
NORMAL FIBRATIONS FOR COMPLEXES*

BY

NORMAN LEVITT

O. Introduction

Suppose a smooth manifold N is embedded in another M. Then there is the
familiar notion of the normal bundle of the embedding. However, one can
regard this bundle as a spherical fibration. And it is easily seen that if T is
a tubular neighborhood of N, then if we replace the map OT T by a fibration
’, (which we view as a fibration over N), ’ is fiber-homotopically equivalent
to . If one forgets about the smoothness (or PL) structure of N, and de-
mands that it merely be an embedded Poincar duality complex, then the same
construction, according to Spivak, still yields a spherical fibration of the ap-
propriate dimension, although it may no longer be fiber-homotopically equiva-
lent to a bundle. (Here, we replace "tubular neighborhood" by "regular
neighborhood"). In fact, we do not need to have an actual geometric embed-
ding of N in M; it will suffice that a "thickening" N of N is a codimension 0
submanifold of M.

In his paper, we altogether abandon any conditions on N other than that it
be of the homotopy type of a finite complex. One can then perform the same
sort of construction, i.e. take a thickening and look at the result of replacing
ON N by a fibration .
What makes this interesting is that the stable homotopy type of the fiber

of this fibration depends only on N and not at all on the thickening, thus gen-
eralizing the situation for Poincar complexes. Moreover, if one suspends a
thickening, then the fibration associated with the suspension is the suspension
of the fibration associated with the original thickening. One can then ask
questions about the fibrations to derive information about the thickening.

In particular, one shows that desuspending the fibraion is roughly equivalent
to desuspending the thickening. In the metastable range, in fact, one can
restrict one’s attention to the question of whether sections exist. This leads,
among other things, to a generalization of Hirsch’s compression theorem [1]
in the metastable range. These results are exposited in the firs three sections,
along with some preliminary remarks on fibrations.

Sections 4, 5, and 6 utilize the notion of normal fibration of a thickening to
get various results about Poincar-duality spaces, among other things. It
is shown, for instance, that one can talk about thickenings of a complex into
Poincar-duality pairs, and that the resulting theory greatly resembles that
exposited by Wall [e] in the smooth and PL case. We also give a new proof
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of a theorem of Browder [n] on finite H-spaces. Finally, we give sufficient
conditions, in terms of a "desuspended normal invariant" for embeddings up
to homotopy type of complexes into spheres.
The tools chiefly used in this paper are the Stalling’s embedding theorem

[d] (both existence and uniqueness aspects) and the Browder codimension 1
theorem [c].

1. Preliminaries on fibrations
Let X and Y be topological spaces and let f" X --+ Y be a continuous map.

Recall that the mapping cylinder Mf is defined as

(Z X I) u Y/ (x, 1)

with the identification topology. For our purposes however, we prefer to
hve notion of mpping cylinder which involves the same point set, but with

slightly smller topology. We define this by

(z Y/ 1)

with the topology defined by the following neighborhood bsis: Let

p (X X Iu

be projection. If a e 9s is in the image of X [0, 1 under p, then a neigh-
borhood of a is p (U), where U is a neighborhood of p-la e X )< [0, 1) in
x [0,

If a e p (Y) then a neighborhood of a is given by

p(U uf-l(U) X (1 c, 1])

where U is a neighborhood of the unique y e Y such that py a, and c > 0.
In this topology, there is ntural continuous mp i M --, ] which is

given by the identity mp on the underlying point set. If we regard X as the
"top" of both 9] nd M, i.e. as p (X X {0} ), then we hve

1.1. LEMMA. i (M]; X) --* (9], X) is a homotopy equivalence of
pirs.

Proof. The homotopy inverse is given by the map j O] -+ M], which is

j(p(x, t)) p(x, min (1, 2t))
for x e X, e I,

j(p(y)) p(y)
for y e Y.

It is easy to check that ji and ij are homotopie to the appropriate identity
maps, Q.E.D.
The reason for introducing 9 in place of M] lies in the following easily

verified fact.

1.2 LEMMA. Let (x, t) }, x e X, t e I be a set of points indexed by the di-
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rected set , so that t --. 1, f(x) y, y e Y. Then

-,

We now identify Y with p (Y) ]. Now note tha the obous map
] ] Y ven by

] (p (x, ) ) f(x ) (x, ) , X X I
](y) y, Y Y

is eontinuo.
Rec that if V Y is a map of spaces and W V, we say hat (V, W, )

is a pair fibration iff, ven a space Z, a commutative diagram

V

Y
and a homotopy F Z X I Y, F0 f, we cand a homotopy

G Z X I V, G g and G((W))W.
Thus a W is a fiber map. 1.2 enables us to show the foong, where it
is understood that X X [0, 1 is identified th p (X X [0, 1 ) ), X with X X {0}
(= X), Y th p (Y).

