FREE INVOLUTIONS OF HOMOTOPY $S^{l} \times S^{l \prime} S$

BY
R. Wells
\section*{Introduction}

A homotopy $S^{l} \times S^{l}$ will be a smoothing of the piecewise linear $S^{l} \times S^{l}$. If $l \geq 3$, it follows from de Sapio 13 that a homotopy $S \times S$ is stably parallelizable. We will be interested only in the case l even, $l \geq 8$, and $l \neq 2^{j}-2$ for all j. Then by a standard argument a homotopy $S^{l} \times S^{l}$, since it is stably parallelizable, is of the form $S^{l} \times S^{l} * \Sigma$ where Σ is a suitable homotopy l sphere.

An involution of $S^{l} \times S^{l} * \Sigma$ will be a fixed point free, orientation preserving, diffeomorphism $\rho: S^{l} \times S^{l} * \Sigma \rightarrow S^{l} \times S^{l} * \Sigma$ of order two. An involution ρ is weakly equivalent to ρ^{\prime} if there is an orientation preserving diffeomorphism ψ carrying the domain of ρ onto that of ρ^{\prime} such that $\rho^{\prime} \circ \psi=\psi \circ \rho$. If is clear that weak equivalence classes of involutions are in bujective correspondence with the oriented diffeomorphism classes of the manifolds $M=S^{l} \times S^{l} * \Sigma / \rho$. To classify the involutions up to weak equivalence, we attempt to classify the manifolds M up to oriented diffeomorphism.

It will turn out that, given M, there is a unique even integer $k \bmod 2^{\varphi(l)}$ such that $f^{*}(v(M))$ is stably equivalent to $k \xi_{l}$ for any map $f: P_{l} \rightarrow M$ such that $\pi_{1}(f)$ is an isomorphism, where ξ_{l} is the canonical line bundle over P_{l}. This integer will be called the type of M.

Let γ be the unique l-plane bundle over P_{l} stably equivalent to $\left(2^{\varphi(l)}-l-1-k\right) \xi_{l}$, with Euler class a generator or zero, depending on which is possible. (Exactly one of these cases will be possible.)

Suppose now that M is of type k. Then its normal bundle is stably equivalent to $k \xi+\beta$, where β pulls back from a unique element $\alpha(M) \in K \widetilde{O}(T(\gamma))$ by means of a canonical map $M \rightarrow T(\gamma)$. The oriented diffeomorphism classes of manifolds of type k form a group $\Gamma(\gamma) / G$, and

$$
\Gamma(\gamma) / G \xrightarrow{\alpha} K \widetilde{\delta}(T(\gamma))
$$

turns out to be a homomorphism in Section 4.
The next problem is to describe the kernel K / G of α. For this we need a J-homomorphism

$$
K \tilde{O}^{-1}(S(\gamma)) \xrightarrow{J} \pi_{2 l+k}^{s} T\left(k \xi_{\infty}\right)
$$

where $S(\gamma)$ is the sphere bundle of γ above and ξ_{∞} is the canonical line bundle over $R P_{\infty}$. The homomorphism J is defined using the Thom construction, exactly as the standard J homomorphism is defined. Then there is a homomorphism $\varphi: K / G \rightarrow \Lambda$ where Λ is the cokernel of J. It follows from the
theorem of Section 2 that φ is an epimorphism, and from the theorem of Section 5 that the kernel of φ is an image of Z_{2}. And it follows from Section 6 that there is a fixed map $Z_{2} \rightarrow K \tilde{\delta}(T(\gamma))$ such that α factors uniquely through this map. Thus we may take $\alpha: \Gamma(\gamma) / G \rightarrow Z_{2}$.

Thus $\Gamma(\gamma) / G$ is described by the exact sequences:

Section 1 contains preliminaries. In Section 2 we study a special case of the problem of killing middle homotopy groups of manifolds, and arrive at the theorem that will make φ an epimorphism. In Section 3 we study mappings and embeddings $P_{l} \rightarrow M$, to obtain (1) the type of M is well-defined, (2) a useful decomposition of M. In Section 4, we use that decomposition to prove that if type $(M)=k$, then $v(M)$ differs from $k \xi$ by a stable bundle of index 0 . This fact enables us to show that $\operatorname{Im}(\alpha)=0$ or Z_{2}. In Section 5 , we define a group $\Gamma(\gamma)$ of which $\Gamma(\gamma) / G$ is a quotient. Finally in Section 5 , we define J and φ. That φ is an epimorphism follows already from Theorem 2, and that φ has kernel at most of order 2 follows from Theorem 4 of that section.

As a by-product, in Section 6, we obtain the following theorem.
Theorem 6. If $l \equiv 4,6$ (8) and M is the quotient of $S^{l} \times S^{l}$ by an involution, then $v(M)$ is stably an even multiple of the canonical line bundle.

For a counterexample in the case $l \equiv 0(8)$ see [10].
Wall's theorems on non-simply connected surgery [8] are crucial to the argument, and some theorems, especially Theorem 2, resemble special cases of Theorem 6.5 of $[8]$. To derive Theorem 2 from Wall's theorem, one would have to factor the natural map $M \rightarrow R P_{\infty}$ of Section 2 through $S(\gamma+\varepsilon) \rightarrow P_{l} \rightarrow R P_{\infty}$. If this could be done, a much stronger theorem than Theorem 2 would result. A special case of this problem, factoring the natural map $M \rightarrow R P_{\infty}$ for certain M through $P_{l} \rightarrow R P_{\infty}$ occurs in Section 5. In that case there is a solution, and Wall's theorem applies to conclude $M=S(\gamma+\varepsilon)$.

I. Preliminaries

In this section we fix notation.
P will always denote infinite-dimensional projective space, and P_{j} will always denote j-dimensional projective space. The canonical line bundle over P will be ξ_{∞}, except in Section 2, where it will be ξ. The canonical line bundle over
P_{j} will be ξ_{j}. The order of the reduced stable class of ξ_{j} in $K \widetilde{O}\left(P_{j}\right)$ will we $2^{\varphi(j)}$. If γ is any vector bundle, $E(\gamma)$ will be its associated cell bundle and $S(\gamma)$ its associated sphere bundle. The Stiefel-Whitney class of γ will be $\omega(\gamma)$ and the Pontryagin class of γ will be $P(\gamma)$. Two bundles γ and γ^{\prime} will be isomorphic if there is a bundle map $\gamma \rightarrow \gamma^{\prime}$ covering a homeomorphism of the base spaces. If A is a submanifold of B, then $v(A: B)$ will be the normal bundle of A in B, and $\tau(A)$ will be the tangent bundle of $A ; v(A)^{m}$ is the (stable) normal bundle of A in Euclidean space of codimension m. The trivial bundle of dimension i is denoted by ϵ^{i}.

Modules over the group ring of Z_{2} will be called Z_{2}-molecules. Special ones will be \bar{Z}, on which Z_{2} operates by changing signs; $\overline{Z+Z}$ and $\overline{Z_{2}+Z_{2}}$, on which Z_{2} operates by changing signs; $Z+Z$ and $Z_{2}+Z_{2}$, on which Z_{2} operates by changing components. If X is a space with $\pi_{1}(X)=Z_{2}$, then $\bar{Z}, \overline{Z+Z}$, $\overline{Z_{2}+Z_{2}}$ will also denote the bundles of coefficients over X associated with these modules. Then $H_{*}(X ; A)$ and $H^{*}(X ; A)$ will denote as usual the homology and cohomology of X with coefficients in the bundle of coefficients associated with the Z_{2}-module A.

Suppose $A \subset X$ and $B \subset Y$ are subspaces such that

$$
A \subset X \subset X \cup C A \quad \text { and } \quad B \subset Y \subset Y \cup C B
$$

are confibrations (this assumption holds for all inclusions throughout). Then if $f: A \rightarrow B$ is a map, $X \times 0 \mathrm{u}_{f} Y \times 1$ will denote, by abuse of language, the space $X \times 0$ u $Y \times 1$ modulo the identification $(x, 0) \sim(f(x), 1)$ for $x \in A$. If $C A$ is the cone over A, then $X \times 0 \mathrm{u}_{1} C A \times 1$ will be written $X \cup C A$, by abuse of notation. Then the suspension of X will be

$$
S X=C X \cup C X=C X \times 0 \mathrm{u}_{1} C X \times 1
$$

If f is a homeomorphism of A onto B, we have the transposition homeomorphism

$$
T: X \times 0 \mathrm{u}_{f} Y \times 1 \rightarrow Y \times 0 \mathrm{u}_{f^{-1}} X \times 1
$$

defined by $T(x, 0)=(x, 1)$ and $T(y, 1)=(y, 0)$ on the representative level. Denote the i th stable homotopy group of X by $\pi_{i}^{s}(X)$. Then

$$
T_{*}: \pi_{i}^{s}(S X) \rightarrow \pi_{i}^{s}(S X)
$$

is sign reversal.

II. $k \xi$-cobordism

Let ξ be the canonical line bundle on infinite real projective space. Let $k \xi$ be the k-fold Whitney sum of ξ with itself, and let $T(k \xi)$ be the Thom space of $k \xi$. Then the elements of $\tilde{\pi}_{n+k}^{s}(T(k \xi))$ may be interpreted as $k \xi$-cobordism classes, where a $k \xi$-manifold is a pair (M, \mathfrak{F}) with

$$
v(M)^{m} \xrightarrow{\mathcal{F}} k \xi+\varepsilon^{m-k}
$$

an isotopy class of bundle maps, and m is large.

Consider $\alpha \epsilon \tilde{\pi}_{2 l+k}^{b}(T(k \xi))$ where l and k are even. We seek a 'canonical' representative of α. To begin with, let $\eta \rightarrow P_{l}$ be the ($l+1$)-dimensional reduction of $\left(2^{\varphi(l)}-l-1-k\right) \xi_{l}$, where ξ_{l} is the canonical line bundle over P_{l}. Let $E(\eta)$ be its associated cell bundle and $S(\eta)$ its associated sphere bundle. Then there is an isotopy class \mathfrak{F}_{0} of bundle maps $v(E(\eta))^{m} \rightarrow$ $k \xi+\varepsilon^{m-k}$. We denote its restriction to $v(S(\eta))^{m}$ also by \mathcal{F}_{0}. Then let (M, \mathcal{F}) be a representative of α. Since P is connected, we may carry out $0-$ modifications of (M, \mathfrak{F}) in order to assume M is connected. If the maps $M \rightarrow P$ covered by \mathcal{F} does not pull back non-trivially the generator of $H^{1}\left(P: Z_{2}\right)$, we may replace (M, \mathcal{F}) by $(M, \mathcal{F})+\left(S(\eta), \mathfrak{F}_{0}\right)$ before the $0-$ modifications, without changing α. Now a series of 1 -modifications kill off the kernel of $\pi_{1}(M) \rightarrow \pi_{1}(P)=Z_{2}$, so we may assume that map to be an isomorphism. Then since $\pi_{p}(P)=0$ for $p>1$, we may perform p-modifications to insure that $\pi_{i}(M) \approx \pi_{i}(P)$ for all $i<l$.

Finally, we arrive at a representative (M, \mathfrak{F}) of α such that $\pi_{i}(M) \approx \pi_{i}(P)$ for $i<l$. If

$$
\hat{M} \xrightarrow{\pi} M
$$

is the double cover of M, we have $H_{0}(\hat{M})=H_{2 l}(\hat{M})=Z$ and $H_{l}(\hat{M})$ free and $H_{i}(\hat{M})=0$ otherwise. Let $\rho: \hat{M} \rightarrow \hat{M}$ be the transposition. Then ρ_{*} turns $H_{*}(\hat{M})$ into a graded Z_{2}-module, and the intersection pairing $H_{l}(\hat{M}) \times H_{l}(\hat{M}) \rightarrow Z$ is a totally orthogonal, symmetric pairing invariant under ρ_{*}.

