TWISTED GROUP ALGEBRAS OVER ARBITRARY FIELDS¹

BY
William F. Reynolds

1. Introduction

A twisted group algebra A for a finite group G over a field F is an F-algebra which has a basis $\left\{a_{g}: g \in G\right\}$ with

$$
\begin{equation*}
a_{g} a_{g^{\prime}}=f\left(g, g^{\prime}\right) a_{g g^{\prime}}, \quad g, g^{\prime} \in G \tag{1.1}
\end{equation*}
$$

where $0 \neq f\left(g, g^{\prime}\right) \in F$ (see [6], [22]). This paper is devoted to determining the number $k(A)$ of non-equivalent irreducible representations of A. The new feature of this investigation is that F is not required to be algebraically closed or even to be a splitting field for A; rather F is an arbitrary (commutative) field of characteristic $p \geq 0$.

In the algebraically closed case, $k(A)$ was determined by Schur [18] for $p=0$ and by Asano, Osima, and Takahasi [2] for $p \neq 0$ (see Theorem 1 below), in the language of projective representations. For general $F, k(A)$ has been determined only when A is the group algebra of G, i.e. when $f\left(g, g^{\prime}\right)=$ 1 for all $g, g^{\prime} \in G$. (See, however, [3, Theorem VI].) This was done for the rational and real fields by Frobenius and Schur [11, §6], and for general F by Witt [21, Theorem 4] and by Berman (see [4, Theorem 5.1] and earlier papers); a simple presentation based on a permutation lemma of Brauer [5, Lemma 1] appears in [10, (12.3)].

To describe our result, let G^{0} be the set of all p^{\prime}-elements of G, i.e. of all elements whose order is not divisible by p; thus $G^{0}=G$ if $p=0$. Let n^{0} be the least common multiple of the orders of the elements of G^{0}, and let ω be a primitive n^{0}-th root of unity in an algebraic closure E of F. For each F-automorphism σ of $E, \omega^{\sigma}=\omega^{m(\sigma)}$ where $m(\sigma)$ is an integer determined modulo n^{0}. Call two elements g, g^{\prime} of $G^{0} F$-conjugate if $g^{\prime}=x^{-1} g^{m(\sigma)} x$ for some $x \epsilon G$ and for some σ. In the group-algebra case, $k(A)$ is the number of F-conjugacy classes of elements of G^{0}. Our main theorem, Theorem 6, states that in general $k(A)$ is the number of such classes which satisfy a certain regularity condition.

The definition of F-conjugacy involves both (i) the inner automorphisms of G, which are permutations, and (ii) the permutations $g \mapsto g^{m(\sigma)}$ of G^{0}. The regularity condition involves some corresponding monomial transformations of the algebra A^{E} obtained from A by extending the field of scalars to E : namely (i) "inner automorphisms" $\mathrm{K}_{A}(x)$ of A^{E} (see (4.1)), which are monomial, and (ii) some monomial transformations $\mathbf{S}_{A}(\sigma)$ of A^{E} (see (6.4)). While the $\mathbf{K}_{A}(x)$ appeared implicitly in Schur's work, the $\mathbf{S}_{A}(\sigma)$ are new; in fact

Received September 23, 1968.
${ }^{1}$ This research was supported in part by National Science Foundation grants.
the construction and study of the latter are our main task. If \mathcal{G} is the Galois group of E over F, then setting $\mathrm{D}_{A}(\sigma, x)=\mathbf{S}_{A}(\sigma) \mathbf{K}_{A}(x)$ yields a monomial representation of $\mathcal{G} \times G$ (see (8.1)), and the orbits of \mathbf{D}_{A} composed of p^{\prime}-elements are precisely the F-conjugate classes in G^{0}. Then the regularity condition for an orbit in the main theorem says in effect that D_{A} acts like a permutation representation on the orbit. This regularity condition is not what one might guess in the light of the previously known results: see the Corollary to Theorem 6.

