H_{2} OF SUBGROUPS OF KNOT GROUPS

BY
R. H. Crowell ${ }^{1}$

1. Summary of results

For any group G, we mean by $H_{i}(G)$ the $i^{\text {th }}$ homology group of G with integer coefficients. Essential to this paper is the fact that if X is a $K(G, 1)$ space, then $H_{i}(G)=H_{i}(X)$ for every i. A group II will be said to be a knot group if there exists a tame (polygonal) knot $k \subset S^{3}$ such that $\Pi=\pi_{1}\left(S^{3}-k\right)$.

Consider a subgroup G of a knot group $\Pi=\pi_{1}\left(S^{3}-k\right)$. The asphericity of knots states that $\pi_{2}\left(S^{3}-k\right)=0$. This famous theorem [8] together with the fact that there exists a finite 2 -dimensional complex K which is a deformation retract of $S^{3}-k$ implies that $S^{3}-k$ is a $K(\Pi, 1)$ space. Let X be any covering space of a space of the same homotopy type as $S^{3}-k$ with the property that $\pi_{1}(X)=G$. Then X is a $K(G, 1)$ space, and so $H_{i}(G)=$ $H_{i}(X)$ for every i.
(1.1) Proposition. If G is a subgroup of a knot group Π, then $H_{i}(G)=0$, for $i \geq 3$, and $H_{2}(G)$ is free abelian.

The proof is very simple. Following the above paragraph, we take for the covering space X with $\pi_{1}(X)=G$ a complex covering the 2-dimensional complex K. Then X is also 2 -dimensional. Hence, if $C_{i}(X)$ is the group of i-chains, then $C_{i}(X)=0$ for $i \geq 3$ and, consequently, $H_{i}(G)=H_{i}(X)=0$ for $i \geq 3$. The group $C_{2}(X)$ is free abelian (although generally not finitely generated), and, since every subgroup of a free abelian group is free [6, p. 45], we conclude that $H_{2}(G)=H_{2}(X)$ is free.

The next problem is the determination of the rank of $H_{2}(G)$. A simple solution in terms of $H_{1}(G)$ can be given provided G is a subgroup of finite index.
(1.2) Proposition. If G is a subgroup of a knot group Π and if Π / G (the set of right cosets) is finite, then the homology groups of G are finitely generated and

$$
\operatorname{rank} H_{2}(G)=\operatorname{rank} H_{1}(G)-1
$$

To prove (1.2), let $\Pi=\pi_{1}\left(S^{3}-k\right)$, let K be a finite 2 -complex which is a deformation retract of $S^{3}-k$, and let X be a covering complex of K such that $\pi_{1}(X)=G$. Since Π / G is finite, the complex X is also finite and its

[^0]homology groups are therefore finitely generated. From Alexander duality it follows that $H_{1}(K) \cong H_{1}\left(S^{8}-k\right)$ is infinite cyclic and that $H_{2}(K) \cong$ $H_{2}\left(S^{3}-k\right)=0$. The Euler-Poincaré formula therefore implies that
$$
\chi(K)=1-1+0=0
$$

If cardinality $(\Pi / G)=n$, then X is an n-sheeted covering and so

$$
\chi(X)=n \chi(K)=0
$$

Thus, a second application of the Euler-Poincare formula gives

$$
0=\chi(X)=1-\operatorname{rank} H_{1}(X)+\operatorname{rank} H_{2}(X)
$$

Since $H_{i}(X)=H_{i}(G)$, the proof is complete.
Observe that the above proof contains the known results that

$$
H_{1}(\Pi)=\Pi / \Pi^{\prime}=H_{1}\left(S^{8}-k\right)
$$

is infinite cyclic and that $H_{2}(\Pi)=H_{2}\left(S^{3}-k\right)=0$.
We shall give an explicit computation of $H_{2}(G)$ for the subgroups G corresponding to the cyclic coverings of knots. Consider a knot group $\Pi=\pi_{1}\left(S^{3}-k\right)$. The fact that the commutator quotient group Π / Π^{\prime} is infinite cyclic implies that, for every nonnegative integer n, there exists a normal subgroup Π_{n} of Π and an exact sequence