1.3 PROPOS1TmN. Let X Y be a fiber map, a let Y.
T (, X, ) is a pair fibrati.

Proo]. Let

be commutative, and let F Z X I - Y, F0 f. We will define the covering
homotopy G Z X I -- i)f. First, define a homotopy (:Z1 X I --. X
where Z1 g-1 (Z X [0, 1 ) )

_
Z, by noting that, if a X X [0, 1 ) --. X is the

projection then aaglZ f Z; thus there is a coveting homotopy

( Z X I--. X

so that a F[Z,. We now define

G(z, t) (O(z, t), s)

ifzeZandg(z) (x, s) eX X [0, 1),

G(z, t) F(z, t)
if g(z) Y.
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Obviously G F, and we have to show that G is continuous. We show
in fact that if (z, t) --, (z, t), where i e a, a a directed set, then G(z, t) G(z, t).
First note that this is trivial if G (z, t) e X X [0, 1). So let G (z, t) y Y.
It is then easy to find (x, s) e X I so that p (x, s) G (z, t). Clearly
(x) --* G (z, t) F (z, t) because r G F. Moreover st --, 1. So by 1.2,

G (z, t,) p (x, s) --* G (z, t), Q.E.D.

Remark. If the spaces X, Y are "reasonable", e.g. X compact, Y Haus-
dorff Mr is the same as 93Z]. However, in the subsequent chapters, we shall
be looking at fibrations got by using the path-space construction to replace
an inclusion X _.c Y by a fibration X’ ---. Y where X, Y are finite complexes.
Since X’ may not be nice topologically we use, rather than M. I would
like to thank V. Sapojnikov for pointing out to me the need for such a tech-
nicality, which is sometimes ignored in the literature.
low let 1"E1 -* Y, ’E --. Y be two fibrations over Y with fibers

F1, F. We use the notation r 9T, --. Y, i 1, 2. Let

There is, of course, an obvious map 9 --, Y given by

a (vx, w.) a, v, (v,,

Let E {(v, w.)egElveE or w. eE}.
1.4 DEFINITION. The Whitney sum a -t- a is the map

r E--, Y,
where

1.5 PROPOSITIOn.
and F.).

This is easily proved, using the fact that (IL, E, ) are pair fibrations.
It is also clear that, with E, as above, 9g ,. Thus it becomes possible
to show that, up to fiber homotopy equivalence,

1.6 DFmITION. Given a fibration r E Y, the suspension r is defined
as r e, where e: Y X S Y is the tribal S fibration. Obviously, if
F fiber of r, the fiber of r is

S.F =SF F,
the suspension of F.

We also note that if a:E Y, i 1, 2 are fibrations with fiber F,
and if p" Y X Y Yi are projections, then we can define the fibration
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al X as over Y1 X Y as p* a $ p* as. An alternative description of al X as
is obtaed by tang X and letting

E (v, v2) e (v) e E or (v) E}.

Here p is the projection , X , ,,. As usual, we may note that
if a, i 1, 2 are fibrations over Y, then

A*i (i X )

where A" Y Y X Y is the diagonal map.

2. The nrmal braion of a complex
Let K be a finite C-W complex of homotopy dimension k. By a thickeng

of K we shall mean a smooth (or PL) compact maNfold-with-bounda
M+, n 3, such that OM"+ M"+ induces

(OM.+ (M.+= ),

together th a homotopy equivalence

@. K
_
M"+.

(Note that we do not insist that 6 be a simple homotopy equivalence as WI
does [e].) When there is no ambiity, we shall use to denote he thick-
ening. If , are thiekeNngs of K to M+, M+ respeetivdy, we say
that is eqvalent to if there is a smooth (PL) equivalence

a" M+ M+ with al @.

Let @ be a thiekeNng of K to M+. Consider the inclusion
OM"+ By the standard path space construction (see [a]) we can
replace this map by a fibration , whose fiber we denote by F. We e
this the normal fibration of the thickening. I will be seen by standard argu-
ments that F will be (n 2)-connected. may be regarded as a fibration
over K, and depends oNy on the equivalence class of . Our result is the
foHog.

2.1 ToaM. Let be a thickening of K. Th the stable homoWpy type
of F is indepdent of .
The proof of Theorem 2.1 is based on the following.

2.2 LMi. Let M be a compact ooth (PL) manifold-with-boundary
and bt be an orthogonal (PL ) k-plane bundle over M.

Let E+ be the tol space of the associated disk bundle, regarded as a ooth
(PL) manifold with boundary.
Repng inclusions by fibratis, let

F fiber of OM" M’, G fiber of OE+ E+
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Then
G F.

Proof. To compute G, we compute the fiber of the inclusion OE+
_
E+

where OE+ may be regarded as

2 u (F-, OM")
where is the total space of the sphere bundle associated to and E IOM" is
the total space of the disk bundle associated to ]OM". But if we replace
OM" M’* by the fibration r

Y
F$r
Mn

We then can replace the pair (M", OM") by (Z,, Y).
Let be the corresponding bundle over 9Z, and let E,/,/ Y correspond

to E, J, E IOM" in the obvious way.
Then we have a homotopy equivalence of 4-tuples

(E, OE, , E OM) ,’,.,. (E’, /’ v (E’ Y), /’, E’ Y).