Sections 2 and 3 are devoted mainly to establishing a viewpoint; we introduce a categorical approach for twisted group algebras for later use, and to be consistent we do the same for monomial representations. Sections 4 and 5 deal with results that we shall quote. In Sections 6 and 7, the heart of the paper, we study $\mathbf{S}_{A}(\sigma)$, and in Section 8 we quickly obtain the main theorem. In the final section we consider the special case where all $f\left(g, g^{\prime}\right)$ are roots of unity, and a partial reduction to this case due to Asano and Shoda [3]; this special case is the only one in which Schur's method of (finite) covering groups could be used. Throughout the paper the cases $p=0$ and p prime are treated together by essentially the same arguments.

In a future paper we shall show that the restriction of $\mathbf{S}_{A}(\sigma)$ to the center of A^{E} is an algebra-automorphism, and use this fact together with some results from Section 9 to obtain some results on the number of blocks of A when p is prime.

2. Twisted group algebras

Throughout the paper, F will be a field of characteristic $p \geq 0$, and E will be a fixed algebraic closure of F.

Following Yamazaki's approach [22, p. 170], we can recast the definition of twisted group algebras as follows: a twisted group algebra over F is a triple $\left(A, G,\left(A_{g}\right)\right)$ where A is an F-algebra with identity $1_{A}, G$ is a finite group, and $\left(A_{0}\right)$ is a family of one-dimensional F-subspaces of A indexed by G such that $A=\oplus_{g \epsilon G} A_{g}$ and $A_{g} A_{g^{\prime}}=A_{g g^{\prime}}$ for all $g, g^{\prime} \in G$ (cf. the definitions given in a more general situation by Dade [8, p. 18] and Ward [20]). Of course A has dimension $|G|$, and it is easily seen that $1_{A} \in A_{1}$ where the subscript 1 means the identity of G. We often refer loosely to the algebra A as a twisted group algebra and write A in place of ($A, G,\left(A_{0}\right)$).

The class of all twisted group algebras over F becomes a category $J(F)$ if we define morphisms as follows (cf. [8, p. 26]): a morphism (M, μ) from $\left(A, G,\left(A_{g}\right)\right)$ to ($\left.A^{\prime}, G^{\prime},\left(A_{g}^{\prime}\right)\right)$ consists of an algebra-homomorphism $M: A \rightarrow A^{\prime}$ (with $1_{A} M=1_{A^{\prime}}$) and a group-homomorphism $\mu: G \rightarrow G^{\prime}$ such that

$$
\begin{equation*}
A_{g} M \subseteq A_{\theta \mu}^{\prime}, \quad g \epsilon G \tag{2.1}
\end{equation*}
$$

For example, if G^{\prime} is any subgroup of G and if we set $A_{G^{\prime}}=\oplus_{g^{\prime} \in G^{\prime}} A_{g^{\prime}}$, then
$\left(A_{G^{\prime}}, G^{\prime},\left(A_{g^{\prime}}\right)\right)$ is a twisted group algebra, and the embeddings of $A_{G^{\prime}}$ into A and of G^{\prime} into G form a morphism.

The E-algebra $A^{E}=E \otimes_{F} A$ has a twisted group algebra structure $\left(A^{E}, G,\left(A_{g}^{E}\right)\right)$ where $A_{g}^{E}=E \otimes_{F} A_{g}$; we usually regard A as being embedded in A^{E}. Each morphism (M, μ) of A to A^{\prime} extends uniquely to a morphism $\left(M^{E}, \mu\right)$ of A^{E} to $\left(A^{\prime}\right)^{E}$, so that extension of the ground field is a functor from $\mathfrak{J}(F)$ to $\mathfrak{J}(E)$.

