FREE INVOLUTIONS OF HOMOTOPY $S^{\iota} imes S^{\iota}$'s

BY

R. Wells

Introduction

A homotopy $S^{l} \times S^{l}$ will be a smoothing of the piecewise linear $S^{l} \times S^{l}$. If $l \geq 3$, it follows from de Sapio 13 that a homotopy $S \times S$ is stably parallelizable. We will be interested only in the case l even, $l \geq 8$, and $l \neq 2^{j} - 2$ for all j. Then by a standard argument a homotopy $S^{l} \times S^{l}$, since it is stably parallelizable, is of the form $S^{l} \times S^{l} \not\cong \Sigma$ where Σ is a suitable homotopy lsphere.

An involution of $S^{l} \times S^{l} \not\cong \Sigma$ will be a fixed point free, orientation preserving, diffeomorphism $\rho: S^{l} \times S^{l} \not\cong \Sigma \to S^{l} \times S^{l} \not\cong \Sigma$ of order two. An involution ρ is weakly equivalent to ρ' if there is an orientation preserving diffeomorphism ψ carrying the domain of ρ onto that of ρ' such that $\rho' \circ \psi = \psi \circ \rho$. If is clear that weak equivalence classes of involutions are in bujective correspondence with the oriented diffeomorphism classes of the manifolds $M = S^{l} \times S^{l} \not\cong \Sigma/\rho$. To classify the involutions up to weak equivalence, we attempt to classify the manifolds M up to oriented diffeomorphism.

It will turn out that, given M, there is a unique even integer $k \mod 2^{\varphi^{(l)}}$ such that $f^*(v(M))$ is stably equivalent to $k\xi_l$ for any map $f: P_l \to M$ such that $\pi_1(f)$ is an isomorphism, where ξ_l is the canonical line bundle over P_l . This integer will be called the *type* of M.

Let γ be the unique *l*-plane bundle over P_l stably equivalent to $(2^{\varphi(l)} - l - 1 - k)\xi_l$, with Euler class *a* generator or zero, depending on which is possible. (Exactly one of these cases will be possible.)

Suppose now that M is of type k. Then its normal bundle is stably equivalent to $k\xi + \beta$, where β pulls back from a unique element $\alpha(M) \in K\tilde{O}(T(\gamma))$ by means of a canonical map $M \to T(\gamma)$. The oriented diffeomorphism classes of manifolds of type k form a group $\Gamma(\gamma)/G$, and

$$\Gamma(\gamma)/G \xrightarrow{\alpha} K\widetilde{O}(T(\gamma))$$

turns out to be a homomorphism in Section 4.

The next problem is to describe the kernel K/G of α . For this we need a *J*-homomorphism

$$K\tilde{O}^{-1}(S(\gamma)) \xrightarrow{J} \pi^{s}_{2l+k} T(k\xi_{\infty})$$

where $S(\gamma)$ is the sphere bundle of γ above and ξ_{∞} is the canonical line bundle over RP_{∞} . The homomorphism J is defined using the Thom construction, exactly as the standard J homomorphism is defined. Then there is a homomorphism $\varphi : K/G \to \Lambda$ where Λ is the cokernel of J. It follows from the

Received November 1, 1968.

theorem of Section 2 that φ is an epimorphism, and from the theorem of Section 5 that the kernel of φ is an image of Z_2 . And it follows from Section 6 that there is a fixed map $Z_2 \to K\tilde{O}(T(\gamma))$ such that α factors uniquely through this map. Thus we may take $\alpha : \Gamma(\gamma)/G \to Z_2$.

Thus $\Gamma(\gamma)/G$ is described by the exact sequences:

$$K\widetilde{O}^{-1}(S(\gamma)) \xrightarrow{J} \pi_{2l+k}^{e} T(k\xi_{\infty}) \to \Lambda \to 1$$

Section 1 contains preliminaries. In Section 2 we study a special case of the problem of killing middle homotopy groups of manifolds, and arrive at the theorem that will make φ an epimorphism. In Section 3 we study mappings and embeddings $P_1 \to M$, to obtain (1) the type of M is well-defined, (2) a useful decomposition of M. In Section 4, we use that decomposition to prove that if type (M) = k, then v(M) differs from $k\xi$ by a stable bundle of index 0. This fact enables us to show that Im $(\alpha) = 0$ or Z_2 . In Section 5, we define a group $\Gamma(\gamma)$ of which $\Gamma(\gamma)/G$ is a quotient. Finally in Section 5, we define Jand φ . That φ is an epimorphism follows already from Theorem 2, and that φ has kernel at most of order 2 follows from Theorem 4 of that section.

As a by-product, in Section 6, we obtain the following theorem.

THEOREM 6. If $l \equiv 4, 6$ (8) and M is the quotient of $S^{l} \times S^{l}$ by an involution, then v(M) is stably an even multiple of the canonical line bundle.

For a counterexample in the case $l \equiv 0$ (8) see [10].

Wall's theorems on non-simply connected surgery [8] are crucial to the argument, and some theorems, especially Theorem 2, resemble special cases of Theorem 6.5 of [8]. To derive Theorem 2 from Wall's theorem, one would have to factor the natural map $M \to RP_{\infty}$ of Section 2 through $S(\gamma + \varepsilon) \to P_{l} \to RP_{\infty}$. If this could be done, a much stronger theorem than Theorem 2 would result. A special case of this problem, factoring the natural map $M \to RP_{\infty}$ for certain M through $P_{l} \to RP_{\infty}$ occurs in Section 5. In that case there is a solution, and Wall's theorem applies to conclude $M = S(\gamma + \varepsilon)$.

I. Preliminaries

In this section we fix notation.

P will always denote infinite-dimensional projective space, and P_j will always denote *j*-dimensional projective space. The canonical line bundle over P will be ξ_{∞} , except in Section 2, where it will be ξ . The canonical line bundle over

 P_j will be ξ_j . The order of the reduced stable class of ξ_j in $K\tilde{O}(P_j)$ will we $2^{\varphi(j)}$. If γ is any vector bundle, $E(\gamma)$ will be its associated cell bundle and $S(\gamma)$ its associated sphere bundle. The Stiefel-Whitney class of γ will be $\omega(\gamma)$ and the Pontryagin class of γ will be $P(\gamma)$. Two bundles γ and γ' will be *isomorphic* if there is a bundle map $\gamma \to \gamma'$ covering a homeomorphism of the base spaces. If A is a submanifold of B, then v(A:B) will be the normal bundle of A in B, and $\tau(A)$ will be the tangent bundle of $A; v(A)^m$ is the (stable) normal bundle of A in Euclidean space of codimension m. The trivial bundle of dimension i is denoted by ϵ^i .

Modules over the group ring of Z_2 will be called Z_2 -molecules. Special ones will be \overline{Z} , on which Z_2 operates by changing signs; $\overline{Z} + \overline{Z}$ and $\overline{Z_2 + Z_2}$, on which Z_2 operates by changing signs; Z + Z and $Z_2 + Z_2$, on which Z_2 operates by changing components. If X is a space with $\pi_1(X) = Z_2$, then $\overline{Z}, \overline{Z + Z}, \overline{Z_2 + Z_2}$ will also denote the bundles of coefficients over X associated with these modules. Then $H_*(X; A)$ and $H^*(X; A)$ will denote as usual the homology and cohomology of X with coefficients in the bundle of coefficients associated with the Z_2 -module A.

Suppose $A \subset X$ and $B \subset Y$ are subspaces such that

$$A \subset X \subset X \cup CA$$
 and $B \subset Y \subset Y \cup CB$

are confibrations (this assumption holds for all inclusions throughout). Then if $f: A \to B$ is a map, $X \times 0 \cup_f Y \times 1$ will denote, by abuse of language, the space $X \times 0 \cup Y \times 1$ modulo the identification $(x, 0) \sim (f(x), 1)$ for $x \in A$. If CA is the cone over A, then $X \times 0 \cup_1 CA \times 1$ will be written $X \cup CA$, by abuse of notation. Then the suspension of X will be

$$SX = CX \cup CX = CX \times 0 \cup_1 CX \times 1.$$

If f is a homeomorphism of A onto B, we have the transposition homeomorphism

$$T: X \times 0 \mathsf{u}_f Y \times 1 \to Y \times 0 \mathsf{u}_{f^{-1}} X \times 1$$

defined by T(x, 0) = (x, 1) and T(y, 1) = (y, 0) on the representative level. Denote the *i*th stable homotopy group of X by $\pi_i^s(X)$. Then

$$T_*: \pi_i^s(SX) \to \pi_i^s(SX)$$

is sign reversal.

II. kξ-cobordism

Let ξ be the canonical line bundle on infinite real projective space. Let $k\xi$ be the k-fold Whitney sum of ξ with itself, and let $T(k\xi)$ be the Thom space of $k\xi$. Then the elements of $\tilde{\pi}_{n+k}^s(T(k\xi))$ may be interpreted as $k\xi$ -cobordism classes, where a $k\xi$ -manifold is a pair (M, \mathfrak{F}) with

$$v(M)^m \xrightarrow{\mathfrak{F}} k\xi + \varepsilon^{m-k}$$

an isotopy class of bundle maps, and m is large.

Consider $\alpha \in \tilde{\pi}_{2l+k}^{e}(T(k\xi))$ where l and k are even. We seek a 'canonical' representative of α . To begin with, let $\eta \to P_l$ be the (l + 1)-dimensional reduction of $(2^{\varphi(l)} - l - 1 - k)\xi_l$, where ξ_l is the canonical line bundle over P_l . Let $E(\eta)$ be its associated cell bundle and $S(\eta)$ its associated sphere bundle. Then there is an isotopy class \mathfrak{F}_0 of bundle maps $v(E(\eta))^m \to k\xi + \varepsilon^{m-k}$. We denote its restriction to $v(S(\eta))^m$ also by \mathfrak{F}_0 . Then let (M, \mathfrak{F}) be a representative of α . Since P is connected, we may carry out 0modifications of (M, \mathfrak{F}) in order to assume M is connected. If the maps $M \to P$ covered by \mathfrak{F} does not pull back non-trivially the generator of $H^1(P: \mathbb{Z}_2)$, we may replace (M, \mathfrak{F}) by $(M, \mathfrak{F}) + (S(\eta), \mathfrak{F}_0)$ before the 0modifications, without changing α . Now a series of 1-modifications kill off the kernel of $\pi_1(M) \to \pi_1(P) = \mathbb{Z}_2$, so we may assume that map to be an isomorphism. Then since $\pi_p(P) = 0$ for p > 1, we may perform p-modifications to insure that $\pi_i(M) \approx \pi_i(P)$ for all i < l.