So therefore we need only study the fiber of the inclusion

/’u (E’I Y) E’.
But since o ’" E’ -+~ M, we re really studying the fiber of the ntuml mp

() ’u (’ Y) -+ M.
However, if we set $ (k 1)-sphere bundle associated with , it is ob-

vious by the definitions of Section 1 that the mp (1) is lust the fibratioa
which we have called $ + r. By 1.4 therefore the fiber of this map is

S- F F, Q.E.D.
The proof of 2.1 follows immediately, for if

+:K -+ M:+, +: K _+ N-+
are thickenings of K, then for suitable orthogonal (PL) bundles , over
M+ and N"+ respectively,

((), OE() ( (, ), o (,
where E() is the total space of the associated disc buadle of regaled as
mfold, and siarly for .
Examp. A tckeng + K M"+, n 3, hs F+ S- if and oy

if K is Poincar duality spae.

Strictly speaking, if we wish to speak about Hurewi fibrtio rather than Serre
fibratio, we may have to replace the fiber-bundle ’ with a sherial fibration, i.e.
Hurewic fibration with a homotopy- as fiber
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Remark. If we allow "thickening" to mean a homotopy equivalence

#:K --_M"+

where (M+, OM+) is a Poincar duality pair, then, defining v and F in
the same way, Theorem 2.1 still holds.

If b" K --* M+ is a thickening, then the suspension of the thickening
denoted by # is the map

K-, M"+ I

got by composing b with the obvious section

M+ -- M+ X {0} M+ X I.

2.3 COROLLARY. If b is the suspension of the thickening , then ,
We now show that the converse o 2.3 holds, assuming I-connectivity for

technical reasons.

2.4 PROPOSmON. / K 5 l-coc, k >_ 4 d/a

Then there exists a thickening so that , and is equivalent to

Proof. The proof is based on the Browder co-dimension-1 theorem, to-
gether with a relative version of the Siebenmann splitting theorem [b], [e].

Let r E --, K be the fibrafion of the hypothesis. Then there is a homotopy
equivalence

(U", OM") -- (Z, D’, ( D’) u (Z(2)

where
(EXDx) n (gT,,XS) =EXSo

Easy algebraic topology then suffices to show that the pairs

(EXD,EXS) and (I,XS,EXS )

satisfy Poincar! duality. Thus by Browder’s reset, OM" V u W, where V
and W are co-dimension-0 submafolds of aM", OV OW V n W, and
where there is a homotopy eqvalence of triads

(3) (aM’; V, W) ((E X D’)u (, X S); E X D’, , X S)
so tha (3) is consistent with (2). Now (,, E) satisfies Poincar duality
in dimension n 1, therefore by Siebenmann’s reset, we have

(M"- W, E- W) (N"-’, ON"-) X R,
(where denotes either diffeomorphism or PL-homeomorphism, wehever is
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appropriate.) Thus

(i’*, Oi’) (N"- X D, ON"- X Du N’- X S).
All the assertions of 2.4 follow easily, Q.E.D.
In fact, in the metastable range we can state an even stronger result" We

claim that one need only assume the existence of a section for the fibration of
the thickening.

2.5.TEoREM. Let be a thicking K M"+, n k 6, 3k/2 2.
Th if admits a secti, the thicking desuspds up to equivalce to a
thicking " K N+- (with Z).

Proof. By adding 2-cells and 3-cells to K, we may as well assume that
is a simple homotopy equivalence. If v admits a section then factors

through OM"+ up to homotopy, i.e. there is a map " K OM"+ so that

K OM+

M+
homotopy commutes.

Now the map is infinitely connected and the inclusion OM+ M+ is
(n 1)-connected. It follows that is (n 2)-connected. But (n 1)
2k-- (n W k-- 1).

Hence, by the Stallings embedding theorem [d], there exists u codimen-
sion--1 submanifold N"++ OM+ and a simple homotopy equivalence. K N-+-so that

K )N,+-

OM+

homotopy commutes.
Easy geometry and the s-cobordism theorem then easily suffice to show that
is the required desuspension, Q.E.D.
Now let " J’ --, M, " K --, Nn be thickenings of J" and K respectively.

Then there is a thickening

X’JJXK--MXNn.
Our result then becomes

2.6. PROPOSITION. x ;’,/, X v.
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Proof. The proof is essentially like that of 2.1. Let E, E, be the total
spaces of and , respectively, and let 91% and 91 be the mapping cylinders.
Then we claim that there is a homotopy equivalence of 5-tuples:
(M" X N", 0 (M"* X N"), M" X ON", OM X N", OM X ON")

(+ X +, (+ X E+) u (E+ X +), + X E+, E+ X +, E+ X E+)
But then the obvious map

is such that

is a fibration.

t" 9+ X +--+ M X N"

o- x (E+ X i)+)

It is, in fact, the product + X + as described in Section 1.