Lemma 1 (Wall). If $x \in H_{l}(\hat{M})$ is such that $x \cdot x=0$ and $x \cdot \rho x=0$, then there is an l-modification of (M, \mathcal{F}) killing $\pi_{*} h^{-1}(x)$, where h is the Hurewicz isomorphism.

Lemma 2. Suppose x as in Lemma 1, and there is $z \in H_{l}(\hat{M})$ such that $x \cdot z=1, z \cdot \rho z=0$. Let $\left(M^{\prime}, \mathfrak{F}^{\prime}\right)$ be the result of an l-modification killing $\pi_{*} h^{-1}(x)$. Then $\pi_{i}\left(M^{\prime}\right) \approx \pi_{i}(P)$ for $i<l$ and $H_{l}\left(\hat{M}^{\prime}\right)$ is isomorphic to (ker $x \cap \operatorname{ker} \rho x) /(Z x \oplus Z \rho x)$.

Proof. There will be two disjoint spheres $S_{1}^{l}, S_{2}^{l} \subset \hat{M}$ interchanged by ρ,
 $\hat{M}-S_{1}^{l}-S_{2}^{l}$ and $\hat{M}^{\prime}-S_{1}^{l-1}-S_{2}^{l-1}$ are diffeomorphic as Z_{2} spaces. Moreover, the following sequences are exact sequences of Z_{2}-modules

$$
\begin{aligned}
& 0 \rightarrow H_{l}\left(\hat{M}^{-}\right) \rightarrow H_{l}(\hat{M}) \xrightarrow{x \oplus \rho x} H_{l}\left(\hat{M}, \hat{M}^{-}\right) \rightarrow 0 \\
& 0 \rightarrow H_{l+1}\left(\hat{M}^{\prime}, \hat{M}^{\prime-}\right) \xrightarrow{x \oplus \rho x} H_{l}\left(\hat{M}^{\prime-}\right) \rightarrow H_{l}\left(\hat{M}^{\prime}\right) \rightarrow 0
\end{aligned}
$$

which proves the lemma.
Theorem 2. Suppose k and l are even and (M, \mathcal{F}) is a closed $k \xi$-manifold of dimension $2 l$ such that $\pi_{i}(M) \approx \pi_{i}(P)$ for $i<l$. Then if $\operatorname{rank} \pi_{l}(M)>2$,
there is a $k \xi$-cobordism from (M, \mathcal{F}) to $\left(M^{\prime}, \mathfrak{F}^{\prime}\right)$ such that $\pi_{i}\left(M^{\prime}\right) \approx \pi_{i}(P)$ and $\operatorname{rank} \pi_{l}\left(M^{\prime}\right)<\operatorname{rank} \pi_{l}(M)$.

Proof. Let

$$
\hat{M} \xrightarrow{\pi} M
$$

be the double cover of M. Then $\pi_{l}(M)=H_{l}(\hat{M})$ which is free of finite rank. Let $\rho: \widehat{M} \rightarrow \hat{M}$ be the covering transformation. Let

$$
\Gamma_{+}=\left\{x \in H_{l}(\hat{M}) \mid \rho x=x\right\} \quad \text { and } \quad \Gamma_{-}=\left\{x \in H_{l}(M) \mid \rho x=-x\right\}
$$

Then $H_{l}(\hat{M}) \otimes Q=\left(\Gamma_{+} \otimes Q\right) \oplus\left(\Gamma_{-} \otimes Q\right)$ and $\Gamma_{+} \cap \Gamma_{-}=0$ and $\Gamma_{+} \perp \Gamma_{-}$ with respect to the intersection pairing. Thus $0 \rightarrow \Gamma_{+} \oplus \Gamma_{-} \rightarrow H_{l}(\hat{M}) \rightarrow$ fin grp $\rightarrow 0$ is exact.

Notice that the Lefschetz trace formula requires $\operatorname{tr} \rho \mid H_{l}(\hat{M})=-2$, so rank $\Gamma_{+}=r$ and rank $\Gamma_{-}=r+2$ for some r. Since Γ_{+}and Γ_{-}are each divisible, they are each a direct summand of $H_{l}(\hat{M})$. We will need some of $H_{*}(M: B)$ where B is any of the bundles of coefficients $Z_{2}, Z, \bar{Z}, \overline{Z+Z}$.
$Z_{2}: \quad$ We use the exact sequence $0 \rightarrow Z_{2} \rightarrow \overline{Z_{2}+Z_{2}} \rightarrow Z_{2} \rightarrow 0$ to obtain

$$
\cdots \rightarrow H_{i}\left(M ; Z_{2}\right) \rightarrow H_{i}\left(\hat{M} ; Z_{2}\right) \xrightarrow{\pi_{*}} H_{i}\left(M ; Z_{2}\right) \rightarrow H_{i-1}\left(M ; Z_{2}\right) \rightarrow \cdots
$$

Thus $H_{i}\left(M ; Z_{2}\right)=Z_{2}$ for $i<l$ and $H_{l}\left(M ; Z_{2}\right)=(r+2) Z_{2}$.
Z : We use the exact sequence

$$
0 \rightarrow Z \xrightarrow{2} Z \rightarrow Z_{2} \rightarrow 0
$$

as above to obtain

$$
\cdots \rightarrow H_{i}(M) \xrightarrow{2} H_{i}(M) \rightarrow H_{i}\left(M ; Z_{2}\right) \rightarrow H_{i-1}(M) \rightarrow \cdots
$$

so

$$
\begin{aligned}
& H_{1}(M)=H_{3}(M)=\cdots=H_{l-1}(M)=Z_{2} \\
& H_{2}(M)=H_{4}(M)=\cdots=H_{l-2}(M)=0, \quad H_{l}(M)=r Z+Z_{2}
\end{aligned}
$$

$\mathbf{0}$ (There is no odd torsion.)
\bar{Z} : From

$$
0 \rightarrow Z \xrightarrow{2} Z \rightarrow Z_{2} \rightarrow 0
$$

we obtain

$$
\cdots \rightarrow H_{i}(M ; \bar{Z}) \xrightarrow{2} H_{i}(M ; \bar{Z}) \rightarrow H_{i}\left(M ; Z_{2}\right) \rightarrow H_{i-1}(M ; \bar{Z}) \rightarrow \cdots
$$

so

$$
H_{i}(M ; \bar{Z})=0 \text { for } i \text { odd }<l, \quad H_{i}(M ; \bar{Z})=Z_{2} \text { for } i \text { even }<l
$$

Then use $0 \rightarrow \bar{Z} \rightarrow \overline{Z+Z} \rightarrow Z \rightarrow 0$ to obtain

$$
\cdots \rightarrow H_{i}(M ; \bar{Z}) \rightarrow H_{i}(\hat{M}) \xrightarrow{\pi_{*}} H_{i}(M) \rightarrow H_{i-1}(M ; \bar{Z}) \rightarrow \cdots
$$

from which follows

Since $\rho=-1$ on $C_{*}(M ; \bar{Z})$, we have $\rho=-1$ on $H_{l}(M ; \bar{Z})$, so

$$
\begin{gathered}
H_{l}(M ; \bar{Z}) \rightarrow H_{l}(\hat{M}) \\
\searrow \cup \\
\Gamma_{-}
\end{gathered}
$$

Let F be an abelian group such that $\Gamma_{-} \oplus F=H_{l}(\hat{M})$. Then

$$
0 \rightarrow H_{l}(M ; \bar{Z}) \rightarrow \Gamma_{-} \oplus F \rightarrow r Z+Z_{2} \rightarrow 0
$$

It follows that $0 \rightarrow H_{l}(M ; \bar{Z}) \rightarrow \Gamma_{-} \rightarrow Z_{2} \rightarrow 0$ and $H_{l}(M ; \bar{Z})=(r+2) Z$.
Finally, using $0 \rightarrow Z \rightarrow \overline{Z+Z} \rightarrow \bar{Z} \rightarrow 0$, we obtain

i.e.,

$$
0 \rightarrow Z_{2} \rightarrow r Z+Z_{2} \rightarrow(2 r+2) Z \rightarrow(r+2) Z \rightarrow Z_{2} \rightarrow 0
$$

Since $C_{*}(M) \rightarrow C_{*}^{+}(\hat{M})$, we have $H_{l}(M) \rightarrow \Gamma_{+}$, and finally $0 \rightarrow Z_{2} \rightarrow H_{l}(M) \rightarrow$ $\Gamma_{+} \rightarrow 0$.

Besides the groups and maps above, we will need some information on the intersection pairing in $H_{l}(\widehat{M})$. The intersection of chains in regular position in $C_{*}(\mathscr{M})$ defines the intersection of chains in regular position in $C_{*}(M)$ and $C_{*}(M ; \bar{Z})=C_{*}(\hat{M}) \otimes_{z_{2}} \bar{Z}$. Since the maps

$$
\iota_{+}: H_{l}(M) \rightarrow H_{l}(\hat{M}) \quad \text { and } \quad \iota_{-}: H_{l}(M ; \bar{Z}) \rightarrow H_{l}(\hat{M})
$$

are induced on the chain level by $x \rightarrow x+\rho_{*} x$ and $x \rightarrow x-\rho_{*} x$, where $x \in C_{*}(\hat{M})$, we find that $\iota_{+} x \cdot \iota_{+} y=2 x \cdot y$ and $\iota_{-} x \cdot \iota_{-} y=2 x \cdot y$ for $x, y \epsilon H_{l}(M)$ or $H_{l}(M: \bar{Z})$.

Since the rational Pontrjagin classes of $k \xi$ are zero, it follows that the index of M is zero, so there is a basis $\left(x_{i}, y_{i}\right)$ for a free part of $H_{l}(M)$ such that $x_{i} \cdot x_{j}=y_{i} \cdot y_{j}=0, x_{i} \cdot y_{j}=\delta_{i j}$. It follows that r is even, say $r=2 s$, and $i=1, \cdots, s$. For each pair we have that ι_{+}of one member is indivisiblelet it always be x_{i}. Then $\iota_{+} x_{i}, \iota_{+} y_{i}, i=1, \cdots, s$, supplies a basis for Γ_{+} with intersection matrix

$$
\left[\begin{array}{llll}
0 & 2 & & \\
2 & 0 & & \\
& & \ddots & \\
& & 0 & 2 \\
& & 2 & 0
\end{array}\right]
$$

Over the rationals, the index of Γ_{+}is then zero, and therefore, so is that of Γ_{-}, consequently also that of $H_{l}(M ; \bar{Z})$. Let $\bar{x}_{i}, \overline{\bar{y}}_{i}$ be a symplectic basis for $H_{l}(M ; \bar{Z})$. Then $\iota_{-} \bar{x}_{i}, \iota_{-} \overline{\bar{y}}_{i}$ is a family of elements in Γ_{-}with intersection matrix

$$
\left[\begin{array}{llll}
0 & 2 & & \\
2 & 0 & & \\
& & \ddots & \\
& & 0 & 2 \\
& & 2 & 0
\end{array}\right]
$$

and such that their span has just two cosets in Γ_{-}. Let z be in the nontrivial coset. Then $2 z \epsilon \operatorname{span} \iota_{-} \bar{x}_{i}, \iota-\bar{y}_{i}$ so $2 z=\sum a_{i} \bar{x}_{i}+\sum b_{i} \bar{y}_{i}$ (where we abbreviate $\iota_{-} \bar{x}_{i}$ and $\iota_{-} \bar{y}_{i}$ by \bar{x}_{i}, \bar{y}_{i}). We may assume each a_{i}, b_{i} is 0 or 1 (by changing z), and that b_{s+1} (the last b) is 1 . Then $\bar{x}_{1}, \bar{y}_{1}, \cdots, \bar{x}_{s}, \bar{y}_{s}, \bar{x}_{s+1}, z$ is a basis for Γ_{-}. Then $2 z \cdot \bar{x}_{s+1}=\bar{y}_{s+1} \cdot \bar{x}_{s+1}=2$, so $z \cdot \bar{x}_{s+1}=1$. Replacing z with $z-((z \cdot z) / z) \bar{x}_{s+1}$ we obtain a new basis for Γ_{-}, with intersection matrix

