is not the first member of S then there is a z in S
such that z < a and if z _< u _< v < a and x is in A (t) then f, dM[x, I] < e.
Therefore there is an [a, a, b] M-chain. If c < a then the same techniques
establish the existence of a [c, a, a] M-chain. Consequently there is a [c, a, b]
M-chain.

THEOREM 3.5. If each of F and G - 1 is in ff and H is the function from
X S to N defined by

H( ) ( aF[, I] O[L

then H q- 1 is in ft.

Proof. Suppose [a, b] is an interval of S, the funtion Q from [a, b] to N is
uniformly quasi-continuous on [a, b], and P is the function from [a, b] X [a, b]
to N defined by

P(w, a [w, r.l.Q

when x < w and P (w, x) 0 otherwise. If Q is a simple step function whose
only values are 0 and 1 then one can readily ascertain that P[I, aT] is uni-
formly quasi-continuous on [a, b]. Since every step function is a linear com-
bination of simple step functions whose only values are 0 and 1, a similar re-
sult is obtained if Q is a step function. Since Q is the uniform limit of a
sequence of step functions, P[I, aT] is uniformly quasi-continuous on [a, b].
Suppose Q is G[I, aT]. By employing the fact that if s is a subdivision of
(a, b) and w is in [a, b] then there is a triple refinement of s such that w is in
A (t), one can conclude that H[I, aT] P[I, a-q-] on (a, b]. Consequently,
H[I, aT] is uniformly quasi-continuous on [a, b]. The other cases H[I, a-],
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H[I, b-], and H[I, bW] can be handled in a similar manner. Since G is in fi;

one can use techniques which are analogous, but simpler in nature, to those
used in proving some of the preceding theorems in order to show that H -t- 1
satisfies the remaining requirements for membership in $.

THEOREM 3.6. If (F, M) is in C then M is in ft.

By the preceding theorem one observes that each value of the sequence of
partial sums used to define M in the proof of Theorem 3.1 is the restriction to a
square of some member of ft. Since the convergence is uniform, M is in .
THEOREM 3.7. If P is in fi;; [a, b] is an interval of S; and each of Q, K, D,

and E is a function from [a, b] to N such that Q is of bounded variation, K is
uniformly quasi-continuous on [a, b], D is defined by

(

and E is defined by

The sgaemen of the theorem can be established for ghe ease where K is
simple sep function whose only values are 0 and i and hence for he ease where
K is a sep function. The proof can then be completed by observing tha K
is he uniform limi of a sequence of step functions.

ible.fncirom oo .
Proof. For each (t, x) in S X S,

1 + (L) dM[, I].P[I, 1 1 + F(, ,) (, x)

R M[t, I] dF[I, x].

Define the function H from S X S to N by

II(, x) 1 (R M[, I] dF[I, l.

Using Theorem 3.5 observe that H is in ft. With the aid of the preceding
theorem one can show that, for each (t, x) in S X S,

H(t, x) 1 + (L) dF[t,I].H[I, xl.

Consequently H is M and by the first equation (M, F) is in C.
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4. The non-homogeneous case
In this section N’ will denote the complete normed ring of 2 X 2 matrices

over N with norm 11 ]] defined by

JJA J] max__JA,J, 1 _< i < 2.

With N’ replacing N, ’ and ’ are defined in a manner analogous to that of
$ and respectively. The next two observations will be needed and are
stated without proof. If F is in ’ and the function G from q S to N is
defined by G (t, x) F (, x), G (t, x) F t, x), G (t, x) F (t, x) + 1,
or G (t, x) F (t, x)x + 1 then G is in lY. If {F} is a sequence with final set a
subset of $ then the function G from S X S to N’ defined by

G(t,x) F0(, ) F,.(, z) F(,, z)
F,(,, ) F(, ) ’,(, )

is in $’.