3. Sections and compressions in the metastable range

Let K be a finite CW complex of homotopy dimension k and let V"+ be a
(smooth or PL) manifold with or without boundary By an embedding of
K in V+ up to homotopy type we mean a commutative diagram

K C--M,+

where M"+ is a codimension-O submanifold of V"+ and q is a homoopy
equivalence, i.e. a thickening of K into M"+. The normal fibration of the
embedding is, by definition, the normal fibration + of the thickening.
Our main result, then, is

3.1 THEOREM. Let n + k >_ 3(k -t- 1)/2, 6 and let

K:: >M-+

be an embedding up to homotopy type. Let 1 be homotopic to the constant map
into V"+, and let u+ be fiberhomotopically trivial over the j-skeleton of M’*+.

Then if n >_ j + 1, admits a section.

Proof. Let M M"+, V V"+, . Define the "Thom space"
T (,) as M/OM V/V-int M 91,/E where E --* M is the fibration corre-
sponding to OM M. We claim that the obvious map M -+ T (u) is homo-
topic to the constant map, becuuse it factors through M V, which is homo-
topically trivial since qx is homotopically trivial.
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Now let F be the fiber of , and let

lu(F)
be the universal F-fibration, so that there is a map of fibrations

lu(F.)
By our assumption, a restricted to the j-skeleton of M is trivial.
Therefore, we consider B(F) the j-connective covering of B (F). We

let c:B(F) B (F) be the covering and let

u$(F) E(F) --. S(F)
be c (u (F)). It follows that there exists a so that a c and we then have
a map of fibrations

lu (F)
But note that F will be (n 2)-connected. Consequently E(F) has con-

nectivity at least min (j, n 2). So let u u(F), E E(F), T(u)
9T(,,/E( It will then follow by Toda’s version of the triad theorem [d] that
the natural homomorphism of homotopy groups

r,(r, E) -- , (T (u’) )

is at least an isomorphism for i

_
k and an epimorphism for i k -t- 1. Since

M --, T () is homotopically trivial, so is M --, T (u), thus, since M is of the
homotopy type of a k-complex, the map

c M --, B

lifts to a map M --, E. Since is the fibration c*u; it follows that admits a
section, Q.E.D.

Remark. The proof of Theorem 3.1 is a generalization of the proof of a
theorem of Handel If].
To translate the conclusion of 3.1 into geometric terms, we note that if
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admits a section, then we may alter by a homotopy so that im 0M"/.
3.2 DEFINITION. Suppose

K M+

Vn+k

is an embedding up to homotopy type, and suppose admits a section (so
that im may be assumed to lie in OMn+). Then the section is called non-
linking iff is homotopic to 0 in V"+ int M"+.
We then obtain the following generalization following generalization of

Hirsch’s result [f].

3.3 THEOREM. Let n Jr k >_ (3k -t-4)/2, 6 and let

K, C---M,+

be an embedding up to homotopy type so that v admits a non-linking section.

Then if V’+ int M’*+ is at least (k n + 3)-connected, there exists an
embedding up to homotopy type

U+-i

and an embedding (smooth or PL)

(Sn/k-1, U’{’k-1
i int )(V"+ M"+’, OM.+

so that

homotopy commutes.
Moreover, i (S"+-l)

V"+ int M"+.
bounds a (smooth or PL) (n Jr k)-dis in
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Proof. By 2.5, we may assume that there is a co-dimension--0 submanifold
U"+-1 OM+, so that im U+-1, and so that the map of K into U"+-
(which we call b) is a homotopy equivalence.
Since the section is non-linking, the inclusion

U+- c V"+- int M"+

is homotopic to the constant map into the base point. (We may as well
assume that the base point of V"+ int M"+ is in its interior.) Now, by
the Stallings embedding theorem, U"+- has a k-dimensional spine/. It
follows by the Stallings-Hirsch-Zeeman engulfing theorem [g] that there exists
a disc

D"+ V"+ int M"+

with/ _.c D"+, and, since/ _.c O(V+ int M+), we may assume that

R S+-
_
D+.

Moreover, since U+- is a regular neighborhood of/ in

0 (V"+ int M’+),
one can assume without loss of generality that U"+- _.c S"+-, Q.E.D.

3.4 COROLLARY. Let n -b k >_ (3/ -b 5)/2, 6 and let

K: _: )M+

be an embedding up to homotopy type which admits a non-linking section. Then
K embeds up to homotopy type in S’*+-I.

Proof. It is easily seen that .S"+ int M"+ is (n 2)-connected. But
(n 2) _> k n -t- 3 therefore 3.4 applies and the assertion follows.

Remark. If, in the above theorems, we eliminate the assumption that
n -I- k >_ 6, the results still hold if we assume n >_ 3, and that (M"+, OM’*+)
is (n 1)-connected.

4. Normal fibration for a pair; applications

Let (K, J) be a finite C-W pair. We say that the homotopy dimension of
(K, J) is (], j) if/ there is a homotopically equivalent pair (X, Y) with
dim X =/, dim Y j, and if no other homotopically equivalent pair (X’, Y’)
has dim X’ < l or dim Y’ ,< j. We write (K, JJ) for a pair of homotopy
dimension (/, j).

