ON SOME REPRESENTATIONS OF SL(2, Z)

BY
Kraus WOHLFAHRT

Introduction

Subgroups of the modular group :I' = SL(2, Z) may effectively be con-
structed by means of such representations as have been known through F.
Klein, E. Hecke and B. Schoeneberg (cf. [3]). This is also true for represen-
tations which so far do not seem to occur in the literature and whose kernel is
not a congruence subgroup of ;I'.  Any coset decomposition of ,T" relative to a
subgroup T of finite index gives rise to a permutation representation. The case
of cycloidal subgroups I', which were introduced in H. Petersson [2], is par-
ticularly simple and will be treated in detail. Thereby, for any positive in-
teger n, a one-to-one correspondence results between the set of ¢ycloidal sub-
groups of index 7 in ;I'" and a certain set of permutations, each of order at most
2, of n elements.

In a particular case with n = 9 the intersection of all the conjugates of I' is
a normal subgroup A of index 504 in ,I', and the factor group turns out to
be isomorphic to the simple group PSL (2, 8) over the Galois-field GF (8).

Another example concerns a congruence cycloidal subgroup of index 7 in
il The method here leads to a characterization of the matrices of that group.

The idea of associating permutations with modular subgroups has recently
also been treated in M. H. Millington [1].

Using Hecke’s notation, U = (11|01)and T = (0 —1 | 1 0) with
T? = (TU)® = —I generate the modular group. All modular subgroups will
be supposed to contain the matrix —7 = (—10|0 —1).

Let I be a cycloidal subgroup of indexnin L and N = {0,1,2, --- ,n — 1}
the set of integers 0 through » — 1. The cosets in

I = Ujw TU?

are permuted by right-hand multiplication by any matrix LeiI'. If the cosets
be numbered by the corresponding exponents j, a permutation =L of the ele-
ments of N is obtained. Each =L is an element of the symmetric permutation
group S, operating on N, and = : ' — 8, is a representation of ;I' by permuta-

tions. In particular we have #U = w, where w = (012 --- (n—1)) denotes
the cyclic permutation changing j into j + 1 (mod n).
Abbreviating 7 = #T, from T® = —I we have * = 1, the identity element of

S.. We shall let 7L operate on N from the right-hand side, using exponent
notation. Thus 7, as an element of S, , is characterized by

U'TU ¥ eT (j eN),
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and therefore 7 describes the correspondence between the sides of a funda-
mental domain of T', which may be taken to be a connected set of n modular
triangles in the upper half-plane with common cusp «. The relations in ,T’
now imply 7* = (r0)’ = w 9

We have associated with each cycloidal subgroup I of index # in ' a per-

mutation 7 e S, satisfying 7* = (rw)® = .. This map may be reversed by means
of the following

LeEMMA. Let n be a positive integer and S, the symmetric group of permuta-
tions of the elements of N = {0, 1,2, -+, n — 1} with identity element . and
w= (012 --- (n—1)). Then,if r e Sy witht" = +, 5f G = (w, 7) is the sub-
group of S, generated by w and v, and if

H={n|neG0 =0}

denotes the subgroup of all n in G which fix 0 ¢ N, we have
(1) G operates transitively on N, )
(2) @ admits a coset decomposition G = Ujw He',
(3) H is generated by elements n; = w'rw’ (jeN),
(4) the intersection of all conjugates of H in G is trivial.

Proof. (1) is clear and n; ¢ H (j ¢ N) easily verified. Let v ¢ G and so

a
v = 1w .-+ 7™

with numbers a, e N (1 £ » £ t). Choosing j, e N (1 < » £ 1) according to
1= 1,1 = Gu + 5 modn (1 £ v <t)we may write

5 = o™ H::i ("-’_j"ﬂj. wiv’+¢v+1) = :-_'} (’ﬂj, wiv’+a-+r-i.+1)wf:’
ie.y = no’, withg = [’=i nj,e Handj = jo e N. As " ¢ H unlessk =
mod n this establishes (2). If now vy = nw’ ¢ H, then o’ ¢ H and so j =
This proves (3). Finally, as w *Ho" is the subgroup of all elements of
fixing k ¢ N, (4) is also proved.