Then, replacing \bar{x}_{i} with $\bar{x}_{i}-\left(\bar{x}_{i} \cdot z\right) \bar{x}_{s+1}$ and $\overline{\bar{y}}_{i}$ with $\overline{\bar{y}}_{i}-\left(\overline{\bar{y}}_{i} \cdot z\right) \bar{x}_{s+1}$, we finally obtain a basis $x_{i}^{\prime}, y_{i}^{\prime}$ with intersection matrix

$$
\left[\begin{array}{llllll}
0 & 2 & & & & \\
2 & 0 & & & & \\
& & & & & \\
\\
& & 0 & 2 & & \\
& & 2 & 0 & & \\
& & & & 0 & 1 \\
& & & & 1 & 0
\end{array}\right]
$$

Let $\Lambda=\left(x_{s+1}^{\prime}, y_{s+1}^{\prime}\right)^{\perp}$. Then $\operatorname{det}(\cdot \mid \Lambda)=1$, index $(\cdot \mid \Lambda)=0, \operatorname{tr}(\rho \mid \Lambda)=0$ and $x_{1}, y_{1}, \cdots, x_{s}, y_{s}$ span $\Lambda_{+}=\Gamma_{+}$while $x_{1}^{\prime}, y_{1}^{\prime}, \cdots, x_{s}^{\prime}, y_{s}^{\prime}$, span $\Lambda_{-}(=\{y \in \Lambda \mid \rho y=-y\})$. Together these span $\Lambda_{+} \oplus \Lambda_{-}$, and have inter-
section matrix

$$
\left[\begin{array}{llll}
0 & 2 & & \\
2 & 0 & & \\
& & & \\
& & 0 & 2 \\
& & 2 & 0
\end{array}\right]
$$

To determine $\Lambda / \Lambda_{+} \oplus \Lambda_{-}$, we consider the coefficient sequence

$$
0 \rightarrow Z \oplus \bar{Z} \rightarrow \overline{Z+Z} \rightarrow Z_{2} \rightarrow 0
$$

It leads to

$$
\begin{aligned}
& 0 \rightarrow H_{l+1}\left(M ; Z_{2}\right) \rightarrow H_{l}(M) \oplus H_{l}(M ; \bar{Z}) \xrightarrow{\iota_{+} \oplus \iota_{-}} H_{l}(M) \\
& \rightarrow H_{l}\left(M ; Z_{2}\right) \rightarrow H_{l-1}(M) \oplus H_{l-1}(M ; \bar{Z}) \\
& \downarrow \\
& 0
\end{aligned}
$$

that is
$0 \rightarrow Z_{2} \rightarrow Z_{2}+2 s Z+(2 s+2) Z \rightarrow(4 s+2) Z \rightarrow(2 s+2) Z_{2} \rightarrow Z_{2} \rightarrow 0$ so, since the image of $\iota_{+} \oplus \iota_{-}$is $\Lambda_{+} \oplus \Lambda_{-} \oplus\left(s_{s+1}^{\prime}, y_{s+1}^{\prime}\right)$,

$$
0 \rightarrow \Lambda_{+} \oplus \Lambda_{-} \rightarrow \Lambda \rightarrow 2 s Z_{2} \rightarrow 0
$$

is exact.
The next step is to make surgeries allowing us to assume that U, the maximal singular submodule of Λ containing ($x_{1}, \cdots, x_{s}, x_{1}^{\prime}, \cdots, x_{s}^{\prime}$) is actually spanned by these elements. First notice that $z \in U$ if and only if $2 z=\sum a_{i} x_{i}+\sum b_{i} x_{i}^{\prime}$ because in general $2 z \epsilon \Lambda_{+} \oplus \Lambda_{-}$, and y_{i}, y_{i}^{\prime} cannot be in U, nor can any minimal linear combination involving them be in U. Then U is invariant under ρ. Next, suppose that there is some z not in span $\left(x_{1}, \cdots, x_{s}^{\prime}\right)$. We may assume z to be indivisible. Let A be the smallest divisible module containing z and ρz. Then $A=\{\alpha \mid m \alpha=a z+b \rho z\}$ so A is invariant under ρ, and, since z is indivisible, A has a basis z, u. Let the matrix with respect to this basis of $\rho \mid A$ be

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then

$$
\left[\begin{array}{ll}
a^{2}+b c & (a+d) b \\
(a+d) c & d^{2}+b c
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

so if $a+d \neq 0$ then $b=c=0$, and $a=d= \pm 1$. Consequently, $A \subset \Lambda_{+} \cap U$ or $A \subset \Lambda_{-} \cap U$ and then $z \in A \subset \operatorname{span}\left(x_{1}, \cdots, x_{s}^{\prime}\right)$, which is a contradiction. Thus $d=-a$ and $a^{2}+b c=1$. Then

$$
\left[\begin{array}{rr}
a & b \\
c & -a
\end{array}\right]
$$

has an eigenvalue -1 , and A has another basis (v, w) with respect to which the matrix of $\rho \mid A$ is

$$
\left[\begin{array}{rr}
-1 & b \\
0 & 1
\end{array}\right]
$$

That is, $\rho v=-v$ and $\rho w=b v+w$. Say b is even, $=2 e$. Then replace (v, w) by $(v, w+e v)$. That is a new basis with respect to which $\rho \mid A$ has matrix

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

so $A \subset \Lambda_{+} \oplus \Lambda_{-}$and $z \in \operatorname{span}\left(x_{1}, \cdots, x_{s}^{\prime}\right)$, a contradiction again. Thus, b is odd, $=2 e+1$. Then the basis ($v, w+e v$) realizes the matrix of $\rho \mid A$ as

$$
\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right]
$$

Thus there is some basis (v, w) with respect to which $\rho \mid A$ has matrix

$$
\left[\begin{array}{rr}
-1 & 1 \\
0 & 1
\end{array}\right]
$$

Since A is a direct summand of Λ, there exists $\xi \in \Lambda$ such that $\xi \cdot v=1, \xi \cdot w=0$. Then $w \cdot w=0, w \cdot \rho w=0, w \cdot \xi=0, \rho w \cdot \xi=(w+v) \cdot \xi=1$, and Lemma 2 allows us to surger w, lowering the rank of $H_{l}(\hat{M})$ by four. Eventually, this reduction will be impossible, so we may assume $U=\operatorname{span}\left(x_{1}, \cdots, x_{s}^{\prime}\right)$.

If U, the maximal singular submodule containing $\operatorname{span}\left(x_{1}, \cdots, x_{s}^{\prime}\right)$ is span ($x_{1}, \cdots, x_{s}^{\prime}$) itself, then we may complete the argument. Since U is a direct summand of Λ, we may find $\xi_{1}, \cdots, \xi_{s}, \xi_{1}^{\prime}, \cdots, \xi_{s}^{\prime}$ such that $\xi_{i} \cdot \xi_{j}=\xi_{i}^{\prime} \cdot \xi_{j}^{\prime}=\xi_{i} \cdot \xi_{j}^{\prime}=\xi_{i} \cdot x_{j}^{\prime}=\xi_{i}^{\prime} \cdot x_{j}=0$ for all i, j and $\xi_{i} \cdot x_{j}=\xi_{i}^{\prime} \cdot x_{j}^{\prime} \neq \delta_{i j}$. Then $x, x^{\prime}, \xi, \xi^{\prime}$ form a basis for Λ since the intersection matrix for this set is

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Now, $\rho \xi_{i}=\xi_{i}+v_{i}$ and $\rho \xi_{i}^{\prime}=-\xi_{i}^{\prime}+v_{i}^{\prime}$. Then

$$
0=-x_{j}^{\prime} \cdot \xi_{i}=\rho x_{j}^{\prime} \cdot \xi_{i}=x_{j}^{\prime} \cdot \rho \xi_{i}=x_{j}^{\prime} \cdot \xi_{i}+x_{j}^{\prime} \cdot v_{i}
$$

so $x_{j}^{\prime} \cdot v_{i}=0$. On the other hand, $\rho v_{i}=-v_{i}$ so $2 v_{i}=\sum a_{i j} \cdot x_{j}^{\prime}+\sum b_{i j} y_{j}^{\prime}$. Then $x_{j}^{\prime} \cdot v_{i}=0$ implies $2 v_{i} \in \operatorname{span}\left(x_{1}^{\prime}, \cdots, x_{s}^{\prime}\right)$ span $\left(x_{1}, \cdots, x_{s}^{\prime}\right)$, so $v_{i} \in U$. We have then $v_{i}=\sum c_{i j} x_{j}^{\prime}$ and similarly $v_{i}^{\prime}=\sum d_{i j} x_{j}^{\prime}$. The basis ξ, ξ^{\prime} may be altered to another basis by adding linear combinations of x, x^{\prime} to each of its elements. The specific alteration we make is

$$
\xi_{i} \rightarrow \xi_{i}+\sum\left[c_{i j} / 2\right] x_{j}^{\prime} \quad \text { and } \quad \xi_{j}^{\prime} \rightarrow \xi_{j}^{\prime}-\sum\left[c_{i j} / 2\right] x_{i} .
$$

This particular change of basis has the property that the intersection matrix
with respect to the new basis is still

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Defining v_{i}, v_{i}^{\prime} in terms of the new basis, we find that $v_{i}=\sum \mathrm{c}_{i j} x_{j}^{\prime}$ where each $c_{i j}$ is 0 or 1 . Thus v_{i} itself is 0 or indivisible. Suppose that some v_{i}, say v_{1}, is 0 . Then $\Lambda / \Lambda_{+} \oplus \Lambda_{-}$has at most $2 s-1$ generators, so it cannot be $2 s Z_{2}$. Thus each v_{i}, in particular v_{1}, is non-zero and indivisible.

Now, we wish to surger ξ_{1}. That $\xi_{1} \cdot \xi_{1}=0$ is given, and from that follow

$$
0=\xi_{1} \cdot \xi_{1}=\rho \xi_{1} \cdot \rho \xi_{1}=\left(\xi_{1}+v_{1}\right) \cdot\left(\xi_{1}+v_{1}\right)=2\left(\xi_{1} \cdot v_{1}\right)+\left(v_{1} \cdot v_{1}\right)
$$

But $v_{1}=\sum c_{i j} x_{j}^{\prime}$ so $v_{1} \cdot v_{1}=0$, and so $\left(\xi_{1} \cdot v_{1}\right)=0$. But $\xi_{1} \cdot \rho \xi_{1}=\xi_{1} \cdot \xi_{1}+\xi_{1} \cdot v$ so $\xi_{1} \cdot \rho \xi_{1}=0$ too. The fact that v_{1} is indivisible means that there is some ζ such that $\zeta \cdot v_{1}=1$. Since $v_{1} \cdot v_{1}=0$, we may assume $\zeta \cdot \zeta=0$. Let $\zeta^{\prime}=\zeta-\left(\zeta \cdot \xi_{1}\right) x_{1}$. Then $\zeta^{\prime} \cdot \xi_{1}=0$ and $\zeta^{\prime} \cdot v_{1}=1$ since $v_{1} \cdot x_{1}=0$. In conclusion, we have $\xi_{1} \cdot \xi_{1}=0, \xi_{1} \cdot \rho \xi_{1}=1, \xi_{1} \cdot \zeta^{\prime}=0, \rho \xi_{1} \cdot \zeta^{\prime}=\zeta^{\prime} \cdot v_{1}=1$ and we may surger ξ_{1}, reducing the rank of $H_{l}(\hat{M})$ by 4 .

Corollary. Each $k \xi$-cobordism class $\alpha \in \pi_{2 l+k}^{s}(T(k \xi))$, for k and l even, is represented by a $k \xi$-manifold (M, \mathcal{F}) such that $\pi_{i}(M) \approx \pi_{i}(P)$ for $i<l$ and $H_{l}(\hat{M})=Z+Z$.

