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1. Introduction
In this paper, we consider four fixed point properties that a topological

semigroup S might conceivably possess.

(F1) Whenever S acts on a compact Hausdorff space Y, where the map
S X Y --* Y is jointly continuous, then Y contains a common fixed point of S.

(F2) Whenever S acts affinely on a convex compact subset Y of a locally
convex linear topological space, where the map S X Y -- Y is jointly con-
tinuous, then Y contains a common fixed point of S.

(F3) Whenever S acts on a compact Hausdorff space Y, where the map
S X Y --* Y is separately continuous, then Y contains a common fixed point
of S.

(F4) Whenever S acts affinely on a convex compact subset Y of a locally
convex linear topological space, where the map S X Y --* Y is separately
continuous, then Y contains a common fixed point of S.

For each of these four properties, we investigate the question as to whether
there exists some subspace of C(S) whose left amenability (or whose extreme
left amenability) is equivalent to the specified (Fi). It is shown that for each
of the (Fi), there does indeed exist such an associated subspace of C(S); in
fact, a total of three spaces will suffice to characterize the four properties in
this manner. Let f C(S), and define 0f S --* C(S) by 0f s la f for s S.
Then we will say f e LUC(S) (f WLUC(S) {f LMC(S) if the map 0
is continuous when C(S) is given the supremum norm topology (w-topology)
/weak topology induced by the multiplicative means on C(S)}. The follow-
ing are shown in Sections 3 and 4

THEOREM 1.
mean.

THEOREM 2.

THEOREM 3.
mean.

THEOREM 4.

S satisfies (F1) ig LUC(S) has a multiplicative left invariant

S satisfies (F2) iff LUC(S) has a left invariant mean.

S satisfies (F3) iff LMC(S) has a multplicative left invariant

S satisfies (F4) iff WLUC(S) has a left invariant mean.

The concept of characterizing fixed point properties of topological semi-
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groups in terms of left invariant means was introduced by M. M. Day in [3].
Let Y be a convex compact subset of a locally convex space, and let a(Y)
denote the semigroup of affine continuous self-maps of Y, where a(Y) is
given the topology of pointwise convergence. In. [3], the property (F4) was
studied in an equivalent form, (F4), that we list below:

(F4) For each convex compact subset Y of each locally convex space, and
for each continuous homomorphism , S --, a(Y), there is in Y a common
fixed point of XS.

(The equivalence of (F4) to (F4’) can be verified by noting that the sepa-
rately continuous affine actions A S X Y --* Y can be placed in 1-1 corre-
spondance with the continuous homomorphisms ), :. S --, a(Y) by the formula
h(s, y) X(s)y.) It was shown in [3] that if C(S) has a left invariant mean,
then S satisfies (F4). The converse was shown [3, Theorem 1] for the case
where S is discrete. Later, Day proved in [4] the equivalence of the left
amenability of C(S) to a fixed point property that is formally stronger than
(F4), thus pivoting his generalization of [3, Theorem 1] about C(S) rather
than (F4). In Theorem 4, we obtain a generalization centered around (F4)
instead.
H. Furstenberg [7] investigated the class of topological groups that satisfy

(F2), which attribute he called "the fixed point property". (Because of the
plethora of fixed point properties considered in this paper, we do not adhere
to this nomenclature.) N. W. Rickert [16, Theorem 4.2] proved that a
topological group G satisfies (F2) iff LUC(G) has a left invariant mean.
Theorem 2 generalizes this result to a topological semigroup S, without benefit
of a uniformity on S.
Theorems 1 and 3 were previously shown for discrete S in [10, Theorem 1].
In Section 5, we discuss the relationship of the spaces LUC(S), WLUC(S),

and LMC(S) in various special cases. Our principal result in this section is
that if S is a locally compact group, then the three spaces mentioned above
coincide (Theorem 7).

I am greatly indebted to G. Itzkowitz for several stimulating discussions,
and in particular, for the suggestion that the method used to prove Theorem 1
could possibly be modified to obtain Theorem 2. I am further indebted to
L. N. Argabright (private correspondance) for asking several questions
regarding fixed point properties and amenability; the consideration of these
questions was instrumental in leading me to the work of Section 4. I am also
grateful to the referee for several helpful comments.