THEOREM 4.1. If each of (F, M) and (E, J) is in C then there is only one
function P from S X S to N, bounded on each square of S S, such that, for
each (t, x) in S S,

P(, :) (, ) + (L) dF[, I] .P[I,

Moreover, P i in d, .for eeh (t, i S S,
(i) P (, ) (, ) (L) J’’ aMid, 1"[, 1
(ii) M (, ) J (, ) (r) J’;aeI, 1.II, 1.
POOF. Leg F denoge ghe member of defined by

F’(t, x) F(t, x) F(t, x) E(t, x)
0 1

and let M’ denote ’ (F’). Then there is a P in such that, for each (t, x)
ins X S,

M’(t,x) M(t,x) P(t,x) 1
0 1

If (t, x) is in S X S then

M’( t, x) 1 + (L dF’[t, I] M’[I, x],

where 1 is the multiplicative identity of N; hence

P(, a.) 1 (L) dF[, I] .(P[I, x] 1) + (L) d(F[t, I] E[, I])

(L) dF[t, I].P[I, ] 1 + (, ).
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Uniqueness can be established by using Theorem 1.4. Since (M’, F’) is in C’,

F’(t, ) 1 + () dM’[, II .F’[I, ,]

and therefore

F(, a.) (, ) (L) a[, ].(F[I, l [, l) + () aP[,l

F(, ) (L) dM[t, I1.Eli, x] P(, ),

for each (t, x) in S X S.
Let each of A and B be the member of $’ defined by

J(, a) 0(i) A(,x) M(t, x,) J(t, x) 1

(, ) 0(ii) B(t,z) 1 P(t,z) 1

Using the foregoing results, observe that (A, B) is in C’; consequently, (B, A
is in C’. Proceeding s before, one cn deduce that, for ech (t, x) in S S,

M(t, ) J(t, ) (L) dP[t, II.J[I, x].

THEOREM 4.2. If each of (F, M) and (E, J) is in C then there is only one
]unction P from S X S to N, bounded on each square of S ( S, such that, for
each (t, x) in S ( S,

P , , , , ) R P[, I] dF[I, ,].

Moreover, P i in nd, for ech (, in S S,

(i) P (, ) (, ) + () J’ I, 1.ag, 1
(ii ) M (, ) J (, + (R ) .[, II dP[I, XI.
The result becomes evident upon substituting (J, E) for (F, M) and (M, F)

for (N, J) in the preceding theorem.

5. Invariants of ,
If [a, b] is an interval of S and / is a function from [a, b] to N then the state-

ment that f is uniformly continuous means that if is a positive number then
there is a subdivision s of (a, b) such that if s_ _< u _< v

_
s then

If(u) f (v) < s. Observe that if F is in $ and F[I, x] is continuous on an
interval [a, b] of S then F[I, x] is uniformly continuous on [a, b] since F[I, x]
is uniformly quasi-continuous on each interval of S. If each of [a, b] and [c, d]
is an interval of S and f is a function from [a, b] [c, d] to N then the state-
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merit that $ is uniformly continuous means that if e is a positive number then
there is a subdivision s of (a, b) and a subdivision of (c, d) such that if
(u, v) and (x, y) are in [s-i, s] X [tq_l, tq] then I/(u, v) -/(x, Y) < e.
The next two theorems are stated without proofs. They may be verified by

making rather natural arguments involving approximating sums.

THEOREM 5.1. Suppose F is in 7, each of [a, b] and [c, d] is an interval of S,
Q is a uniformly continuous function from [c, d] X [c, d] to N, and P is a func.
tion from [a, b] X [c, d] to N defined by either

(i) P (t, x) (L ) f dF[t, I1. Q[I, or
(ii) P(t, x) (n) ]df[t, I].Q[I,

If F is uniformly continuous on [a, b] X [c, d] then so is P.

THEOREM 5.2. Suppose F is in 7, each of [a, b] and [c, d] is an interval of S,
Q is a uniformly continuous function from [c. d] to N, and P is a function from
[a, b] to N defined by either

(i) P (t ) (L f dR[t, I] Q or
(ii) P (t ) (L jh dR[t, if. Q

If for each y in [c, d], F[I, y] is continuous on [a, b] then P is uniformly con-
tinuous.

THEOaEM 5.3. Suppose F is in 7; [c, d] is an interval of S; [a, b] is a subin-
terval of [c, d]; Q is a uniformly continuous function from [a, b] X [c, d] to N;
g is a non-decreasing function from [a, b] to the numbers such that if each of u, v,
and w is in [a, b] then

if(w, u) F(w, v)] <_ ]g(u) g(v)];

and P is the function from [a, b] X [c, d] to N defined by

q (, ) i i [, b] [, b],

P(t, x) (L) dF[t, I].Q[I, x]

if x < a, and

P(t, x) (L) dF[t, If .Q[I, x]

if a < x. If F is uniformly continuous on [a, b] X [c, d] then so is P.

