SERIES EXPANSIONS AND INTEGRAL REPRESENTATIONS OF
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1. Introduction
The generalized heat equation is given by
u  wou  du
1.1 _—t = = =
1) dx? + z 9z at’

v a fixed positive number. The fundamental solution of (1.1) is the function
G(z;t) = G(z, 0;t), where

Gz, y; 1) = /; e_““g(xu)g(yu) du(u), t >0,

1.2)
( _ (l>l'+1/2 o <_x2 + y2>g<£z—/-
2% P 4 3t )’
with
1/2—y 2

9(2) = 27T (v + §)"* 7 Jan(z), 9(2) = 2700 + $)2 7 TLn(e),

Ja«(2) being the ordinary Bessel function of order a and I.(z) the Bessel
function of imaginary argument. It is well known (see [5]) that if u(z, f)
is a solution of (1.1), so is its Appell transform u*(x, t) defined by

(1.3) u(z, t) = Q(z; u(z/t, —1/t).

The Poisson-Hankel transform of a function ¢ is given by

(1.4 [ 66 v 0ew) auw), t>0,

whenever the integral exists. Taking ¢(z) = z”, we set

(15) Sue, ) = [ 476(2, 430 dul), v> =2

Sy.(z, t) satisfies equation (1.1), and in particular, if ¥ = 2n, S,.(z, ) is
the generalized heat polynomial P,,(z, t) studied in [5]. In that paper,
those solutions of (1.1) were characterized which have representations in
series of P, ,,(x, t) and of their Appell transforms W, ,(xz, t). It is the present
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goal to consider the functions Qn,.(z, ) = Se41,.(x, ) and their Appell
transforms V, ,(z, t), and to derive conditions for expansions of generalized
temperatures in series of the forms

Z:-O [an Pn,v(x, t) + ¢ Qn,v(x, t)] and Z:-O [bn Wn,v(x, t) + dn Vn,v(x, t)]-

2. Definitions and preliminary results
By evaluating the integral

(2.1) Sun(, ) = [ 476z, ;) du(y), t>0,
(see [2, p. 30]), we find that

Sz, t
22 (, 1)

= 2" (T (v/2 + v + 3)/T(v + $))Fr(=v/2; v + §; —2%/4t).
From this, it follows that

(2.3) Syp(z, —t) = (—1)7/287,7(&3; 8,
and we have
(2.4) Sua(e, =) = (-0 [ Y6l y; 1) duly),  t> 0.

Further, the Appell transform T, ,(z, t) of 8,,.(z, t) is given by
T‘m(x’ t) = S“:,V(x; t)

(2.5) = G(x; t) Sy (2/t, —1/t)

= 2=D™ [ g6 g(ay) duty).
As a consequence of the elementary inequality

(2.6) YA
. z'e < , k>0,

2ae
and the identity
(27) Gz, y;t) = &M (1 4 1/8) MG ((t + 8) /5, y; 1t + 8)/6)
which holds for ¢ > 0 and any & > 0, we may readily establish the estimates
| Syo(z, ) | < (1 + 1/6) 2y (t + 8) /],

(2.8)
t>0, 6>0, 0<z< o,

and

(2.9) | 8ya(e, —t) | < €92"(T(v/2 + » + 3)/T(v + $))1",

t>0 >0 0<z< ».
In addition, from (2.1) and the fact that 9(x) > 1, we also find that
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(2.10) Sy.(z, t) > 2" (T(v/2 + » + H/T(» + ), ¢ > 0.
A class of entire functions needed in our development is described as follows.
DeriNITION 2.1. An entire function

(2.11) f@) = 2 im0 oua*

belongs to class (p, 7) or has growth (p, r) iff

(2.12) lim Supi. & | ax |7* < epr.

3. Regions of convergence
In [5], we proved the following result.
Tueorem 3.1. If

(3.1) liMpaw | @0 [™ = ¢/40 < o,

then the series

(3.2) 2om=08n Puo(z, t)

converges absolutely in the strip | t| < o.

Using the inequalities (2.8) and (2.9), with ¥y = 2» + 1, we may establish
in a similar way that the following holds.

