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1. Introduction

The generalized heat equation is given by

OU 2, Ou Ou(’1) -+ 0 0W’
a fixed positive number. The fundamental solution of (1.1) is the function

G(x; t) G(x, 0; t), where

G(x, y; t) f e-"t(xu)(yu) dtt(u), > O,

-k] exp
4t

with
2/-

d(u) u du,
r( + )-- z’, (z) 2-’sr((z) 2-’Sr( + ) -n + )z

Ja(z) being the ordinary Bessel function of order a and Ia(z) the Bessel
function of imaginary argument. It is well known (see [5]) that if u(x, t)
is a solution of (1.1), so is its Appell transform u’(x, t) defined by

(1.3) u(x, t) G(x; t)u(x/t, l/t).

The Poisson-Hankel transform of a function is given by

(1.4) G(x, y; t)(y) dry(y), t>O,

whenever the integral exists. Taking (x) x, we set

(1.5) S,.(x, t) y’a(x, y; t) dg(y),

S.,(x, t) satisfies equation (1.1), and in particular, if y 2n, S,.,(x, t) is
the generalized heat polynomial P,.,(x, t) studied in [5]. In that paper,
those solutions of (1.1) were characterized which have representations in
series of P,.(x, t) and of their Appell transforms W,.,(x, t). It is the present
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goal to consider the functions Q,.(x, t) S.+l.(x, t) and their Appell
transforms V,,.v(x, t), and to derive conditions for expansions of generalized
temperatures in series of the forms

:=o [a P,,(x, t) - c, Q,,v(x, t)] and :..o [b W,,,(x, t) - d, Vn,(x, t)].

2. Definitions and preliminary results
By evaluating the integral

(2.1) S.(x, t) yG(x, y; t) d(y), > O,

(see [2, p. 30]), we find that

Z,(x, t)
(2.2)

2t*/(r(/2 + r + 1/2)/r( + 1/2))F(-,/2; + 1/2; -z/4t).
From this, it follows that

(2.3) S,(x, -t) (-1)2S.(ix, t),

and we have

(2.4) S,.,(x, -t) (-1) "/’ yG(ix, y; t) d#(y), > O.

Further, the Appell transform T,,(x, t) of S,,,(x, t) is given by

T.(x, t) S.(x, t)

(2.5) G(x; t) S.(x/t, l/t)

2(- 1) "’ y*e-’t$(xy) dg(y).

As a consequence of the elementary inequality

(2.6) xe-" / > O,

and the identity

(2.7) G(x, y; t) ee-V’(+)(1 + t/)+G(x(t + )/, y; t(t + )/)

which holds for > 0 and any > 0, we may readily estabfish the estimates

z,(x, t) e’(1 + t/)+’[2(t + )/e],
(2.s)

t>0, >0, 0x < ,
and

S.,(x, -t) -< eV2(r(/2 + + 1/2)/r(, + 1/2))t,
(2.9)

t>0, >0, 0<x

In addition, from (2.1) and the fact that (x) _> 1, we also find that
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(2.10) S.,(x, t) >_ e-Vt2(F(/2 + -t- 1/2)/F( + 1/2))t/, > 0.

A class of entire functions needed in our development is described s follows.

DEFINITION 2.1. An entire function

x

belongs to class (p, r) or hs growth (p, r) iff

(2.12) lim sup/c a

_
epr.

3. Reions of convergence

In [5], we proved the following result.

THEOREM 3.1. /f

limn_ n a, [’ e/4 < ,(3.1)

then the series

(3.2) En-oan P,.,(x, t)

converges absolutely in the strip It] < a.

Using the inequalities (2.8) and (2.9), with v 2g + 1, we may establish
in a similar wy that the following holds.

THEOREM 3.2. If
(3.3) lim sup_. n[c

then the series

(3.9) :-o c Q,.,(x, t)

converges absolutely for 0 < < .
For the series of Appell transforms, this region of convergence is a half

plane. Indeed, in [5] we established the following result.

THEOREM 3.3. If
lim sup_. n b [/" e/4 < ,(3.5)

then the series

(3.6) :.o b W,.,(x, t)

converges absolutely for > >_ O.

Similarly, we have the corresponding theorem for V,.,(x, t), the Appell
transform of Q,.,(x, t).

THEOREM 3.4. If
lim sup._ n d,, u’* ez/4 < oo,
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then the series
:..o d,, V,,,(x, t)

converges absolutely for > a > O.

4. Expansions in terms of P,(x, t) and Q,(x, t)
We now establish our principal expansion theorems.

TEOREM 4.1. A necessary and sucient condition that

(4.1) u(x, t) ..o a, P,.,(x, t),

the series converging for tl < is that

u(x, t) Jo G(ix, y; -t)q(iy) d(y),

(4.2) (x), 0

Jo G(z, y; t)(y)d(y), 0 < < (

where is an even entire function of growth (2, 1/43) and

(4.3) am (2)(0)/(2n) !.

0_<x<,

--a < < 0,

Proof. To prove sufficiency, assume that (4.2) holds with as described.
Then we have

y2n ((2n)(4.4) (y) :-0 am a. (0)/(2n) !,

and substituting in (4.2), we find that

u(x, t) a.(-1) / y2’G(ix, y;-t) d(y), -a < < 0
n’’O "0

(.) ., o,

a,l yG(x,y;t) d(y), 0 < < a,

provided termwise integration is valid. By Definitions (2.1) and (2.4)
with - 2n and the fact that P,(x, 0) x2, it follows that

(4.6) u(x, t) :-o,,, P,,(x, t), tl < .
Taking am am, we establish the result.