4.1 DEFINITION. Let (K, JJ) be a finite C-W pair. By a thickening of
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(K, J) we mean the following:
(i) a smooth (PL) compact manifold-with-boundary Mn+, n >_ 3,

n+k-4>j;
(ii) a codimension-0 submanifold N"+k-1 of OM’*+ such that the inclu-

sions ON"+’-
_
N"+’-, OM’+ int Nn+-

_
N"+- induce isomorphism of

the fundamental group;
(iii) a homotopy equivalence of pairs

" (K, J’) __,~ (M+, N+-).
Note that ]J is a thickening of J" into N"+-.
It follows easily by the techniques of Wall [e; 7] that if K is homotopic to

J plus cells of dimension _< s (s will be/c except, possibly, whenj k), then
the inclusion

OM,,+ N,,+-I M"+

will be (n + k s 1 )-connected. When there is no ambiguity, we write
to denote the thickening. For notational convenience, we write E () for the
space OM"+ int N"+-.

4.2 DE!ITIO. Let $" (K, J’) -o (M"+, N"+k-) be a thickening, and
let v, be the fibration corresponding to the inclusion E () --. M"+.

v, is called the normal fibration of the thickening. The fiber is denoted by
F, and is called the fiber of the thickening.
We can regard , as a fibration over K.
4.3 LE. The stable homotopy type of F, is independent of the thickening.

The proof is similar to that of 2.1.
We also may define the suspension of a thickening in the obvious way, i.e.

if " (K, J) --* (M"+, N"+-) is a thickening then the suspension is the
map

$" (K, J’) -o (M"+, N"+-) X I

got by composing with

(M"+, N+-) -o (M"+, N"+-x) X {0}.
Again, we denote the suspension by 2. Equivalence of thickenings is de-
fined by the obvious generalization of the absolute case. We have, in analogy
to 2.3,

4.4 LEMMA. If is a thickening and b , then

Let be a thickening of (K, Ji) into (M+, Nn+-) where n is large and
where (M+, N"+k-) (D"+, S’+-). Then v, is called the (n + k)-
dimensional representative of the stable normal fibration of the pair (K, Ja).
Since n is large, this is well defined, and the (n + k)-dimensional representa-
tive suspends to the (n +/c + 1 )-dimensional representative. We leave it to
the reader to verify these details.
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Given a pair (K, J), we use the following notation:

(1) k homotopy dimension of K, (which may be less than k).
(2) k. the integer _< k such that

H (K, J) 0, H’(K, J) 0, i > ks.
(3) ka connectivity of (K*, J).
We note that k > kt implies k k. Moreover, given a thickening

(K, J) (M+, N+-)
we have obvious associated thickenings,. K __. M"+, . J __. N+-.
We also note that pair (M+, E ()) is (n k k 1 )-connected, while the
pair (Mn+, OM’*+) is (n k- kl- 1)-connected.

4.5 DEFXTO. Let (K, J), (A, B) be finite CW pairs. Let .,, represent the stable normal fibrations of (K, J), (A", B) (with respect to
appropriate thickenings , b into manifold pairs of the same dimension).
Then we say that (K, J), (Aa, Bb) are normally equivalent iff there exists a,

homotopy equivalence a" K --.~ A such that a , ,.
We then have

4.6 THEOREM. Let (K, JJ), (Aa, B) be normally equivalent pairs.

Then if k8 >_ 2 and
(i) 2k- k >_ 0,
(ii) k-k>0,

(K, JJ) is homotopically equivalent o (A", Ba).

Proof. We ignore the case where ka is infinite, as this is trivial.

In choosing finite representatives for the stable normal fibrations of (K,
J#) and (A, B) we can take thickenings b into (M+, N[+-), b into (M’+,

M-+ M,+N+-) with n as large as we like and, in fact, we can take M,
so assume

homotopy commutes.
Since n can be taken arbitrarily large, we assume n W k k is conveniently
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larger than k,. Look now at the diagram

where the vertical isomorphism follows from Poincar duality. H(M)
vanishes for > k,, and, since (K, d) is ks-connected,//(E (b)) vanishes
for >_ n -t- k k8 1. Since E () is of the homotopy type of a finite com-
plex, it is of the homotopy type of an (n -t- k 2)-complex. We now

* there is a homotopy commutativeSince a ,look at E (/) C_ OM.
diagram

M

Since E() and E() are of homotopy dimension n W k k 2, and
since M+ has a h-dimensional spine, it follows that we mt have

(n+k-- h--2) +k+ 1

order to have a homotopy-commutative diagram

0M

But ts is guaranteed by inequality (fi) of the hypothesis.
Now let r be the connectity of the inclusion E() OM. Since OM M

is (n + k h 1 )-connected, and since E() M"+ is (n + k h 1 )-
connected, it follows that

r nWk- 1-- max[+ 1, h].

Therefore, inequalities (1) and (fi) together imply that

r 2(homotopy dim E()) (n + k- 1) + 2.