Finally, we arrive at a representative (M, \mathfrak{F}) of α such that $\pi_i(M) \approx \pi_i(P)$ for i < l. If

$$\widehat{M} \xrightarrow{\pi} M$$

is the double cover of M, we have $H_0(\hat{M}) = H_{2l}(\hat{M}) = Z$ and $H_l(\hat{M})$ free and $H_i(\hat{M}) = 0$ otherwise. Let $\rho : \hat{M} \to \hat{M}$ be the transposition. Then ρ_* turns $H_*(\hat{M})$ into a graded Z_2 -module, and the intersection pairing $H_l(\hat{M}) \times H_l(\hat{M}) \to Z$ is a totally orthogonal, symmetric pairing invariant under ρ_* .

LEMMA 1 (Wall). If $x \in H_1(\hat{M})$ is such that $x \cdot x = 0$ and $x \cdot \rho x = 0$, then there is an *l*-modification of (M, \mathfrak{F}) killing $\pi_* h^{-1}(x)$, where h is the Hurewicz isomorphism.

LEMMA 2. Suppose x as in Lemma 1, and there is $z \in H_1(\hat{M})$ such that $x \cdot z = 1$, $z \cdot \rho z = 0$. Let (M', \mathfrak{F}') be the result of an *l*-modification killing $\pi_* h^{-1}(x)$. Then $\pi_i(M') \approx \pi_i(P)$ for i < l and $H_1(\hat{M}')$ is isomorphic to $(\ker x \cap \ker \rho x)/(Zx \oplus Z\rho x)$.

Proof. There will be two disjoint spheres S_1^{l} , $S_2^{l} \subset \hat{M}$ interchanged by ρ , and two disjoint spheres S_1^{l-1} , $S_2^{l-1} \subset \hat{M}'$ interchanged by ρ' so that $\hat{M} - S_1^{l} - S_2^{l}$ and $\hat{M}' - S_1^{l-1} - S_2^{l-1}$ are diffeomorphic as Z_2 spaces. Moreover, the following sequences are exact sequences of Z_2 -modules

$$0 \to H_{l}(\hat{M}^{-}) \to H_{l}(\hat{M}) \xrightarrow{x \oplus \rho x} H_{l}(\hat{M}, \hat{M}^{-}) \to 0$$
$$0 \to H_{l+1}(\hat{M}', \hat{M}'^{-}) \xrightarrow{x \oplus \rho x} H_{l}(\hat{M}'^{-}) \to H_{l}(\hat{M}') \to 0,$$

which proves the lemma.

THEOREM 2. Suppose k and l are even and (M, \mathfrak{F}) is a closed k ξ -manifold of dimension 2l such that $\pi_i(M) \approx \pi_i(P)$ for i < l. Then if rank $\pi_l(M) > 2$,

there is a kz-cobordism from (M, \mathfrak{F}) to (M', \mathfrak{F}') such that $\pi_i(M') \approx \pi_i(P)$ and rank $\pi_l(M') < \operatorname{rank} \pi_l(M)$.

Proof. Let

$$\hat{M} \xrightarrow{\pi} M$$

be the double cover of M. Then $\pi_l(M) = H_l(\hat{M})$ which is free of finite rank. Let $\rho : \hat{M} \to \hat{M}$ be the covering transformation. Let

$$\Gamma_{+} = \{x \in H_{l}(\hat{M}) \mid \rho x = x\} \text{ and } \Gamma_{-} = \{x \in H_{l}(M) \mid \rho x = -x\}.$$

Then $H_{l}(\hat{M}) \otimes Q = (\Gamma_{+} \otimes Q) \oplus (\Gamma_{-} \otimes Q)$ and $\Gamma_{+} \cap \Gamma_{-} = 0$ and $\Gamma_{+} \perp \Gamma_{-}$ with respect to the intersection pairing. Thus $0 \to \Gamma_{+} \oplus \Gamma_{-} \to H_{l}(\hat{M}) \to$ fin grp $\to 0$ is exact.

Notice that the Lefschetz trace formula requires tr $\rho \mid H_1(\hat{M}) = -2$, so rank $\Gamma_+ = r$ and rank $\Gamma_- = r + 2$ for some r. Since Γ_+ and Γ_- are each divisible, they are each a direct summand of $H_1(\hat{M})$. We will need some of $H_*(M:B)$ where B is any of the bundles of coefficients $Z_2, Z, \overline{Z}, \overline{Z+Z}$.

 Z_2 : We use the exact sequence $0 \to Z_2 \to \overline{Z_2 + Z_2} \to Z_2 \to 0$ to obtain

$$\cdots \to H_i(M; Z_2) \to H_i(\hat{M}; Z_2) \xrightarrow{\pi_*} H_i(M; Z_2) \to H_{i-1}(M; Z_2) \to \cdots$$

Thus $H_i(M; Z_2) = Z_2$ for i < l and $H_l(M; Z_2) = (r+2)Z_2$.

Z: We use the exact sequence

$$0 \to Z \xrightarrow{2} Z \to Z_2 \to 0$$

as above to obtain

$$\cdots \to H_i(M) \xrightarrow{2} H_i(M) \to H_i(M; Z_2) \to H_{i-1}(M) \to \cdots$$

 \mathbf{so}

 $H_1(M) = H_3(M) = \cdots = H_{l-1}(M) = Z_2,$

 $H_2(M) = H_4(M) = \cdots = H_{l-2}(M) = 0, \quad H_l(M) = rZ + Z_2$

0 (There is no odd torsion.)

 $ar{Z}$: From

$$0 \to Z \xrightarrow{2} Z \to Z_2 \to 0,$$

we obtain

$$\cdots \to H_i(M; \bar{Z}) \xrightarrow{2} H_i(M; \bar{Z}) \to H_i(M; Z_2) \to H_{i-1}(M; \bar{Z}) \to \cdots$$

so

$$H_i(M; \overline{Z}) = 0$$
 for i odd $< l$, $H_i(M; \overline{Z}) = Z_2$ for i even $< l$.

Then use $0 \to \overline{Z} \to \overline{Z + Z} \to Z \to 0$ to obtain

$$\cdots \to H_i(M; \bar{Z}) \to H_i(\hat{M}) \xrightarrow{\pi_*} H_i(M) \to H_{i-1}(M; \bar{Z}) \to \cdots$$

from which follows

$$\begin{array}{c} H_{l+1}(M) \to H_{l}(M; \bar{Z}) \to H_{l}(\hat{M}) \xrightarrow{\pi_{\ast}} H_{l}(M) \to H_{l-1}(M; \bar{Z}) \\ \parallel \\ H^{l-1}(M) = 0 \\ 0 \\ 0 \end{array}$$

Since $\rho = -1$ on $C_*(M; Z)$, we have $\rho = -1$ on $H_1(M; Z)$, so

$$\begin{array}{c} H_l(M; \bar{Z}) \to H_l(\hat{M}) \\ \searrow \qquad \bigcup \\ \Gamma_- \qquad \cdot \end{array}$$

Let F be an abelian group such that $\Gamma_{-} \oplus F = H_{l}(\widehat{M})$. Then

$$0 \to H_1(M; \overline{Z}) \to \Gamma_- \oplus F \to rZ + Z_2 \to 0.$$

It follows that $0 \to H_1(M; \overline{Z}) \to \Gamma_- \to Z_2 \to 0$ and $H_1(M; \overline{Z}) = (r+2)Z$. Finally, using $0 \to Z \to \overline{Z+Z} \to \overline{Z} \to 0$, we obtain

$$\begin{array}{c} 0 \to H_{l+1}(M;\bar{Z}) \to H_{l}(M) \to H_{l}(\bar{M}) \to H_{l}(M;\bar{Z}) \to H_{l-1}(M) \to 0 \\ \| \\ H^{l-1}(M;\bar{Z}) \\ \| \\ Z_{2} \end{array}$$

i.e.,

$$0 \to Z_2 \to rZ + Z_2 \to (2r+2)Z \to (r+2)Z \to Z_2 \to 0.$$

Since $C_*(M) \to C^+_*(\hat{M})$, we have $H_1(M) \to \Gamma_+$, and finally $0 \to Z_2 \to H_1(M) \to \Gamma_+ \to 0$.

Besides the groups and maps above, we will need some information on the intersection pairing in $H_{l}(\hat{M})$. The intersection of chains in regular position in $C_{*}(\hat{M})$ defines the intersection of chains in regular position in $C_{*}(M)$ and $C_{*}(M; \bar{Z}) = C_{*}(\hat{M}) \otimes_{\mathbb{Z}_{2}} \bar{Z}$. Since the maps

$$\iota_{+}: H_{l}(M) \to H_{l}(\widehat{M}) \text{ and } \iota_{-}: H_{l}(M; \overline{Z}) \to H_{l}(\widehat{M})$$

are induced on the chain level by $x \to x + \rho_{\#} x$ and $x \to x - \rho_{\#} x$, where $x \in C_*(\hat{M})$, we find that $\iota_+ x \cdot \iota_+ y = 2x \cdot y$ and $\iota_- x \cdot \iota_- y = 2x \cdot y$ for $x, y \in H_1(M)$ or $H_1(M : \overline{Z})$.

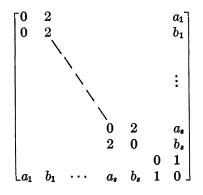
Since the rational Pontrjagin classes of $k\xi$ are zero, it follows that the index of M is zero, so there is a basis (x_i, y_i) for a free part of $H_i(M)$ such that $x_i \cdot x_j = y_i \cdot y_j = 0$, $x_i \cdot y_j = \delta_{ij}$. It follows that r is even, say r = 2s, and $i = 1, \dots, s$. For each pair we have that ι_+ of one member is indivisible let it always be x_i . Then $\iota_+ x_i$, $\iota_+ y_i$, $i = 1, \dots, s$, supplies a basis for Γ_+ with intersection matrix

$$\begin{bmatrix} 0 & 2 \\ 2 & 0 \\ & & \\ & & 0 & 2 \\ & & 2 & 0 \end{bmatrix}$$

Over the rationals, the index of Γ_+ is then zero, and therefore, so is that of Γ_- , consequently also that of $H_l(M; \overline{Z})$. Let $\overline{x}_i, \overline{y}_i$ be a symplectic basis for $H_l(M; \overline{Z})$. Then $\iota_- \overline{x}_i, \iota_- \overline{y}_i$ is a family of elements in Γ_- with intersection matrix

$$\begin{bmatrix} 0 & 2 \\ 2 & 0 \\ & & \\ & & 0 & 2 \\ & & 2 & 0 \end{bmatrix}$$

and such that their span has just two cosets in Γ_{-} . Let z be in the nontrivial coset. Then $2z \epsilon \operatorname{span} \iota_{-} \bar{x}_i, \iota_{-} \bar{y}_i \operatorname{so} 2z = \sum a_i \bar{x}_i + \sum b_i \bar{y}_i$ (where we abbreviate $\iota_{-} \bar{x}_i$ and $\iota_{-} \bar{y}_i$ by \bar{x}_i, \bar{y}_i). We may assume each a_i, b_i is 0 or 1 (by changing z), and that b_{s+1} (the last b) is 1. Then $\bar{x}_1, \bar{y}_1, \cdots, \bar{x}_s, \bar{y}_s, \bar{x}_{s+1}, z$ is a basis for Γ_{-} . Then $2z \cdot \bar{x}_{s+1} = \bar{y}_{s+1} \cdot \bar{x}_{s+1} = 2$, so $z \cdot \bar{x}_{s+1} = 1$. Replacing z with $z - ((z \cdot z)/z)\bar{x}_{s+1}$ we obtain a new basis for Γ_{-} , with intersection matrix