The validity of termwise integration in (4.5) is a consequence of the growth
behavior of , which implies that :-01 a y2 also belongs to class (2, 1/43).
This means that for any > 0 and some constant K,

(4,7) 2’-0 I- y= < K exp (1/43 -t- e)y
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Hence

f G(ix, y;-
(4.8)

-o

fo e(x, y; t) d,(y)

are both finite, and sufficiency is proved.
Conversely, if (4.1) holds,

u(x, t) G(ix, y; --t) d,(y) -1)a. y_’’, -a < < 0,

(4.9) ax’, 0

or

u(x, t) Jo G(ix, y; -t)q(iy) du(y),

(4.10) q,(x), 0,

(. ).() a.().

where

(4.11)

provided that

--a<t<O,

q,(x) :_oa,,x",

fo G(ix, y; -t)]l (iy) dry(y),

--o’< <0,

fo G(x, y; t) l(y) dry(y),

Ota

are finite. But, by the convergence of the series (4.1) for It[ < a, we have,
in particular, the convergence of the series

(4.13) :--0a, P,.,(0, t) :_0a, 2’"(r(, + 1/2 + n)/r(, + 1/2))t"

for [ti < a. Hence a _< the radius of convergence 1/, where

u lim sup.. 41 I’( + 1/2 + n)a. 11/" lim sup._=(4n/e) [a,,
or

(4.14) lim sup,..., n la, ]" <_ e/4a.

Hence , e (2, 1/4), and the integrals (4.12) are finite. Thus, u(x, t) has
the required representation (4.10) and the proof is complete.
We may derive, in an analogous wy, the corresponding theorem for series

in terms of Q.,(x, t).

O<t<o’,

--r < <0,
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THEOREM 4.2. A necessary and sucient condition that

u(x, t) --o c Qn..( x, t) 0 <__ x <
the series converging for 0 < , is that

(z. ) a(iz. ;-),,(i) d.(). - < < O.

J G(x, y; t)(y)d,(y), 0 < < ,
where q is an odd entire function of growth (2, 1/4a). Here

c (+)(0)/(2n + 1) !.

By combining the preceding two theorems, we have our first principal result.

THEOREM 4.3. A necessary and sucient condition that

u(x, t) ..o [a P,,(x, t) + c, Q,,.(x, t)],

the series converging for 0 < < a, is that

u(x ) Jo G(ix, y; -t)(iy) d(y), -o" < < O,

Jo G(x, y; t)(y) d(y), 0 < < (,

where is an entire function of growth (2, 1/4a). Here

a, ()(0)/(2n) !, c (+)(0)/(2n + 1) !.

An example illustrating the theorem is given by

u(x, t) -o (-1)/(2n !)[P.(x, t) + Q.(x, t)]

the series converging for 0 < 1. The integral representation of u(x, t)
is

u(x, t) Jo G(ix, y; -t)[G(iy; 1)(1 - iy)] d(y), -1 < < O,

Jo G(x, y; t)[G(y; 1)(1 + y)] d(y), 0 < < 1.

Here q(y) G(y; 1)(1 -t- y), a function of growth (2, 1/4). Note that the
integral for 0 actually converges in a larger region than predicted by the
theorem.

5. Expansions in terms of W,,(x, t) and V,,(x, t)
In [5], we proved the following series representation theorem.
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THEOREM 5.1. A necessary and sucient condition that

(5.1) u(x, t) ..o b,, W,.,(x, t),

the series converging for 0 <_ t, i8 that

(5.2) u(x, t) (x, y)e-*’(y) d(y),

where an even entire function of growth (2, ) a
(5.3)

The coesponding result for the Appe traforms V,.(x, t) of Q,.(x, t)
may be silarly estublished.

EOaE 5.2. A necessary and sucient condition that

(5.4) u(x, t) -o d, V,.,(x, t),

the series converging for > a O, is that

(5.5) u(x, t) Jo e-*(xY)(Y) d(y), > O,

where is an odd entire function of growth (2, a), a

(5.6)

Proof. To prove sciency, assume that (5.5) holds with

and (2, a) so that
Ke(+).

Then, by (2.5),

u(x, t) ] e-’(xy)y’+’ d(y)

th termwise integration valid since

nO

<
Taking d. ((-1)’+//2’+)., we have esCabshed Cha Che eonion
is seien.
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On the other hand, assume that for > _> 0 (5.4) holds.

where

Then by (2.5),

u(x, t) fo e-(xY) d(y) (-1)+2+ dy’+

fo e-t’(xy)q(y) d(y),

(y) ":-0 (- 1)n+1/222+1 d. y2"+1.
Since the convergence of the series (5.4) implies that

lim supn_. n ld, ’ <_ ae/4 or lim sup, n 2+ d. " _< ae,

(y) e (2, a) and termwise integration is valid. The theorem is thus proved"

The two preceding theorems may be combined to give the following result.

THEOREM 5.3. A necessary and sucient condition that

u(x, t) :.-o [b,, W.,(x, t) - d, V,,(x, t)],

the series converging for > a >_ O, is that

u(x, t) J e-t(xy)(y) d(y), > a >_ O,

where q is an entire function of growth (2, ).

The theorem may be illustrated by

u(x, t) :..0 ((--1)/2n !)[W,,(x, t) T V,,,(x, t) ],
the series converging for > 1. Here we have

u(x, t) Jo e-(xy)[e(1 " 2iy)] d(y), > 1,

where (y) e (1 -t- 2iy) is of growth (2, 1).
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