$$
\begin{equation*}
1 \rightarrow \Pi_{n} \rightarrow \Pi \rightarrow Z / n Z \rightarrow 0 \tag{1}
\end{equation*}
$$

and Π_{n} is uniquely determined by this sequence. In particular, Π_{0} is the commutator subgroup Π^{\prime}, and $\Pi_{1}=\Pi$. Denote by $Z\left[t, t^{-1}\right]$ the ring of polynomials in t and t^{-1} with integer coefficients, and consider in this ring the knot polynomials $\Delta_{j}(t)$ of the knot k, as defined in [3] and normalized so that $\Delta_{j}(1)=1$. We recall that $\Delta_{j+1}(t) \mid \Delta_{j}(t)$ in $Z\left[t, t^{-1}\right]$ and that, for all i sufficiently large, $\Delta_{j}(t)$ is the constant 1 . We shall prove
(1.3) Theorem. If Π is a knot group and if Π_{n} is the subgroup defined by the sequence (1), then

$$
\begin{aligned}
\operatorname{rank} H_{2}\left(\Pi_{n}\right) & =0, & & \text { if } n=0 \\
& =\sum_{j=1}^{\infty} b_{j}, & & \text { if } n>0
\end{aligned}
$$

where b_{j} is the number of distinct complex $n^{\text {th }}$ roots of 1 which are zeros of $\Delta_{j}(t) / \Delta_{j+1}(t)$.

The case $n=0$ will be proved in Section 2. Actually, the fact that $H_{2}\left(\Pi^{\prime}\right)=0$ for every knot group Π has been shown by R. G. Swan in [9, p. 198]. However, the present proof is geometric and very different from
his. The 1-dimensional group $H_{1}\left(\Pi^{\prime}\right)$ is of fundamental importance in knot theory. From the fact that

$$
H_{1}\left(\Pi^{\prime}\right)=H_{1}\left(\Pi ; Z\left(\Pi / \Pi^{\prime}\right)\right)=H_{1}\left(\Pi ; Z\left[t, t^{-1}\right]\right)
$$

it follows that $H_{1}\left(\Pi^{\prime}\right)$, which as an abelian group is equal to $\Pi^{\prime} / \Pi^{\prime \prime}$, is also a $Z\left[t, t^{-1}\right]$-module. Specifically, it is the module having the Alexander polynomial $\Delta_{1}(t)$ of the knot as generator of its $0^{\text {th }}$ elementary ideal and having the matrix $t V-V^{\prime}$ as a relation matrix (V is the Seifert matrix, and V^{\prime} is its transpose). It is known [1, p. 349] that rank $H_{1}\left(\Pi^{\prime}\right)=$ degree $\Delta_{1}(t)$. Since the latter is an even integer, we see that the conclusion of Proposition (1.2) is always false if $G=\Pi_{0}=\Pi^{\prime}$.

For $n>0$, the group $H_{1}\left(\Pi_{n}\right)$ is the first homology group of the n-fold cyclic (unbranched) covering space of $S^{3}-k$. This group has been studied by many knot theorists, most notably by H. Seifert and R. H. Fox. Let X_{n} be the unbranched, and X_{n}^{b} the branched, n-fold cyclic covering space of $S^{3}-k$. In Section 3 we have given a new proof of Fox's theorem that

$$
\begin{equation*}
H_{1}\left(X_{n}\right)=H_{1}\left(X_{n}^{b}\right) \oplus Z \tag{2}
\end{equation*}
$$

Since $H_{1}\left(X_{n}\right)=H_{1}\left(\Pi_{n}\right)$, it follows from (1.2) that

$$
\begin{equation*}
\operatorname{rank} H_{2}\left(\Pi_{n}\right)=\operatorname{rank} H_{1}\left(X_{n}\right)-1=\operatorname{rank} H_{1}\left(X_{n}^{b}\right) \tag{3}
\end{equation*}
$$

The expression of $\sum_{j=1}^{\infty} b_{j}$ which appears in (1.3) is then easily shown to be the same as in Fox's formula [4, p. 417] for the rank of $H_{1}\left(X_{n}^{b}\right)$.