Then, replacing \bar{x}_i with $\bar{x}_i - (\bar{x}_i \cdot z) \bar{x}_{s+1}$ and \bar{y}_i with $\bar{y}_i - (\bar{y}_i \cdot z) \bar{x}_{s+1}$, we finally obtain a basis x'_i , y'_i with intersection matrix

$\begin{bmatrix} 0\\2 \end{bmatrix}$	2 0			
	02	2 0		
			0	1
L			1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Let $\Lambda = (x'_{s+1}, y'_{s+1})^{\perp}$. Then det $(\cdot | \Lambda) = 1$, index $(\cdot | \Lambda) = 0$, tr $(\rho | \Lambda) = 0$ and $x_1, y_1, \dots, x_s, y_s$ span $\Lambda_+ = \Gamma_+$ while $x'_1, y'_1, \dots, x'_s, y'_s$, span $\Lambda_- (=\{y \in \Lambda | \rho y = -y\})$. Together these span $\Lambda_+ \oplus \Lambda_-$, and have inter-

section matrix

$$\begin{bmatrix} 0 & 2 \\ 2 & 0 \\ & & \\ & & 0 & 2 \\ & & 2 & 0 \end{bmatrix}$$

To determine $\Lambda/\Lambda_+ \oplus \Lambda_-$, we consider the coefficient sequence

$$0 \to Z \oplus \overline{Z} \to \overline{Z + Z} \to Z_2 \to 0.$$

It leads to

$$0 \to H_{l+1}(M; Z_2) \to H_l(M) \oplus H_l(M; \bar{Z}) \xrightarrow{\iota_+ \oplus \iota_-} H_l(M) \\ \to H_l(M; Z_2) \to H_{l-1}(M) \oplus H_{l-1}(M; \bar{Z})$$
$$\downarrow 0$$

that is

$$\begin{array}{l} 0 \to Z_2 \to Z_2 + 2sZ + (2s+2)Z \to (4s+2)Z \to (2s+2)Z_2 \to Z_2 \to 0\\ \text{so, since the image of } \iota_+ \oplus \iota_- \text{ is } \Lambda_+ \oplus \Lambda_- \oplus (s'_{s+1}, y'_{s+1}),\\ 0 \to \Lambda_+ \oplus \Lambda_- \to \Lambda \to 2sZ_2 \to 0 \end{array}$$

is exact.

The next step is to make surgeries allowing us to assume that U, the maximal singular submodule of Λ containing $(x_1, \dots, x_s, x'_1, \dots, x'_s)$ is actually spanned by these elements. First notice that $z \in U$ if and only if $2z = \sum a_i x_i + \sum b_i x'_i$ because in general $2z \in \Lambda_+ \oplus \Lambda_-$, and y_i, y'_i cannot be in U, nor can any minimal linear combination involving them be in U. Then U is invariant under ρ . Next, suppose that there is some z not in span (x_1, \dots, x'_s) . We may assume z to be indivisible. Let A be the smallest divisible module containing z and ρz . Then $A = \{\alpha \mid m\alpha = az + b\rho z\}$ so A is invariant under ρ , and, since z is indivisible, A has a basis z, u. Let the matrix with respect to this basis of $\rho \mid A$ be

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Then

$$\begin{bmatrix} a^2 + bc & (a+d)b\\ (a+d)c & d^2 + bc \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

so if $a + d \neq 0$ then b = c = 0, and $a = d = \pm 1$. Consequently, $A \subset \Lambda_+ \cap U$ or $A \subset \Lambda_- \cap U$ and then $z \in A \subset \text{span}(x_1, \dots, x'_s)$, which is a contradiction. Thus d = -a and $a^2 + bc = 1$. Then

$$\begin{bmatrix} a & b \\ c & -a \end{bmatrix}$$

has an eigenvalue -1, and A has another basis (v, w) with respect to which the matrix of $\rho \mid A$ is

$$\begin{bmatrix} -1 & b \\ 0 & 1 \end{bmatrix}.$$

That is, $\rho v = -v$ and $\rho w = bv + w$. Say b is even, =2e. Then replace (v, w) by (v, w + ev). That is a new basis with respect to which $\rho \mid A$ has matrix

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

so $A \subset \Lambda_+ \oplus \Lambda_-$ and $z \in \text{span}(x_1, \dots, x'_s)$, a contradiction again. Thus, b is odd, = 2e + 1. Then the basis (v, w + ev) realizes the matrix of $\rho \mid A$ as

$$\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Thus there is some basis (v, w) with respect to which $\rho \mid A$ has matrix

$$\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$$

Since A is a direct summand of Λ , there exists $\xi \in \Lambda$ such that $\xi \cdot v = 1$, $\xi \cdot w = 0$. Then $w \cdot w = 0$, $w \cdot \rho w = 0$, $w \cdot \xi = 0$, $\rho w \cdot \xi = (w + v) \cdot \xi = 1$, and Lemma 2 allows us to surger w, lowering the rank of $H_1(\hat{M})$ by four. Eventually, this reduction will be impossible, so we may assume $U = \text{span}(x_1, \dots, x'_s)$.

If U, the maximal singular submodule containing span (x_1, \dots, x'_s) is span (x_1, \dots, x'_s) itself, then we may complete the argument. Since U is a direct summand of Λ , we may find $\xi_1, \dots, \xi_s, \xi'_1, \dots, \xi'_s$ such that $\xi_i \cdot \xi_j = \xi'_i \cdot \xi'_j = \xi_i \cdot \xi'_j = \xi'_i \cdot x_j = 0$ for all i, j and $\xi_i \cdot x_j = \xi'_i \cdot x'_j \neq \delta_{ij}$. Then x, x', ξ, ξ' form a basis for Λ since the intersection matrix for this set is

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Now, $\rho \xi_i = \xi_i + v_i$ and $\rho \xi'_i = -\xi'_i + v'_i$. Then $0 = -x'_j \cdot \xi_i = \rho x'_j \cdot \xi_i = x'_j \cdot \rho \xi_i = x'_j \cdot \xi_i + x'_j \cdot v_i$

so $x'_j \cdot v_i = 0$. On the other hand, $\rho v_i = -v_i$ so $2v_i = \sum a_{ij} \cdot x'_j + \sum b_{ij} y'_j \cdot$ Then $x'_j \cdot v_i = 0$ implies $2v_i \epsilon$ span (x'_1, \dots, x'_s) span (x_1, \dots, x'_s) , so $v_i \epsilon U$. We have then $v_i = \sum c_{ij} x'_j$ and similarly $v'_i = \sum d_{ij} x'_j$. The basis ξ, ξ' may be altered to another basis by adding linear combinations of x, x' to each of its elements. The specific alteration we make is

$$\xi_i \to \xi_i + \sum [c_{ij}/2] x'_j$$
 and $\xi'_j \to \xi'_j - \sum [c_{ij}/2] x_i$

This particular change of basis has the property that the intersection matrix

168

with respect to the new basis is still

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}.$$

Defining v_i , v'_i in terms of the new basis, we find that $v_i = \sum c_{ij} x'_j$ where each c_{ij} is 0 or 1. Thus v_i itself is 0 or indivisible. Suppose that some v_i , say v_1 , is 0. Then $\Lambda/\Lambda_+ \oplus \Lambda_-$ has at most 2s - 1 generators, so it cannot be $2sZ_2$. Thus each v_i , in particular v_1 , is non-zero and indivisible.

Now, we wish to surger ξ_1 . That $\xi_1 \cdot \xi_1 = 0$ is given, and from that follow

$$0 = \xi_1 \cdot \xi_1 = \rho \xi_1 \cdot \rho \xi_1 = (\xi_1 + v_1) \cdot (\xi_1 + v_1) = 2(\xi_1 \cdot v_1) + (v_1 \cdot v_1).$$

But $v_1 = \sum c_{ij} x'_j$ so $v_1 \cdot v_1 = 0$, and so $(\xi_1 \cdot v_1) = 0$. But $\xi_1 \cdot \rho \xi_1 = \xi_1 \cdot \xi_1 + \xi_1 \cdot v_1$ so $\xi_1 \cdot \rho \xi_1 = 0$ too. The fact that v_1 is indivisible means that there is some ζ such that $\zeta \cdot v_1 = 1$. Since $v_1 \cdot v_1 = 0$, we may assume $\zeta \cdot \zeta = 0$. Let $\zeta' = \zeta - (\zeta \cdot \xi_1) x_1$. Then $\zeta' \cdot \xi_1 = 0$ and $\zeta' \cdot v_1 = 1$ since $v_1 \cdot x_1 = 0$. In conclusion, we have $\xi_1 \cdot \xi_1 = 0$, $\xi_1 \cdot \rho \xi_1 = 1$, $\xi_1 \cdot \zeta' = 0$, $\rho \xi_1 \cdot \zeta' = \zeta' \cdot v_1 = 1$ and we may surger ξ_1 , reducing the rank of $H_1(\hat{M})$ by 4.

COROLLARY. Each $k\xi$ -cobordism class $\alpha \in \pi_{2l+k}^{*}(T(k\xi))$, for k and l even, is represented by a $k\xi$ -manifold (M, \mathfrak{F}) such that $\pi_i(M) \approx \pi_i(P)$ for i < l and $H_l(\hat{M}) = Z + Z$.

III. Projective spaces in M

Suppose \hat{M} is a 2*l*-dimensional closed, simply-connected manifold, *l* even, such that $H_0(\hat{M}) = H_{2l}(\hat{M}) = Z$, $H_l(\hat{M}) \neq 0$ and $H_i(\hat{M}) = 0$ otherwise. Let $\rho : \hat{M} \to \hat{M}$ be an orientation-preserving free action of Z_2 on \hat{M} , and let Mbe the quotient of \hat{M} by that action, and $\pi : \hat{M} \to M$ the projection. Using obstruction theory and Haefliger's theorem, we may obtain an embedding $P_l \subset M$ such that $\pi_1(P_l) \approx \pi_1(M)$. This supplies an embedding $S^l \subset \hat{M}$ of an invariant sphere, on which ρ is the antipodal action. Let $\alpha \in H_l(\hat{M})$ be the class represented by S^l .