III. Projective spaces in M

Suppose \hat{M} is a $2 l$-dimensional closed, simply-cónnected manifold, l even, such that $H_{0}(\widehat{M})=H_{2 l}(\widehat{M})=Z, H_{l}(\widehat{M}) \neq 0$ and $H_{i}(\widehat{M})=0$ otherwise. Let $\rho: \hat{M} \rightarrow \hat{M}$ be an orientation-preserving free action of Z_{2} on \hat{M}, and let M be the quotient of \hat{M} by that action, and $\pi: \hat{M} \rightarrow M$ the projection. Using obstruction theory and Haefliger's theorem, we may obtain an embedding $P_{l} \subset M$ such that $\pi_{1}\left(P_{l}\right) \approx \pi_{1}(M)$. This supplies an embedding $S^{l} \subset \hat{M}$ of an invariant sphere, on which ρ is the antipodal action. Let $\alpha \in H_{l}(\hat{M})$ be the class represented by S^{l}.

Lemma 3. A class $\beta \in H_{l}(\widehat{M})$ is represented by an invariant sphere on which ρ is the antipodal action if and only if $\alpha-\beta \epsilon\left(1-\rho_{*}\right) H_{l}(\hat{M})$.

Proof. Let $f: S^{l} \subset \hat{M}$ be the embedding representing α, and $g: S^{l} \subset \hat{M}$ that representing β. By obstruction theory on the associated embeddings $P_{l} \subset M$, we may assume that $f\left|S^{l-1}=g\right| S^{l-1}$. Let E_{+}and E_{-}be simplicial chains representing the fundamental classes of the upper and lower hemispheres, and S^{l-1} a suitable simplicial chain representing the fundamental class of S^{l-1}. Then we may assume (by suitably choosing the simplicial subdivision of S^{l}) that $\partial E_{+}=S^{l-1}=-\partial E_{-}$and $(-1)_{*} E_{+}=-E_{-}$. Then $\alpha+\beta$ is represented by

$$
\left(f_{*}+g_{*}\right)\left(E_{+}+E_{-}\right)=\left(\hat{f}_{*} E_{+}+\bar{g}_{*} E_{-}\right)+\left(\hat{f}_{*} E_{-}+\bar{g}_{*} E_{+}\right)=x-\rho_{*} x
$$

where x is the cycle $\hat{f}_{*} E_{+}+\bar{g}_{*} E_{-}$. Thus $\alpha+\beta \in\left(1-\rho_{*}\right) H_{l}(\hat{M})$. But if β is represented as above, so is $-\beta$, and so $\alpha-\beta \epsilon\left(1-\rho_{*}\right) H_{l}(\hat{M})$. For the converse, let $f: S^{l} \subset M$ be an invariant embedding.

Choose basepoints in $\hat{M}, M, S^{l}, P_{l}, S^{l-1}$ and P_{l-1} so that this commutative diagram preserves basepoints:

Choose $y \in H_{l}(\hat{M})$ and let $\gamma \in \pi_{l}(\hat{M})$ be such that the Hurewicz image of γ is y. Using classical obstruction theory techniques, we may find $g: P_{l} \rightarrow M$ such that $g\left|P_{l-1}=f\right| P_{l-1}$, and such that $\gamma \in \pi_{l}(M) \approx \pi_{l}(\widehat{M})$ is represented by the (basepoint-preserving) $\operatorname{map} S^{l} \xrightarrow{h} M$, defined by $\mathrm{f} \circ p$ on E_{+}, the upper hemisphere of S_{l}, and $g \circ p$ on E_{-}, the lower hemisphere of S^{l}. Once again, let E_{+}and E_{-}also denote the appropriate simplicial chains, \hat{f} and \bar{g} the covering maps for f and g. Then $\left(\hat{f}_{*}+\bar{g}_{*}\right)\left(E_{+}+E_{-}\right)=x-\rho_{*} x$ as before, where x is the cochain $\hat{f}_{*} E_{+}+\bar{g}_{*} E_{-}$. But the (basepoint-preserving) map

$$
S^{l} \xrightarrow{\hat{h}} \hat{M}
$$

defined by \hat{f} on E_{+}and g on E_{-}covers h and so represents γ. Also, its Hurewicz image is clearly the class x, so if β is the Hurewicz image of the class of g, we have $\alpha+\beta=y-\rho_{*} y$. Since $f\left|P_{l-1}=g\right| P_{l-1}$, we have $g_{*}: \pi_{1}\left(P_{l}\right) \rightarrow$ $\pi_{1}(M)$, so by Haefliger's theorem we may homotope (preserving the basepoint) g to an embedding g^{\prime}, Then the covering map \hat{g}^{\prime} of g^{\prime} embeds S^{l} as a sphere on which ρ is antipodal, and which represents β. Then replacing β with $\beta \circ(-1)$ we obtain a class β^{\prime}, represented by an invariant sphere, such that $\alpha-\beta^{\prime}=y-p_{*} y$, Q.E.D.

Now we further restrict $H_{l}(\hat{M})$ to be $Z+Z$ and \hat{M} to be s-parallelizable. In that case there is a base for $H_{l}(\hat{M})$, say u and v such that $u \cdot u=v \cdot v=0$ and $u \cdot v=v \cdot u=1$. Since ρ_{*} has order 2 and preserves intersection numbers, the matrix of ρ_{*} with respect to this basis must have the form

$$
\left[\begin{array}{rr}
0 & \pm 1 \\
\pm 1 & 0
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{rr}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right]
$$

The Lefschetz trace theorem imposes the condition that the trace is -2 , so ρ_{*} is -1 . Thus, in this case Lemma 1 states that β is represented by an antipodal embedded sphere if and only if $\alpha-\beta \in 2 H_{l}(\hat{M})$.

Recall the fact (from the proof of Theorem 1) that $H^{i}\left(M ; Z_{2}\right)=Z_{2}$ for $0 \leq i \leq 2 l$ and $i \neq l$, and $H^{l}\left(M ; Z_{2}\right)=Z_{2}+Z_{2}$. Let x be the generator of $H^{1}\left(M ; Z_{2}\right)$. Then it is easy to see that $x^{l} \neq 0$. Let $y \in H^{l}\left(M ; Z_{2}\right)$ be such
that x^{l}, y span $H^{l}\left(M ; Z_{2}\right)$. If $x^{l+1} \neq 0$, then $x^{2 l} \neq 0$ by duality so

$$
S_{q}^{1}: H^{2 l-1}\left(M ; Z_{2}\right) \rightarrow H^{2 l}\left(M ; Z_{2}\right)
$$

is non-trivial, and M is non-orientable. But M is orientable, so $x^{l+1}=0$. Then

$$
H^{*}\left(M: Z_{2}\right)=Z_{2}\left[x: x^{l+1}=0\right] \otimes E(y)
$$

which enables us to obtain
Lemma 4. Let $\hat{f}: S^{l} \subset \hat{M}$ be an equivariant embedding of a sphere with respect to -1 on S^{l} and ρ on \hat{M}. Then $\hat{f} *: H_{l}\left(S^{l} ; Z_{2}\right) \rightarrow H_{l}\left(\hat{M} ; Z_{2}\right)$ is non-zero.

Proof. Since Z_{2} is a field, it suffices to show that

$$
\hat{f}^{*}: H^{l}\left(\hat{M}, Z_{2}\right) \rightarrow H^{l}\left(S^{l} ; Z_{2}\right)
$$

is non-zero. Let $f: P_{l} \subset M$ be the map covered by \hat{f}. Then we have the following commutative diagram (obtained by using the short exact sequence of coefficient bundles over M and $P_{l} 0 \rightarrow Z_{2} \rightarrow \overline{Z_{2}+Z_{2}} \rightarrow Z_{2} \rightarrow 0$) in which Z_{2} coefficients are assumed:

Since $p^{*}: H^{l}\left(P_{l}\right) \rightarrow H^{l}\left(S^{l}\right)$ is zero, we have $H^{l}\left(S^{l}\right) \approx H^{l}\left(P_{l}\right)$. On the other hand, δ in the right-hand sequence is multiplication by x, so $\left(x^{l}\right)=0$, and there is $z \epsilon H^{l}(\hat{M})$ carried into x^{l}. But $f^{*} x^{l} \neq 0$ so $\hat{f}^{*} z \neq 0$.

Thus we have
Propostion 1. There is an embedding $f: S^{l} \subset \hat{M}$ equivariant with respect to the antipodal action on S^{l} and ρ on \hat{M}, such that \hat{f} represents a generator of $H_{l}(\hat{M})$ with Z coefficients.

Now consider $M-f\left(P_{l}\right)$. It is covered by $\hat{M}-\hat{f}\left(S^{l}\right)$. Since $\hat{f}\left(S^{l}\right)$ represents a generator of $H_{l}(\hat{M})$, the Z-cohomology of $\hat{M}-\hat{f}\left(S^{l}\right)$ is that of an l-sphere. As before, obstruction theory techniques and Haefliger's theorem combine to supply an embedding $g: P_{l} \subset M-f\left(P_{l}\right)$ such that $g: S^{l} \subset$ $\hat{M}-\hat{f}\left(S^{l}\right) \subset \hat{M}$ represents a generator. It is easy to check that g is a homotopy equivalence. Since the Whitehead group of Z_{2} is zero, it follows that
there is a diffeomorphism $E(\gamma) \rightarrow M-f\left(P_{l}\right)$, where γ is the normal bundle of $g\left(P_{l}\right)$ in M and $E(\gamma)$ its total space. Then the Thom space of γ is homeomorphic to $M / f\left(P_{l}\right)$.

IV. The normal bundle of M

We continue to assume, as above, that $H_{0}(\hat{M})=H_{2 l}(\hat{M})=Z, H_{l}(\hat{M})=$ $Z+Z, H_{i}(\hat{M})=0$ otherwise, and that \hat{M} is s-parallelizable. We will say such manifolds M are reduced. Then $f, g: P_{l} \subset M$ will be the embeddings constructed in Section III, and ξ will be the canonical line bundle over M. There is a unique $\left(\bmod 2^{\varphi(l)}\right)$ even integer k such that $f^{*} v(M)=g^{*} v(M)$ is stably equivalent to $k \xi_{l}$, where ξ_{l} is the canonical line bundle over P_{l}; we will say that k is the type of M. That such a k is well-defined is a consequence of the following lemma:

Lemma 5. Suppose M is reduced.
(i) If f, $h: P_{l} \rightarrow M$ are such that

$$
f_{*}, h_{*}: \pi_{1}\left(P_{l}\right) \approx \pi_{1}(M)
$$

then $f^{*} v(M)=h^{*} v(M)$, where $v(M) \in K \widetilde{O}(M)$ is the class of the stable normal bundle.
(ii) M is diffeomorphic to $E(\gamma) \mathrm{U}_{\psi} E(\gamma)$ where γ is an l-dimensional reduction of $\left(2^{\varphi(l)}-l-1-k\right) \xi_{1}$ and ψ is a diffeomorphism $S(\gamma) \rightarrow S(\gamma)$. If $\omega_{l}(\gamma) \neq 0$ then the twisted Euler class of γ is a generator. If $\omega_{l}(\gamma)=0$ then the bundle $S(\gamma) \rightarrow P_{l}$ admits a cross section.