2. Preliminaries

A topological semigroup is a semigroup with a Hausdorff topology in which
he product st is separately continuous. (J. Berglund and K. Hofmann [2]
call this a semitopological semigroup.) A topological group is a group with a
Hausdorff topology for which the product st-1 is jointly continuous.
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Let S be a semigroup, re(S) the spce of all bounded rel-valued functions
on S, where re(S) has the supremum norm. For s e S, the left translation 18
{right translation rs} of re(S) by s is given by (lf)s’ f(ss’) (rf)s’ f(s’s)},
where f e re(S) and s’ e S. Let X be a subspace of re(S), then X is left
{right} translation-invariant if l X

___
X {r X X} for all s e S. If X is. both

left and right translation-invariaat, then X is called translation-invariant.
Let X be left transltion-invariant closed subspace of re(S) that contains

X*e, the constant 1 function on S. An element is a mean on X if ll !i
/(e) 1. A mean on X is left invariant if (lsf) (f) for all f e X and
s e S. If X is also an algebr (with the pointwise product), a mean on X is
multiplicative if/(f) .#(g) (f.g) for all f, g e X.
When Y is a topological space, C(Y) denotes the space of all bounded real-

valued continuous functions on Y, where C(Y) has the supremum norm.
If Y is convex subset of a linear topological space, then A (Y) designates the
Banach Spce of all affine f e C(Y).
Let S be semigroup, X a translation-invariant closed subalgebra of re(S)

that contains the constant functions, and Y a compact Hausdorff space.
Suppose that s --+ ks is a representation of S by continuous self-maps of Y.
For each y e Y, define map Ty C(Y) ---+ re(S) by (Tyh)s h((ks)y) for
h e C(Y) and s e S. We sy k is a D-representation of S, X on Y if

{y Y; Ty(C(Y)) X}

s dense in Y. It was shown in [11, Theorem 1, p. 118] that X has a multi-
plicative left invariant mean (in other words, X is extrenely left amenable)
iff for every compact Hausdorff space Y, and every D-representation k of S,
X on Y, there is in Y a common fixed point of the family kS.

L. N. Argbright [1] has shown that concepts analogous to those indicated
in the paragraph above can be usefully constructed for affine representations
of semigroups. Let S be a semigroup, X a translation-invariant closed sub-
space of re(S) that contains the constant functions, and let Y now be a com-
pact convex subset of a locally convex space. Suppose that s --, ks is now a
representation of S by continuous affine self-maps of Y. We say , is a D-
representation of S, X on Y by continuous ane maps if {y e Y; Ty(A Y)

_
X}

is dense in Y, where Ty is defined as before. Then Argabright [1, Theorem 1,
p. 128] has shown that X has a left invariant mean (in other words, X is left
amenable) iff for every compact convex subset Y of a locally convex space, and
for every D-representation k of S, X on Y by continuous affine maps, there is
in Y a common fixed point of the family kS. The subsequent work leans
heavily on Argbright’s results.

3. Jointly continuous actions

Let S be a topological semigroup. The space of left uniformly continuous
functions on S, designated by LUC(S), is the set of those f e C(S) such that
for each s e S, if s(,) s, then 1 f--+ l f uniformly. When S is a topologi-
cal group, then LUC(S) coincides with the space of all f e C(S) which re left
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uniformly continuous on S in the usual sense. This provides some justifica-
tion for the use of the term "uniformly" in the definition above, although no
uniformity is invoked in the general case. Unlike the case of topological
groups, if S’ is a dense sub-semigroup of a topological semigroup S, an

f e LUC(S’) need not be extendible to an f LUC(S). (This is illustrated
at the end of Section 5.)
The space LUC(S) was introduced jointly by G. Itzkowitz and the author

[12], [9]; and independently by 1. Namioka [13]. In [13], Namioka also con-
sidered left invariant means on LUC(S) and obtained fixed point theorems
concerning the linear action of S on certain Banach spaces. His results neither
include, nor are included in, the theorems obtained below.
We list the following lemma for later use; the proof is given in [13, Lemmas

1.1 and 1.2].

LEMMA 1. Let S be a topological semigroup. Then LUC(S) is a transla-
tion-invariant closed sub-algebra of re(S) that contains the constant functions.