LEMMA 3. A class $\beta \in H_1(\hat{M})$ is represented by an invariant sphere on which ρ is the antipodal action if and only if $\alpha - \beta \in (1 - \rho_*)H_1(\hat{M})$.

Proof. Let $f: S^{l} \subset \hat{M}$ be the embedding representing α , and $g: S^{l} \subset \hat{M}$ that representing β . By obstruction theory on the associated embeddings $P_{l} \subset M$, we may assume that $f | S^{l-1} = g | S^{l-1}$. Let E_{+} and E_{-} be simplicial chains representing the fundamental classes of the upper and lower hemispheres, and S^{l-1} a suitable simplicial chain representing the fundamental class of S^{l-1} . Then we may assume (by suitably choosing the simplicial subdivision of S^{l}) that $\partial E_{+} = S^{l-1} = -\partial E_{-}$ and $(-1)_{\#} E_{+} = -E_{-}$. Then $\alpha + \beta$ is represented by

$$(f_{\#} + g_{\#})(E_{+} + E_{-}) = (\hat{f}_{\#}E_{+} + \bar{g}_{\#}E_{-}) + (\hat{f}_{\#}E_{-} + \bar{g}_{\#}E_{+}) = x - \rho_{\#}x,$$

where x is the cycle $\hat{f}_{\#}E_{+} + \bar{g}_{\#}E_{-}$. Thus $\alpha + \beta \epsilon (1 - \rho_{*})H_{l}(\hat{M})$. But if β is represented as above, so is $-\beta$, and so $\alpha - \beta \epsilon (1 - \rho_{*})H_{l}(\hat{M})$. For the converse, let $f: S^{l} \subset M$ be an invariant embedding.

Choose basepoints in \hat{M} , M, S^{l} , P_{l} , S^{l-1} and P_{l-1} so that this commutative diagram preserves basepoints:

$$S^{l-1} \subset S^{l} \xrightarrow{\hat{f}} \hat{M}$$

$$\downarrow \qquad \qquad \downarrow p \qquad \qquad \downarrow \pi$$

$$P_{l-1} \subset P_{l} \xrightarrow{\hat{f}} M$$

Choose $y \in H_1(\hat{M})$ and let $\gamma \in \pi_l(\hat{M})$ be such that the Hurewicz image of γ is y. Using classical obstruction theory techniques, we may find $g: P_l \to M$ such that $g \mid P_{l-1} = f \mid P_{l-1}$, and such that $\gamma \in \pi_l(M) \approx \pi_l(\hat{M})$ is represented by the (basepoint-preserving) map $S^l \xrightarrow{h} M$, defined by $f \circ p$ on E_+ , the upper hemisphere of S_l , and $g \circ p$ on E_- , the lower hemisphere of S^l . Once again, let E_+ and E_- also denote the appropriate simplicial chains, \hat{f} and \bar{g} the covering maps for f and g. Then $(\hat{f}_{\#} + \bar{g}_{\#})(E_+ + E_-) = x - \rho_{\#} x$ as before, where x is the cochain $\hat{f}_{\#} E_+ + \bar{g}_{\#} E_-$. But the (basepoint-preserving) map

$$S^{i} \xrightarrow{\hat{h}} \hat{M}$$

defined by \hat{f} on E_+ and \hat{g} on E_- covers h and so represents γ . Also, its Hurewicz image is clearly the class x, so if β is the Hurewicz image of the class of \hat{g} , we have $\alpha + \beta = y - \rho_{\#} y$. Since $f | P_{l-1} = g | P_{l-1}$, we have $g_{*} : \pi_{1}(P_{l}) \rightarrow \pi_{1}(M)$, so by Haefliger's theorem we may homotope (preserving the basepoint) g to an embedding g', Then the covering map \hat{g}' of g' embeds S^{l} as a sphere on which ρ is antipodal, and which represents β . Then replacing β with $\beta \circ (-1)$ we obtain a class β' , represented by an invariant sphere, such that $\alpha - \beta' = y - p_{\#} y$, Q.E.D.

Now we further restrict $H_l(\hat{M})$ to be Z + Z and \hat{M} to be s-parallelizable. In that case there is a base for $H_l(\hat{M})$, say u and v such that $u \cdot u = v \cdot v = 0$ and $u \cdot v = v \cdot u = 1$. Since ρ_* has order 2 and preserves intersection numbers, the matrix of ρ_* with respect to this basis must have the form

$$\begin{bmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix}.$$

The Lefschetz trace theorem imposes the condition that the trace is -2, so ρ_* is -1. Thus, in this case Lemma 1 states that β is represented by an antipodal embedded sphere if and only if $\alpha - \beta \in 2H_1(\hat{M})$.

Recall the fact (from the proof of Theorem 1) that $H^i(M; Z_2) = Z_2$ for $0 \le i \le 2l$ and $i \ne l$, and $H^i(M; Z_2) = Z_2 + Z_2$. Let x be the generator of $H^1(M; Z_2)$. Then it is easy to see that $x^l \ne 0$. Let $y \in H^l(M; Z_2)$ be such

that x^{l} , y span $H^{l}(M; \mathbb{Z}_{2})$. If $x^{l+1} \neq 0$, then $x^{2l} \neq 0$ by duality so $S_{q}^{1}: H^{2l-1}(M; \mathbb{Z}_{2}) \rightarrow H^{2l}(M; \mathbb{Z}_{2})$

is non-trivial, and M is non-orientable. But M is orientable, so $x^{l+1} = 0$. Then

$$H^{*}(M : Z_{2}) = Z_{2}[x : x^{l+1} = 0] \otimes E(y),$$

which enables us to obtain

LEMMA 4. Let $\hat{f} : S^{l} \subset \hat{M}$ be an equivariant embedding of a sphere with respect to -1 on S^{l} and ρ on \hat{M} . Then $\hat{f}_{*} : H_{l}(S^{l}; Z_{2}) \to H_{l}(\hat{M}; Z_{2})$ is non-zero.

Proof. Since Z_2 is a field, it suffices to show that

$$\widehat{f}^*: H^l(\widehat{M}, Z_2) \to H^l(S^l; Z_2)$$

is non-zero. Let $f: P_i \subset M$ be the map covered by \hat{f} . Then we have the following commutative diagram (obtained by using the short exact sequence of coefficient bundles over M and $P_i \ 0 \to Z_2 \to \overline{Z_2 + Z_2} \to Z_2 \to 0$) in which Z_2 coefficients are assumed:

$$0 \qquad H^{l+1}(M)$$

$$\uparrow \qquad \uparrow \delta$$

$$H^{l}(P_{l}) \xleftarrow{f^{*}} H^{l}(M)$$

$$\uparrow \qquad \uparrow$$

$$H^{l}(S^{l}) \xleftarrow{\hat{f}^{*}} H^{l}(\hat{M}) = Z_{2} + Z_{2}$$

$$p^{*} \uparrow$$

$$H^{l}(P_{l})$$

Since $p^*: H^l(P_l) \to H^l(S^l)$ is zero, we have $H^l(S^l) \approx H^l(P_l)$. On the other hand, δ in the right-hand sequence is multiplication by x, so $(x^l) = 0$, and there is $z \in H^l(\hat{M})$ carried into x^l . But $f^*x^l \neq 0$ so $\hat{f}^*z \neq 0$.

Thus we have

PROPOSTIION 1. There is an embedding $f : S^{l} \subset \hat{M}$ equivariant with respect to the antipodal action on S^{l} and ρ on \hat{M} , such that \hat{f} represents a generator of $H_{l}(\hat{M})$ with Z coefficients.

Now consider $M - f(P_i)$. It is covered by $\hat{M} - \hat{f}(S^i)$. Since $\hat{f}(S^i)$ represents a generator of $H_l(\hat{M})$, the Z-cohomology of $\hat{M} - \hat{f}(S^i)$ is that of an *l*-sphere. As before, obstruction theory techniques and Haefliger's theorem combine to supply an embedding $g: P_i \subset M - f(P_i)$ such that $\hat{g}: S^i \subset \hat{M} - \hat{f}(S^i) \subset \hat{M}$ represents a generator. It is easy to check that g is a homotopy equivalence. Since the Whitehead group of Z_2 is zero, it follows that

R. WELLS

there is a diffeomorphism $E(\gamma) \to M - f(P_i)$, where γ is the normal bundle of $g(P_i)$ in M and $E(\gamma)$ its total space. Then the Thom space of γ is homeomorphic to $M/f(P_i)$.

IV. The normal bundle of M

We continue to assume, as above, that $H_0(\hat{M}) = H_{2l}(\hat{M}) = Z$, $H_l(\hat{M}) = Z + Z$, $H_i(\hat{M}) = 0$ otherwise, and that \hat{M} is s-parallelizable. We will say such manifolds M are *reduced*. Then $f, g: P_l \subset M$ will be the embeddings constructed in Section III, and ξ will be the canonical line bundle over M. There is a unique (mod $2^{\varphi(l)}$) even integer k such that $f^*v(M) = g^*v(M)$ is stably equivalent to $k\xi_l$, where ξ_l is the canonical line bundle over P_l ; we will say that k is the *type* of M. That such a k is well-defined is a consequence of the following lemma:

LEMMA 5. Suppose M is reduced. (i) If $f, h: P_1 \to M$ are such that

 $f_*, h_*: \pi_1(P_l) \approx \pi_1(M)$

then $f^*v(M) = h^*v(M)$, where $v(M) \in K\tilde{O}(M)$ is the class of the stable normal bundle.

(ii) *M* is diffeomorphic to $E(\gamma) \cup_{\psi} E(\gamma)$ where γ is an *l*-dimensional reduction of $(2^{\varphi^{(l)}} - l - 1 - k)\xi_1$ and ψ is a diffeomorphism $S(\gamma) \to S(\gamma)$. If $\omega_l(\gamma) \neq 0$ then the twisted Euler class of γ is a generator. If $\omega_l(\gamma) = 0$ then the bundle $S(\gamma) \to P_l$ admits a cross section.

Proof. Let $\tilde{\omega}: P_i \to P_i \lor S^i$ be obtained by collapsing the boundary of an *l*-cell in P_i . Then if f, h are maps as in i), there is a map $\tilde{h}: S^i \to M$ such that $(f \lor \tilde{h}) \circ \tilde{\omega}$ is homotopic to h. Thus

$$h^*(v(M)) = \tilde{\omega}^*(f^*(v(M)) \oplus \tilde{h}^*v(M)).$$

But \tilde{h} factors through \hat{M} , and $v(\hat{M}) = 0$, so $\tilde{h}^* v(M) = 0$, and

$$h^{*}(v(M)) = \tilde{\omega}_{t}^{*}(f^{*}(v(M)) \oplus 0) = f^{*}(v(M)).$$

(ii) It follows immediately from (i) that the type k of M is well-defined mod $2^{\varphi(l)}$. Let f and g be the disjoint embeddings $P_l \subset M$. Let

$$\gamma' = f^* v(f(P_1) : M)$$
 and $\gamma'' = g^* v(g(P_1) : M)$.