TueoreM 3.2. If
(3.3) lim SUpnaw | o [V = /40 < w,
then the series
(3.9) 270 Cn Qu (2, )
converges absolutely for 0 < | ¢| < o.

For the series of Appell transforms, this region of convergence is a half
plane. Indeed, in [5] we established the following result.

TueoreMm 3.3. If
(3.5) lim SUpnaw 7 | ba |'™ = e0/4 < o,
then the series
(3.6) 0 b W (2, 1)
converges absolutely for t > o 2 0.

Similarly, we have the corresponding theorem for V,,(z, f), the Appell
transform of Q,..(z, t).

TuEOREM 3.4. If
lim Supnaw | dn ['* = es/4 < o,
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then the series
Z:—O dn Vn,v(xy t)

converges absolutely for t > ¢ > 0.
4. Expansions in terms of P, ,(z, t) and Q,,.(z, )
We now establish our principal expansion theorems.
TaeoreM 4.1. A necessary and sufficient condition that
(4.1) w(@, t) = D omeo@n Pon(z, 1), 0<z< o,

the series converging for | t| < o s that

u(zx, t)

[ 6t y; —~0et) duty), —e <t <0,
(4'2) = ‘P(x)) t=20
= fow G(z, y; )e(y) du(y), 0<t<o

where ¢ s an even entire function of growth (2, 1/4¢) and
(4.3) an = ¢"V(0)/(2n) L

Proof. To prove sufficiency, assume that (4.2) holds with ¢ as described.
Then we have

(4.4) oY) = Dmmoan ¥, an = o (0)/(2n) |,
and substituting in (4.2), we find that

0

u(z,t) = 2 an(—1)" f: ¥"G(iz, y; —t) du(y), —o <t <0

n=0
(4.5) = Zo on &, t =0,
= ; an‘/o~ y2nG(x7 Y t) dﬂ(y)r 0<t< ()

provided termwise integration is valid. By Definitions (2.1) and (2.4)
withy = 2n and the fact that P, ,(z, 0) = 2", it follows that

(4.6) (@, 1) = D nmton Puy(z, t), [t] <o
Taking e, = @, , we establish the result.

The validity of termwise integration in (4.5) is a consequence of the growth
behavior of ¢, which implies that a0 | o | ¥°" also belongs to class (2, 1/4¢).
This means that for any € > 0 and some constant K,

(4.7) 2no | on | 4" < K exp (1/40 + £)y’
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Hence
j; | Giz, y; — t) | du(y) Z,o | aa | 97, - <t <0,
8) . .
fo G(z, y; t) du(y) Zﬂ | aw | 9™, 0<t<o

are both finite, and sufficiency is proved.
Conversely, if (4.1) holds, then by the definition of P,,.(z, t), we have

u(z, t) =f0 Giz, y; —1) du(y) 35 (~1’any™, —o <1 <0,

(4.9) = a2 t=0
= L G2, y; 1) duly) 2, any’™, 0<t<oa
or
u(@, ) = [ G,y —De(iy) duly), —o <1<,
(4.10) = o(2), t =0,
= fo G(z, y; e(y) du(y), 0<t<o,
where
(4.11) o() = Xm0 &,
provided that
[ 16Ga 0 011t | duw),  —o<t<0,
(4.12) .
f; G(z,y; 1) | o(y) | du(y), 0<t<oa

are finite. But, by the convergence of the series (4.1) for | t| < o, we have,
in particular, the convergence of the series

(413) D mm0@n Puy(0, 1) = Dommoan 22°(T(» + % + n)/T(» + )"
for || < 0. Hence ¢ < the radius of convergence 1/u, where
p = lim SUPpaw 4 | T(» + 3 + n)an |'™ = lim supn..(4n/e) | an [V,
or
(4.14) lim SUppaw | @n [V < e/40.

Hence ¢ € (2, 1/40), and the integrals (4.12) are finite. Thus, u(z, t) has
the required representation (4.10) and the proof is complete.