3. Monomial representations

By a monomial space over F we mean a triple $\left(V, S,\left(V_{s}\right)\right.$) where V is a vector space over F, S is a finite set, and (V_{s}) is a family of one-dimensional F-subspaces of V indexed by S such that $V=\oplus_{s \epsilon S} V_{s}$; thus the dimension of V equals the cardinality of S. These triples are the objects of a category $\mathfrak{M}(F)$ where a morphism from $\left(V, S,\left(V_{s}\right)\right)$ to $\left(V^{\prime}, S^{\prime},\left(V_{s^{\prime}}^{\prime}\right)\right)$ is a pair (L, λ), where L is a linear transformation of V into V^{\prime} and λ a mapping of S into S^{\prime} such that $V_{s} L \subseteq V_{s \lambda}^{\prime}$ for all $s \in S$. In particular, each subset S^{\prime} of S determines a monomial space $\left(V_{s^{\prime}}, S^{\prime},\left(V_{s^{\prime}}\right)\right.$) where $V_{S^{\prime}}=\oplus_{s^{\prime} e s^{\prime}} V_{s^{\prime}}$. There is a forgetful functor from $\mathfrak{J}(F)$ to $\mathfrak{M}(F)$ which drops the multiplications in A and G : in other words, each twisted group algebra over F can be regarded as a monomial space over F.

By a monomial representation of a finite or infinite group H on ($V, S,\left(V_{s}\right)$) we mean a homomorphism $h \mapsto(\mathbf{R}(h), \mathbf{r}(h))$ of H into the group of invertible morphisms from ($V, S,\left(V_{s}\right)$) to itself; we denote it by (R, r). (Usually \mathbf{R} is called a monomial representation of H on V, and \mathbf{r} is called the associated permutation representation of H on S : cf. [10, p. 44]; some authors allow only the case where \mathbf{r} is transitive.) For each subset S^{\prime} of S which is invariant under \mathbf{r} there is a subrepresentation of (\mathbf{R}, \mathbf{r}) on $\left(V_{S^{\prime}}, S^{\prime},\left(V_{s^{\prime}}\right)\right.$) defined by restricting R and \mathbf{r}.

We shall be concerned with the fixed-point space of \mathbf{R}, i.e. the set of those $v \epsilon V$ such that $v \mathbf{R}(h)=v$ for all $h \epsilon H$. If ($\mathbf{R}_{i}, \mathbf{r}_{i}$) is the subrepresentation of (R, r) determined by the orbit S_{i} of \mathbf{r}, then the fixed-point space of R is the direct sum of the fixed-point spaces of all the R_{i}, while the dimensions of these spaces are all 0 or 1 . Call S_{i} an R -regular orbit of r if this dimension is 1. Thus:

Lemma 1 (Cf. Berman [4, Lemma 3.1]). The dimension of the fixed-point space of R is the number of R -regular orbits of \mathbf{r}.

This simple lemma will play a role analogous to Brauer's permutation lemma [5, Lemma 1], [10, (12.1)].
S_{i} is R-regular if and only if there exists a basis $\left\{v_{s}: s \epsilon S_{i}\right\}$ of $V_{s_{i}}$ with $v_{s} \in V_{s}$ such that \mathbf{R}_{i} acts as a permutation representation of G on this basis. It is possible to determine whether S_{i} is R-regular by looking at a single element s_{i} of S_{i}, as follows. Let $H_{i}(\subseteq H)$ be the stability group of s_{i} under r; then
[12, p. 582, Lemma 18.9] R_{i} is induced by a linear representation of H_{i} on $V_{s_{i}}$. Easily, S_{i} is R-regular if and only if this is the 1-representation of H_{i}, i.e. if and only if H_{i} is also the stability group of $v_{s_{i}}$ under R , where $v_{s_{i}}$ is any non-zero element of $V_{s_{i}}$. In other words:

Lemma 2. S_{i} is R-regular if and only if $v_{s_{i}} \mathbf{R}(h) \in V_{s_{i}}$ and $h \in H$ imply that $v_{s_{i}} \mathbf{R}(h)=v_{s_{i}}$.