In what follows, recall that a topological semigroup S is assumed throughout
to have a separately continuous product. An action of S on a topological
space X is a map S X X --+ X that satisfies (sl s)x s(s x) for all sl, 8 S
and all x e X. In this section, we will consider only those actions for which the
map S X X-. X is jointly continuous.

In view of Lemma 1, it is meaningful to speak of a multiplicative left in-
variant mean on LUC(S). The next theorem generalizes a result [10, Theo-
rem 1, p. 196] concerning discrete semigroups.

THEOREM 1. Let S be a topological semigroup. Then the following proper-
ties are equivalent"

(P1) LUC(S) has a multiplicative left invariant mean.
(F1) Whenever S acts on a compact Hausdorg space Y, where the map

S X Y --> Y is jointly continuous, then Y contains a common fixed point of S.

Proof. (P1) (F1). For a specific.y e Y, define the two maps

Ty C(Y) m(S) and Vy So Y

by (Tyh)s h(sy) and Vys syforheC(Y) and seS. It follows that
(Tyh)s h(sy) (hVy)s; thus Tyh e C(S) since hVy is the composition of
two continuous functions. (This part of the argument is also valid for sepa-
rately continuous actions of S on Y.) Designate Tyh by f. Then for s,

S, we have (1,f)t f(st) (Tyh)st h(sty).

We wish to show that f e LUC(S). Suppose not; then there exists an
s e S and a net {s(,)} in S such that s() -- s, but la()f does not converge
uniformly to laf. Hence there exists some real number a > 0, a subnet
{s()} of {s()}, and a net/t()} in S such that

h(s() (t()y)) h(s(t()y)) >- a, for all .
Denote t()y by y(). By compactness of Y, the net {y()} has a subnet
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{y()} that converges to some y’ e Y. But by continuity of h and the joint
continuity of the action of S on Y, we have

0 < a _< lim, h(s()y()) h(sy())l h(sy’) h(sy’)i O,

a contradiction. Hencef e LUC(S), so the action of S on Y is a D-representa-
tion of S, LUC(S) on Y since y e Y was chosen arbitrarily. The property
(F1) now follows from (P1) by use of [11, Theorem 1] and Lemma 1.

(F1) (P1). Choose the compact Hausdorff space Y to be the set of all
multiplicative means on LUC(S), where Y is given the w*-topology
of LUC(S)*. Define an action of S on Y by s l* for s S and Y.
For given s e S and e Y; let {s(,)} and {(})} be nets in S and Y, respec-
tively, satisfying s(,) --, s and () --, . Then for any f LUC(S), it
follows that

0 < lim,., (s()())f (su)fi

lim, (()(l, f 1,f)) + ((() )l,f)

_< lim II f 1,f / lim, (()  )z,f 0.

Hence s(,)/() --. s/, so the etion of S on Y is jointly continuous. By (F1),
there exists t0 sz0 l* 0 for 11 s e S, which shows (P1).
An action of topological semigroup S on convex subset X of (rel)

linear topological spree is agone if for 11 s e S, nd x, x,. e X, nd for 11
rel a such that 0 _< a _< 1, it follows that s(axx + (1 a)x,.)
asx + (1 a)sx,.. Theorem 2 below is generalizti0n of result of N. W.
Rieker [16, Theorem 4.2, p. 227] on topological groups.

THEOREM 2. Let S be a topological semigroup. Then the following properties
are equivalent"

(P2) LUC(S) has a left invariant mean.
(F2) Whenever S acts anely on a convex compact subset Y of a locally

convex linear topological space, where the map S X Y --> Y is jointly continuous,
then Y contains a commonfixed point of S.

Proof. (P2) (F2). For a specific y e Y, define Ty C(Y) -- re(S) by
(Tyh)s h(sy) for h C(Y) and s S. The proof of Theorem i yields
TyC( Y) LUC(S) hence TyA ( Y)

_
LUC(S). This means that the

action of Soa Y is a D-representation of S, LUC(S) on Y by continuous
affine maps; thus (F2) follows by the result of Argabright [1, Theorem 1]
mentioned previously, and by Lemma 1.