It is an immediate corollary of (1.1) and (1.3) that
(1.4) If n is a positive integer, then $H_{2}\left(\Pi_{n}\right) \neq 0$ if and only if there exists a complex $n^{\text {th }}$ root of 1 which is a zero of the Alexander polynomial $\Delta_{1}(t)$.

For every knot, we have $\Delta_{1}(1)=1$ and $\Delta_{1}(-1) \equiv 1(\bmod 2)$. Hence, we obtain $H_{2}(\Pi)=H_{2}\left(\Pi_{1}\right)=0$ and also $H_{2}\left(\Pi_{2}\right)=0$. For the trefoil knot, however, it is a consequence of (1.1), (3), and [5, p. 156] that

$$
\begin{aligned}
H_{2}\left(\Pi_{n}\right) & =Z \oplus Z, & & \text { if } n>0 \text { and } n \equiv 0(\bmod 6) \\
& =0, & & \text { otherwise } .
\end{aligned}
$$

I wish to express my thanks to Hale F. Trotter for valuable assistance in working on the problems of this paper.

2. Proof of (1.3) for $n=0$

In this section we give a new proof of Swan's theorem that $H_{2}\left(\Pi^{\prime}\right)=0$ for an arbitrary knot group $\Pi=\pi_{1}\left(S^{3}-k\right)$. Let S be an orientable spanning surface for the knot k. Specifically, S is semi-linearly embedded in S^{3}, and $\partial(S)=k$. The genus of S, which we denote by h, need not be
minimal. We construct an embedding $f: S \times[-1,1] \rightarrow S^{3}$ such that $f(s, 0)=s$, for all $s \in S$, and set

$$
A=S^{3}-f(\operatorname{Int}(S) \times(-1,1))
$$

(2.1) $\quad H_{2}(A)=0$.

Proof. Since A and $S^{3}-S$ are of the same homotopy type, $H_{2}(A) \cong$ $H_{2}\left(S^{3}-S\right)$. By Alexander duality we have $H_{2}\left(S^{8}-S\right) \cong \tilde{H}^{0}(S)=0$.

Let $*, b: S \rightarrow A$ be the two mappings defined, for every $s \in S$, by $*(s)=$ $f(s, 1)$ and $b(s)=f(s,-1)$. Denoting the homomorphisms induced by * and b by the same symbols respectively, we have

$$
H_{1}(S) \stackrel{\text { 为 }}{\stackrel{*}{\Longrightarrow}} H_{1}(A)
$$

It can be shown [10] that there exist bases for $H_{1}(S)$ and $H_{1}(A)$ with respect to which the matrices of $\#$ and b are the Seifert matrix V and its transpose V^{\prime} respectively. If $\Delta_{1}(t)$ is the Alexander polynomial of k, then $\Delta_{1}(t)=$ $\operatorname{det}\left(t V-V^{\prime}\right)$. Since $\Delta_{1}(1)=1$, we have $\operatorname{det}\left(V-V^{\prime}\right)=1$ and, therefore,
(2.2) The homomorphism * $-b: H_{1}(S) \rightarrow H_{1}(A)$ is an isomorphism.