For any monomial space $\left(V, S,\left(V_{s}\right)\right)$, the dual space V^{*} of V has a monomial space structure $\left(V^{*}, S,\left(V_{s}^{*}\right)\right)$ where an element of V^{*} lies in V_{s}^{*} if and only if it annihilates $V_{s^{\prime}}$ for all $s^{\prime} \neq s$; thus if $\left\{v_{s}\right\}$ is a basis of V with $v_{s} \in V_{s}$ and if $\left\{v_{s}^{*}\right\}$ is the dual basis of V^{*}, then $v_{s}^{*} \in V_{s}^{*}$. If (L, λ) is an invertible morphism of ($V, S,\left(V_{s}\right)$) to itself, then $\left(L^{*}, \lambda^{-1}\right)$ is a morphism of ($V^{*}, S,\left(V_{s}^{*}\right)$), where L^{*} is the linear transformation of V^{*} to V^{*} which is dual (i.e. transposed) to L. If (R, \mathbf{r}) is a monomial representation of H on ($V, S,\left(V_{s}\right)$), then the contragredient monomial representation of H on $\left(V^{*}, S,\left(V_{s}^{*}\right)\right)$ is defined to be $\left(\mathbf{R}^{*}, \mathbf{r}\right)$ where $\mathbf{R}^{*}(h)=\left(\mathbf{R}\left(h^{-1}\right)\right)^{*}$.

Lemma 3. An orbit of \mathbf{r} is \mathbf{R}^{*}-regular if and only if it is \mathbf{R}-regular.

4. Algebraically closed ground field

For any twisted group algebra $\left(A, G,\left(A_{g}\right)\right)$ over F, each element x of G acts by "conjugation" on A^{E} as follows (and similarly on A): choose any nonzero element a_{x} of A_{x}, and set

$$
\begin{equation*}
a \mathbf{K}_{A}(x)=a_{x}^{-1} a a_{x}, \quad a \in A^{E} \tag{4.1}
\end{equation*}
$$

Then $\mathbf{K}_{A}(x)$ is an algebra-automorphism of A^{E}, and is independent of the choice of a_{x}. If $\mathbf{k}_{G}(x)$ is the inner automorphism of G determined by x, i.e. if

$$
\begin{equation*}
g \mathbf{k}_{G}(x)=x^{-1} g x, \quad x \in G \tag{4.2}
\end{equation*}
$$

then $\left(\mathbf{K}_{A}, \mathbf{k}_{G}\right)$ is a monomial representation of G on $\left(A^{E}, G,\left(A_{g}^{E}\right)\right)$ regarded as a monomial space over E. Since the set G^{0} of all p^{\prime}-elements g^{0} of G is invariant under \mathbf{k}_{G}, we have a subrepresentation $\left(\mathbf{K}_{A}^{0}, \mathbf{k}_{G}^{0}\right)$ on $\left(\left(A^{E}\right)^{0}, G^{0}\right.$, $\left.\left(A_{g^{0}}^{E}\right)\right)$ where $\left(A^{E}\right)^{0}=\left(A^{E}\right)_{G^{0}}$; this in turn has a contragredient representation $\left(\mathbf{K}_{A}^{0 *}, \mathbf{k}_{G}^{0}\right)$ on $\left(\left(A^{E}\right)^{0 *}, G^{0},\left(A^{E}\right)_{g^{0}}^{*}\right)$.

The algebraically-closed case of our main theorem can be stated as follows:
Theorem 1 (Schur [18, Theorem VI], Asano-Osima-Takahasi [2, Theorem 4]). The number $k\left(A^{E}\right)$ of non-equivalent (absolutely) irreducible representations of A^{E} is equal to the number of \mathbf{K}_{A}^{0}-regular orbits of \mathbf{k}_{G}^{0}, i.e. the number of \mathbf{K}_{A}-regular conjugate classes of p^{\prime}-elements of G.