(F2) (P2). Choose the compact convex set Y to be the space of all
means on LUC(S), where Y is given the w*-topology of LUC(S)*. Define
the affine action of S on Y by s l** for s S and Y. The argument
used in the proof of Theorem 1 can be used to show that S X Y --* Y is jointly
continuous; hence by (F2), there exists 0 Y such that u0 s0 1,* o
for all s e S, which shows (P2).
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We remark that it is tempting to define, as given in [13], a topological
semigroup S to be left amenable if and only if LUC(S) has a left invariant
mean. Certainly, Theorem 2 would offer justification for this terminology.
However in the light of Theorem 4 in the next section, it is not clear that
LUC() should be preferred above all other subspaces of C(S) for this dis-
tinction.

4. Separately continuous actions

Theorems 1 and 2, which are concerne.d with the jointly continuous actions
of a topological semigroup S, do not represent the only possible ways of gen-
eralizing the discrete semigroup cases. It is equally valid to consider the class
of separately continuous actions of S, and to inquire whether there exists some
subspace of C(S) which plays the same role for this class that LUC(S) did
for the jointly continuous actions of Section 3. The answer appears to be
that each of the respective analogues of Theorem 1 and Theorem 2 requires
such a space; only in special cases have we been able to show that these two
subspaces of C(S) coincide. The first of these spaces, LMC(S), is introduced
below.

Let S be a topological semigroup. The space of left multiplicatively con-
tinuous functions on S, designated by LMC(S), is the set of those f e C(S)
such that for each multiplicative mean/ on C(S) and each s e S, if s(,) --. s,
then (1,() f) (le f)

IEMMA 2. Let S be a topological semigroup. Then LMC(S) is a transla-
tion-invariant closed sub-algebra of re(S) that contains the constant functions.

Proof. By a straightforward computation, LMC(S) can be shown to be a
closed linear subspace of m(S) that contains e. For the res, let s, S,
s() --. s, and let be a multiplicative mean on C(S). If f LMC(S), then

/)(r)(1,()f)) (l, (l,(rf)).lim ((1,()(rf))) lim * *

Also,
lim ((l,()(lf))) lim ((/,()f))

hence LMC(S) is translation-invariant. Now let f, g eLMC(S). By use
of the multiplicative property of , we obtain

lim ((l<)(f.g) lim (#(l<>f) .(1,) g)

so f.g e LMC(S), which shows Lemma 2.
The space LMC(S) can also be described in terms of a concept studied in

[11], that of a left M-introverted algebra. Let X be a left translation-in-
variant closed sub-algebra of re(S) that contains the constant functions.
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For each e X*, there is associated a map # X --* re(S) given by (f)s
(lf) for f e X and s e S. The algebra X is called left M-introverted

Z*.if X

_
X for every multiplicative mean e It can be shown (cf.

C. R. Rao [15, Theorem 1, p. 190]) that LMC(S) is the unique maximal left
M-introverted algebra contained in C(S); however this will not be needed in
the material that follows.

THEOREM 3. Let S be a topological semigroup. Then the following properties
are equivalent"

(P3) LMC(S) has a multiplicative left invariant mean.
(F3) Whenever S acts on a compact Hausdor space Y, where the map

S X Y -- Y is separately continuous, then Y contains a commonfixed point of S.
Proof. (P3) (F3). Select a specific y Y, and a specific, multiplicative

mean on C(S). Define a map Ty C(Y) re(S) by (Tyh)s h(sy) for
h e C(Y) and s S. Designate Tyh byf; it follows from the proof of Theorem
1 that f eC(S). Let Q be the natural map of S into C(S)*, where
(Qs)g g(s) for s S and g e C(S). Since QS is w*-dense in the set of
multiplicative means on LMC(S) (see the proof of [5, Corollary 19, p. 276]),
there exists a net {s()} in S such that Qs() . By compactness of Y,
there is a subnet {s()} which satisfies s()y --. x for some x Y. So for any
e S, we have

t(ltf) lim ( (Qs() )l,f) ]im f(ts() ]im h(t(s()y) h(tx),

where the last step follows by continuity of h and the continuity of on Y.
Let s e S, and let s(7) -- s. Then

lim (t(1,()f)) lim h(s(7)x) h(sx)

where the second equality now uses the continuity of the action of S on x.
But t was an arbitrarily chosea multiplicative mean oaC(S), so f e LMC(S).
Hence the action of Soa Y is a D-representation of S, LMC(S) oa Y since
y e Y also was chosen arbitrarily. Thus, as in the proof of Theorem 1, (F3)
now follows from [11, Theorem 1] and Lemma 2.