Then since k is well-defined, γ' and γ'' are *l*-dimensional reductions of $(2^{\varphi(l)} - l - 1 - k)\xi_l$. Let $\hat{f}, \hat{g} : S^l \subset \hat{M}$ be the coverings of f, g and let $\pi : S^l \to P_l$ be the projection. Then if $\chi(\eta)$ is the (twisted) Euler class of the bundle η , we have

$$\pi^*(\chi(\gamma')) = \chi(v(\hat{f}(P_i):\hat{M})) = \pm \hat{f}(S^l) \cdot \hat{f}(S^l) = \pm 2 \text{ or } 0$$

$$\pi^*(\chi(\gamma'')) = \chi(v(\hat{g}(P_i):\hat{M})) = \pm \hat{f}(S^l) \cdot \hat{f}(S^l) = \pm 2 \text{ or } 0,$$

with both zero or both non-zero: Also, $\pi^* : H^i(P_l; \tilde{Z}) \to H^i(S^l; Z)$ carries the generator of $H^i(P_l; \tilde{Z})$ into twice that of $H^i(S^l; Z)$. Thus $\chi(\gamma')$ and $\chi(\gamma'')$ both generate $H^i(P_l; \tilde{Z})$ or are both zero. Since the Euler class classifies stably equivalent *l*-dimensional bundles over P_l , we have that $E(\gamma')$ and $E(\gamma'')$ are isomorphic to $E(\gamma)$ where γ is a fixed *l*-dimensional reduction of $(2^{\varphi(l)} - l - 1 - k)\xi_l$ with Euler class a generator or zero. Since ω_l is the mod 2 reduction of the Euler class, we have the first case if

$$\omega_l((2^{\varphi(l)} - l - 1 - k)\xi_l) \neq 0,$$

and the second case otherwise. Now (ii) follows immediately, using the fact that there are no non-trivial *h*-cobordisms when the fundamental group is Z_2 .

Now we try to determine v(M). Let $q: M \to M/g(P_i)$ be the collapsing map. From the remarks above it follows that there is a vector bundle A over $M/g(P_i)$ such that $k \notin \oplus q^* \alpha$ is stably equivalent to the normal bundle of M. That α is stably unique follows from

Lemma 6.

$$K\widetilde{O}^{-1}(M) \xrightarrow{g^*} K\widetilde{O}^{-1}(P_l) \to 0$$

is exact.

Proof. Since $P_l \rightarrow P$ factors via g through M, it is enough to prove that

 $K\widetilde{O}^{-1}(P_r) \to K\widetilde{O}^{-1}(P_l) \to 0$

is exact for large r. This fact is an immediate corollary of Adams' computation of $K\tilde{O}(P_r)$.

In what follows, we will need L_* , the multiplicative series determining the index. Thus if M is a closed oriented manifold of dimension 4r and v(M) is its stable normal bundle, then index $(M) = L_r(p(v(M)))[M]$. If α is any bundle over M, define index $(\alpha) = L_r(p(\alpha))[M]$. Notice that if $p(\beta) = 1$, then index $(\alpha + \beta) =$ index (α) .

Now we recall a suggestive theorem:

THEOREM 3 (Wall). Let M^{2l} be a reduced manifold of type k, with $v(M)^n = k\xi + \varepsilon^{n-k}$ for some n > 2l + k + 3. Let β be an (n - k)-bundle over M such that index $(\beta) = 0$ and such that β is fiber-homotopically trivial. Then there is a reduced manifold M' and a homotopy equivalence $h : M' \to M$ such that $v(M')^n = h^*(k\xi + \beta)$.

Proof. Since β is fiber-homotopically trivial, the Thom space $T(k\xi + \beta)$ is reducible. Let $S^{n+2l} \to T(k\xi + \beta)$ be a reducing map. By taking it transverse regular along M, we obtain a closed manifold M' together with a map $h: M' \to M$ of degree 1 such that $v(M') = h^*(k\xi + \beta) = k\xi' + h^*\beta$. Since $v(M) = k\xi + \varepsilon^{n-k}$, we have index (M) = 0. On the other hand,

index (M') = index $(k\xi' + h^*\beta)$ = index $h^*\beta$ = index (β) = 0.

173

It follows then from Wall [8] that we may assume h to be a homotopy equivaence. Naturally, we would like the converse to Theorem 3 to be true. Since we have

$$0 = \operatorname{index} M = \operatorname{index} (k\xi + \beta) = \operatorname{index} \beta$$

we will always have index $(\beta) = 0$. However, there is an involution of a homotopy $S^{l} \times S^{l}$ such that the quotient manifold M has β not fiber homotopically trivial [10]. Then we may ask the weaker question, whether any $q^{*}\alpha$ with index $q^{*}\alpha = 0$ may appear. We do not know the answer to this question. In connection with this question, it may be shown that if $\beta = q^{*}\alpha$ is fiber homotopically trivial, then so is α .

V. The group $\Gamma(\gamma)$

In this section we generalize the *h*-cobordism groups Γ_l . We need a closed manifold *P* of dimensional l' and an *l*-plane bundle γ over *P* such that $|\gamma|$ is orientable. Pick an orientation of $|\gamma|$.

Define a class $\overline{\Gamma}(\gamma)$ by specifying that its members are the objects $A = (M(A), \iota_{+}(A), \iota_{-}(A))$ consisting of

(1) an oriented manifold M(A)

(2) an orientation-preserving embedding $\iota_+(A)$: $|\gamma| \to M(A)$

(3) an orientation-reversing embedding $\iota_{-}(A) : |\gamma| \to M(A)$ such that

 $\iota_+(A)(|\gamma|) = M(A) - \iota_-(A)(P)$ and $\iota_-(A)(|\gamma|) = M(A) - \iota_+(A)(P)$. If $A, B \in \overline{\Gamma}(\gamma)$, define $A \circ B \in \overline{\Gamma}(\gamma)$ as follows. $M(A \circ B)$ is obtained from

 $M(A) - \iota_{+}(A)(P) \cup M(B) - \iota_{-}(B)(P)$

by identifying $\iota_+(A)(tx)$ with $\iota_-(B)(x/t)$, where $x \in S(\gamma)$ and t > 0. The orientation of $M(A \circ B)$ is that it inherits from $M(A) - \iota_+(A)(P)$. The embedding $\iota_-(A \circ B)$ is the composition

$$|\gamma| \xrightarrow{\iota_{-}(A)} M(A) - \iota_{+}(A)(P) \rightarrow M(A \circ B).$$

The embedding $\iota_+(A \circ B)$ is the composition

$$\gamma \mid \xrightarrow{\iota_{+}(B)} M(B) - \iota_{-}(B)(P) \to M(A \circ B).$$

Then it is easy to check that there is an orientation-preserving diffeomorphism

 $\varphi: M(A \circ B) \circ C) \to M(A \circ (B \circ C))$

such that $\varphi \iota_{-}(A \circ B) \circ C) = \iota_{-}(A \circ (B \circ C))$ and $\varphi \circ \iota_{+}((A \circ B) \circ C) = \iota_{+}(A \circ (B \circ C)).$

We reserve the symbol 1 for the element of $\overline{\Gamma}(\gamma)$ given by $M(1) = S(\gamma \times \varepsilon)$ las a manifold,

$$(1)(tx) = \frac{t}{1+t^2/4} x, -\frac{1-t^2/4}{1+t^2/4} \text{ for } x \in S(\gamma), t > 0$$

$$(1)(tx) = \frac{t}{1+t^2/4} x, \frac{1-t^2/4}{1+t^2/4}.$$

(These are stereographic projections.) Requiring $\iota_+(1)$ to be orientationpreserving determines the orientation of M(1). Then it is easy to check that there is an orientation-preserving diffeomorphism $\varphi : M(A \circ 1) \to M(A)$ such that $\varphi \circ \iota_-(A \circ 1) = \iota_-(A)$ and $\varphi \circ \iota_+(A \circ 1) = \iota_+(A)$. There also is an orientation-preserving diffeomorphism $\psi : M(1 \circ A) \to M(A)$ such that the corresponding formulas hold. Define $A^{-1} \in \overline{\Gamma}(\gamma)$ by

$$A^{-1} = (-M(A), \iota_{+}(A^{-1}), \iota_{-}(A^{-1}))$$

with $\iota_{+}(A^{-1}) = \iota_{-}(A)$ and $\iota_{-}(A^{-1}) = \iota_{+}(A)$.

In order to have an easy proof that $A \circ A^{-1}$ is somehow equivalent to 1, we add one condition to the objects of $\overline{\Gamma}(\gamma)$:

(4) There is an orientation-preserving diffeomorphism $\psi(A) : S(\gamma) \rightarrow S(\gamma)$ such that $\iota_{-}(A)(tx) = \iota_{+}(A)((1/t)\psi(A)(x))$ for t > 0 and $x \in S(\gamma)$. Now it is immediate that there is an orientation-preserving diffeomorphism $\varphi : M(A \circ A^{-1}) \rightarrow M(1)$ such that $\varphi \circ \iota_{-}(A \circ A^{-1}) = \iota_{-}(1)$ and $\varphi \circ \iota_{+}(A \circ A^{-1}) = \iota_{+}(1)$. Without condition (4), we would need a suitable kind of *h*-cobordism in place of an orientation preserving diffeomorphism φ . For our purpose however, we may settle for $\overline{\Gamma}(\gamma)$ whose objects satisfy (1), (2), (3), and (4). Now introduce an equivalence relation $\sim \operatorname{in} \overline{\Gamma}(\gamma)$ by setting $A \sim B$ if and only if there is an orientation-preserving diffeomorphism $\varphi : M(A) \rightarrow M(B)$ such that $\varphi \circ \iota_{-}(A) = \iota_{+}(B)$ and $\varphi \circ \iota_{+}(A) = \iota_{+}(B)$. Then the equivalence classes form a set $\Gamma(\gamma)$ (by abuse of language) which inherits a group structure from the operation \circ on $\overline{\Gamma}(\gamma)$.

If $P = P_i$ and γ is the bundle of Section 3, we wish to determine the structure of $\Gamma(\gamma)$ more precisely. We begin with the group $k^0(T(\gamma)) \subset K\tilde{O}(T(\gamma))$ consisting of all reduced bundles with index zero. Then we define a map $\bar{\alpha} : \bar{\Gamma}(\gamma) \to k^0(T(\gamma))$ by observing that the map $\iota_+(A)$ induces a unique homotopy class of homotopy equivalences

$$M(A)/\iota(P_l) \xrightarrow{q} T(\gamma).$$

Then we have seen that there is a unique $\alpha \in k^0(T(\gamma))$ such that $k \notin \oplus q^* \alpha$ represents the reduced stable normal bundle of M(A). Set $\bar{\alpha}(A) = \alpha$. Then we have seen that $\bar{\alpha}$ is onto, and it is easy to see that it factors through $\Gamma(\gamma)$ to define $\alpha : \Gamma(\gamma) \to k^0(T(\gamma))$.