If p does not divide $|G|$, for example if $p=0, A^{E}$ is semisimple [6, p. 156], [22, Theorem 4.1], so that $k\left(A^{E}\right)$ is the dimension of the center of A^{E}; since this center is the fixed-point space of $\mathbf{K}_{A}=\mathbf{K}_{A}^{0}$, the theorem holds in this
case by Lemma 1. For the general case we refer to [2] or to [6, p. 156]. (To check that our regularity condition is equivalent to that used by other authors, use Lemma 2.)

Let $\left\{\mathrm{F}_{j}: 1 \leq j \leq k\left(A^{E}\right)\right\}$ be a full set of non-equivalent irreducible repretations of A^{E}. By the irreducible characters of A^{E} we mean the traces $\phi_{j}=\operatorname{tr} \mathbf{F}_{j}$, which are elements of the dual space $\left(A^{E}\right)^{*}$ of A^{E}; observe that the values of ϕ_{j} lie in a field of characteristic p. Let ϕ_{j}^{0} be the restriction of ϕ_{j} to $\left(A^{E}\right)^{0}$, so that $\phi_{j}^{0} \in\left(A^{E}\right)^{0 *}$. Then Theorem 1 has the following

Corollary. $\left\{\phi_{j}^{0}: 1 \leq j \leq k\left(A^{E}\right)\right\}$ is an E-basis of the fixed-point space U of $\mathbf{K}_{\boldsymbol{A}}{ }^{*}$.
Proof. By definition, for any $a \epsilon\left(A^{E}\right)^{0}$ and $x \epsilon G$,

$$
\left(\phi_{j}^{0} \mathbf{K}_{A}^{0 *}(x)\right)(a)=\phi_{j}^{0}\left(a\left(\mathbf{K}_{A}^{0}(x)\right)^{-1}\right)=\operatorname{tr} \mathbf{F}_{j}\left(a_{x} a a_{x}^{-1}\right)=\operatorname{tr} \mathbf{F}_{j}(a)=\phi_{j}^{0}(a)
$$

so that $\phi_{j}^{0} \in U$. Now the ϕ_{j}^{0} form a linearly independent set: this follows from the orthogonality relations for projective Brauer characters as given by Osima [15, (11.2)], applied to A^{E} and then reduced (if necessary) to characteristic p. Alternatively, it can be proved by combining the linear independence of the ϕ_{j} (cf. the proof of [7, (30.15)] with an analogue of the fact (cf. [7, (82.3)]) that in the group-algebra case ϕ_{j} is constant on each p^{\prime}-section of G. Thus $\left\{\phi_{j}^{0}\right\}$ is a basis of a subspace of U of dimension $k\left(A^{E}\right)$. On the other hand, since the $\mathbf{K}_{A}^{0 *}$-regular orbits of \mathbf{k}_{G}^{0} are the same as the \mathbf{K}_{A}^{0}-regular orbits by Lemma 3, Theorem 1 shows that $k\left(A^{E}\right)$ is the dimension of U.

5. Extension of ground field

In this section, let A be any finite-dimensional algebra with 1 over F. Let \mathcal{G} be the group of all F-automorphisms of E, i.e. the (infinite) Galois group of E over F. Define \mathbf{F}_{j} and ϕ_{j} as in the preceding section. For each $\sigma \epsilon \mathcal{G}$, let ϕ_{j}^{σ} be the mapping of A^{E} into E defined by $\phi_{j}^{\sigma}(a)=\left(\phi_{j}(a)\right)^{\sigma}, a \in A^{E}$. In general ϕ_{j}^{σ} is not a character since it is only F-linear, not E-linear. However, the restriction $\phi_{j}^{\sigma} \mid A=\left(\phi_{j} \mid A\right)^{\sigma}$ is the trace of an irreducible representation of A over E, and is therefore the restriction of a uniquely determined irreducible character of A^{E}, which we shall call $\phi_{j}^{[\sigma]}$. Thus

$$
\begin{equation*}
\phi_{j}^{[a]}(a)=\left(\phi_{j}(a)\right)^{\sigma}, \quad a \in A \tag{5.1}
\end{equation*}
$$