(F3) (P3). Let the compact Hausdorff space Y be the set of all multipli-
entire means oa LMC(S), where Y has the w*4opology of LMC(S)*. Define
the action of S on Y by s l* for s e S and Y. Each s e S acts con-
tinuously on Y since the adjoint of an operator is w*-continuous. To show
continuity in the other variable, let s(,) --* s. Then for each f LMC(S),

lim ((s(-))f) lim ((l()f)) (l,f) (s)f.

Thus s(.) --. s, so the action of S on Y is separately continuous. The
result now follows from (F3).
We come now to the second of the two spaces mentioned at the beginning of

this section. Let S be a topological semigroup. The space of weakly left
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uniformly continuous functions on S, denoted by WLUC(S), is the set of
those f C(S) such that for each s e S, if s(,) --. s, then la) f--* la in the weak
topology of C(S). (That is, for every e C(S)*, (l)f) (lf).)
The space WLUC(S) was introduced, under a different designation, by

C. R. Rao [15]. Let X be a left translation-invariant closed subspace of
re(S) that contains the constant functions. The space X is left introverted

Z*.if X X for every e Rao showed [15, Theorem 1, p. 190] that
WLUC(S) is the unique maximal left introverted subspace of C(S).
LEMM_ 3. (Rao) Let S be a topological semigroup. Then WLUC S) is a

translation-invariant closed subspace of re(S) that contains the constant functions.

Proof. In the proof of Lemma 2, replace the multiplicative mean by any
element of C(S)*. Then all except the containment of the pointwise product
goes through as before.

The next result is a second generalization of Day’s fixed point theorem [3,
Theorem 1, p. 586].

THEOIEM 4. Let S be a topological semigroup. Then the following properties
are equivalent"

(P4) WLUC(S) has a left invariant mean.
(F4) Whenever S acts anely on a convex compact subset Y of a locally

convex linear topological space, where the map S X Y ----> Y is separately con-
tinuous, then Y contains a common fixed point of S.

Proof. (P4) (F4). Let y e Y, h e A(Y) and let. be a mean on C(S).
Define Ty as in the proofs of Theorems 1-3, and let f Tyh. As before,
f e C(S); now we wish to show that f WLUC(S). For this purpose, the
finite means on C(S) play the same role that the evaluations Qs did in the
proof of Theorem 3. Let be the set of all non-negative real-valued functions
on S for which the set s e S; (s) > 0} is finite, and such that ,,s (s) 1.

Let q" C(S)* be given by (q)g ,,(s)g(s) for e, g C(S);
then q is w*-dense in the set of means on C(S) (see [3, p. 588]). Let {}
be a net in ) which satisfies q -- ; then by compactness of Y, there is a
subnet {} for which ,,s (s)sy x for some x e Y. Then for any e S,

(1,f) lim ((q)(lf)) lim ,,s (s)f(ts))

lim ,, &(s)h(tsy)) lim h(t _,,,s h(s)sy) h(tx),

where the fourth equality follows by virtue of the affineness of h and on Y.
By continuing as in the proof that (P3) (F3), we obtain the result that if
s S and s(,) -. s, then t(l,()f) --* t(l,f). Since each t e C(S)* can be
expressed as a linear combination of two means on C(S), then f WLUC(S),
so the action of S on Y is a D-representation of S, WLUC(S) on Y by con-
tinuous affine maps. Hence (F3) follows from Lemma 3 and Argabright’s
fixed point theorem [1, Theorem 1].
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(F4) (P4). Let the convex compact space Y be the set of all means on
WLUC(S), where Y has the w*-topology of WLUC(S)*. Let the affine
action of S on Y be given by s l* for s e S and e Y. The proof that
(F3) (P3) can now be repeated to show that the action of S on Y is sepa-
rately continuous, hence (P4) follows.