Proof. Let $\tilde{\omega}: P_{l} \rightarrow P_{l} \vee S^{l}$ be obtained by collapsing the boundary of an l-cell in P_{l}. Then if f, h are maps as in i, there is a map $\tilde{h}: S^{l} \rightarrow M$ such that $(f \vee \tilde{h}) \circ \tilde{\omega}$ is homotopic to h. Thus

$$
h^{*}(v(M))=\tilde{\omega}^{*}\left(f^{*}(v(M)) \oplus \bar{h}^{*} v(M)\right)
$$

But \tilde{h} factors through \hat{M}, and $v(\hat{M})=0$, so $\bar{h}^{*} v(M)=0$, and

$$
h^{*}(v(M))=\tilde{\omega}_{t}^{*}\left(f^{*}(v(M)) \oplus 0\right)=f^{*}(v(M))
$$

(ii) It follows immediately from (i) that the type k of M is well-defined $\bmod 2^{\varphi(l)}$. Let f and g be the disjoint embeddings $P_{l} \subset M$. Let

$$
\gamma^{\prime}=f^{*} v\left(f\left(P_{l}\right): M\right) \quad \text { and } \quad \gamma^{\prime \prime}=g^{*} v\left(g\left(P_{l}\right): M\right)
$$

Then since k is well-defined, γ^{\prime} and $\gamma^{\prime \prime}$ are l-dimensional reductions of $\left(2^{\varphi(l)}-l-1-k\right) \xi_{l}$. Let $\hat{f}, g: S^{l} \subset \hat{M}$ be the coverings of f, g and let $\pi: S^{l} \rightarrow P_{l}$ be the projection. Then if $\chi(\eta)$ is the (twisted) Euler class of the bundle η, we have

$$
\begin{aligned}
\pi^{*}\left(\chi\left(\gamma^{\prime}\right)\right) & =\chi\left(v\left(\hat{f}\left(P_{l}\right): \hat{M}\right)\right)= \pm \hat{f}\left(S^{l}\right) \cdot \hat{f}\left(S^{l}\right)= \pm 2 \text { or } 0 \\
\pi^{*}\left(\chi\left(\gamma^{\prime \prime}\right)\right) & =\chi\left(v\left(\hat{g}\left(P_{l}\right): \hat{M}\right)\right)= \pm \hat{f}\left(S^{l}\right) \cdot \hat{f}\left(S^{l}\right)= \pm 2 \text { or } 0
\end{aligned}
$$

with both zero or both non-zero: Also, $\pi^{*}: H^{l}\left(P_{l}: \tilde{Z}\right) \rightarrow H^{l}\left(S^{l}: Z\right)$ carries the generator of $H^{l}\left(P_{l}: \widetilde{Z}\right)$ into twice that of $H^{l}\left(S^{l}: Z\right)$. Thus $\chi\left(\gamma^{\prime}\right)$ and $\chi\left(\gamma^{\prime \prime}\right)$ both generate $H^{l}\left(P_{l}: \widetilde{Z}\right)$ or are both zero. Since the Euler class classifies stably equivalent l-dimensional bundles over P_{l}, we have that $E\left(\gamma^{\prime}\right)$ and $E\left(\gamma^{\prime \prime}\right)$ are isomorphic to $E(\gamma)$ where γ is a fixed l-dimensional reduction of $\left(2^{\varphi(l)}-l-1-k\right) \xi_{l}$ with Euler class a generator or zero. Since ω_{l} is the mod 2 reduction of the Euler class, we have the first case if

$$
\omega_{l}\left(\left(2^{\varphi(l)}-l-1-k\right) \xi_{l}\right) \neq 0
$$

and the second case otherwise. Now (ii) follows immediately, using the fact that there are no non-trivial h-cobordisms when the fundamental group is Z_{2}.

Now we try to determine $v(M)$. Let $q: M \rightarrow M / g\left(P_{l}\right)$ be the collapsing map. From the remarks above it follows that there is a vector bundle \mathbf{A} over $M / g\left(P_{l}\right)$ such that $k \xi \oplus q^{*} \alpha$ is stably equivalent to the normal bundle of M. That α is stably unique follows from

Lemma 6.

$$
K \tilde{O}^{-1}(M) \xrightarrow{g^{*}} K \tilde{O}^{-1}\left(P_{l}\right) \rightarrow 0
$$

is exact.
Proof. Since $P_{l} \rightarrow P$ factors via g through M, it is enough to prove that

$$
K \tilde{O}^{-1}\left(P_{r}\right) \rightarrow K \tilde{O}^{-1}\left(P_{l}\right) \rightarrow 0
$$

is exact for large r. This fact is an immediate corollary of Adams' computation of $K \tilde{O}\left(P_{r}\right)$.

In what follows, we will need L_{*}, the multiplicative series determining the index. Thus if M is a closed oriented manifold of dimension $4 r$ and $v(M)$ is its stable normal bundle, then index $(M)=L_{r}(p(v(M)))[M]$. If α is any bundle over M, define index $(\alpha)=L_{r}(p(\alpha))[M]$. Notice that if $p(\beta)=1$, then index $(\alpha+\beta)=$ index (α).

Now we recall a suggestive theorem:
Theorem 3 (Wall). Let $M^{2 l}$ be a reduced manifold of type k, with $v(M)^{n}=k \xi+\varepsilon^{n-k}$ for some $n>2 l+k+3$. Let β be an $(n-k)$-bundle over M such that index $(\beta)=0$ and such that β is fiber-homotopically trivial. Then there is a reduced manifold M^{\prime} and a homotopy equivalence $h: M^{\prime} \rightarrow M$ such that $v\left(M^{\prime}\right)^{n}=h^{*}(k \xi+\beta)$.

Proof. Since β is fiber-homotopically trivial, the Thom space $T(k \xi+\beta)$ is reducible. Let $S^{n+2 l} \rightarrow T(k \xi+\beta)$ be a reducing map. By taking it transverse regular along M, we obtain a closed manifold M^{\prime} together with a map $h: M^{\prime} \rightarrow M$ of degree 1 such that $v\left(M^{\prime}\right)=h^{*}(k \xi+\beta)=k \xi^{\prime}+h^{*} \beta$. Since $v(M)=k \xi+\varepsilon^{n-k}$, we have index $(M)=0$. On the other hand,
index $\left(M^{\prime}\right)=\operatorname{index}\left(k \xi^{\prime}+h^{*} \beta\right)=\operatorname{index} h^{*} \beta=\operatorname{index}(\beta)=0$.

It follows then from Wall [8] that we may assume h to be a homotopy equivaence. Naturally, we would like the converse to Theorem 3 to be true. Since we have

$$
0=\operatorname{index} M=\text { index }(k \xi+\beta)=\text { index } \beta
$$

we will always have index $(\beta)=0$. However, there is an involution of a homotopy $S^{l} \times S^{l}$ such that the quotient manifold M has β not fiber homotopically trivial [10]. Then we may ask the weaker question, whether any $q^{*} \alpha$ with index $q^{*} \alpha=0$ may appear. We do not know the answer to this question. In connection with this question, it may be shown that if $\beta=q^{*}{ }_{\alpha}$ is fiber homotopically trivial, then so is α.

V. The group $\Gamma(\gamma)$

In this section we generalize the h-cobordism groups Γ_{l}. We need a closed manifold P of dimensional l^{\prime} and an l-plane bundle γ over P such that $|\gamma|$ is orientable. Pick an orientation of $|\gamma|$.

Define a class $\bar{\Gamma}(\gamma)$ by specifying that its members are the objects $A=\left(M(A), \iota_{+}(A), \iota_{-}(A)\right)$ consisting of
(1) an oriented manifold $M(A)$
(2) an orientation-preserving embedding $\iota_{+}(A):|\gamma| \rightarrow M(A)$
(3) an orientation-reversing embedding $\iota_{-}(A):|\gamma| \rightarrow M(A)$
such that
$\iota_{+}(A)(|\gamma|)=M(A)-\iota_{-}(A)(P)$ and $\iota_{-}(A)(|\gamma|)=M(A)-\iota_{+}(A)(P)$.
If $A, B \in \bar{\Gamma}(\gamma)$, define $A \circ B \epsilon \bar{\Gamma}(\gamma)$ as follows. $M(A \circ B)$ is obtained from

$$
M(A)-\iota_{+}(A)(P) \cup M(B)-\iota_{-}(B)(P)
$$

by identifying $\iota_{+}(A)(t x)$ with $\iota_{-}(B)(x / t)$, where $x \in S(\gamma)$ and $t>0$. The orientation of $M(A \circ B)$ is that it inherits from $M(A)-\iota_{+}(A)(P)$. The embedding $\iota_{-}(A \circ B)$ is the composition

$$
|\gamma| \xrightarrow{\iota_{-}(A)} M(A)-\iota_{+}(A)(P) \rightarrow M(A \circ B) .
$$

The embedding $\iota_{+}(A \circ B)$ is the composition

$$
|\gamma| \xrightarrow{\iota_{+}(B)} M(B)-\iota_{-}(B)(P) \rightarrow M(A \circ B) .
$$

Then it is easy to check that there is an orientation-preserving diffeomorphism

$$
\varphi: M(A \circ B) \circ C) \rightarrow M(A \circ(B \circ C))
$$

such that $\left.\varphi \iota_{-}(A \circ B) \circ C\right)=\iota_{-}(A \circ(B \circ C))$ and $\varphi \circ \iota_{+}((A \circ B) \circ C)=$ $\iota_{+}(A \circ(B \circ C))$.

We reserve the symbol 1 for the element of $\bar{\Gamma}(\gamma)$ given by $M(1)=S(\gamma \times \varepsilon)$ las a manifold,

$$
\begin{aligned}
& (1)(t x)=\frac{t}{1+t^{2} / 4} x,-\frac{1-t^{2} / 4}{1+t^{2} / 4} \text { for } x \in S(\gamma), t>0 \\
& (1)(t x)=\frac{t}{1+t^{2} / 4} x, \frac{1-t^{2} / 4}{1+t^{2} / 4}
\end{aligned}
$$

(These are stereographic projections.) Requiring $\iota_{+}(1)$ to be orientationpreserving determines the orientation of $M(1)$. Then it is easy to check that there is an orientation-preserving diffeomorphism $\varphi: M(A \circ 1) \rightarrow M(A)$ such that $\varphi^{\circ} \iota_{-}(A \circ 1)=\iota_{-}(A)$ and $\varphi \circ \iota_{+}(A \circ 1)=\iota_{+}(A)$. There also is an orientation-preserving diffeomorphism $\psi: M(1 \circ A) \rightarrow M(A)$ such that the corresponding formulas hold. Define $A^{-1} \epsilon \bar{\Gamma}(\gamma)$ by

$$
A^{-1}=\left(-M(A), \iota_{+}\left(A^{-1}\right), \iota_{-}\left(A^{-1}\right)\right)
$$

$$
\text { with } \iota_{+}\left(A^{-1}\right)=\iota_{-}(A) \text { and } \iota_{-}\left(A^{-1}\right)=\iota_{+}(A)
$$

In order to have an easy proof that $A \circ A^{-1}$ is somehow equivalent to 1 , we add one condition to the objects of $\bar{\Gamma}(\gamma)$:
(4) There is an orientation-preserving diffeomorphism $\psi(A): S(\gamma) \rightarrow$ $S(\gamma)$ such that $\iota_{-}(A)(t x)=\iota_{+}(A)((1 / t) \psi(A)(x))$ for $t>0$ and $x \epsilon S(\gamma)$. Now it is immediate that there is an orientation-preserving diffeomorphism $\varphi: M\left(A \circ A^{-1}\right) \rightarrow M(1)$ such that $\varphi \circ \iota_{-}\left(A \circ A^{-1}\right)=\iota_{-}(1)$ and $\varphi \circ \iota_{+}\left(A \circ A^{-1}\right)$ $=\iota_{+}(1)$. Without condition (4), we would need a suitable kind of h-cobordism in place of an orientation preserving diffeomorphism φ. For our purpose however, we may settle for $\bar{\Gamma}(\gamma)$ whose objects satisfy (1), (2), (3), and (4). Now introduce an equivalence relation $\sim \operatorname{in} \bar{\Gamma}(\gamma)$ by setting $A \sim B$ if and only if there is an orientation-preserving diffeomorphism $\varphi: M(A) \rightarrow$ $M(B)$ such that $\varphi \circ \iota_{-}(A)=\iota_{+}(B)$ and $\varphi \circ \iota_{+}(A)=\iota_{+}(B)$. Then the equivalence classes form a set $\Gamma(\gamma)$ (by abuse of language) which inherits a group structure from the operation \circ on $\bar{\Gamma}(\gamma)$.