0
0.
G

3

Let n be a positive integer and 7 € S, , = (r0)* =1 Thereisa representa-
tion 7 : ;' — 8, with #U = w and #T = 7. The image of = is the subgroup
G of S, occurring in the lemma. By (2) then the inverse image I' = 7 H of
H under = affords .T' = Uy TU’ and so is cycloidal of index #n in . It is
clear that I" induces the representation = in the sense of Section 1. Thus we
have the following

TrEOREM. To each cycloidal subgroup T of an index n in 1T there corresponds
through

UTU ™ eT (GeN)

a permutation T € S, with ° = (r0)’ = 1 and vice versa.
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The generators n; (§ ¢ N) of H satisfy certain relations easily read off from
7 and ¢ = 7w, if these permutations are written in cyeles. If (j) is a cycle oc-
curring in 7 or in o, n3 = 1 or 5 = ¢ holds, respectively. To each cycle (jk)
of 7 a relation n; 7, = « corresponds, and each cycle (jkl) of o similarly implies
N MM = L.

By the lemma, (4), the kernel A of the representation = is the intersection
of the conjugates of ' in I'. Therefore @ is isomorphic to the factor group
1T'/A, and H to T'/A.

Both groups I and A are of the same level in ;I' as defined in [4], and if one
of them is a congruence subgroup of iI' so is the other.

4

We now take up the particular case n = 9, 7 = (14)(26)(37)(58). As
o =70 = (015)(274) (386) is of order 3, r indeed corresponds to some cycloidal
subgroup T of index 9 in ,T.

If T were a congruence subgroup of 1T', because its level is 9, it would have to
contain the principal congruence group I (cf. [4]), and sI' C A would follow.

Now (TU*)® = —I mod 9, while 70® = (0317652) is not of order 6, so
(TU*)® ¢ A, and T is not a congruence subgroup of ,T'.
By the relations

"Ig =M= NeNe = N3NT = N5 NS T NoMNs = N2 N7 Ne = N3 NgNe = L
t is seen that %o, 72 and 7 suffice to generate H and satisfy
2 —] =1
Mo = NoMNrn2 M = L

This shows—as does already the permutation 7—that the Riemann surface
belonging to T has genus 1. A. O. L. Atkin has computed the coefficients of
the algebraic equation between two generating functions belonging to I'. He
found essentially (unpublished)

¥ = 4-2° + 225-2° + 3840-x + 16384.
If this is put into Weierstrass normal form,
Y'=4X —@X - g,
then g, = 1515, g5 = 23053 and so
8 =g — 27-gi = —27.34,
j=12%g% 87" = —27%.3%.5%.101°,

The absolute invariant j not being an integer it may be concluded that the
function field of genus 1 belonging to I has no complex multiplication.

5

Continuing with the particular case of Section 4, besides 7° = rqaqrng 7 = ¢
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there ought to be other relations in the group H. Indeed, 7792 = 75 7 is easily
verified, and elimination of #; then leads to

42 _
N2 TNz TN2 T = L.

This may be used to show that 72" 92" (v mod 7), all of order 2, together with ¢
form an abelian subgroup K, normal in H, of order 8. The factor group is
generated by 7 K and so is cyclic or order 7. Therefore, H has order 56 and
then @ has order 504.

Transformation of 7. = (0) (1) (2456873) by powersof 7, = (0) (8) (1267543)
leads to permutations in H which fix any j = 1, 2, -+, 7 besides 0 while
changing the rest of N cyclically. The case j = 8 is covered by ;. There-
fore H is doubly transitive as a permutation group on N’ = {1, 2, --- 8},
G is then a triply transitive permutation group of degree 9, and so its order,
504, is a product of the form 9:8:7-¢, with ¢ the order of any subgroup of G
whose operations fix 3 elements of N. This gives ¢ = 1, therefore ¢ is the only
permutation in G fixing more than 2 elements of N. It is not difficult to show
now that G is isomorphie to the well-known simple group PSL (2, 8) of 2 X 2-
matrices of determinant 1 with elements in the Galois-field GF (8).