5. Special cases

For any topological semigroup S, it is immediate from the definitions of the
spaces concerned that LUC(S) WLUC(S)

_
LMC(S) C(S) This

inclusion, when inserted into the previous four theorems, yields only obvious
results. For example, since LUC(S)

_
LMC(S), then (P3) (P1) (by

restriction of the mean to LUC(S)), hence (F3) (F1) by Theorems 1 and
3; a conclusion which hardly required this kind of argument. However, this
method gives less trivial results when additional conditions are imposed on S.
We list some items, useful for this purpose, below.

(a) Let S be a first-countable topological semigroup, then WLUC(S)
LMC(S).

To indicate the proof; since S is first-countable, we need only show that for
$ e LMC(S), if s(n) --* s where {s(n)} is a sequenc in S, then l(,o f ---* lf
weakly in C(S). J. Rainwater [14, p. 999] has shown the following theorem:
Le hr be a normed linear space, {f(n)} a bounded sequence in N, and let

f e N. If (f(n)) ----> #(f) for each extreme point of the unit ball of hr*,
then f(n) --* f weakly.
In the above theorem, let hr C(S). The desired conclusion follows.

(b) If S is a compact topological semigroup, then LMC(S) C(S).

To see this, let f e C(S), s e S, and let s(7) --* s. Each multiplicative mean
on C(S) is an evaluation on some e S, so

thus f LMC(S)

(c) Let S be a compact topological semigroup with jointly continuous
product. Then LUC(S) C(S) by Namioka [13, Lemma 1.3], so
LUC(S) WLUC(S) LMC(S) C(S).

(d) Let S be a topological group which is complete in an invariant metric,
then LUC(S) WLUC(S)

This is shown in Rao [15, Theorem 2, p. 192]. By combining this with (a),
we obtain LUC(S) WLUC(S) LMC(S)

(e) If S is a discrete topological semigroup, then LUC(S) WLUC(S)
LMC S) m S)
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With the aid of the above remarks, some consequences of Theorems 1-4
can now be obtained.

THEORE 5. Let S be a compact topological semigroup with jointly con-
tinuous product. Then (F1) is equivalent to (F3), and (F2) is equivalent to
(F4).

Proof. This follows by remark (c) and Theorems 1-4.

THEORE 6. Let S be a topological group which is complete in an invariant
metric. Then (F1) is equivalent to (F3), and (F2) is equivalent to (F4).

Proof. This is obtained by Theorems 1-4 and remark (d). (It is only
fair to warn the reader that the only example we know of a topological group
that satisfies (F1), is the trivial one-element group. Of course, there are
abundant examples of complete metric groups that satisfy (F2), hence (F4).)

If S is a locally compact group, then LUC(S) has a left invariant mean iff
C(S) does also (F. P. Greenleaf [8, Theorem 2.2.1]). One could then employ
Theorems 2 and 4 to obtain the known result (see [8, Theorem 3.3.5]) that
properties (F2) and (F4) are equivalent for such S, but an even stronger result
is already known. R. Ellis [6] has shown that if an action of a locally compact
group S on a locally compact Hausdorff space Y is separately continuous,
then the action is jointly continuous. (Let 1 be the identity element of S;
as is noted in [2, p. 36], Ellis’ result does not require that ly y for all y Y.)
This, of course, yields the result that (P1) , (P3) and that (P2) , (P4)
for such an S, however we can obtain something stronger than that by use of
Ellis’ theorem.

THORE 7. Let S be a locally compact topological group. Then LUC(S)
WLUC(S) LMC(S).

Proof. Let Y be the set of all multiplicative means on LMC(S), where Y
has the w*-topology of LMC(S)*. Define an action of S on Y by s l*
for 8 S and Y. The action is separately continuous by the proof of
Theorem 3, hence is jointly continuous by [6, Theorem 1]. Let Q be the
natural map of S into Y, where (Qs)f f(s) for s S and f LMC(S). Then
for s, S andf LMC(S), we have