If $P=P_{l}$ and γ is the bundle of Section 3, we wish to determine the structure of $\Gamma(\gamma)$ more precisely. We begin with the group $k^{0}(T(\gamma)) \subset K \widetilde{O}(T(\gamma))$ consisting of all reduced bundles with index zero. Then we define a map $\bar{\alpha}: \bar{\Gamma}(\gamma) \rightarrow k^{0}(T(\gamma))$ by observing that the map $\iota_{+}(A)$ induces a unique homotopy class of homotopy equivalences

$$
M(A) / \iota_{-}\left(P_{\imath}\right) \xrightarrow{q} T(\gamma) .
$$

Then we have seen that there is a unique $\alpha \epsilon k^{0}(T(\gamma))$ such that $k \xi \oplus q^{*} \alpha$ represents the reduced stable normal bundle of $M(A)$. Set $\bar{\alpha}(A)=\alpha$. Then we have seen that $\bar{\alpha}$ is onto, and it is easy to see that it factors through $\Gamma(\gamma)$ to define $\alpha: \Gamma(\gamma) \rightarrow k^{0}(T(\gamma))$.

Lemma 7. α is a homomorphism.

Proof. It is enough to show that $\bar{\alpha}(A B)=\bar{\alpha}(A)+\bar{\alpha}(B)$. For any $A \epsilon \bar{\Gamma}(\gamma)$, we have maps

$$
T(\gamma) \xrightarrow{\iota_{ \pm}} M(A) / \iota_{ \pm}(E(\gamma)) \rightarrow M(A) .
$$

Since the maps ι_{+}, ι_{-}induced by ι_{+}and ι_{-}are homotopy equivalences, we may compose their homotopy inverses with $M(A) \rightarrow M(A) / \iota_{\mp}(E(\gamma))$ to obtain $q_{ \pm}: M(A) \rightarrow T(\gamma)$. Notice that $q=q_{+}$above.

Writing $M(A)=E(\gamma) \bigcup_{\psi(A)} E(\gamma)$, we may assume $\psi(A)\left({ }^{*}\right)={ }^{*}$. Let p
be an arc in $E(\gamma)$ from P_{l} to $* \epsilon S(\gamma)$. Then we may apply Theorem 1 to $A=P_{l} \cup p(I), X=E(\gamma), Y=S(\gamma)$ and $f=\psi(A)$ to obtain an exact sequence (noting $j=q_{+}$and $j^{\prime}=q_{-}$)

$$
K \widetilde{O}(M(A)) \stackrel{q_{+}^{*}+q^{*}}{\stackrel{*}{4}} K \widetilde{O}(T(\gamma))+K \widetilde{O}(T(\gamma)) \stackrel{\pi^{*}+\pi^{*}}{\leftarrow} K \widetilde{O}(S(S(\gamma)))
$$

Since each of q_{+}^{*} and q^{*} are monomorphisms, and the image of the right hand map is in the diagonal, it follows that $q_{+}^{*}=-q^{*}$.

Now consider $M(A B)$. A straightforward geometric construction supplies a map

$$
\rho: M(A B) \rightarrow M(A) \mathbf{u}_{P_{l}} M(B)
$$

(where the identifying map is $\iota_{-}(B) \iota_{+}(A)^{-1} \mid \iota_{+}(A)\left(P_{l}\right)$) such that, up to homotopy, $q_{-}(A B)=q_{-}(A) \circ \rho$, and such that

$$
\begin{aligned}
v(M(A B)) & =k \xi+\rho^{*}\left(q_{+}(A)^{*} \bar{\alpha}(A)+q_{+}(B)^{*} \bar{\alpha}(B)\right) \\
& =k \xi+\rho^{*}\left(q_{+}(A)^{*} \bar{\alpha}(A)-q_{-}(B)^{*} \bar{\alpha}(B)\right) \\
& =k \xi+q_{+}(A B)^{*} \bar{\alpha}(A)-q_{-}(A B)^{*} \bar{\alpha}(B) \\
& =k \xi+q_{+}(A B)^{*} \bar{\alpha}(A)+q_{+}(A B) \bar{\alpha}(B) \\
& =k \xi+q_{+}(A B)^{*}(\bar{\alpha}(A)+\bar{\alpha}(B))
\end{aligned}
$$

so $\bar{\alpha}(A B)=\bar{\alpha}(A)+\bar{\alpha}(B)$.
Thus we have an exact sequence

$$
1 \rightarrow K \rightarrow \Gamma(\gamma) \xrightarrow{\alpha} k^{0}
$$

of nonabelian groups, and a description of k^{0} in terms of known invariants. Next, we seek a description of K. For this description we need a J-homomorphism

$$
J: K \widetilde{O}^{-1}\left(S\left(\gamma^{+} \varepsilon\right)\right) \rightarrow \pi_{2 l+k}^{s}(T(k \xi))
$$

To define J as a map, recall that the elements of $K \tilde{\sigma}^{-1}(S(\gamma+\varepsilon))$ corresponds to homotopy classes of maps $S(\gamma+\varepsilon) \rightarrow S O(n)$ for n large. Select a fixed isotopy class of bundle maps $\mathfrak{F}_{0}: v(S(\gamma+\varepsilon))^{n} \rightarrow k \xi+\varepsilon^{n-k}$, which extends to $v(E(\gamma+\varepsilon))^{n}$. Since there is a map $E(\gamma+\varepsilon) \rightarrow S(\gamma+\varepsilon)$ such that $E(\gamma+\varepsilon) \rightarrow S(\gamma+\varepsilon) \subset E(\gamma+\varepsilon)$ is homotopic to the identity, we have

$$
K \tilde{O}^{-1}\left(P_{l}\right) \approx K \tilde{O}^{-1}(E(\gamma+\varepsilon)) \subset K \tilde{O}^{-1}(S(\gamma+\varepsilon))
$$

so there will be exactly two classes-select one and stick to it. Then if

$$
\alpha \in K \widetilde{O}^{-1}(S(\gamma+\varepsilon))
$$

corresponds to $\alpha: S(\gamma+\varepsilon) \rightarrow S O(n)$, let $J(\alpha)$ be the class of

$$
\pi_{2 l+n+n} T\left(k \xi+\varepsilon^{n-k}+\varepsilon^{n}\right)
$$

represented by

$$
v(S(\gamma+\varepsilon))^{n}+\varepsilon^{n} \xrightarrow{\mathscr{F}_{0}+\alpha} k \xi+\varepsilon^{n-k}+\varepsilon^{n}
$$

It is straightforward to check that J is then a homomorphism.
Now let $\pi_{2 l+k}^{s} T(k \xi) \rightarrow \Lambda \rightarrow 0$ be the cokernel of J. Define a map

$$
K \xrightarrow{\varphi} \Lambda
$$

by sending $A \rightarrow \lambda$ (class of $(M(A), \mathcal{F})$) where \mathcal{F} is any bundle isotopy class of bundle maps $v(M(A))^{n} \rightarrow k \xi+\varepsilon^{n-k}$ for n large-such an \mathcal{F} exists because $A \epsilon K=\operatorname{ker} \alpha$. It is straightforward to check that α is well-defined, but we still have to check that φ is a homomorphism.

Let $\lambda\left(P_{l}\right) \subset M(A)$. Then there are two bundle homotopy classes of maps

$$
v(M)^{n} \mid \iota_{2}\left(P_{l}\right) \rightarrow k \xi+\varepsilon^{n-k}
$$

covering

$$
P_{l} \xrightarrow{\iota_{2}} M(A) \rightarrow P
$$

because $K \tilde{O}^{-1}\left(P_{l}\right)=Z_{2}$. But $K \widetilde{O}^{-1}(P) \rightarrow K \tilde{O}^{-1}\left(P_{l}\right) \rightarrow 0$ is exact, and it factors through $K \widetilde{O}^{-1}(M(A))$, so both bundle homotopy classes are restrictions of bundle homotopy classes $\mathcal{F}: v(M(A))^{n} \rightarrow k \xi+\varepsilon^{n-k}$. Consequently, if $\mathcal{G}: \mathrm{v}(M(B))^{n} \rightarrow k \xi+\varepsilon^{n-k}$ is a bundle homotopy class, then there exist

$$
\mathcal{F}: v(M(A))^{n} \rightarrow k \xi+\varepsilon^{n-k} \quad \text { and } \quad \mathfrak{F}: v(M(A \cdot B))^{n} \rightarrow k \xi+\varepsilon^{n-k}
$$

so that $(M(A \cdot B), \mathfrak{H})$ is $k \xi$-cobordant to $(M(A), \mathcal{F})(M(B), \mathcal{G})$. Thus $\varphi(A \cdot B)=\varphi(A)+\varphi(B)$.

For the next step, $\operatorname{set} G=\{A \mid M(A)=S(\gamma+\varepsilon)\}$. Then G is a normal subgroup of $\Gamma(\gamma)$, and in fact, a subgroup of K since $\alpha(A)=0$ for $A \in G$. Even more is true: G is a subgroup of $\operatorname{ker} \varphi$. It will turn out that G is very nearly the same group as $\operatorname{ker} \varphi$.

Theorem 4. If l is even, but not of the form $2^{j}-2$ and $l \geq 8$, then $[\operatorname{ker} \varphi: G] \leq 2$.

Proof. Suppose $\varphi(A)=0$. Then, setting $M=M(A)$, there exists a manifold E, together with $\mathcal{G}: v(E)^{n} \rightarrow k \xi+\varepsilon^{n-k}$ such that $2 E=M$. After a sequence of surgeries, we may assume $\pi_{i}(E) \approx \pi_{i}(P)$ for $i<l$.

We wish to factor $E \rightarrow P$ through P_{l}. It factors through $P_{2 l 1}$. by Poincaré duality

$$
H^{j}(E)=H_{2 l+1-j}(E, M)
$$

and

$$
H_{2 l+1-j}(M) \approx H_{2 l+1-1}(E) \rightarrow H_{2 l+1-j}(E, M) \rightarrow H_{2 l-j}(M) \approx H_{2 l-j}(E)
$$

for $2 l+1-j<l$, i.e., $l+1<j$. Thus $H^{j}\left(E ; Z_{p}\right)=0$ for $j>l+1$ and p
any prime (even or odd). Thus also $H^{j}(E ; B)=0$ for $j>l+1$ and B any finite Z_{2}-module over Z_{p}. The fiber F of $P_{l+1} \rightarrow P_{2 l+1}$ is l-connected, $\pi_{l+1}(F)=Z$, and $\pi_{i}(F)$ is finite for $l+1<i<2 l$. The pullback $H \rightarrow E$ of the fibration $P_{l+1} \rightarrow P_{2 l+1}$ under $E \rightarrow P_{2 l+1}$ has fiber F. The bundle of coefficients $\left(\pi_{l+1}(F)\right)^{\sim}$ is Z with the trivial Z_{2} action because Z_{2} acts trivially on $\pi_{l+1}\left(P_{l+1}\right)$. Consequently, the various obstructions to lifting $E \rightarrow P_{2 l+1}$ to $E \rightarrow P_{l+1}$ are zero, and we may factor $E \rightarrow P$ through P_{l+1}.

Let $g: E \rightarrow P_{l+1}$ be the map found in that way. Assume g is regular at $x \in P_{l+1}$ and consider the framed submanifold $g^{-1}(x) \subset E$. Since $\pi_{1}\left(g^{-1}(x)\right) \rightarrow 0$, we know that $v(E) \mid g^{-1}(x)$ is trivial and index $g^{-1}(x)=0$ if $l \equiv 0 \bmod 4$. For $l \equiv 2 \bmod 4, \mathrm{~W}$. Browder [11] has shown that $\operatorname{Arf}\left(g^{-1}(x)\right)=0$ provided $l \geq 8$ and $l \neq 2^{j}-2$ for all j. Consequently, we may kill the lower and middle homotopy groups of $g^{-1}(x)$ by a sequence of ambient framed modifications in E.