6

The Galois-field GF (8) is an extension of degree 3 of the prime field of char-
acteristic 2, and the elements of this field different from zero form a cyeclic
group of order 7.

There is a generator ¢ of this group with * + £ 4+ 1 = 0, and so we may write
GF@8) = {0, 1,¢, &, ---, &', and

£3=1+e, e4=e+£2, e5=1+e+£2, =146

The matrices .
e 1 1 ¢
a=(Go) 2=(1)

give B? = (BA)® = I, therefore there is a representation
D : . —PSL(2,8)

with DU = A and DT = B. That D essentially is the representation
m . 1I' — @G is seen as follows: Introducing the projective line of nine points
with homogeneous coordinates £, n ¢ GF (8) we take ¢ = £y as a projective
scale with valuesin GF(8) u {«}. Any L = (af | v é) in PSL(2, 8) in-
duces a permutation of these values by

t—>L7%t= (Gt 4+ B)(vt + o)™\
In particular, DU, DT and D (T'U), respectively, induce
(008816t efe), (0)O0)(e)(Ee?)Ae),
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and
(0 01) (& &) (e &).

If the values of the ¢-scale are suitably labelled by the elements of N, the 3
permutations above, respectively, exactly correspond to w, 7 and ¢. This
proves the assertion made at the end of Section 5.

7

Another application of the theorem in section 3 arises in the case n = 7,
= (12)(36). Hereo = 7w = (013) (456 ) is of order 3 and so r determines a
cycloidal subgroup Z of index 7 in ,T'.

Z is a congruence subgroup of level 7. Indeed, a system of defining relations
for the factor group ,I'/,I', with ,I' the principal congruence group of prime
level g, is

U'=T' = (TU)' = (TU'TU*)? = +I mod ¢

(jk = 2mod ¢) (cf. [3]), and the assertion made then follows from (rw*)* = .
As a consequence G = (7, w) is isomorphie to the simple group I'/T" of order
168 and H = (n; |  mod 7) has order 24,
Now from

0 = (12)(36), 73 = (1534)(26), and = = (26)(45)

it will be found that K = (13, 74) is an abelian (non-cyclic) group of order 4,
Klein’s “Vierergruppe”, and normal in (g, 73, 74). As K is of index 2 in
(ns, 74) and the latter group does not contain 5o 7 7 = (124)(365) of order 3
as an element, the order of the group generated by 7o, 7s and 74 is at least 24.
Therefore that group is H and of octahedral type, and K is its unique normal
subgroup of order 4. As @ is simple, K is not normal in G and H must be the
normalizer with respect to G of K. This fact will be used to describe the
matrices L € Z.

Let A be the inverse image of K under the permutation representation
m . iI' = G defined by #U= o, #T = 7. A is, of course, a congruence sub-
group of level 7 in ;. Because 74 = 7w isin K, A will contain all modular
matrices which up to a sign are congruent mod 7 to U*TU ™. Taking regard
of the other elements of K in the same way it is found that A consists of all
L €T satisfying

_ (1 0 4 4 4 2 4 1
:l:L=(0 1),<1 3),(2 3> or (4 3> mod 7.

But Z is the inverse image under = of the group H and, because of what has
been said above, will be the normalizer of A with respect to .I'. Therefore Z
consists of all modular matrices L such that

2
L(‘t* 43‘)L“1 (t=1,2,4)
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are congruent mod 7 to matrices

4 48
£\s 3)'

Evaluating congruences leads to this

TureorEM. A certain cycloidal subgroup of index 7 in ' consists of all
L = (ab| cd) e satisfying

a=d@d — &) mod7 (74 ¢),
b= @B —d) mod?7 (7 £ d).

Remark. Similar descriptions may be obtained for cycloidal subgroups of
indices 5 or 11 in T,
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