It then follows by the queness aspect of the Stangs embedding theorem
(see [e] or [f] that the embedngs E() OM, E() OM are concordant,
i.e. there is an h-coborsm W between E() and E (#) and an embedding
:WOM XIsothat

$:E() OM X {0} and
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in the obvious way. We can therefore extend this concordance to a con-

cordance in M. e illustrate the situation schematically in the figure.
It is easy to see that (M, 1) is homotopically equivalent to (,) so that

Iu
K a )A

homotopy commutes. This completes the proof.
We now apply this theorem to help obtain a theory of "thickenings" into

Poincar&duality pairs which, in many ways resembles that discussed by Wall
[e] in the smooth and PL case.
For brevity, we adopt the following definition of Poincar&duality pair"

4.7 DEFINITION. Let (P, OP) be a finite CW pair of homotopy dimension
(p, p 1 ). We say that (P, OP) is a Poincar$ duality pair iff given a thick-
ening,

4," (P, OP ----> (M"+’, N"+1).
We have v, an (n 1)-spherical fibration over P, and, for

’ OP ---* Nn+v’-,
v,, is the restriction of v, to OP.

If P is a finite CW complex, we say that it is a Poincar$-duality space iff the
pair (P, 0) is a Poincar&duality pair.
We say that p is the dimension of the Poincar&duality pair.
We will abbreviate "Poincar&duality pair (space)" by writing "P-pair

(-space)." We recall that if is a thickening of a p-dimensional P-pair
(P, OP) into an orientable manifold pair, then v, is an orientable spherical
fibration if and only if (P, OP) satisfies the Poincar&duality formula in dimen-



NORM_A_I FIBR&TIONS FOR COMPLEXES 401

son p, i.e.
H’ (P, OP )

_
H_, (P

with the isomorphism being induced by cap product with a generator of
H(P, OP) Z. If, on the other hand, v, is not an orientable fibration when
the range of $ is orientable, then (P, 0P) satisfies the more general form of
Poincar6-duality (with co-efficients in an orientation bundle). We also note
that if (P, OP) is a p-dimensional P-pair, then OP is a (p 1 )-dimensional
P-space. Our definition is to a certain extent redundant. We need only have
defined P-pair as a pair (Kk, J’) so that for some thickening

(Kk, J#) --. (Mn+, Nn+-1),
v/ is an (n 1)-spherical fibration, and v,, v, J. It then follows without
too much work that this holds for any thickening and that j 1 1. For
details we refer the reader to Spivak [g] where the necessary techniques are
developed. Recall also that P-pairs are said to be equivalent if they are
homotopically equivalent.
Now let K be a finite CW complex. By a Poincard thickening (which we

abbreviate to P-thickening) of K, we mean a P-pair (P, OP) of dimension
n + k, n > 3 together with a homotopy equivalence b" K --* P. We also
require that (P, OP) be (n 1)-connected. If (PI, OP1) and (Ps, OPs) are
(n + k)-dimensional P-pairs and 1 K -Px, s K --.P are P-thickenings
we call the thickenings equivalent iff there is a homotopy equivalence
f: (P, OPx) (Ps, OPs) so that

K

P - (P., oPt.)

homotopy commutes. We use PTh’+ (K) to denote the set of equivalence
classes of P-thickenings of K in dimension n + k. It is easy to see tha if
(P, OP) is a P-pair of dimension n + 1, then

(P X I, (OP X I)u P X I)

is a P-pair of dimension n +/ + 1; thus we have a natural suspension opera-
tion ,, PTh’m’ (K) PTh"+’+ (K)
just as in the smooth or PL case.

It is also amusing to note that if K -* (P, OP) is a P-thickening of K,
one may define a normal fibration v, by replacing OP P by a fibration (and
regarding the result as a fibration over Kk, if we wish). Clearly, if P is a com-
pact smooth (PL) manifold and OP its boundary (up to homotopy type) we
get the same object v, which we defined in Chapter 2. We can also assert, as
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in Chapter 2, that if we’set F, fiber of v,, then the stable homotopy type of
F/ is independent of the thickening and, in fact coincides with the stable
homotopy type defined for the case of smooth or PL thickenings. To prove
this, one makes an easy generalization of the proof of Theorem 2.1.

4.8 THEOREM. In the sequence

PTh,,++lPTh+(K) (K)

" is epimorphic for n >_ k q- 1 and monomorphic for n >_ k q- 2; moreover, for
n >_ k q- 2, PTH"+ (K) is naturally isomorphic to ~F(K), where ~F
denotes the group of stable spherical fibra’tions over K.

Before we proceed to the proof of 4.8, we remark that this result is very
similar to that of Wall [e] or Mazur [hi in the smooth and PL cases. The chief
difference is that in these cases one gets epimorphism for n k and mono-
morphism for n k -t- 1. Thus in changing from the manifold categories to
the Poincar-duality category one "loses" a dimension, at least insofar as
these results indicate. This is curious in view of the results of an earlier paper
of the author [i] in which it is shown that, for an appropriate notion of em-
bedding K embeds in a Poincar-duality space of dimension 2k -t- 2, thus, in
effect "losing" one dimension as compared to the usual results for manifolds.
It is not known whether these results are best possible, and it would be in-
teresting to learn whether this "loss" of one dimension is a real phenomenon
or whether it can be eliminated by introducing a more perspicacious technique.