We would like to realize these modifications through homotopies of g. We do so by regarding $1 \times g$ and $1 \times *$ as two embeddings of E in $E \times P_{l}$. Then since $\pi_{i}(E)=0$ for $1<i<l$ and $\pi_{1}\left(g^{-1}(x)\right) \rightarrow \pi_{1}(E)$ is the zero map, and since the modifications called for have degree $\leq l / 2+1$, the method of [9] applies to supply a global isotopy modulo boundaries $g_{t}: E \times P_{l} \rightarrow E \times P_{l}$ so that $\mathcal{G}_{1} \circ(1 \times g)$ is transverse to $E \times *$, and the intersection of $\mathcal{G}_{1} \circ(1 \times g)(E) \cap(E \times *)$ is Σ, the homotopy l-sphere obtained from $g^{-1}(x)$ by applying the foregoing modifications. Then if $\rho: E \times P_{l} \rightarrow P_{l}$ is the natural projection, $\rho \circ \mathcal{G}_{t}(1 \times g)$ is a homotopy from g to g^{\prime}, also regular at x, with $\left(g^{\prime}\right)^{-1}(x)$ a homotopy l-sphere. Thus we may as well assume $g^{-1}(x)=\sigma$ a homotopy l-sphere. Let V be a tubular neighborhood of Σ in E. Then the framing provides a diffeomorphism $V \approx \Sigma \times D^{l+1}$. But $\Sigma \times D^{l+1} \approx S^{l} \times D^{l+1}$. To perform surgery on $S^{l} \times 0$, embed $(E, M) \subset\left(R^{2 l+1+k+r}, R^{2 l+k+r}\right)$ where r is large. We have

$$
v(E) \xrightarrow{\varrho} k \xi_{l+1} \times r \varepsilon
$$

where \mathcal{G} is some pullback of $\mathcal{G}: v(E) \rightarrow k \xi \times \varepsilon$. Let $D^{l+1} \subset R^{2 l+1+k+r}$ be a disc embedded so that is meets E only along S^{l}, with outward normal e_{1}, where e_{1} is the field defined by $\mathcal{G}\left(e_{1}\right)=$ last vector of $r \varepsilon$. Then \mathcal{G} supplies a bundle map

$$
\mathcal{G}^{\prime}: v\left(E_{1}\right)^{e_{1}}\left|S^{l} \rightarrow k \xi_{l+1}+(r-1) \varepsilon\right| x=R^{k+r-1}
$$

If \mathcal{G}^{\prime} is regarded as a field of frames over S^{l} in $v\left(D^{l+1}\right)=D^{l+1} \times R^{l+r+k}$, it is a map $S^{l} \rightarrow V_{k+r-1, l+r+k}$, which is l-connected. Thus it extends over D^{l+1}. That is, the field \mathcal{G}^{\prime} extends to a field $\mathcal{G}^{\prime \prime}$ of $(k+r-1)$-frames in $v\left(D^{l+1}\right)$. Then thickening $\mathcal{G}^{\prime \prime 1}$ and rounding corners in the usual way provides an ambient $k \xi_{l+1}$-cobordism from (E, \mathcal{G}) to (E_{1}, \mathcal{G}_{1}) such that $\varphi_{1}: E_{1} \rightarrow P_{l+1}$ misses x.

Thus, we may assume that $E \rightarrow P$ factors through P_{l}. The surgery above may have introduced a non-trivial $H_{l-1}(\hat{E})$, but since $\pi_{l-1}\left(P_{l}\right)=0$, that may be surgered out.

Recapitulating, if $\mathcal{F}: v(M)^{n} \rightarrow k \xi+\varepsilon^{n-k}$ represents zero, then there is

$$
\mathcal{G}: v(E)^{n} \rightarrow k \xi_{l}+\varepsilon^{n-k}
$$

such that
(1) $\partial E=M$
(2) $\mathcal{G} \mid v(M)^{n}$ is carried into \mathcal{F} under $k \xi_{l}+\varepsilon^{n-k} k \xi+\varepsilon^{n-k}$
(3) $\pi_{i}(E) \approx \pi_{i}\left(P_{l}\right)$ for $i<l$.

Now there are two cases (we wish to assume rank $\pi_{l}(E)$ is odd).
(I) Either rank $\pi_{l}(E)$ is odd, or there exists a closed $k \xi_{l}$-manifold (X, \mathfrak{H}) of dimension $2 l+1$ such that $\pi_{i}(X) \approx \pi_{i}\left(P_{l}\right)$ for $i<l$ and $\operatorname{rank} \pi_{l}(X)$ is even.
(II) Case (I) is false.

Assume Case (I). If $\pi_{l}(E)$ has even rank, replace E by the connected sum $E * X$. The pullback $\overline{E * X}$ of the double cover of P_{l} has $H_{1}(\overline{E * X})=Z$. A suitable 1-modification of $E * X$ will kill this Z and introduce one in H_{2}. After a number of such modifications, we arrive at E_{1} satisfying (1), (2), (3) with rank $\pi_{l}\left(E_{1}\right)$ odd.
We are now ready to apply Wall's theorem. For the Poincare manifold in his hypothesis, we use the pair (\mathfrak{N}, M) where $\mathscr{M r}^{(1)}$ is the mapping cylinder of $\varphi \mid M: M \rightarrow P_{l}$,

Claim. ($\mathfrak{\Re}, M)$ is an orientable Poincare manifold.
Proof of Claim. Let η be the non-zero class of $H^{2}\left(P_{l}\right)$. Then

$$
\dot{H}\left(P_{l}, \text { pt. }\right)=\overline{Z_{2}[\eta] / \eta^{\left(l l_{2}\right)+1}}=0
$$

where the overbar indicates the positive degree part. Also,

$$
0 \rightarrow H^{*}\left(P_{l}\right) \xrightarrow{\varphi^{*}} H^{*}(M)
$$

is exact. Let ζ be the non-zero class in $H^{l+1}(M)$ and let μ be a generator of $H^{2 l}(M)$. Let $\delta: H^{*}(M) \rightarrow H^{*+1}(\mathfrak{M r}, M)$. Then we have

$$
\begin{gathered}
H^{i}(\mathfrak{I r}, M)=0 \text { for } i \leq l \text { and for } i \text { odd }<2 l+1, \\
\delta \mu \text { generates } H^{2 l+1}(\mathfrak{T r}, M) \approx Z, \\
\delta\left(\zeta \eta^{i}\right) \text { generates } H^{l+1+2 i}(\Re, M) \approx Z_{2} .
\end{gathered}
$$

Let v generate $H_{2 l+1}(\mathfrak{I l}, M)$ so that $\delta \mu \cdot v=1$. Then ∂v generates $H_{2}(M)$ and $v \cap \delta\left(\zeta \eta^{i}\right)=\partial\left(v \cap \zeta \eta^{i}\right)=$ generator of

$$
H_{l-1-2 i}(M) \underset{\varphi}{\approx} H_{l-1-2 i}\left(P_{l}\right) .
$$

Thus, ($\mathfrak{M c}, M$) is a Poincaré manifold. Let $c: M \times I \rightarrow I$ be a collar neighborhood with $c(x, 0)=x$, let $E^{\prime}=E-c(M \times(0,1))$, and let $\psi: E^{\prime} \rightarrow E$
be a diffeomorphism such that $\psi(c(x, 1))=x$. Define $\mu: E \rightarrow \mathfrak{M}$ by

$$
\mu(x)=\varphi(\psi(x)) \in P_{l} \subset \mathfrak{N} \text { for } x \in E^{\prime} \quad \text { and } \quad \mu(c(x, t))=[t, \varphi(x)] \in \mathfrak{N}
$$

Then $\mu:(E, M) \rightarrow(\mathfrak{T}, M)$ is the identity on M and it is a map of degree 1 of Poincaré spaces. Since $\mathscr{M} \rightarrow P_{l}$ is a homotopy equivalence, we may take $k \xi_{l}$ to be a bundle over \mathfrak{T}, which μ pulls back to the stable normal bundle of E. Stating Theorem 6.5 of [8] in the above notation, we have

Theorem (Wall). If rank kernel $\left(H_{l}(\bar{E}, \bar{M}) \rightarrow H_{l}(\widetilde{\mathscr{K}}, \bar{M})\right)$ is even, then there exist μ-surgeries of l-spheres in int (E) modifying μ to a homotopy equivalence.

Since μ-surgeries may be taken to be $k \xi_{l}$-surgeries, this theory tells us that we may assume that μ is a homotopy equivalence provided the rank of the kernel in question is even, and this is what happens in Case I.

On the covering space level we have

$$
\begin{gathered}
0 \rightarrow H_{l+1}(\bar{E}) \rightarrow H_{l+1}(\bar{E}, \bar{M}) \rightarrow H_{l}(\bar{M}) \rightarrow H_{l}(\bar{E}) \rightarrow H_{l}(\bar{E}, \bar{M}) \rightarrow 0 \\
\|+Z
\end{gathered}
$$

from which we may conclude that $\operatorname{rank} H_{l}(\bar{E}, \bar{M})=\operatorname{rank} H_{l}(\bar{E})-1$ so that it is even. On the other hand, the same exact sequence holds with $\bar{\pi}$ in place of \bar{E}, so rank $H_{l}(\bar{\pi}, \bar{M})=\operatorname{rank} H_{l}(\bar{\pi})-1=1-1=0$. Thus, the rank of the kernel in question is that of $H_{l}(\bar{E}, \bar{M})$, which is even.

Thus, we may assume that $P_{l} \subset E$ is a homotopy equivalence. A tubular neighborhood of P_{l} in E may be taken to be $E(\gamma+\varepsilon)$. Then $E-\operatorname{int} E(\gamma+\varepsilon)$ is an h-cobordism from $S(\gamma+\varepsilon)$ to M. Since the Whitehead group of Z_{2} is zero, that h-cobordism is trivial. In Case II, we have that $\operatorname{rank} \pi_{l}(E)$ is even.
(1) Suppose that φ is a monomorphism. Then the manifold M must be $S\left(\gamma_{k}+\varepsilon\right)$. Suppose \mathcal{F} extends to

$$
v\left(E^{\prime}\right)^{n} \xrightarrow{g^{\prime}} k \xi_{l}+\varepsilon^{n-k}
$$

where $\pi_{i}\left(E^{\prime}\right) \approx \pi_{i}\left(P_{l}\right)$ for $i<l$ and $\operatorname{rank} \pi_{l}\left(E^{\prime}\right)$ is odd. Then we may glue (E, \mathcal{G}) and $\left(E^{\prime}, \mathcal{G}^{\prime}\right)$ along (M, \mathcal{F}) to obtain a $k \xi_{l}$-manifold X. On the covering space level,

$$
\begin{aligned}
& 0 \rightarrow H_{l+1}(\hat{E}) \oplus H_{l+1}\left(\hat{E}^{\prime}\right) \rightarrow H_{l+1}(\hat{X}) \rightarrow H_{l}\left(S^{l} \times S^{l}\right) \rightarrow H_{l}(\hat{E}) \oplus H_{l}\left(\hat{E}^{\prime}\right) \\
& \rightarrow H_{l}(\hat{X}) \rightarrow 0
\end{aligned}
$$

As in Case 1,

$$
\begin{gathered}
\operatorname{rank} H_{l+1}(\hat{X})=\operatorname{rank} H_{l}(\hat{X}) \\
\operatorname{rank} H_{l+1}(\bar{E})=\operatorname{rank} H_{l}(\bar{E})-1, \\
\operatorname{rank} H_{l+1}\left(\bar{E}^{\prime}\right)=\operatorname{rank} H_{l}\left(\bar{E}^{\prime}\right)-1,
\end{gathered}
$$

and $H_{l}\left(S^{l} \times S^{l}\right) \otimes Q \rightarrow H_{l}(\bar{E}) \otimes Q, H_{l}\left(\bar{E}^{\prime}\right) \otimes Q$ have the same kernel, of rank 1, so rank $H_{l}(\hat{X})$ is even, which contradicts the assumption that we are in Case II. Thus \mathfrak{F} does not extend to E^{\prime} as above, so \mathfrak{F} does not extend to $E\left(\gamma_{k} \times \varepsilon\right)$, and so $\operatorname{ker} \bar{J} \neq 0$.
(2) Suppose $\varphi(A)=\varphi(B)=0$ where $A \neq 1$ and $B \neq 1$.