LEMMA 7. α is a homomorphism.

Proof. It is enough to show that $\bar{\alpha}(AB) = \bar{\alpha}(A) + \bar{\alpha}(B)$. For any $A \in \bar{\Gamma}(\gamma)$, we have maps

$$T(\gamma) \xrightarrow{\iota_{\pm}} M(A)/\iota_{\pm}(E(\gamma)) \to M(A).$$

Since the maps ι_+ , ι_- induced by ι_+ and ι_- are homotopy equivalences, we may compose their homotopy inverses with $M(A) \to M(A)/\iota_{\mp}(E(\gamma))$ to obtain $q_{\pm}: M(A) \to T(\gamma)$. Notice that $q = q_+$ above.

Writing $M(A) = E(\gamma) \bigcup_{\psi(A)} E(\gamma)$, we may assume $\psi(A)(*) = *$. Let p

be an arc in $E(\gamma)$ from P_i to $* \epsilon S(\gamma)$. Then we may apply Theorem 1 to $A = P_i \cup p(I), X = E(\gamma), Y = S(\gamma)$ and $f = \psi(A)$ to obtain an exact sequence (noting $j = q_+$ and $j' = q_-$)

$$K\widetilde{O}(M(A)) \xleftarrow{q_{+}^{*} + q_{-}^{*}} K\widetilde{O}(T(\gamma)) + K\widetilde{O}(T(\gamma)) \xleftarrow{\pi^{*} + \pi^{*}} K\widetilde{O}(S(S(\gamma))).$$

Since each of q_{+}^{*} and q_{-}^{*} are monomorphisms, and the image of the right hand map is in the diagonal, it follows that $q_{+}^{*} = -q_{-}^{*}$.

Now consider M(AB). A straightforward geometric construction supplies a map

$$\rho: M(AB) \to M(A) \cup_{P_l} M(B)$$

(where the identifying map is $\iota_{-}(B)\iota_{+}(A)^{-1} | \iota_{+}(A)(P_{i})$) such that, up to homotopy, $q_{-}(A B) = q_{-}(A) \circ \rho$, and such that

$$\begin{aligned} v(M(AB)) &= k\xi + \rho^*(q_+(A)^*\bar{\alpha}(A) + q_+(B)^*\bar{\alpha}(B)) \\ &= k\xi + \rho^*(q_+(A)^*\bar{\alpha}(A) - q_-(B)^*\bar{\alpha}(B)) \\ &= k\xi + q_+(AB)^*\bar{\alpha}(A) - q_-(AB)^*\bar{\alpha}(B) \\ &= k\xi + q_+(AB)^*\bar{\alpha}(A) + q_+(AB)\bar{\alpha}(B) \\ &= k\xi + q_+(AB)^*(\bar{\alpha}(A) + \bar{\alpha}(B)), \end{aligned}$$

so $\bar{\alpha}(AB) = \bar{\alpha}(A) + \bar{\alpha}(B)$.

Thus we have an exact sequence

$$1 \to K \to \Gamma(\gamma) \xrightarrow{\alpha} k^0$$

of nonabelian groups, and a description of k^0 in terms of known invariants. Next, we seek a description of K. For this description we need a *J*-homomorphism

$$J: K\widetilde{O}^{-1}(S(\gamma^{+}\varepsilon)) \to \pi^{s}_{2l+k}(T(k\xi)).$$

To define J as a map, recall that the elements of $K\tilde{O}^{-1}(S(\gamma + \varepsilon))$ corresponds to homotopy classes of maps $S(\gamma + \varepsilon) \to SO(n)$ for n large. Select a fixed isotopy class of bundle maps $\mathfrak{F}_0: v(S(\gamma + \varepsilon))^n \to k\xi + \varepsilon^{n-k}$, which extends to $v(E(\gamma + \varepsilon))^n$. Since there is a map $E(\gamma + \varepsilon) \to S(\gamma + \varepsilon)$ such that $E(\gamma + \varepsilon) \to S(\gamma + \varepsilon) \subset E(\gamma + \varepsilon)$ is homotopic to the identity, we have

$$K\tilde{O}^{-1}(P_l) \approx K\tilde{O}^{-1}(E(\gamma + \varepsilon)) \subset K\tilde{O}^{-1}(S(\gamma + \varepsilon)),$$

so there will be exactly two classes-select one and stick to it. Then if

$$\alpha \in K\tilde{O}^{-1}(S(\gamma + \varepsilon))$$

corresponds to α : $S(\gamma + \varepsilon) \rightarrow SO(n)$, let $J(\alpha)$ be the class of

$$\pi_{2l+n+n} T(k\xi + \varepsilon^{n-k} + \varepsilon^n)$$

176

represented by

$$v(S(\gamma + \varepsilon))^n + \varepsilon^n \xrightarrow{\mathfrak{F}_0 + \alpha} k\xi + \varepsilon^{n-k} + \varepsilon^n.$$

It is straightforward to check that J is then a homomorphism.

Now let $\pi_{2l+k}^s T(k\xi) \to \Lambda \to 0$ be the cokernel of J. Define a map

 $K \xrightarrow{\varphi} \Lambda$

by sending $A \to \lambda$ (class of $(M(A), \mathfrak{F})$) where \mathfrak{F} is any bundle isotopy class of bundle maps $v(M(A))^n \to k\xi + \varepsilon^{n-k}$ for n large—such an \mathfrak{F} exists because $A \ \epsilon \ K = \ker \alpha$. It is straightforward to check that α is well-defined, but we still have to check that φ is a homomorphism.

Let $\lambda(P_1) \subset M(A)$. Then there are two bundle homotopy classes of maps

 $v(M)^n \mid \iota_2(P_1) \to k\xi + \varepsilon^{n-k}$

covering

$$P_{l} \xrightarrow{\iota_{2}} M(A) \to P$$

because $K\tilde{O}^{-1}(P_i) = Z_2$. But $K\tilde{O}^{-1}(P) \to K\tilde{O}^{-1}(P_i) \to 0$ is exact, and it factors through $K\tilde{O}^{-1}(M(A))$, so both bundle homotopy classes are restrictions of bundle homotopy classes $\mathfrak{F} : v(M(A))^n \to k\xi + \varepsilon^{n-k}$. Consequently, if $\mathfrak{g}: \mathbf{v}(M(B))^n \to k\xi + \varepsilon^{n-k}$ is a bundle homotopy class, then there exist

$$\mathfrak{F}: v(M(A))^n \to k\xi + \varepsilon^{n-k} \quad \text{and} \quad \mathfrak{K}: v(M(A \cdot B))^n \to k\xi + \varepsilon^{n-k}$$

so that $(M(A \cdot B), \mathfrak{K})$ is k ξ -cobordant to $(M(A), \mathfrak{F})$ $(M(B), \mathfrak{G})$. Thus $\varphi(A \cdot B) = \varphi(A) + \varphi(B)$.

For the next step, set $G = \{A \mid M(A) = S(\gamma + \varepsilon)\}$. Then G is a normal subgroup of $\Gamma(\gamma)$, and in fact, a subgroup of K since $\alpha(A) = 0$ for $A \in G$. Even more is true: G is a subgroup of ker φ . It will turn out that G is very nearly the same group as ker φ .

THEOREM 4. If l is even, but not of the form $2^{i} - 2$ and $l \geq 8$, then $[\ker \varphi:G] \leq 2$.

Proof. Suppose $\varphi(A) = 0$. Then, setting M = M(A), there exists a manifold E, together with $\mathfrak{g}: v(E)^n \to k\xi + \varepsilon^{n-k}$ such that 2E = M. After a sequence of surgeries, we may assume $\pi_i(E) \approx \pi_i(P)$ for i < l.

We wish to factor $E \to P$ through P_l . It factors through P_{2l1} . by Poincaré duality

$$H^{j}(E) = H_{2l+1-j}(E, M),$$

and

$$H_{2l+1-j}(M) \approx H_{2l+1-1}(E) \to H_{2l+1-j}(E, M) \to H_{2l-j}(M) \approx H_{2l-j}(E)$$

for 2l + 1 - j < l, i.e., l + 1 < j. Thus $H^{j}(E; Z_{p}) = 0$ for j > l + 1 and p

any prime (even or odd). Thus also $H^{j}(E; B) = 0$ for j > l + 1 and B any finite Z_{2} -module over Z_{p} . The fiber F of $P_{l+1} \rightarrow P_{2l+1}$ is *l*-connected, $\pi_{l+1}(F) = Z$, and $\pi_{i}(F)$ is finite for l + 1 < i < 2l. The pullback $H \rightarrow E$ of the fibration $P_{l+1} \rightarrow P_{2l+1}$ under $E \rightarrow P_{2l+1}$ has fiber F. The bundle of coefficients $(\pi_{l+1}(F))^{\sim}$ is Z with the trivial Z_{2} action because Z_{2} acts trivially on $\pi_{l+1}(P_{l+1})$. Consequently, the various obstructions to lifting $E \rightarrow P_{2l+1}$ to $E \rightarrow P_{l+1}$ are zero, and we may factor $E \rightarrow P$ through P_{l+1} .

Let $g: E \to P_{l+1}$ be the map found in that way. Assume g is regular at $x \in P_{l+1}$ and consider the framed submanifold $g^{-1}(x) \subset E$. Since $\pi_1(g^{-1}(x)) \to 0$, we know that $v(E) \mid g^{-1}(x)$ is trivial and index $g^{-1}(x) = 0$ if $l \equiv 0 \mod 4$. For $l \equiv 2 \mod 4$, W. Browder [11] has shown that $Arf(g^{-1}(x)) = 0$ provided $l \geq 8$ and $l \neq 2^j - 2$ for all j. Consequently, we may kill the lower and middle homotopy groups of $g^{-1}(x)$ by a sequence of ambient framed modifications in E.