By Theorem 1, (P1) is equivalent to (F1). In [10, Theorem 2], the author showed
that no non-trivial discrete group satisfies (P1). E. Granirer (Extremely amenable
semigroups II, Math. Scand., vol. 20 (1967), pp. 93-113, Theorem 3) has shown that there
is a large class of topological groups which do not satisfy (P1). This class includes,
among others, all (non-trivial) locally compact abelian groups, totally bounded groups,
and all additive subgroups of locally convex spaces. Granirer (ibid. p. 103) raises the
question of determining which (non-trivial) topological groups satisfy (P1). We ask
a slightly simpler form of the same question: are there any such groups at all?
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Let f.LMC(S); we wish to show that feLUC(S). Suppose not; then
there exists an s e S and a net {s(-)} in S such that s() -. s, but la()f does
not converge uniformly to laf. Hence there exists some real number a > O,
a subnet {s()} of {s(/)}, and a net {t()} in S such that

(s()Qt())f (sQt())fl >- a, for all .
By compactness of Y, the net {Qt()} has a subnet {Qt()} which converges
to some e Y. By the joint continuity of the action of S on Y, we have

0 < a _< lim, [(s(,)Qt(,))f- (sQt(,))fl (s)f- (s)fl O,

a contradiction. Thus LMC(S)

_
LUC(S), which proves Theorem 7, since

we already had that LUC( S)

_
WLUC(S) LMC(S).

We give one further application of Theorems 1-4. In Theorem 8 given
below, part (b) and its converse have been shown by Rickert [16, Corollary
4.5, p. 227] for the case where S and T are topological groups. As we note
later, this converse to (b) is false if S and T are not thus constrained.

THEORE 8. Let S be a dense subsemigroup of T, a topological semigroup.
(a) If LUC(S) has a multiplicative left invariant mean, so has LUC(T).
(b) If LUC(S) has a left invariant mean, so has LUC(T).
(c) If LMC(S) has a multiplicative left invariant mean, so has LMC( T).
(d) If WLUC(S) has a left invariant mean, so has WLUC(T).

Proof. This will be shown for only one of the cases, say (d). The proofs
for the other cases use obvious modifications. Let S satisfy (P4), hence also
(F4) by Theorem 4. Let T act affinely on a compact convex subset Y of a
locally convex space, where the action is separately continuous. The restric-
tion of the action to S X Y is also a separately continuous affine action, so
Sx x for some x e Y. By continuity of the action of T on x, it follows that
the set {t T; tx x} is closed in T, hence equals T since S is dense in T.
So T satisfies (F4), thus the result follows by Theorem 4. (An alternate
proof, doubtless preferred by some, can be obtained by defining an action of
S on Z, the space of means on WLUC(T), by s l, , for s e S, # e Z. We
can safely suppress further details.)

The converses to (a)-(d) of Theorem 8 are all false, even if S and T are
required to have jointly continuous products. To see this, let S be the free
semigroup on two generators, where S has the discrete topology. Let

The referee has commented that if P is the restriction map from WLUC(T) to
WLUC(S), and is a LIM on WLUC(S), then P* can be verified to be a
LIM on WLUC(T). (A similar remark holds for each of the other parts of Theorem 8.)
in turn, we note that the proof of the referee’s statement depends upon the fact (devel-
oped in the proofs of Theorems 3 and 4) that the action of T on the space of means on
WLUC(T) is separately continuous. To highlight the role played by this last property,
we list two open problems that occur when the desired form of continuity is lacking.
If is a LIM on C(S), is P* a LIM on C(T)? If is a LIM on LMC(S), is P* a LIM
on LMC(T)? (Modify the definition of the restriction map P as appropriate.)
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T S u {z} be the one-point compactification of S, where tz zt z for
all e T. (The topological semigroup T has a jointly continuous product,
whereas the corresponding compactification of the free group on two genera-
tors has a product that is only separately continuous.) Then the pair S, T
can be verified to be a counter-example to all four converses. For by remark
(e) of this section, the spaces LUC(S), WLUC(S), and LMC(S) all coincide
with the space re(S), which is well known to lack a left invariant mean. But
by remark (c), LUC( T) WLUC( T) LMC( T) C( T) for which the
evaluation Qz can be verified to be a multiplicative left invariant mean. It is
perhaps enlightening to note that re(S) is not the restriction of C(T) to S,
and hence, among other items, an f LUC(S) need not be extendible to a
g e LUC(T).
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