Let $(E(A), 乌(A))$ and $(E(B), \mathcal{G}(G))$ be $k \xi$-manifolds with

$$
\pi_{i}(E(A)) \approx \pi_{i}\left(P_{l}\right) \quad \text { and } \quad \pi_{i}(E(B)) \approx \pi_{i}\left(P_{l}\right)
$$

for $i<l$ and both ranks $\pi_{l}(E(A))$ and $\pi_{l}(E(B))$ even, and $\partial E(A)=M(A)$ and $\partial E(B)=M(B)$.
We have $P_{l} \rightarrow M(B) \rightarrow E(B) \rightarrow P_{l}$ homotopic to the identity so that $\pi_{i}\left(P_{l}\right) \approx \pi_{i}\left(P_{l}\right)$ for $i<l$, so $K \delta^{-1}\left(P_{l}\right) \approx K \widetilde{O}\left(P_{l}\right)$ and thus $K \delta^{-1}(E(B)) \rightarrow$ $K \delta^{-1}\left(P_{l}\right) \rightarrow 0$ is exact. Thus, $\mathcal{G}(B)$ may be altered so that we may take the "connected sum" of $E(A)$ and $E(B)$ along $P_{l} \subset M(A), P_{l} \subset M(B)$, and so obtain $(E(A \cdot B), \mathfrak{H})$ so that $\partial E(A \cdot B)=M(A \cdot B)$. On the covering space level we have,

$$
0 \rightarrow H_{l}\left(S^{l}\right) \rightarrow H_{l}(\overline{E(A)}) \oplus H_{l}(\overline{E(B)}) \rightarrow H_{l}(E \overline{(A \cdot B)}) \rightarrow 0
$$

so rank $\pi_{l}(E(A \cdot B))$ is odd and consequently, by an application of Wall's theorem as in Case I, we have $M(A \cdot B)=S\left(\gamma_{k}+\varepsilon\right)$.
Thus in Case II there is at most one non-trivial coset of G in $\operatorname{ker} \varphi$, so $[\operatorname{ker} \varphi: G] \leq 2$.

VI. Computation of $K O(T(\gamma))$

The purpose of this section is to indicate how $K \tilde{O}(T(\gamma))$ may be computed. Recall that γ is an l-plane bundle over P_{l} such that $\gamma+k \xi_{l}$ is stably equivalent to $v\left(P_{l}\right)$. Let $t=2^{\varphi(l)}-2 l-1-k$ where $2^{\varphi(l)}$ is the order of the generator of $\left(P_{i}\right)$. Then

$$
\gamma+t=\left(2^{\varphi(l)}-l-1-k \xi_{l}\right.
$$

so

$$
S^{t} T(\gamma)=T\left(2^{\varphi(l)}-l-k-1\right) \xi_{l}
$$

and so

$$
K \widetilde{O}(T(\gamma))=K \widetilde{O}^{t}\left(P_{t+2 l} / P_{t+l-1}\right) .
$$

Thus we need the groups $K \delta^{*}\left(P_{r}\right)$, and the exact sequence
$0 \rightarrow I_{t+l-1}^{t-1} \rightarrow K \tilde{\delta}^{t-1}\left(P_{t+l-1}\right) \rightarrow K \tilde{\delta}^{t}\left(P_{t+2 l} / P_{t+l-1}\right) \rightarrow K \tilde{\delta}^{t}\left(P_{t+2 l}\right) \rightarrow I_{t+2 l}^{t} \rightarrow 0$ which holds for $l>6$ and $I_{r}^{*}=\operatorname{Im}\left(K \delta^{*}(P) \rightarrow K \delta^{*}\left(P_{r}\right)\right)$. The groups $K \delta^{*}\left(P_{r}\right)$ and I_{r}^{*} are known. See for example M. Fujii [11]. The ones we will need are:

$$
\begin{gathered}
K \tilde{\partial}^{-1}\left(P_{r}\right)=Z+Z_{2}, \quad r \equiv 3,7(8), \quad K \tilde{\partial}^{-2}\left(P_{r}\right)=Z_{2}, \quad r \equiv 2,4(8), \\
K \tilde{\sigma}^{-2}\left(P_{r}\right)=Z_{2}, \quad r \equiv 0,6(8), \quad K \tilde{\sigma}^{-3}\left(P_{r}\right)=Z, \quad r \equiv 1,5(8), \\
K \tilde{\sigma}^{-4}\left(P_{r}\right)=Z_{2} \varphi(r+4)-3, \quad \text { all } r,
\end{gathered}
$$

$$
\begin{aligned}
& K \tilde{O}^{-5}\left(P_{r}\right)=Z, \quad r \equiv 3,7(8), \quad K \tilde{O}^{-6}\left(P_{r}\right)=0, \quad r \equiv 0,6(8) \\
& K_{-}^{-6}\left(P_{r}\right)=Z_{2}, \quad r \equiv 2,4(8), \quad K \tilde{O}^{-7}\left(P_{r}\right)=Z, \quad r \equiv 1,5(8) \\
& I_{r}^{0}=Z_{2} \varphi(r), \quad I_{r}^{-4}=Z_{2} \varphi(r+4)-3 \\
& I_{r}^{-1}=Z_{2}, \quad I_{r}^{-5}=0, \quad I_{r}^{-2}=Z_{2}, \quad I_{r}^{-6}=0, \quad I_{r}^{-3}=0, \quad I_{r}^{-7}=0
\end{aligned}
$$

Now, inserting these values into the exact sequence above, we obtain $K \widetilde{O}(T(\gamma))$, which we tabulate as follows:
$2 l+k \equiv 0(8):$

$$
K \widetilde{O}(T(\gamma))=Z+Z_{2}, \quad l \equiv 0,2(8), \quad K \widetilde{O}(T(\gamma))=Z, \quad l \equiv 4,6(8)
$$

$2 l+k \equiv 2(8):$

$$
K \widetilde{O}(T(\gamma))=Z
$$

$2 l+k \equiv 4(8):$

$$
K \tilde{O}(T(\gamma))=Z+Z_{2}, \quad l \equiv 0,2(8), \quad K \tilde{O}(T(\gamma))=Z, \quad l \equiv 4,6(8) .
$$

$2 l+k \equiv 6(8):$

$$
K \widetilde{O}(T(\gamma))=Z
$$

Returning to the situation of section 4 , let M be the quotient of a homotopy $S^{l} \times S^{l}$ by an involution, and let $q: M \rightarrow T(\gamma)$ be the collapse. Then it turned out that there is a unique $\alpha \in K O(T(\gamma))$ such that $v(M)$ is stably $k \xi+q^{*} \alpha$ where k is the type of the involution. It also turned out that index $\left(q^{*} \alpha\right)=0$, so index $(\alpha)=0$. But on $T(\gamma)$, index (α) is simply $c P_{l / 2}(\alpha)[T(\gamma)]$ where $c \neq 0$ and $[T(\gamma)]$ is the generator of $H_{2 l}(T(\gamma))$. Thus

$$
\text { index }: K \widetilde{O}(T(\gamma)) \rightarrow Z
$$

is a homomorphism in this case. Moreover index is non-zero the free cyclic summand of $K \widetilde{O}(T(\gamma))$, so $\alpha \epsilon \operatorname{ker}$ (index) $=0$ or Z_{2}. Thus we obtain two theorems by computation:

Theorem 5. The homomorphism $\alpha: \Gamma(\gamma) / G \rightarrow K \widetilde{O}(T(\gamma))$ of Section 5 may be factored through Z_{2}, where $Z_{2} \rightarrow K \widetilde{O}(T(\gamma))$ is the unique epimorphism onto kernel (index).

Notation. From now on we write $\alpha: \Gamma(\gamma) / G \rightarrow Z_{2}$. In the case that kernel (index) $=0$, we take $\alpha=0$.

Theorem 6. If $l \equiv 4,6$ (8) and M is the quotient of a homotopy $S^{l} \times S^{l}$ by an involution, then $v(M)$ is stably an even multiple of the canonical line bundle.

Remark. This theorem is false for $l \equiv 0$ (8).

VII. The classification

Let l be even, ≥ 8 and not $2^{j}-2$ for any j.

Let $\rho: S^{l} \times S^{l} * \Sigma \rightarrow S^{l} \times S^{l} * \Sigma$ be an involution and let $M=S^{l} \times S^{l} *$ Σ / ρ. Then M is a reduced manifold of some type $k, 0 \leq k<2^{\varphi(l)}, k$ even. Let γ be the l-plane bundle over P_{l} stably equivalent to $\left(2^{\varphi(l)}-l-1-k\right) \xi_{l}$, with Euler class a generator or zero as the case may be. Let $\Gamma(\gamma), K, G, \varphi, \alpha$ and Λ have the same meaning as in Section 4. Then the elements of the group $\Gamma(\gamma) / G=H_{k}$ are in 1-1 correspondence with the oriented diffeomorphism classes of reduced manifolds of type k. Thus, ρ determines a unique member of H_{k}, which in turn determines ρ up to weak equivalence. Thus the weak equivalence classes of involutions of homotopy $S^{l} \times S^{l,} s$ with l as above are in 1-1 correspondence with the elements of the graded group $\left\{H_{0}, H_{2}, \cdots\right.$, $H_{2^{\rho} \rho(l)-2}$).
Thus, the object is to compute H_{k} in terms of known invariants. Our 'computation' consists of the following exact sequences

Here φ and α denote the homomorphisms induced by φ and α above. Then the fact that α maps into Z_{2} follows from Theorem 5 of Section 6. The fact that φ is an epimorphism follows immediately from Theorem 2 , and the fact that the kernel of φ is an image of Z_{2} follows from Theorem 6 .
Remark. There appears to be no way at this level of detecting the elements of $\Gamma(\gamma) / G$ which corresponds to involutions of $S^{l} \times S^{l}$. However, the cofibration $T(k-1) \xi_{\infty} \rightarrow T k \xi_{\infty} \rightarrow S^{k}$ induces a map

$$
\pi_{2 l+k}^{s} T\left(k \xi_{\infty}\right) \xrightarrow{f} \pi_{2 l+k}^{s}\left(S^{k}\right) .
$$

Let $\mathscr{g} \subset \Lambda_{2 l+k}^{\mathscr{s}}\left(S^{k}\right)$ be the image of the ordinary J-homomorphism. Then it is not hard to see that the elements of K / G corresponding to involutions of $S^{l} \times S^{l}$ are the elements of $\varphi^{-1}\left(\lambda\left(f^{-1}(\mathfrak{J})\right)\right)$.

Bibliography

1. M. F. Atiyah, Thom complexes, Proc. London Math. Soc., vol. 11 (1961), pp. 261-310.
2. P. E. Conner and E. E. Floyd, Differentiable periodic maps, Academic Press, New York, 1964.
3. M. Kervaire and J. Milnor, Groups of homotopy spheres, Ann. of Math., vol. 77 (1063), pp. 504-533.
4. R. Lashof, Poincaré duality and cobordism, Trans. Amer. Math. Soc., vol. 109 (1963), pp. 257-277.
5. J. Levine, A classification of differentiable knots, Ann. of Math., vol. 82 (1965), pp. 15-50.
6. J. Milnor, A procedure for killing homotopy groups of differentiable manifolds, Proc. Sympos. Pure Math., III, 1961.
7. C. T. C. Wall, Surgery of non-simply connected manifolds, Ann. of Math., vol. 84 (1966), pp. 217-276.
8. R. Wells, Cobordism groups of immersions, Topology, vol. 5 (1966), pp. 281-294.
9. -_, Modification of intersections, Ill. J. Math., vol. 11 (1967), pp. 389-399.
10. - Some examples of free involutions of homotopy $S^{l} \times S^{l}$, Illinois J. Math., to appear.
11. W. Browder, The Kervaire invariant for framed manifolds, Ann. of Math., vol. 90 (1969), 157-186.
12. M. Fojir, The KO groups of projective spaces, Osaka Math. J., vol. 4 (1967), pp. 141149.
13. R. de Sapio, Differentiable structures on a product of spheres, Notices Amer. Math. Soc., 1968, p. 628.

The University of Chicago
Chicago, Illinois