We would like to realize these modifications through homotopies of g. We do so by regarding $1 \times g$ and $1 \times *$ as two embeddings of E in $E \times P_l$. Then since $\pi_i(E) = 0$ for 1 < i < l and $\pi_1(g^{-1}(x)) \to \pi_1(E)$ is the zero map, and since the modifications called for have degree $\leq l/2 + 1$, the method of [9] applies to supply a global isotopy modulo boundaries $g_i : E \times P_l \to E \times P_l$ so that $g_1 \circ (1 \times g)$ is transverse to $E \times *$, and the intersection of $g_1 \circ (1 \times g)(E) \cap (E \times *)$ is Σ , the homotopy *l*-sphere obtained from $g^{-1}(x)$ by applying the foregoing modifications. Then if $\rho : E \times P_l \to P_l$ is the natural projection, $\rho \circ g_l(1 \times g)$ is a homotopy from g to g', also regular at x, with $(g')^{-1}(x)$ a homotopy *l*-sphere. Thus we may as well assume $g^{-1}(x) = \sigma$ a homotopy *l*-sphere. Let V be a tubular neighborhood of Σ in E. Then the framing provides a diffeomorphism $V \approx \Sigma \times D^{l+1}$. But $\Sigma \times D^{l+1} \approx S^l \times D^{l+1}$. To perform surgery on $S^l \times 0$, embed $(E, M) \subset (R^{2l+1+k+r}, R^{2l+k+r})$ where r is large. We have

$$v(E) \xrightarrow{\mathsf{g}} k\xi_{l+1} \times r\varepsilon$$

where G is some pullback of $G: v(E) \to k\xi \times \varepsilon$. Let $D^{l+1} \subset R^{2l+1+k+r}$ be a disc embedded so that is meets E only along S^l , with outward normal e_1 , where e_1 is the field defined by $G(e_1) =$ last vector of $r\varepsilon$. Then G supplies a bundle map

$$G': v(E_1)^{e_1} \mid S^l \to k\xi_{l+1} + (r-1)\varepsilon \mid x = R^{k+r-1}.$$

If G' is regarded as a field of frames over S^{l} in $v(D^{l+1}) = D^{l+1} \times R^{l+r+k}$, it is a map $S^{l} \to V_{k+r-1,l+r+k}$, which is *l*-connected. Thus it extends over D^{l+1} . That is, the field G' extends to a field G'' of (k + r - 1)-frames in $v(D^{l+1})$. Then thickening G''^{l} and rounding corners in the usual way provides an ambient $k\xi_{l+1}$ -cobordism from (E, G) to (E_1, G_1) such that $\varphi_1 : E_1 \to P_{l+1}$ misses x.

Thus, we may assume that $E \to P$ factors through P_l . The surgery above may have introduced a non-trivial $H_{l-1}(\hat{E})$, but since $\pi_{l-1}(P_l) = 0$, that may be surgered out.

Recapitulating, if $\mathfrak{F}: v(M)^n \to k\xi + \varepsilon^{n-k}$ represents zero, then there is

 $\mathfrak{G}: v(E)^n \to k\xi_l + \varepsilon^{n-k}$

such that

(1) $\partial E = M$

(2) $\Im | v(M)^n$ is carried into \Im under $k\xi_l + \varepsilon^{n-k} k\xi + \varepsilon^{n-k}$

(3) $\pi_i(E) \approx \pi_i(P_l)$ for i < l.

Now there are two cases (we wish to assume rank $\pi_{l}(E)$ is odd).

(I) Either rank $\pi_l(E)$ is odd, or there exists a closed $k\xi_l$ -manifold (X, \mathfrak{K}) of dimension 2l + 1 such that $\pi_i(X) \approx \pi_i(P_l)$ for i < l and rank $\pi_l(X)$ is even.

(II) Case (I) is false.

Assume Case (I). If $\pi_l(E)$ has even rank, replace E by the connected sum $E \not \ll X$. The pullback $\overline{E} \not \ll \overline{X}$ of the double cover of P_l has $H_1(\overline{E} \not \ll \overline{X}) = Z$. A suitable 1-modification of $E \not \ll X$ will kill this Z and introduce one in H_2 . After a number of such modifications, we arrive at E_1 satisfying (1), (2), (3) with rank $\pi_l(E_1)$ odd.

We are now ready to apply Wall's theorem. For the Poincaré manifold in his hypothesis, we use the pair (\mathfrak{M}, M) where \mathfrak{M} is the mapping cylinder of $\varphi \mid M : M \to P_l$,

Claim. (\mathfrak{M}, M) is an orientable Poincaré manifold. Proof of Claim. Let η be the non-zero class of $H^2(P_1)$. Then

$$\bar{H}(P_{l}, \text{pt.}) = \overline{Z_{2}[\eta]/\eta^{(l/2)+1}} = 0$$

where the overbar indicates the positive degree part. Also,

$$0 \to H^*(P_i) \xrightarrow{\varphi^*} H^*(M)$$

is exact. Let ζ be the non-zero class in $H^{l+1}(M)$ and let μ be a generator of $H^{2l}(M)$. Let $\delta: H^*(M) \to H^{*+1}(\mathfrak{M}, M)$. Then we have

 $H^{i}(\mathfrak{M}, M) = 0$ for $i \leq l$ and for i odd < 2l + 1,

 $\delta\mu$ generates $H^{2l+1}(\mathfrak{M}, M) \approx Z$,

$$\delta(\zeta \eta^i) ext{ generates } H^{l+1+2i}(\mathfrak{M},M) pprox Z_2 \,.$$

Let v generate $H_{2l+1}(\mathfrak{M}, M)$ so that $\delta \mu \cdot v = 1$. Then ∂v generates $H_2(M)$ and $v \cap \delta(\zeta \eta^i) = \partial(v \cap \zeta \eta^i) =$ generator of

$$H_{l-1-2i}(M) \xrightarrow{\approx} H_{l-1-2i}(P_l).$$

Thus, (\mathfrak{M}, M) is a Poincaré manifold. Let $c : M \times I \to I$ be a collar neighborhood with c(x, 0) = x, let $E' = E - c(M \times (0, 1))$, and let $\psi : E' \to E$

be a diffeomorphism such that $\psi(c(x, 1)) = x$. Define $\mu : E \to \mathfrak{M}$ by

$$\mu(x) = \varphi(\psi(x)) \epsilon P_{l} \subset \mathfrak{M} \text{ for } x \epsilon E' \text{ and } \mu(c(x, t)) = [t, \varphi(x)] \epsilon \mathfrak{M}.$$

Then μ : $(E, M) \to (\mathfrak{M}, M)$ is the identity on M and it is a map of degree 1 of Poincaré spaces. Since $\mathfrak{M} \to P_l$ is a homotopy equivalence, we may take $k\xi_l$ to be a bundle over \mathfrak{M} , which μ pulls back to the stable normal bundle of E. Stating Theorem 6.5 of [8] in the above notation, we have

THEOREM (Wall). If rank kernel $(H_l(\bar{E}, \bar{M}) \rightarrow H_l(\mathfrak{K}, \bar{M}))$ is even, then there exist μ -surgeries of *l*-spheres in int (E) modifying μ to a homotopy equivalence.

Since μ -surgeries may be taken to be $k\xi_l$ -surgeries, this theory tells us that we may assume that μ is a homotopy equivalence provided the rank of the kernel in question is even, and this is what happens in Case I.

On the covering space level we have

$$\begin{array}{c} 0 \to H_{l+1}(\bar{E}) \to H_{l+1}(\bar{E}, M) \to H_{l}(M) \to H_{l}(\bar{E}) \to H_{l}(\bar{E}, M) \to 0 \\ \| \\ Z + Z \end{array}$$

from which we may conclude that rank $H_l(\bar{E}, \bar{M}) = \operatorname{rank} H_l(\bar{E}) - 1$ so that it is even. On the other hand, the same exact sequence holds with $\overline{\mathfrak{M}}$ in place of \bar{E} , so rank $H_l(\overline{\mathfrak{M}}, \bar{M}) = \operatorname{rank} H_l(\overline{\mathfrak{M}}) - 1 = 1 - 1 = 0$. Thus, the rank of the kernel in question is that of $H_l(\bar{E}, \bar{M})$, which is even.

Thus, we may assume that $P_i \subset E$ is a homotopy equivalence. A tubular neighborhood of P_i in E may be taken to be $E(\gamma + \varepsilon)$. Then $E - \operatorname{int} E(\gamma + \varepsilon)$ is an *h*-cobordism from $S(\gamma + \varepsilon)$ to M. Since the Whitehead group of Z_2 is zero, that *h*-cobordism is trivial. In Case II, we have that rank $\pi_i(E)$ is even.

(1) Suppose that φ is a monomorphism. Then the manifold M must be $S(\gamma_k + \varepsilon)$. Suppose \mathfrak{F} extends to

$$v(E')^n \xrightarrow{g'} k\xi_l + \varepsilon^{n-k},$$

where $\pi_i(E') \approx \pi_i(P_l)$ for i < l and rank $\pi_l(E')$ is odd. Then we may glue (E, \mathfrak{G}) and (E', \mathfrak{G}') along (M, \mathfrak{F}) to obtain a $k\xi_l$ -manifold X. On the covering space level,

$$0 \to H_{l+1}(\hat{E}) \oplus H_{l+1}(\hat{E}') \to H_{l+1}(\hat{X}) \to H_l(S^l \times S^l) \to H_l(\hat{E}) \oplus H_l(\hat{E}') \\ \to H_l(\hat{X}) \to 0.$$

As in Case 1,

$$\operatorname{rank} H_{l+1}(\bar{X}) = \operatorname{rank} H_l(\bar{X}),$$
$$\operatorname{rank} H_{l+1}(\bar{E}) = \operatorname{rank} H_l(\bar{E}) - 1,$$
$$\operatorname{rank} H_{l+1}(\bar{E}') = \operatorname{rank} H_l(\bar{E}') - 1,$$

and $H_l(S^l \times S^l) \otimes Q \to H_l(\bar{E}) \otimes Q$, $H_l(\bar{E}') \otimes Q$ have the same kernel, of rank 1, so rank $H_l(\hat{X})$ is even, which contradicts the assumption that we are in Case II. Thus \mathfrak{F} does not extend to E' as above, so \mathfrak{F} does not extend to $E(\gamma_k \times \varepsilon)$, and so ker $\bar{J} \neq 0$.

(2) Suppose $\varphi(A) = \varphi(B) = 0$ where $A \neq 1$ and $B \neq 1$.

Let $(E(A), \mathcal{G}(A))$ and $(E(B), \mathcal{G}(G))$ be $k\xi_l$ -manifolds with

$$\pi_i(E(A)) \approx \pi_i(P_l)$$
 and $\pi_i(E(B)) \approx \pi_i(P_l)$

for i < l and both ranks $\pi_l(E(A))$ and $\pi_l(E(B))$ even, and $\partial E(A) = M(A)$ and $\partial E(B) = M(B)$.