Let $\left\{h_{j}: S^{3} \rightarrow S_{j}^{3}\right\}$ be a family, indexed by the integers, of homeomorphisms onto disjoint copies of \mathbb{S}^{3}. For each integer $j \in Z$, consider the embedding $f_{j}: S \times[-1,1] \rightarrow S_{j}^{3}$ defined by $f_{j}=h_{j} f$, and set $A_{j}=h_{j}(A)$. Let \sim be the equivalence relation on the disjoint union $\bigcup_{j \in Z} A_{j}$ which identifies $f_{j}(s,-1)$ with $f_{j+1}(s, 1)$, for every $s \in S$ and $j \in Z$. The identification is indicated schematically in Figure 1. We denote the identification space $\left(\mathrm{U}_{j \epsilon Z} A_{j}\right) / \sim$ by X, and henceforth shall regard the spaces A_{j} as closed subspaces of X. We define

$$
S_{j}=A_{j} \cap A_{j+1}
$$

and inclusion mappings

$$
A_{j} \stackrel{b_{j}}{\longleftrightarrow} S_{j} \xrightarrow{\mathbb{*}_{j}} A_{j+1} .
$$

The mappings $\theta_{j}: S \rightarrow S_{j}$ and $\eta_{j}: A \rightarrow A_{j}$ defined by $\theta_{j}(s)=f_{j}(s,-1)=$ $f_{j+1}(s, 1)$ and $\eta_{j}(a)=h_{j}(a)$ are homeomorphisms, and for every $j \in Z$, the following diagram is commutative.

$$
\begin{align*}
& A \stackrel{b}{\longleftrightarrow} S \xrightarrow{*} A \\
& l^{*} \quad \left\lvert\, \begin{array}{lll}
\eta_{j} & & \\
& & \eta_{j+1} \\
\eta_{j}
\end{array}\right. \tag{4}\\
& \cdots \rightarrow A_{j} \stackrel{b_{j}}{\longleftrightarrow} S_{j} \xrightarrow{*} A_{j+1} \leftarrow \cdots
\end{align*}
$$

Figure 1
It is obvious that X is an infinite cyclic covering space of $S^{3}-\operatorname{nbd}(k)$, where $\operatorname{nbd}(k)$ is an open regular neighborhood of the knot k. Since Π / Π^{\prime} is infinite cyclic, it follows that $\pi_{1}(X)=\Pi^{\prime}$. Hence, $H_{i}\left(\Pi^{\prime}\right)=H_{i}(X)$ for every i. This construction of the covering space X was used by L. Neuwirth [7] in his study of the structure of the group Π^{\prime}. The proof that $H_{2}\left(\Pi^{\prime}\right)=0$ is completed by proving that $H_{2}(X)=0$.

For every positive integer n, we set $B_{n}=A_{1} \mathbf{u} \cdots \mathbf{u} A_{n}$. The basic lemma is the following:

$$
\begin{equation*}
H_{2}\left(B_{n}\right)=0, \quad n=1,2,3, \cdots \tag{2.3}
\end{equation*}
$$

Proof. If $n=1$, the conclusion is a direct corollary of (2.1), since $B_{1}=A_{1} \cong A$. So we assume that $n \geq 2$. Define

$$
B_{n}^{\prime}=B_{n} \cap \bigcup_{j \epsilon Z} A_{2 j+1} \quad \text { and } \quad B_{n}^{\prime \prime}=B_{n} \cap \bigcup_{j \in Z} A_{2 j} .
$$

Then, $B_{n}=B_{n}^{\prime}$ บ $B_{n}^{\prime \prime}$ and $B_{n}^{\prime} \cap B_{n}^{\prime \prime}=S_{1} \cup \cdots$ บ S_{n-1}. Moreover,

$$
\begin{gathered}
H_{i}\left(B_{n}^{\prime}\right) \oplus H_{i}\left(B_{n}^{\prime \prime}\right)=H_{i}\left(A_{1}\right) \oplus \cdots \oplus H_{i}\left(A_{n}\right) \\
H_{i}\left(B_{n}^{\prime} \cap B_{n}^{\prime \prime}\right)=H_{i}\left(S_{1}\right) \oplus \cdots \oplus H_{i}\left(S_{n-1}\right)
\end{gathered}
$$

Thus, part of the Mayer-Vietoris sequence of the pair consisting of B_{n}^{\prime} and $B_{n}^{\prime \prime}$ is

$$
\begin{aligned}
H_{2}\left(A_{1}\right) \oplus \cdots \oplus & H_{2}\left(A_{n}\right) \xrightarrow{j_{*}} H_{2}\left(B_{n}\right) \xrightarrow{\partial_{*}} \\
& H_{1}\left(S_{1}\right) \oplus \cdots \oplus H_{1}\left(S_{n-1}\right) \xrightarrow{i_{*}} H_{1}\left(A_{1}\right) \oplus \cdots \oplus H_{1}\left(A_{n}\right) .
\end{aligned}
$$

Since $A_{j} \cong A$, we have $H_{2}\left(A_{j}\right)=0$, from which it follows that ∂_{*} is a monomorphism. We conclude from the exactness of the above sequence that

$$
H_{2}\left(B_{n}\right) \cong \text { Image }\left(\partial_{*}\right)=\operatorname{Kernel}\left(i_{*}\right)
$$

It therefore only remains to prove that i_{*} is a monomorphism. We have

$$
\left.\begin{array}{rl}
i_{*}\left(u_{1} \oplus \cdots \oplus u_{n-1}\right)=b_{1}\left(u_{1}\right) & -\mathbb{*}_{1}\left(u_{1}\right) \\
& -b_{2}\left(u_{2}\right)
\end{array}\right) \not \mathbb{*}_{2}\left(u_{2}\right) .{ }_{3}\left(u_{3}\right)
$$

etc.

The groups $H_{1}(S), H_{1}\left(S_{j}\right), H_{1}(A)$, and $H_{1}\left(A_{j}\right)$ are all free with rank $2 h$. With respect to some choice of bases for $H_{1}(S)$ and $H_{1}(A)$, let V and W be the matrices defining the homomorphisms

$$
*: H_{1}(S) \rightarrow H_{1}(A) \quad \text { and } \quad b: H_{1}(S) \rightarrow H_{1}(A),
$$

respectively. As a result of the commutative diagram (4), it follows that (up to sign) the homomorphism i_{*} is defined by the matrix

$$
M_{n}=\begin{gathered}
\\
\\
\hline 1 \\
2 \\
3
\end{gathered}\left|\begin{array}{rrrrrr}
1 & 2 & 3 & 4 & \cdots & n \\
\vdots & -W & V & 0 & 0 & \cdots \\
0 & -W & V & 0 & & 0 \\
n-1 & 0 & 0 & -W & V & \\
0 & 0 & 0 & 0 & & \\
& &
\end{array}\right|-
$$

Since * - b is an isomorphism, the matrix $V-W$ is invertible. We contend that

$$
\begin{equation*}
\operatorname{rank} M_{n}=(n-1)(2 h) \tag{5}
\end{equation*}
$$

Since

$$
\operatorname{rank} \operatorname{Kernel}\left(i_{*}\right)=(n-1)(2 h)-\operatorname{rank} M_{n},
$$

proving (5) will finish the proof of (2.3). The argument is inductive. For $n=2$, we have

$$
M_{2}=(-W \quad V) \sim(-W \quad V-W)
$$

and the rank of the equivalent righthand matrix is obviously $2 h$. We shall give in detail the reduction from $n=5$ to $n=4$, and this will convincingly illustrate the general inductive step from $n \geq 3$ to $n-1$.

$$
M_{5}=\left[\begin{array}{rrrrr}
-W & V & 0 & 0 & 0 \\
0 & -W & V & 0 & 0 \\
0 & 0 & -W & V & 0 \\
0 & 0 & 0 & -W & V
\end{array}\right]
$$

Add the 1st column block to the 2nd, the new 2nd to the third, the new 3rd to the 4th, etc., to obtain the equivalent matrix

$$
\left[\begin{array}{rrrrr}
-W & V-W & V-W & V-W & V-W \\
0 & -W & V-W & V-W & V-W \\
0 & 0 & -W & V-W & V-W \\
0 & 0 & 0 & -W & V-W
\end{array}\right]
$$

Subtract the 2nd row block from the 1st, the 3rd from the 2nd, and the 4th from the 3 rd , to get the equivalent matrix

$$
M_{5}^{\prime}=\left[\begin{array}{rrrrr}
-W & V & 0 & 0 & 0 \\
0 & -W & V & 0 & 0 \\
0 & 0 & -W & V & 0 \\
0 & 0 & 0 & -W & V-W
\end{array}\right]=\left[\begin{array}{c|c}
M_{4} & 0 \\
\hline 0 & -W
\end{array} \frac{V-W}{V-W}\right.
$$

Since rank $M_{4}=3(2 h)$ by induction and since rank $(V-W)=2 h$, it follows that rank $M_{5}=4(2 h)$. This completes the proof of equation (5), and also of Proposition (2.3).

For every nonnegative integer n, we now define

$$
B_{n}^{*}=A_{-n} \mathbf{\cup} \cdots \mathbf{~} A_{0} \mathbf{u} \cdots \mathbf{u} A_{n}
$$

Since $B_{n}^{*} \cong B_{2 n+1}$, it is a corollary of (2.3) that $H_{2}\left(B_{n}^{*}\right)=0$, for $n=0,1,2, \cdots$. But the covering space X is the union of the infinite chain of subspaces $B_{0}^{*} \subset B_{1}^{*} \subset B_{2}^{*} \subset \cdots$. Since the homology functor commutes with direct limits, it follows at once that $H_{2}(X)=0$, and, as observed above, this proves that $H_{2}\left(\Pi^{\prime}\right)=0$.

3. Finite cyclic covering spaces

For $n>0$, the unbranched n-fold cyclic covering space X_{n} of $S^{3}-\operatorname{nbd}(k)$ is obtained from B_{n} by identifying S_{0} and S_{n}. Specifically, we consider the equivalence relation \sim on B_{n} which identifies $f_{1}(s, 1)$ and $f_{n}(s,-1)$, for every $s \in S$, and we form the identification space $X_{n}=B_{n} / \sim$. Our primary objective is to give a proof of equation (2) in Section 1, which relates the 1st homology of the branched and unbranched covering spaces. The equation is obviously true for $n=1$, and we shall therefore assume that $n \geq 2$. As a result, the spaces A_{1}, \cdots, A_{n} and B_{1}, \cdots, B_{n-1} are embedded in X_{n} and henceforth will be regarded as subspaces. Thus, we have

$$
B_{n-1} \cup A_{n}=X_{n}, \quad B_{n-1} \cap A_{n}=S_{n-1} \cup S_{n} \quad\left(\text { and } S_{n}=S_{0}\right)
$$

The space B_{n-1} is a 3 -dimensional manifold with a boundary consisting of the union of an annulus and the two homeomorphic surfaces S_{0} and S_{n-1}. The same is true of A_{n}. The union $B_{n-1} \cup A_{n}=X_{n}$, indicated schematically in Figure 2, is a 3-dimensional manifold whose boundary is a torus formed by the union of the two annuli. Let T be a solid torus with interior disjoint from X_{n} and such that $\partial(T)=\partial\left(X_{n}\right)$. The union $X_{n} \cup T$ is the branched covering space X_{n}^{b}. In the following mapping diagram the two rows are corresponding parts of reduced Mayer-Vietoris sequences: one for B_{n-1} and A_{n}, and the other for $B_{n-1} \cup T$ and A_{n}. The homomorphism φ_{1} is induced

Figurd 2
by inclusion, and φ_{2} is the direct sum of the homomorphisms induced by the inclusion $B_{n-1} \rightarrow B_{n-1} \cup T$ and by the identity $A_{n} \rightarrow A_{n}$.