Clearly $\left(\phi_{j}^{[\sigma]}\right)^{\left[\sigma^{\prime}\right]}=\phi_{j}^{\left[\sigma \sigma^{\prime}\right]}$, so that \mathcal{G} acts as a permutation group on the irreducible characters ϕ_{j}.

Let $\left\{\mathbf{Z}_{i}: 1 \leq i \leq k(A)\right\}$ be a full set of non-equivalent irreducible representations of A (over F). The linear extension \mathbf{Z}_{i}^{F} of each \mathbf{Z}_{i} to a representation of A^{E} (over E) is reducible but not completely reducible in general; its irreducible constituents may be taken from $\left\{\mathrm{F}_{j}\right\}$. We paraphrase a theorem of Noether [14, p. 541, Zusammenfassung] which generalizes a result of Schur [19, Theorem VI].

Theorem 2 (Schur, Noether). The characters of all the irreducible constituents of \mathbf{Z}_{i}^{E} are the elements of an orbit of the action of \mathcal{G} on $\left\{\phi_{j}\right\}$, each appearing with the same multiplicity.

For proof we refer to [14]. Fein [9, Theorem 1.2] has given a proof in the case that F is a perfect field; for the case of a group algebra over a perfect field see [7, (70.15)], [10, (11.4)], or [12, p. 546, Theorem 14.12]; for the case where A is commutative and F is arbitrary, see [17, Lemma 2]. It is not possible to avoid considering inseparable extensions even when A is a twisted group algebra: see the example in the last paragraph of [17]. On the other hand, the multiplicity in Theorem 2 is irrelevant for our purposes; in other words, we do not need to study the Schur index.

Since each \mathbf{F}_{j} appears as a constituent of \boldsymbol{Z}_{i}^{H} for exactly one i (cf. [12, p. 547, Theorem 14.13]), Theorem 2 establishes a bijection between the \mathbf{Z}_{i} and the orbits of \mathcal{G} :

Corollary. The number $k(A)$ of non-equivalent irreducible representations of the finite-dimensional F-algebra A with 1 is equal to the number of orbits of the action of \mathcal{G} on the irreducible characters of A^{E}.

6. Definition of $\mathbf{S}_{\Delta}(\sigma)$

Again let $\left(A, G,\left(A_{\theta}\right)\right)$ be a twisted group algebra over F. For each element σ of the Galois group \mathcal{G} of E over F, we shall now define an E-linear transformation $\mathbf{S}_{A}(\sigma)$ of A^{E} onto A^{E}. The motivation of this definition will appear in the following section.

For each $g \epsilon G$, choose $a_{\theta} \in A_{\theta}, a_{g} \neq 0$; then $\left\{a_{\theta}\right\}$ is an F-basis of A and an E-basis of A^{E} (cf. (1.1)). Choose a positive integer n divisible by the order of every element of G. Write $n=n_{p} n_{p^{\prime}}$, where the factors are the p-part and p-regular part of n if p is prime, and where $n_{p}=1, n_{p^{\prime}}=n$ if $p=0$. For each $\sigma \in \mathcal{G}$, choose ${ }^{2}$ an integer $m(\sigma)$ such that

$$
\begin{equation*}
\omega^{\sigma}=\omega^{m(\sigma)} \tag{6.1}
\end{equation*}
$$

for every $n_{p^{\prime}}$-th root of unity $\omega \in E$, while

$$
\begin{equation*}
m(\sigma) \equiv 1 \quad\left(\bmod n_{p}\right) \tag{6.2}
\end{equation*}
$$