Proof of 4.8. First note that if K -- P, where (P, OP) is an (n -t- k)-
dimensional P-pair, then the stable normal fibration of the pair may be re-
garded as an element of :E~F (K) and depends only on the equivalence class of
the thickening. This gives a map

PTh’+* (K*) -’"+’~F(K’)
which, moreover, commutes with the suspension map i.e.

commutes. This is checked by a straightforward application of the definitions.

First we show that for n >_ k -1- 2, T+ is a monomorphism. Let
K--, P, K P

be thickenings which have the same image under Tn+. By definition there
will be a homotopy equivalence a P P which exhibits a normal equiva-
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lence between (P1, OPt) and (P, OPt). Now note that the cohomology
dimension of (P1, OPt) is n -/; the homoopy dimension of P is, of course,
k, and the connectivity of (P, OPt) is n 1. By plugging in these observa-
tions, one easily ascertains that the inequalities (i) and (ii) hold, along with
the rest of the hypothesis of 4.6. Therefore, a extends to a homotopy equiva-
lence of pairs (P, OPt) (P, OPt). Since a is homotopy consistent with, 2, the thickenings are therefore equivalent.
To show that

T’+" PTh’+ (K) 5~F (K)
is onto for n >_ ] 1, let " K -.~ M"++r be a thickening of K into a regular
neighborhood in a high dimensional euclidean space, i.e. M"++r is a sub-
manifold of R"++, r being large. Let u be an element in ~F(K); then u is
represented by an (r 1 )-spherical fibration " 8 --* K. Up to homotopy we
may assume that is a (]c - r 1)-complex and that is a map into
M++ M. By the fact that M may be taken to have a k-dimensional
spine, and by general position it follows that up to homotopy factors through
a map 8 --. OM. (Here we use the fact that n __> k -t- 1.)
Now the pair (M, OM) is (n -t- r 1)-connected; is (r 1)-connected,

hence is (r 1)-connected. But n >_ - 1 assures that the hypotheses of
Stallings embedding theorem [d], [e] are satisfied, and thus one may assume
that there is a codimension-0 submanifold E E"++’’

_
OM and a

homotopy equivalence f" 8 -- E so that

homotopy commutes.
Let N OM int E. One can assume that OE

_
E is (n 1)-connected;

thus N

_
OM is (n- 1)-connected and therefore N

_
M is (n- 1)-con-

nected. Moreover, ON

_
N induces isomorphism (ON) ’ (N).

It is easily checked by Poincar-duality that the space N has cohomology
dimension n - k 1, and therefore has homotopy dimension n - b 1.
Thus the pair (M, N) has homotopy dimension (n k, N k 1). The
normal fibration of the pair thickening is (n 1)-spherical. But since
(N) (M), it is easily checked that the fibration corresponding to
ON

_
N is the induced (n 1)-spherical fibration. (See [g] for the relevant

techniques.) Thus (M, N) is a P-pair of dimension n -t- b and b induces an
obvious (n k)-dimensional P-thickening ’ of K. Since r is large, it is
easily verified that we may assume (M, N) D"++r, S++. It then fol-
lows from definitions that T"+ (b’) u, Q.E.D.
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5. Normal fibrations for products applications
Let K, J" be finite complexes, and let

K --* M+, k J --* Nn+

be thickenings (into smooth or PL manifolds). Then there is an obvious
product thickening

X b" K X J-- M"+ X N"+.
5.1 LM.. ’x is the product fibration , X ,.
Lemma 5.1 was proved as Proposition 2.6.

5.2 COROLLARY. f I represents the stable normal fibration for K and
represents the stable normal fibration for J then , X ,, represents the stabl
normal fibration of K X J.

5.3 COROLr.ARY. IfF F, are the fibers of thickenings ofK, J" respectively,
then a thickening of K X J has fiber of the stable homotopy type of the join
F, . F,.
We now apply these facts to the study of finite H-spaces. We use Mn to

denote an H-space homotopically equivalent to a finite complex and of
homotopy dimension n. We will assume M is 1-connected, n odd, >_5. Mn

has a homotopy inverse, e, u, andj denote respectively the base point, multi-
plication, and inverse of Mn.

First note that by a theorem of Browder [j], M" satisfies Poincar-duality
in dimension n, and thus by Spivak [g] is a P-space.

Thus, M" X M" is a P-space as well. We recall a definition of If] and [i].

5.4 DEFINITION. If N is a P-space of dimension n, K’ a finite complex of
dimension _< n, we say that a map f K --. N is homotopic to an embedding iff
there exists a pair of n-dimensional P-pairs (N1, ONI) (N, ON.) with
ON ON., a P-thickening K -~ N and a homotopy equivalence

so that

K--f_4N

N C N

homotopy commutes.

The triple (N1, ONe), (N, ONe), a} is called a splitting of N.
shown that if N is a P-space, then the map

It is easily

id X ,:N---N X N
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is homotopic to an embedding. This follows from the fact that a point embeds
in a P-space. (See all 1.) lIoreover, if is an -dimensional P-space
and if is a -dimensional P-space, of

_
3, then given an embeddin of

into , with (, ), (, .), 1 the correspondin splitting, the map
is, up to homotopy, a ( 1)-spherical fibration, called the

orSro of the embedding. In the above case, we may assume that

id ,: N-,N N

is homoopic to an embedding so as to have trivial normal fibration.
Now if M M is a finite H-space with homotopy inverse, we have"

5.5 :LEMMA. Let h be the diagonal map h M -- M X M and let

a:M X M---M X M by a(x,y) (x,(x,y)).