Two preliminary observations are in order. (i) Suppose {s} is a non-
decreasing (f h e) chain and {t} g* is a non-decreasing sequence whose final
set is a subset of [so, s,] which contains every member of the final set of s
which lies between to and tin. Then there is an (f h e) chain r which is a
subdivision of (to, t) such that

(L) Etdf.h (L) Edf.h;
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hence, if K is an upper bound for on [, ] then

(L) df.h-- (L) df.h <: d/I-t-21 e.

(ii) If e is positive number then there is subdivision g of (a, b) such that
if x is in [c, d] then s’ is (g Q[I, ] e) chain. This is consequence of
the uniform continuity of Q on [a, b] [c, d]. Therefore, for ech (u, x) in
[a, b] [c, d], s’ is n (F[u, I] Q[I, x] e) chain.
Let {s’} nd e be s in prt (ii) of the foregoing. Let s be subdivision of

(c, d) such that s’ is subsequence of s nd if (u, x) nd (v, y) re ia
[s_, s] X [s_, s], for some imeger pir (p, q), then

Q (u, x) Q (v, y) < e and F (u, x) f (v, Y ) < e/2n.

With respect to the partitiong of [a, b] X [c, d] deterned by s, the argu-
ment may be completed by exang the approximating sums for
P (u, x) P (v, y)] which are derived from s in a natural way.
The next theorem can be proven in an analogous manner.

THEOREM 5.4. Suppose F is in if, [a, b] is an interval of S, Q is a uniformly
continuous functi from [a, b] to N, and P is a function from [a, b] to N defined
by either

(i) P (t ) (L) dF[t, I] Q or
(ii) P (t) (L) dF[t, I] Q.

If, for each y in [a, b], F[I, y] is ctinuous [a, b] and there is a super function
g for F [a, b] such that if each of u, v, and w is in [a, b] tn

u) e(,)];
tn P is uniformly continues.

The next two theorems are obtained by applying Theorems 5.3 and 5.4
to the by now familiar sequence whose sequence of partial sums converges
uniformly on each square of S X S to (F).

THEOR 5.5. U (F, M) is in and F is uniformly ctinuous eh
square of S X S then M is uniformly ctinuous on each square of S X S.

THEOREM 5.6. If (F, M) is in and F is ctinuous with respect to its first
place then M is ctinuous with respect to its first place.

A proof of the next theorem may be obtained by using Threms 5.5 and
5.6 applied to the ordered pair (F’, M’) in the proof of Theorem 4.1.

OaM 5.7. Suppo each of F and E is in ff and P is t member of
such that, for each (t, x) in S X S,

+
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(i) If each of F and E is uniformly continuous on each square of S X S then
P is uniformly continuous on each square of S X S.

(ii) If each of F and E is continuous with respevt to its first place then P is
continuous with respect to its first place.

It is the purpose of the next two theorems to place the theory presented in
this paper in a more familiar setting. In the context of the foregoing develop-
ment the proofs are easy to come by and are therefore omitted.

THEOREM 5.8. If F is in if, c is in S, and K is in N then there is only one
function Ufrom S to N, bounded on each interval of S, ch that

v( g + (L ) V

for each in S. Moreover, if M C (F) then U M[I, c]. K.

Note that U is uniformly quasi-continuous on each interval of S and that if
F is continuous with respect to its first place then U is continuous.

THEOREM 5.9. If F is in , c is in S, and H is a function from S to N which
is uniformly quasi-continuous on each interval ofS then there is only one function
V from S to N, bounded on each interval of S, such that

+
for each in S. Moreover, ifM 3C (F) then, for each in S,

 I.H.

Observe tha V is uniformly quasi-continuous on each interval of S and that
if H is continuous and F is continuous with respect to its first place then V is
continuous.

REFERENCES

1. D. B. HINTON, A Stieltjes-Volterra integral equation theory, Canad. J. Math., vol. 18
(1966), pp. 314-331.

2. J. S. MAC NERNEY, Integral equations and semigroups, Illinois J. Math., vol. 7 (1963),
pp. 148-173.

3., A linear initial-value problem, Bull. Amer. Math. Soc., vol. 69 (1963), pp.
314-329.

4. H. S. WALL, Concerning harmonic matrices, Arch. Math., vol. 5 (1954), pp. 160-167.

THE UNIVERSITY OF NORTH CAROLINA
(REENSBORO IORTH CAROLINA