$m(\sigma)$ is uniquely determined modulo n. Then

$$
\begin{equation*}
a_{g}^{n}=u(g) 1_{A} \tag{6.3}
\end{equation*}
$$

for some non-zero $u(g) \epsilon E$ for each $g \epsilon G$. Choose an element $v(g) \epsilon E$ such that $v(g)^{n}=u(g)$. Having made these choices, define $\mathbf{S}_{A}(\sigma)$ for each $\sigma \in \mathcal{G}$ to be the unique E-linear transformation of A^{E} to A^{E} such that

[^0]\[

$$
\begin{equation*}
a_{g} \mathbf{S}_{A}(\sigma)=\left(v(g)^{\sigma^{-1}} / v(g)^{m\left(\sigma^{-1}\right)}\right) a_{g}^{m\left(\sigma^{-1}\right)}, \quad g \epsilon G \tag{6.4}
\end{equation*}
$$

\]

(The presence of all the inverses here is explained by Theorem 5.)
We must show that $\mathbf{S}_{A}(\sigma)$ does not depend on the choices of $a_{\theta}, n, m\left(\sigma^{-1}\right)$, and $v(g)$. If $m\left(\sigma^{-1}\right)$ is changed without changing a_{θ}, n, or $v(g)$, then a multiple of n is added to $m\left(\sigma^{-1}\right)$, so that $a_{\sigma} \mathbf{S}_{A}(\sigma)$ is multiplied by a power of $v(g)^{-n} a_{g}^{n}=1_{A}$ and hence is unchanged. Similarly if $v(g)$ alone is changed, $v(g)$ is multiplied by an element ω of E such that $\omega^{n}=1$; then $\omega^{n_{p^{\prime}}}=1$, and $a_{g} \mathbf{S}_{A}(\sigma)$ is multiplied by $\omega^{\sigma^{-1}} \omega^{-m\left(\sigma^{-1}\right)}$, which is 1 by (6.1).

In changing n, we can suppose that the new choice of n is a multiple of the old, while a_{g} is unchanged. Then any choice of $m\left(\sigma^{-1}\right)$ which satisfies (6.1) and (6.2) for the new n also satisfies them for the old n, and any choice of $v(g)$ for the old n also works for the new n (although $u(g)$ is changed). Then since n does not appear explicitly in (6.4), $\mathbf{S}_{A}(\sigma)$ is unchanged.

Finally if we replace a_{g} by $w(g) a_{g}$ where $0 \neq w(g) \in F$ without changing n or $m\left(\sigma^{-1}\right)$, we must replace $u(g)$ by $w(g)^{n} u(g)$, and we can replace $v(g)$ by $w(g) v(g)$. Then each side of (6.4) is multiplied by $w(g)$, so that $\mathbf{S}_{A}(\sigma)$ is unchanged. Therefore $\mathbf{S}_{A}(\sigma)$ is well-defined.
$\left(\mathbf{S}_{A}(\sigma), \mathbf{S}_{G}(\sigma)\right)$ is an invertible morphism of the monomial space ($A, G,\left(A_{g}\right)$), where we set

$$
\begin{equation*}
g \mathbf{S}_{G}(\sigma)=g^{m\left(\sigma^{-1}\right)}, \quad g \in G \tag{6.5}
\end{equation*}
$$

Remark. Although we have taken E to be an algebraic closure of F, our arguments will use only the following properties of $E: E$ is a normal algebraic (not necessarily separable) extension of F, E contains a primitive $n_{p^{\prime}}$-th root of 1 as well as $v(g)$ for all $g \epsilon G$, and E is a splitting field for A^{E}; such fields exist which are also of finite degree over F. If the algebraic closure of F is replaced by such a field, \mathcal{G} is replaced by a finite quotient group of itself while $\mathbf{S}_{A}(\mathcal{G})=$ $\left\{\mathbf{S}_{A}(\sigma): \sigma \in \mathcal{G}\right\}$, which is a group by Theorem 5 below, is replaced by an isomorphic group. Hence $\mathbf{S}_{A}(\varsigma)$ is always finite.