Then is a homotopy equivalence so that

M XMaMX M

homotopy commutes.

Consequently

5.6. L.MMA. h is homotopic to an embedding with trivial normal fibration.
However, we have the following theorem from If]"

5.7 T.oa,M. Let P, Q, R be 1-connected P-spaces, and let
f P -- Q, g Q -- Rbe homotopic to embeddings with normalfibrations , over P and Q respectively.

Then g o f is homotopic to an embedding with normal fibration f*,.
5.8 Coao,.xav. If M’* is a l-connected finite H-space with homotopy in-

verse, then the stable normalfibration ofM is a trivial spherical fibration.

Proof. Consider M X M" It is easily seen by 5.1 that if is a representa-
tive for the stable normal fibration of M, then, X is a representative of
he stable normal fibration of N X N. By 5.6 and 5.7, it follows that

*( X ) e"

is a representative for he stable normal fibration of N, where e" is the trivial
S--fibration, n. But then it follows that

Z*(X,)’= @e"
is stably equivalent to , since both are representatives of the stable normal
fibration of N. It follows that is trivial, since stable spherical fibrations
form a group.
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5.9 THEOREM. IfM’* is as above and n is odd, >_ 5, then M" is of the homotopy
type of an n-dimensional r-manifold. (This was first proved by Browder [hi.)

Proof. Let 2r 2l"+, (with k large) be a codimension-0 submanifold of
S+ of the homotopy type of M and with rl (02r) --. rl (21) an isomorphism.
Then by definitions and 5.8, there is a homotopy equivalence

h (_7r, 02r) (M X D, M X S-1).
Let /e H.+(21r, 021r) be an orientation of the orientable manifold 2r. Then

the element .’ H,+(/OI) is the image of , under the projection map.
But look at

h’ 2VI/OI --. M X D/M X - T(e)
where T() is the Thorn complex of the trivial bundle. Clearly, h
generates the top-dimensional homology of T(). But the usual collapsing
map construction shows that ’ is spherical, hence h ? is spherical and T (e)
is reducible. The Browder-Novikov theorem In] then implies that M is of
the homotopy type of a smooth manifold with trivial stable normal bundle,
Q.E.D.

Remarks. The condition that n be odd comes from the existence of the Index
obstruction for n 4k and the Arf-Kervaire invariant for n 4] -t- 2. Brow-
der has shown that the theorem holds for n 4k as well [n], because the index
obstruction vanishes.

6. Embeddings up to homotopy type
Let K be a 1-connected finite complex and let be a representative of the

stable normal fibration of K, for some thickening

Then if E is the total space of , we have

(, E) (M, OM).

Moreover, the "Thorn complex" T () /E has homology Z in dimension
/c -b r and this homology is spherically generated; thus T () is reducible.
Now suppose the fibration desuspends j times, i.e. " . We then

claim

6.1 L.MM.. T () 2’T ().

The proof proceeds as in the case of bundles or spherical fibrations. It is
also not hard to show

(, E,) is of the homotopy type of a P-pair of dimension
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Now suppose T () is reducible. Let be the "double" of (r,, E), i.e.
is the space 9r u with the two copies of E, identified. is then a P-

space of dimension k -t- r j. To avoid ambiguity, let el denote the trivial
So fibration over K and 1 () the trivial S-fibration over . Set ’ .
Then we easily see that T (’) is reducible. Moreover, we claim

6.3 LEMMA. There is a degree-1 map from T (’) to T (1 ( ).

The proof of 6.3 is easily arrived at, but the explicit details are tedious to
write down and will be left to the reader. In consequence of 6.3, we see that
T( ()) is reducible. It follows from Browder [c] or Levitt [f] that em-
beds up to homotopy type in S+-’+2, i.e. there is a W+’-’+ S+-j+2 with

W, and with OW W a trivial S-fibration. But then let

XD2, 0 XS.
Then u r where , ’ are the two copies of , X D, and where

n ’ E, X D. By the Browder codimension-1 theorem [c] it can be
shown that there are codimension-0 submanifolds U, V of W, W U u V,
and a homotopy equivalence

(, , ’, C n ’) (W, U, V, U n r).

Thus since K - U, embeds up to homotopy type in S+’-’+2. We
have thus proved

6.4 THEOREm. Le be a fibraion over K so tha , where is a
k + r-dimensional representative of the stable normal fibraion of K.

Then if T() is reducible, K embeds in S+’-+ up o homotopy type.

Another way of stating this is that, if is an embedding up to homotopy type
of K in S+, and is the normal fibration of the embedding, then we can re-
duce the ambient dimension of the embedding by j 2 if we can desuspend

j times and desuspend along with it the element in v+,(T() which gen-
erates H+, (T ()) under the Hurewicz map.
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