We may derive, in an analogous way, the corresponding theorem for series
in terms of Q. ,,(z, ).
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TaEOREM 4.2. A necessary and sufficient condition that
u(@, t) = 2ne0cn Quo(a, 1), 0<z<

the series converging for 0 < || < o, is that

uz, ) = [ Glia,y; ~0oliy) duly), —o <t <0,

Y

=fo Gz, y; Do(y) duly), 0 <t<o,

where ¢ 1s an odd entire function of growth (2, 1/4¢). Here
& = ¢™"(0)/(2n 4+ 1) L.
By combining the preceding two theorems, we have our first principal result.
TueorEM 4.3. A necessary and sufficient condition that
w(@, 1) = 2oum0lan Pa(2, 1) + co Quula, 1)),

the series converging for 0 < |t| < o, is that

uz,0) = [ Gz, ~Doliy) duly), —o <1 <0,

= [ 6 uioew auy),  0<t <o,

where ¢ 18 an entire function of growth (2, 1/4c). Here
an = ¢"(0)/(2n) |, e = &*(0)/(2n + 1) L
An example illustrating the theorem is given by
w(@, 1) = 2neo (—1)"/ (20 D[Pus(2, ) + Qualz, )]

the series converging for 0 < | ¢| < 1. The integral representation of u(z, ¢)
is

u(z,0) = [ Glia, 55 =060y V(1 + i)l du(y), —1<1<0,

= [ 6@uoew D0+ play,  0<i<

Here o(y) = G(y; 1)(1 + ¥), a function of growth (2, 1/4). Note that the
integral for ¢ > 0 actually converges in a larger region than predicted by the
theorem.
5. Expansions in terms of W, ,(z, t) and V. .(z, ¢)
In [5], we proved the following series representation theorem.
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TaeorEM 5.1. A necessary and sufficient condition that
(5.1) u(z, t) = Z:-O b Wa (2, t),
the series converging for 0 < o < i, is that

(5:2) w(@, ) = [ 8@ 0 o(y) duy),
where ¢ s an even entire function of growth (2, ¢) and

(5.3) ba = (—1)""(0)/(2(2n) 1)

The corresponding result for the Appell transforms V,,.(z, £) of Qa,.(z, £)
may be similarly established.

TueoreEM 5.2. A necessary and sufficient condition that
(5.4) u(w, t) = Z:-O d Vas(2, 1),

the series converging for t > o = 0, is that
(5:5) w(@ ) = [ CUgeew) duy), > e 20,

where ¢ 18 an odd entire function of growth (2, o), and
(5.6) dn = (=1)"(0) /(2" (20 + 1) D).
Proof. To prove sufficiency, assume that (5.5) holds with
o(y) = 2amBa ¥, Ba = "(0)/(2n + 1) |,

and ¢ € (2, o) so that
lo| < Ke™+”,
Then, by (2.5),

u(z,t) = T, fo 0 g(29) 5™ du(y)

= 2 Bu((=1)"/ 2" V(3 1)
with termwise integration valid since
fo e du(y) L 18ly T < K fo e du(y)
< © fort > o.

Taking d, = ((—1)"*"?/2'"*)g, , we have established that the condition
is sufficient.
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On the other hand, assume that for > ¢ > 0 (5.4) holds. Thenby (2.5),

u(x, t) - j(; e—-w“g(xy) d[t(y) 1;) (_1)n+1/222n+1 dny2n+1

- [0 (@) e(y) du(y),
where
o(y) = Damo (—1)"HHH g yint,

Since the convergence of the series (5.4) implies that
im SUPpaw | dy [™ < 0e/4 or 1im supp.en | 2™ da V" < ve,

o(y) € (2, ¢) and termwise integration is valid. The theorem is thus proved’
The two preceding theorems may be combined to give the following result.
THEOREM 5.3. A necessary and sufficient condition that

w(z, ) = 2 w0 [ Wap(, 1) + du Vao(a, 1)),
the series converging for t > o > 0, is that

u(@, ) = [ g(@)e(y) duw), (>020,

where ¢ is an entire function of growth (2, o).

The theorem may be illustrated by
w(e, 1) = 2oamo ((=1)"/2"n 1) [Wa(, 1) + Vas(z, )],
the series converging for £ > 1. Here we have

w0 = [ PS@EA ) dut),  E> 1
where ¢(y) = "’ (1 + 24y) is of growth (2, 1).
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