It follows easily from the theory of the homology of orientable 2-manifolds that φ_{1} is an isomorphism. Since B_{n-1} is obviously a deformation retract of $B_{n-1} \cup T$, we conclude that φ_{2} is also an isomorphism. Since the relevant homomorphisms are induced by inclusion, the first square of the diagram is commutative, i.e., $\varphi_{2} i_{*}=i_{*}^{\prime} \varphi_{1}$. Simple diagram chasing then shows that

$$
\operatorname{Kernel}\left(j_{*}^{\prime}\right)=\operatorname{Kernel}\left(j_{*} \varphi_{2}^{-1}\right)
$$

Since j_{*}^{\prime} is an epimorphism, one direction of this equality implies that there exists a homomorphism $\psi: H_{1}\left(X_{n}^{b}\right) \rightarrow H_{1}\left(X_{n}\right)$ such that

$$
\psi j_{*}^{\prime}=j_{*} \varphi_{2}^{-1}
$$

The other direction implies that ψ is a monomorphism. Moreover,

$$
\text { Image }(\psi)=\text { Image }\left(\psi j_{*}^{\prime}\right)=\text { Image }\left(j_{*} \varphi_{2}^{-1}\right)=\operatorname{Image}\left(j_{*}\right)
$$

Hence, the sequence

$$
0 \rightarrow H_{1}\left(X_{n}^{b}\right) \xrightarrow{\psi} H_{1}\left(X_{n}\right) \xrightarrow{\partial *} \tilde{H}_{0}\left(B_{n-1} \cap A_{n}\right) \rightarrow 0
$$

is exact. Since $B_{n-1} \cap A_{n}$ is the disjoint union of S_{n-1} and S_{n}, it follows that $\tilde{H}_{0}\left(B_{n-1} \cap A_{n}\right)=Z$, and we finally obtain the sequence

$$
0 \rightarrow H_{1}\left(X_{n}^{b}\right) \xrightarrow{\psi} H_{1}\left(X_{n}\right) \xrightarrow{\partial *} Z \rightarrow 0
$$

which is split exact. This proves equation (2) in Section 1.
The proof of Theorem (1.3) for $n>0$ is finished provided it is assured that the number $\sum_{j=1}^{\infty} b_{j}$, which appears there, equals the analogous number in Fox's formula [4, p. 417] for the rank of $H_{1}\left(X_{n}^{b}\right)$. The only question is whether or not the j th elementary divisor of his matrix $\mathbf{F}(t)$ is equal to the ratio $\Delta_{j}(t) / \Delta_{j+1}(t)$ of the knot polynomials. An affirmative answer is implied by Fox at the bottom of page 416 in [4], and is also proved on page 698 of [2].

References

1. R. H. Crowell, The group $G^{\prime} / G^{\prime \prime}$ of a knot group G, Duke Math. J., vol. 30 (1963), pp. 349-354.
2. ——, The annihilator of a knot module, Proc. Amer. Math. Soc., vol. 15 (1964), pp. 696-700.
3. R. H. Crowell and R. H. Fox, Introduction to knot theory, Blaisdell-Ginn, New York, 1963.
4. R. H. Fox, Free differential calculus III. Subgroups, Ann. of Math., vol. 64 (1956), pp. 407-419.
5. ——, "A quick trip through knot theory," Topology of 3-manifolds, Prentice-Hall, Englewood Cliffs, N.J., 1962.
6. L. Fuchs, Abelian groups, Pergamon Press, Oxford, 1960.
7. L. Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math., vol. 82 (1960), pp. 791-798.
8. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math., vol. 66 (1957), pp. 1-26.
9. R. G. Swan, Minimal resolutions for finite groups, Topology, vol. 4 (1965), pp. 193208.
10. H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of Math., vol. 76 (1962), pp. 464-498.

Dartmouth College
Hanover, New Hampshire

[^0]: Received August 6, 1968.
 ${ }^{1}$ This research was supported by a National Science Foundation grant.