We have $P_l \to M(B) \to E(B) \to P_l$ homotopic to the identity so that $\pi_i(P_l) \approx \pi_i(P_l)$ for i < l, so $K\tilde{O}^{-1}(P_l) \approx K\tilde{O}(P_l)$ and thus $K\tilde{O}^{-1}(E(B)) \to K\tilde{O}^{-1}(P_l) \to 0$ is exact. Thus, $\mathfrak{g}(B)$ may be altered so that we may take the "connected sum" of E(A) and E(B) along $P_l \subset M(A)$, $P_l \subset M(B)$, and so obtain $(E(A \cdot B), \mathfrak{K})$ so that $\partial E(A \cdot B) = M(A \cdot B)$. On the covering space level we have,

$$0 \to H_{l}(S^{l}) \to H_{l}(\overline{E(A)}) \oplus H_{l}(\overline{E(B)}) \to H_{l}(\overline{E(A \cdot B)}) \to 0$$

so rank $\pi_l(E(A \cdot B))$ is odd and consequently, by an application of Wall's theorem as in Case I, we have $M(A \cdot B) = S(\gamma_k + \varepsilon)$.

Thus in Case II there is at most one non-trivial coset of G in ker φ , so $[\ker \varphi:G] \leq 2$.

VI. Computation of $KO(T(\gamma))$

The purpose of this section is to indicate how $K\widetilde{O}(T(\gamma))$ may be computed. Recall that γ is an *l*-plane bundle over P_l such that $\gamma + k\xi_l$ is stably equivalent to $v(P_l)$. Let $t = 2^{\varphi(l)} - 2l - 1 - k$ where $2^{\varphi(l)}$ is the order of the generator of (P_l) . Then

$$\gamma + t = (2^{\varphi(l)} - l - 1 - k \xi_l)$$

 \mathbf{SO}

$$S^{t}T(\gamma) = T(2^{\varphi(l)} - l - k - 1)\xi_{l}$$

and so

$$K\widetilde{O}(T(\boldsymbol{\gamma})) = K\widetilde{O}^{t}(P_{t+2l}/P_{t+l-1}).$$

Thus we need the groups $K\tilde{O}^*(P_r)$, and the exact sequence

 $0 \to I_{t+l-1}^{t-1} \to K\tilde{O}^{t-1}(P_{t+l-1}) \to K\tilde{O}^{t}(P_{t+2l}/P_{t+l-1}) \to K\tilde{O}^{t}(P_{t+2l}) \to I_{t+2l}^{t} \to 0$ which holds for l > 6 and $I_r^* = \text{Im } (K\tilde{O}^*(P) \to K\tilde{O}^*(P_r))$. The groups $K\tilde{O}^*(P_r)$ and I_r^* are known. See for example M. Fujii [11]. The ones we will need are:

$$\begin{split} K\tilde{O}^{-1}(P_r) &= Z + Z_2, \quad r \equiv 3, 7 \ (8), \qquad K\tilde{O}^{-2}(P_r) = Z_2, \quad r \equiv 2, 4 \ (8), \\ K\tilde{O}^{-2}(P_r) &= Z_2, \quad r \equiv 0, 6 \ (8), \qquad K\tilde{O}^{-3}(P_r) = Z, \quad r \equiv 1, 5 \ (8), \\ K\tilde{O}^{-4}(P_r) &= Z_2 \varphi(r + 4) - 3, \quad \text{all } r, \end{split}$$

$$\begin{split} & K \tilde{O}^{-5}(P_r) = Z, \quad r \equiv 3, 7 \ (8), \qquad K \tilde{O}^{-6}(P_r) = 0, \quad r \equiv 0, 6 \ (8), \\ & K_{-}^{-6}(P_r) = Z_2, \quad r \equiv 2, 4 \ (8), \qquad K \tilde{O}^{-7}(P_r) = Z, \quad r \equiv 1, 5 \ (8), \\ & I_r^0 = Z_2 \varphi(r), \qquad I_r^{-4} = Z_2 \varphi(r+4) - 3, \\ & I_r^{-1} = Z_2, \quad I_r^{-5} = 0, \quad I_r^{-2} = Z_2, \quad I_r^{-6} = 0, \quad I_r^{-3} = 0, \quad I_r^{-7} = 0. \end{split}$$

Now, inserting these values into the exact sequence above, we obtain $K\tilde{O}(T(\gamma))$, which we tabulate as follows:

$$2l + k \equiv 0 \ (8):$$

$$K\tilde{O}(T(\gamma)) = Z + Z_2, \quad l \equiv 0, 2 \ (8), \qquad K\tilde{O}(T(\gamma)) = Z, \quad l \equiv 4, 6 \ (8).$$

$$2l + k \equiv 2 \ (8):$$

$$K\tilde{O}(T(\gamma)) = Z.$$

$$2l + k \equiv 4 \ (8):$$

$$K\tilde{O}(T(\gamma)) = Z + Z_2, \quad l \equiv 0, 2 \ (8), \qquad K\tilde{O}(T(\gamma)) = Z, \quad l \equiv 4, 6 \ (8).$$

$$2l + k \equiv 6 \ (8):$$

$$K\tilde{O}(T(\gamma)) = Z.$$

Returning to the situation of section 4, let M be the quotient of a homotopy $S^i \times S^i$ by an involution, and let $q: M \to T(\gamma)$ be the collapse. Then it turned out that there is a unique $\alpha \in KO(T(\gamma))$ such that v(M) is stably $k\xi + q^*\alpha$ where k is the type of the involution. It also turned out that index $(q^*\alpha) = 0$, so index $(\alpha) = 0$. But on $T(\gamma)$, index (α) is simply $cP_{1/2}(\alpha)[T(\gamma)]$ where $c \neq 0$ and $[T(\gamma)]$ is the generator of $H_{2l}(T(\gamma))$. Thus

$$\operatorname{index} : K\widetilde{O}(T(\gamma)) \to Z$$

is a homomorphism in this case. Moreover index is non-zero the free cyclic summand of $K\tilde{O}(T(\gamma))$, so $\alpha \epsilon$ ker (index) = 0 or Z_2 . Thus we obtain two theorems by computation:

THEOREM 5. The homomorphism $\alpha : \Gamma(\gamma)/G \to K\tilde{O}(T(\gamma))$ of Section 5 may be factored through Z_2 , where $Z_2 \to K\tilde{O}(T(\gamma))$ is the unique epimorphism onto kernel (index).

Notation. From now on we write $\alpha : \Gamma(\gamma)/G \to Z_2$. In the case that kernel (index) = 0, we take $\alpha = 0$.

THEOREM 6. If $l \equiv 4, 6$ (8) and M is the quotient of a homotopy $S^{l} \times S^{l}$ by an involution, then v(M) is stably an even multiple of the canonical line bundle.

Remark. This theorem is false for $l \equiv 0$ (8).

VII. The classification

Let *l* be even, ≥ 8 and not $2^{j} - 2$ for any *j*.

Let $\rho: S^l \times S^l \not\cong \Sigma \to S^l \times S^l \not\cong \Sigma$ be an involution and let $M = S^l \times S^l \not\cong \Sigma/\rho$. Then M is a reduced manifold of some type $k, 0 \leq k < 2^{\varphi(l)}, k$ even. Let γ be the *l*-plane bundle over P_l stably equivalent to $(2^{\varphi(l)} - l - 1 - k)\xi_l$, with Euler class a generator or zero as the case may be. Let $\Gamma(\gamma), K, G, \varphi, \alpha$ and Λ have the same meaning as in Section 4. Then the elements of the group $\Gamma(\gamma)/G = H_k$ are in 1 - 1 correspondence with the oriented diffeomorphism classes of reduced manifolds of type k. Thus, ρ determines a unique member of H_k , which in turn determines ρ up to weak equivalence. Thus the weak equivalence classes of involutions of homotopy $S^l \times S^l$, swith l as above are in 1 - 1 correspondence with the elements of the graded group $\{H_0, H_2, \cdots, H_{2^{\varphi(l)}-2}\}$.

Thus, the object is to compute H_k in terms of known invariants. Our 'computation' consists of the following exact sequences

$$K\tilde{O}^{-1}(S(\gamma)) \xrightarrow{J} \pi_{2l+k}(T(k\xi_{\infty})) \xrightarrow{\lambda} \Lambda \to 1$$

$$\downarrow 1 \to K/G \to \Gamma(\gamma)/G \xrightarrow{\alpha} Z_{2}$$

$$\downarrow \varphi$$

$$\downarrow \varphi$$

$$1.$$

Here φ and α denote the homomorphisms induced by φ and α above. Then the fact that α maps into Z_2 follows from Theorem 5 of Section 6. The fact that φ is an epimorphism follows immediately from Theorem 2, and the fact that the kernel of φ is an image of Z_2 follows from Theorem 6.

Remark. There appears to be no way at this level of detecting the elements of $\Gamma(\gamma)/G$ which corresponds to involutions of $S^{l} \times S^{l}$. However, the co-fibration $T(k-1)\xi_{\infty} \to Tk\xi_{\infty} \to S^{k}$ induces a map

$$\pi_{2l+k}^{s} T(k\xi_{\infty}) \xrightarrow{f} \pi_{2l+k}^{s}(S^{k}).$$

Let $\mathfrak{g} \subset \Lambda_{2l+k}^{s}(S^{k})$ be the image of the ordinary *J*-homomorphism. Then it is not hard to see that the elements of K/G corresponding to involutions of $S^{l} \times S^{l}$ are the elements of $\varphi^{-1}(\lambda(f^{-1}(\mathfrak{g})))$.

BIBLIOGRAPHY

- 1. M. F. ATIYAH, Thom complexes, Proc. London Math. Soc., vol. 11 (1961), pp. 261-310.
- 2. P. E. CONNER AND E. E. FLOYD, Differentiable periodic maps, Academic Press, New York, 1964.
- 3. M. KERVAIRE AND J. MILNOR, Groups of homotopy spheres, Ann. of Math., vol. 77 (1063), pp. 504-533.

- 4. R. LASHOF, Poincaré duality and cobordism, Trans. Amer. Math. Soc., vol. 109 (1963), pp. 257-277.
- 5. J. LEVINE, A classification of differentiable knots, Ann. of Math., vol. 82 (1965), pp. 15-50.
- 6. J. MILNOR, A procedure for killing homotopy groups of differentiable manifolds, Proc. Sympos. Pure Math., III, 1961.
- 7. C. T. C. WALL, Surgery of non-simply connected manifolds, Ann. of Math., vol. 84 (1966), pp. 217-276.
- 8. R. WELLS, Cobordism groups of immersions, Topology, vol. 5 (1966), pp. 281-294.
- 9. ——, Modification of intersections, Ill. J. Math., vol. 11 (1967), pp. 281–29 10. ——, Some examples of free involutions of homotomu $S^{l} \times S^{l's}$ Illinois I Ma
- -, Some examples of free involutions of homotopy $S^{i} \times S^{i}s$, Illinois J. Math., to appear.
- 11. W. BROWDER, The Kervaire invariant for framed manifolds, Ann. of Math., vol. 90 (1969), 157-186.
- 12. M. FUJII, The KO groups of projective spaces, Osaka Math. J., vol. 4 (1967), pp. 141-149.
- 13. R. DE SAPIO, Differentiable structures on a product of spheres, Notices Amer. Math. Soc., 1968, p. 628.
 - THE UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS