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1. Introduction

A twisted group lgebra A for a finite group G over field F is n F-Mgebm
which hs bsis {a" g e G} with

(1.1) a a, f(g, g’)a, g, g’ e G

where 0 # f(g, g’) e F (see [6], [22]). This pper is devoted to determining
the number k (A) of non-equivalent irreducible representations of A. The new
feature of this investigation is that F is not required to be lgebriclly closed
or even to be a splitting field for A; rther F is n rbitrry (commutative)
field of characteristic p >_ 0.

In the lgebrMclly closed case, k (A) was determined by Schur [18] for
p 0 and by Asno, Osima, and Tkhsi [2] for p # 0 (see Theorem 1
below), in the language of projective representations. For general F,/ (A)
hs been determined only when A is the group lgebm of G, i.e. when f (g, g’)
1 for all g, g’ e G. (See, however, [3, Theorem VI].) This was done for the
rational and real fields by Frobenius nd Schur [11, 6], nd for generM F by
Witt [21, Theorem 4] nd by Bermn (see [4, Theorem 5.1] nd erlier ppers);
simple presentation bsed on a permutation lemm of Brauer [5, Lemm 1]

appears in [10, (12.3)].
To describe our result, let G be the set of M1 p’-elemeats of G, i.e. of M1

elements whose order is not divisible by p; thus G G if p 0. Let n
be the least common multiple of the orders of the elements of G, and let o

be a primitive n-th root of unity in n algebraic closure E of F. For ech
F-utomorphism of E, d om(*) where m () is n integer determined modulo
n. Cll two elements g, g’ of G F-conjugate if g x-lg’(*)x for some x e G
nd for some . In the group-Mgebra cse, k (A) is the number of F-conjugacy
classes of elements of G. Our mMn theorem, Theorem 6, states that in
general k (A) is the number of such classes which stisfy certain regularity
condition.
The definition of F-conjugcy involves both (i) the inner automorphisms

of G, which re permutations, and (ii) the permutations g -. g() of G. The
regularity condition involves some corresponding monomil transformations of
the Mgebr A obtMned from A by extending the field of scalars to E" nmely
(i) "inner automorphisms" Ka (x) of A (see (4.1)), which are monomiM,
nd (ii) some monomial transformations S () of A (see (6.4)). While
the K (x) appeared implicitly in Schur’s work, the S () are new; in fct
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the construction and study of the latter are our main task. If 9 is the Galois
group of E over F, then setting Da (a, x) S (a)K (x) yields a monomial
representation of 9 X G (see (8.1)), and the orbits of Da composed of pP-ele-
ments are precisely the F-conjugate classes in G. Then the regularity con-
dition for an orbit in the main theorem says in effect that D acts like a
permutation representation on the orbit. This regularity condition is not
what one might guess in the light of the previously known results: see the
Corollary to Theorem 6.

Sections 2 and 3 are devoted mainly to establishing a viewpoint; we in-
troduce a categorical approach for twisted group algebras for later use, and
to be consistent we do the same for monomial representations. Sections 4 and
5 deal with results that we shall quote. In Sections 6 and 7, the heart of
the paper, we study Sa (a), and in Section 8 we quickly obtain the main
theorem. In the final section we consider the special case where all f(g,
are roots of unity, and a partial reduction to this case due to Asano and Shoda
[3]; this special case is the only one in which Schur’s method of (finite) cover-
ing groups could be used. Throughout the paper the cases p 0 and p prime
are treated together by essentially the same arguments.
In a future paper we shall show that the restriction of Sa () to the center

of A is an algebra-automorphism, and use this fact together with some results
from Section 9 to obtain some results on the number of bi0cks of A when p
is prime.

2. Twisted group algebras
Throughout the paper, F will be a field of characteristic p _> 0, and E will

be a fixed algebraic closure of F.
Following Yamazaki’s approach [22, p. 170], we can recast the definition

of twisted group algebras as follows" a twisted group algeSra over F is a triple
(A, G, (Ag)) where A is an F-algebra with identity la, G is a finite group,
and (Ag) is a family of one-dimensional F-subspaces of A indexed by G such
that A ,aA and AA, Ao, for all g, g’ G (of. the definitions given
in a more general situation by Dade [8, p. 18] and Ward [20]). Of course A
has dimension G I, and it is easily seen that 1 e A1 where the subscript 1
means the identity of G. We often refer loosely to the algebra A as a twisted
group algebra and write A in place of (A, G, (A)).
The class of all twisted group algebras over F becomes a category 5 (F) if

we define morphisms as follows (cf. [8, p. 26]): a morphism (M, ) from
(A, G, (A)) to (A, G’, (Ag)) consists of an algebra-homomorphism
M:A ---> A’ (with la M la,) and a group-homomorphism :G -- G’
such that

(2.1) AM Ag, g G.

For example, if G’ is any subgroup of G and if we set Aa, g,,a, A,, then
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(A,, G’, (Ag,)) is a twisted group algebra, and the embeddings of A, into
A and of G’ into G form a morphism.
The E-algebra As E (R) A has a twisted group algebra structure

(A, G, (A) where A E (R) Ag we usually regard A as being embedded
in As. Each morphism (M, u) of A to A’ extends uniquely to a morphism
(M, ) of As to (A’), so that extension of the ground field is a functor from

to

3. Monomial representations

By a monomial space over F we mean a triple (V, S, (V)) where V is a
vector space over F, S is a finite set, and (V) is a family of one-dimensional
F-subspaces of V indexed by S such that V sV thus the dimension
of V equals the cardinality of S. These triples are the objects of a category
(F) where a morphism from (V, S, (V)) to (V’, S’, (V:,)) is a pair
(L,),), where L is a linear transformation of V into V’ and a mapping of S
into S’ such that VL V for all s e S. In particular, each subset S’ of
S determines a monomial space (Vs,, S’, (V,)) where V, ,s, V,.
There is a forgetful functor from 5 (F) to (F) which drops the multiplica-
tions in A and G" in other words, each twisted group algebra over F can be
regarded as a monomial space over F.
By a monomial representation of a finite or infinite group H on (V, S, (V))

we mean a homomorphism h (1 (h), r (h)) of H into the group of invertible
morphisms from (V, S, (V)) to itself; we denote it by (I, r). (Usually 1
is called a monomial representation of H on V, and r is called the associated
permutation representation of H on S" cf. [10, p. 44]; some authors allow only
the case where r is transitive.) For each subset S’ of S which is invariant
under r there is a subrepresentation of (R, r) on (V,, S’, (V,)) defined by
restricting 1 and r.
We shall be concerned with the fixed-point space of R, i.e. the set of those

v e V such that vl (h) v for all h e H. If (1, r) is the subrepresentation
of (I, r) determined by the orbit S of r, then the fixed-point space of I is
the direct sum of the fixed-point spaces of all the 1, while the dimensions of
these spaces are all 0 or 1. Call S an R-regular orbit of r if this dimension is 1.
Thus:

LEMMA 1 (Cf. Berman [4, Lemma 3.1]). The dimension of the fixed-point
space of I is he number of l-regular orbits of r.

This simple lemma will play a role analogous to Brauer’s permutation lemma
[5, Lemma 1], [10, (12.1)].
S is R-regular if and only if there exists a basis {v s e S} of V with
e V such that R acts as a permutation representation of G on this basis. It

is possible to determine whether S is l-regular by looking at a single element
s of S, as follows. Let H(H) be the stability group of s under r; then
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[12, p. 582, Lemmu 18.9] P, is induced by a linear representation of H on

V. Easily, S is R-regular if and only if this is the 1-representation of H,
i.e. if nd only if H is also the stability group of v, under R, where v, is any
non-zero element of V. In other words"

LEMMA 2. Si is R-regular if and only if v. 1 (h V, and h H imply that, It(h) ,.
For any monomial space (V, S, (V,)), the dual space V* of V has a mo-

nomial space structure (V*, S, (V**)) where an element of V* lies in V*
if and only if it annihilates V,, for all s’ s; thus if {v,} is a basis of V with
v, e V, and if {v,*} is the dual basis of V*, then v, e V,. If (L, X) is an in-
vertible morphism of (V, S, (V,)) to itself, then (L*, X-l) is a morphism of
(V*, S, (V*)), where L* is the linear transformation of V* to V* which is
dual (i.e. transposed) to L. If (R, r) is a monomial representation of H on
(V, S, (V.)), then the contragredient monomial representation of H on
(V*, S, (V*)) is defined to be (R*, r) where R*(h) (R(h-1)) *.
LEMMA 3. An orbit of r is R*-regular if and only if it is R-regular.

4. Algebraically closed ground field
For ny twisted group algebra (A, G, (A)) over F, each element x of G

acts by "conjugation" on A as follows (and similarly on A )" choose any non-
zero element a of A, and set

A(4.1) aK (x) a-aa a

Then K (x) is an algebra-automorphism of A, and is independent of the
choice of a. If ka(x) is the inner automorphism of G determined by x,
i.e. if

(4.2) gka (x x-gx, x G,

then (K, ko) is a monomial representation of G on (AE, G, (A)) regarded
as a monomial space over E. Since the set G of all p’-elements gO of G is
invariant under ko, we have a subrepresentation (K, ko) on ((AE), G,
(A0) ) where (A) (A)o0 this in turn has a contragredient representa-
tion (K*, ko) on ((Aa)*, G, (A)g*0).
The algebraically-closed case of our main theorem can be stated as follows"

THEOREM 1 (Schur [18, Theorem VII, Asano-Osima-Takahasi [2, Theorem
4]). The number (A) of non-equivalent (absolutely) irreducible representa-
tions of A is equal to the number of Kt-regular orbits of ko i.e. the number of
K.t-regular conjugate classes of p’-elements of G.

If p does not divide G I, for example if p 0, A is semisimple [6, p. 156],
[22, Theorem 4.1], so that k (A) is the dimension of the center of A; since
this center is the fixed-point space of Ka K, the theorem holds in this
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case by Lemma 1. For the general case we refer to [2] or to [6, p. 156].
(To check that our regularity condition is equivalent to that used by other
authors, use Lemma 2.)

Let {Fj" 1

_
j

_
/c(AS)} be a full set of non-equivalent irreducible repre-

rations of As. By the irreducible characters of As we mean the traces. tr Fj, which are elements of the dual space (AS) * of AS; observe that
the values of . lie in a field of characteristic p. Let be the restriction of. to (AS), so that e (As)*. Then Theorem 1 has the following

COROLLARY. /(" 1

_
j

_
/ (AS)} is an E-basis of the fixed-point space

U ofK*.
Proof. By definition, for any a e (AS) and x e G,

(K* (x)) (a) b (a (K (x))-1) tr F (a aa’ tr F. (a) (a)

so that e U. Now the form a linearly independent set" this follows from
the orthogonality relations for projective Brauer characters as given by Osima
[15, (11.2)], applied to As and then reduced (if necessary) to characteristic p.
Alternatively, it can be proved by combining the linear independence of the

(cf. the proof of [7, (30.15)] with an analogue of the fact (cf. [7, (82.3)])
that in the group-algebra case is constant on each p’-section of G. Thus
{b} is a basis of a subspace of U of dimension/c(AS). On the other hand,

05since the K -regular orbits of ka are the same as the K-regular orbits by
Lemma 3, Theorem 1 shows that k (As) is the dimension of U.

5. Extension of ground field

In this section, let A be any finite-dimensional algebra with 1 over F. Let
be the group of all F-automorphisms of E, i.e. the (infinite) Galois group

of E over F. Define F. and as in the preceding section. For each e ,
Aolet be the mapping of As into E defined by (a) (.(a)), a e

In general is not a character since it is only F-linear, not E-linear. How-
ever, the restriction bIA (jlA) is the trace of an irreducible representa-
tion of A over E, and is therefore the restriction of a uniquely determined
irreducible character of As, which we shall call b.J. Thus

(5.1) .] (a) ( (a)), a e A.

Clearly (1) [o’1 ..’1. so that eo acts as a permutation group on the irre-
ducible characters ..

Let Z" 1

_
i _/ (A) be a full set of non-equivalent irreducible represen-

tations of A (over F). The linear extension Z of each Z to a representation
of As (over E) is reducible but not completely reducible in general;its irre-
ducible constituents may be taken from {F.}. We paraphrase a theorem
of Noether [14, p. 541, Zusammenfassung] which generalizes a result of Schur
[19, Theorem VII.
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THEOREM 2 (Schur, Noether). The characters of all the irreducible con-
stituents ofZ are the elements of an orbit of the action of on }, each appear-
ing with the same multiplicity.

For proof we refer to [14]. Fein [9, Theorem 1.2] has given a proof in the
case that F is a perfect field; for the case of a group algebra over a perfect field
see [7, (70.15)], [10, (11.4)], or [12, p. 546, Theorem 14.12]; for the case where
A is commutative and F is arbitrary, see [17, Lemma 2]. It is not possible
to avoid considering inseparable extensions even when A is a twisted group
algebra: see the example in the last paragraph of [17]. On the other hand,
the multiplicity in Theorem 2 is irrelevant for our purposes; in other words,
we do not need to study the Schur index.

Since each F. appears as a constituent of Z for exactly one i (cf. [12, p.
547, Theorem 14.13]), Theorem 2 establishes a bijection between the Z and
the orbits of 9"
COROLLARY. The number k (A of non-equivalent irreducible representations

of the finite-dimensional F-algebra A with 1 is equal to the number of orbits of
the action.of on the irreducible characters of As.

6. Definition of S(r)
Again let (A, G, (A g)) be a twisted group algebra over F. For each ele-

ment a of the Galois group 9 of E over F, we shall now define an E-linear trans-
formation S (a) of AS onto AS. The motivation of this definition will appear
in the following section.

For each g e G, choose age A g, ag 0; then {a} is an F-basis of A and an
E-basis of As (cf. (1.1) ). Choose a positive integer n divisible by the order of
every element of G. Write n n n,, where the factors are the p-part and
p-regular part of n if p is prime, and where n 1, n, n if p 0. For
each e , choose an integer re(a) such that

m()(6.1)

for every n,-th root of unity o e E, while

(6.2) m(a) 1 (mod n);

m (a) is uniquely determined modulo n. Then

(6.3) a u (g)1

for some non-zero u (g) e E for each g e G. Choose an element v (g) e E such
that v (g)" u (g). Having made these choices, define S (a) for each a e 9
to be the unique E-linear transformation of As to As such that

The requirements on m(a) are more stringent than those stated in the introduction.
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(6.4) a $. (a) (v (g)-/v (g)’(-))a’(-), g G.

(The presence of all the inverses here is explained by Theorem 5.)
We must show that Sa (a) does not depend on the choices of a, n, m (a-),

and v (if). If m (a-) is changed without changing a, n, or v (g), then a mul-
tiple of n is added to m(a-), so that aS (a) is multiplied by a power of
v (g)-a 1 and hence is unchanged. Similarly if v (g) alone is changed,
v (g) is multiplied by an element of E such that " 1; then ’ 1, and
aS (a) is multiplied by --(-), which is 1 by (6.1).

In changing n, we can suppose that the new choice of n is a multiple of the
old, while a is unchanged. Then any choice of m (a-) which satisfies (6.1)
and (6.2) for the new n also satisfies them for the old n, and any choice of
v (g) for the old n also works for the new n (although u (g) is changed). Then
since n does not appear explicitly in (6.4), S (a) is unchanged.

Finally if we replace a by w (g)a where 0 w (g) F without changing n
or m(a-), we must replace u(g) by w(g)’u(g), and we can replace v(g) by
w (g)v (g). Then each side of (6.4) is multiplied by w (g), so that S (a)
is unchanged. Therefore S (a) is ell-defined.

(S(a), sa(a)) is an invertible morphism of the monomial space
(A, G, (A)), where we set

(6.5) gsa (a) g(-’), g e G.

Remark. Although we have taken E to be an algebraic closure of F, our
arguments will use only the following properties of E E is a normal algebraic
(not necessarily separable) extension of F, E contains a primitive n,-th root
of 1 as well as v (g) for all g e G, and E is a splitting field for A; such fields exist
which are also of finite degree over F. If the algebraic closure of F is replaced
by such a field, 9 is replaced by a finite quotient group of itself while S (9)
{S (a) e }, which is a group by Theorem 5 below, is replaced by an iso-
morphic group. Hence S (9) is always finite.

7. Properties of S(a)
We continue the notations of Section 6, and assume whenever necessary

that the choices required in the definition of S (a) have been made. The
following theorem will provide the main connection between the S (a) and
the problem of determining k(A).

THEOREM 3. For each irreducible character of As and each ( ,
..-’ (a), a e A.(7.1) (aS. (a)) .

Proof. It suffices to take a a,. For fixed g and , let M, ),., be
the characteristic roots of F(ao). By (6.3), X7 u(g), so tha X v(g)
where ’’ 1. Setting -1, by (6.1)
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on the other hnd, by (5.1)

(a S () (v(g)/v(g)) tr (Y(a))

()
The property expressed in Theorem 3 is no enough to ehretede S ()

in gener], bu the following theorem nd its oro]lry provide chreteri-
tions.

To 4. For any fixed , the mapping

s,

oZ objects ( G, ( o ( to E-linear transZormations oZ to A is
characterized by the following four conditions"
() or each morphism (M, ) oZ A to A’ in (F),

s, )M M=S,, ).

(b) For each irreducible character o[ o[ A,
(c)
(d)

the identity mapping.

(aS (a)) .-’J (a) a e

If G is cyclic, then S, ((r) is an algebra-automorphism of As.
If the characteristic p of F is prime and if G is a p-group, then S, (r) is

(7.2) a S, (a) (a $, (a))’, 1 _< i _< G I.
We can suppose that a ag for these values of i. Then u (g) (u (g)),
so that we can choose v (g) (v (g)); now (6.4) implies (7.2).

Finally, suppose that G is a p-group; take n nv G I. By (6.2), we
can take m(a-1) 1.. Since v(g) lal F for every g e G, v(g) is purely insepar-
able over F, so that (v (g))-1 v (g). Then (6.4) shows that a, S (a) ag,
which proves (d).

Proof. First we show that (a) satisfies the four conditions. Condition
(b) is a restatement of Theorem 3. As for (a), in defining S (a) and S, (a)
we can assume that n n’ and m (-1) m’ (a-1), and that for any fixed g e G
we have ag, a M ag (The meaning of the primes should be clear.)
Then u’ (gg) u (g), so that we can take v’ (gg) v (g). Then (a) follows
from (6.4).

Observe that (a) implies that if G’ is a subgroup of G and if A’ A a, as
in Section 2, then S, (a) is the restriction of S (a) to A, (AS)a,.

Suppose that G is cyclic, with a fixed generator g. We can choose n G I;
then the algebra As is isomorphic to the polynomial algebra E[X] modulo the
ideal (Xlal u (g)). To prove (c) it suffices to show that
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Conversely, let :() A - T() be any mapping which satisfies the
analogues of (a) through (d);we want to show that T () S () for all A.
It suffices to show that aT () aS () for each g e G. Since the analogue
of (a) implies that T, () is the restriction of T () if A’ A where (g) is
the cyclic group generated by g, we can suppose without loss of generality that
G is cyclic. Then G G’ G" where G’ is a cyclic p-group and G" is a cyclic
p’-group, and the analogues of (a), (c), and (d) show thatT () is completely
determined by T, () where A" A, hence we can suppose that G is a
cyclic p-group. (For p 0, we define that a p-group is a group of order 1,
and that every finite group is a p’-group.) In this case As is a commutative
semisimple [6, p. 156] algebra over an algebraically closed field, so that the

form a basis of (A)*. Then (b) and its analogue imply that T ()
S (), which completes the proof.

Rema@. We can express condition (a) in categorical terminology as fol-
lows. Let be the functor from 5 (F) to the category of all finite-dimensional
E-spaces which sends each object (A, G, (A)) to As, and each morphism
(M, u) to Ms. By [13, p. 62, Proposition 10.3], we can suppose that carries
distinct objects to distinct objects. (Here we do not regard A as embedded in
As, and we speak a bit loosely besides.) We can now regard as a morphism
of 5 (F) to its image category Im [13, p. 62]. Then (a) says precisely that
the mapping () is a natural transformation of to ; since S () is in-
vertible, () is actually a natural equivalence. Then (b), (c), and (d) pro-
vide a characterization of this natural equivalence. A similar result holds
with replaced by a functor from 5 (F) to (E).

I wish to thank my colleagues J. W. Schlesinger and D. C. Newell for help
concerning this remark.
The proof of Theorem 4 also yields the following variant.

COROLLARY. Let (A, G, (A)) be a fixed wisted group algebra over F, and let
r e . Then S (r) is the unique E-linear transformation of As to As such that
the following hold.

(e) For each cyclic subgroup (g) of G, he restriction of S. (r) o A is an
algebra-automorphism of A.

(f) For each cyclic p’-subgroup (g) of G,
,,[.-q (a)

whenever a e A and b is an irreducible character of A)
(g) For each p-element g of G, S. (r) fixes every element of the subspace A of

A""The characterization of S () leads to the following important property.

THEORE 5. For each wisted group algebra (A, G, (A) ) over F, the mapping

so) so
is a monomial representation of on the monomial E-space (A, G, (A



Proof. Since $ (1) is the identity, we need only show that if z, a e , the
mpping A S (z)S (z’) stisfies the four conditions of Theorem 4 for

-I T! )-1S (’). Only (b) requires an explicit calculation" let (’
then .(a$ ()S (a’)) ,

8. The main theorem
Let (A, G, (A)) be a twisted group algebra over F. We have found

monomiul representations (Sa, sa) and (K, ka) of and G respectively on
the same spuce (A, G, (A)), by Theorem 5 and Section 4. By applying
(a) of Theorem 4 to the morphism (K (x) A, ka(x)) of A to A, we can define
a monomial representation (D, da) of the abstract direct product 9 X G on
the same space by setting

(8.1) D (, x) $ (a)K (x) K (x)S (),

(8.2) da (a, x) sa (a)ka (x) ka (x)sa (a)

for 11 e co, x e G. Thus
--1 m(a- 1)(8.3) gda(a,x) x g x, geG.

As in Section 4, we have subrepresentations (S, sa ), (Ka, k ), and (Da, da
on ((A), G, (Ao)) and their contragredients (S*, sa ), etc. Now we can
stute the muin theorem.

THEOREM 6. The number l (A of non-equivalent irreducible representations
of the twisted group algebra A is equal to the number of D-regular orbits of
da i.e. the number of D.-regular F-conjugacy classes of p-elements of G.

Proof. (7.1) implies that S* () (])0 for all e 9; thus S* (r)
permutes the set {} in the same way that permutes {.} in (5.1). Then the
mapping r -S* () U is a permutation representation of 9 on the space U of
the corollary to Theorem 1; in other words the family ( E) of subspaces of U
defines u monomial-space structure on U indexed by {.} on which S* yields
u monomiul representution of 9 with all orbits regular. By the Corollary to
Theorem 2, k (A) is the number of orbits of 9 on {} by Lemma 1, this is the
dimension of the fixed-point space W of the restriction of S* to U. Since U
is in turn the fixed-point space of K*, W consists of those elements of (A)*
which are fixed by both K* and S*, i.e. W is the fixed-point space of D*.
Then Lemmas 1 and 3 imply that/c (A) is the number of D-regulr orbits of
da. To see that these orbits coincide with F-conjugacy classes, use the fact
that the integer n of the Introduction can be taken as n in defining sa (a) (g)
for p’-elements G.

If A is group algebra, then all F-conjugacy classes are D-regular, so that
Theorem 6 implies the known results in this case. Theorem 6 also implies
Theorem 1.
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COROLLARY. (A is less than or equal to the number of F-conjugacy classes
of p’-elements of G which are unions of K.-regular conjugacy classes.

An example of strict inequality here is provided by taking G cyclic of order 4
and A QIX]/(X4 -t- 1) as in the discussion preceding (7.2)" all three Q-
conjugacy classes are Ka-regular, but ] (A) 1 since A is a field.

9. Relationships with a special case
The definition (6.4) of Sa (a) can be simplified in the special case where the

ag in (1.1) can be chosen in such a way that all f (g, g) are/-th roots of 1 for
some positive integer l, i.e. such that

(9.1) f 1

for the 2-cocycle f e Z (G, F). (Here F is the multiplicative group of F, the
action of G on F is trivial, and the notation is multiplicative.) Since
a e A1 where e is the exponent of G, (9.1) implies that a 1 for all g e G.
Then in (6.3) we can choose n so that a 14 for all g. For such n we can
take v (g) 1, so that (6.4) becomes

(9.2) ag Sa () a(-1), g e G.

Since m (aa’) -: m (a)m (a’) m (aa) (mod n) by (6.1) and (6.2), (9.2)
implies that the group Sa (9) is abelian whenever (9.1) holds. In general
S (9) can be non-abelian, e.g. for A Q[X]/(X 2)

_
Q (/2), S (9) is

the symmetric group on 3 letters.
For an arbitrary twisted group algebra A (A, G, (Ag)), a construction

due to Asano and Shoda produces a related twisted group algebra A (not
unique in general) which satisfies the condition of the previous paragraph, as
follows. Choose {ag} as in (1.1). As Schur showed in [18] (cf. [7, p. 360]),
the order r of the cohomology class fB (G, E) of f in H (G, E) divides the

Z (G, Epr-part of G I, and this class contains at least one 2-cocycle f e of
the same order r. Asano and Shoda [3, p. 237, lines 15 and 16] proved that in
fact

(9.3) f e Z (G, F).
It seems worthwhile to give a proof of (9.3) that (unlike .the original proof)
avoids using covering groups. Let

C Ef= (G, );

foraedefinefbyf(g,g’) f(g,g’),etc. Then (f) (c)f (c)f
i (cc-)f. Since (f) 1, f (g, g’) is separable over F, and there is an in-
teger q (a) such that f (g, g’) f (g, g’)q() for all g, g’ e G. Hence f is co-
homologous to (f) (f)q() over E, and by the assumption on orders
f (f#)(); i.e. f# (f) for all , so thatf (g, g’ e F as stated.

As (A), then aga,If we seta c(g)ag e f (g, g’)a, and by (9.3)
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{a} is an F-basis of a twisted group algebra A over F, with (A)s As as
twisted group algebras. Although k(A) /(A) in general, as for A
Q (/2), we shall use A to gain information about A in a future paper.

If we choose n divisible by the orders of all a in the definition of S (),
then c (g)a 1, so that we can take v (g) c (g)-i in (6.4). In particular
this is true if we take n ]G I, for by a result of Alperin and Kuo [1, p. 412,
lines 5 and 6], er divides G I, so that

(9.4) (a)’’= 1, 1
by the discussion preceding (9.2). Furthermore if for the moment we let E
be any normal algebraic extension of F which contains a primitive G I,-th
root of 1 as well as all c (g), then E will fulfill the requirements of the remark in
Section 6: for by the proof of [16, Theorem] (see also [1, Theorem 2] or [12,
p. 641, Theorem 24.6]), E is a splitting field for (A)s As (and similarly
for A,, for all subgroups G of G). This argument uses the fact that the 2-
cocycles used in the proof of [16, Theorem] are defined in the same way as our
f; note that that theorem does not say that every twisted group algebra for G
over the field of G ]-th roots of 1 has this field as a splitting field, cf. Q (i)!
Although S S in general, we do have agreement on the p’-commutator

subgroup G’ (p’) of G, i.e. the intersection of all normal subgroups of G whose
factor group is an abelian p’-group, as follows. In the proof of (9.3),
(cc-1 1, so that cc-1 is a homomorphism of G into E. Then c (g) c (g)

for all g e G’ (p’). Taking n G and v (g) c (g)-l, (6.4) yields

ag S () (c (g)m(-’)/c (g))a-’), g e G’ (p’).

This says that aS (z) (a)m(-’), and by (9.2) for A,
(9.5)

If also F is a perfect field, then c (g) e F for these g, so that A,(,) Az,(,).
These results are analogous to a result of Schur [18, Theorem 3], [12, p. 634,
Theorem 23.6].
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