7. Properties of $\mathrm{S}_{\mathbf{A}}(\sigma)$

We continue the notations of Section 6, and assume whenever necessary that the choices required in the definition of $\mathbf{S}_{A}(\sigma)$ have been made. The following theorem will provide the main connection between the $\mathrm{S}_{A}(\sigma)$ and the problem of determining $k(A)$.

Theorem 3. For each irreducible character ϕ_{j} of A^{E} and each $\sigma \in \mathcal{G}$,

$$
\begin{equation*}
\phi_{j}\left(a \mathbf{S}_{A}(\sigma)\right)=\phi_{j}^{[\sigma-1]}(a), \quad a \in A^{E} \tag{7.1}
\end{equation*}
$$

Proof. It suffices to take $a=a_{g}$. For fixed g and ϕ_{j}, let $\lambda_{1}, \lambda_{2}, \cdots$ be the characteristic roots of $\mathbf{F}_{j}\left(a_{g}\right)$. By (6.3), $\lambda_{i}^{n}=u(g)$, so that $\lambda_{i}=v(g) \omega_{i}$ where $\omega_{i}^{n_{p^{\prime}}}=1$. Setting $\tau=\sigma^{-1}$, by (6.1)

$$
\phi_{j}^{[\tau]}\left(a_{\theta}\right)=\left(\operatorname{tr} \mathrm{F}_{j}\left(a_{\theta}\right)\right)^{\tau}=\left(\sum_{i} \lambda_{i}\right)^{\tau}=v(g)^{\tau} \sum_{i} \omega_{i}^{\tau}=v(g)^{\tau} \sum_{i} \omega_{i}^{m(r)} ;
$$

on the other hand, by (5.1)

$$
\begin{aligned}
\phi_{j}\left(a_{g} \mathbf{S}_{A}(\sigma)\right) & =\left(v(g)^{\tau} / v(g)^{m(\tau)}\right) \operatorname{tr}\left(\mathbf{F}_{j}\left(a_{g}\right)\right)^{m(\tau)} \\
& =\left(v(g)^{\tau} / v(g)^{m(\tau)}\right) \sum_{i} \lambda_{i}^{m(\tau)} \\
& =v(g)^{\tau} \sum_{i} \omega_{i}^{m(\tau)}
\end{aligned}
$$

The property expressed in Theorem 3 is not enough to characterize $\mathbf{S}_{A}(\sigma)$ in general, but the following theorem and its corollary provide characterizations.

Theorem 4. For any fixed $\sigma \in \mathcal{G}$, the mapping

$$
\mathfrak{S}(\sigma): A \mapsto \mathbf{S}_{A}(\sigma)
$$

of objects $A=\left(A, G,\left(A_{g}\right)\right)$ of $\mathfrak{J}(F)$ to E-linear transformations of A^{E} to A^{E} is characterized by the following four conditions:
(a) For each morphism (M, μ) of A to A^{\prime} in $\mathfrak{J}(F)$,

$$
\mathbf{S}_{A}(\sigma) M^{E}=M^{E} \mathbf{S}_{A^{\prime}}(\sigma)
$$

(b) For each irreducible character of ϕ_{j} of A^{E},

$$
\phi_{j}\left(a \mathbf{S}_{A}(\sigma)\right)=\phi_{j}^{[\sigma-1]}(a), \quad a \in A^{E}
$$

(c) If G is cyclic, then $\mathbf{S}_{A}(\sigma)$ is an algebra-automorphism of A^{E}.
(d) If the characteristic p of F is prime and if G is a p-group, then $\mathbf{S}_{A}(\sigma)$ is the identity mapping.

Proof. First we show that $\subseteq(\sigma)$ satisfies the four conditions. Condition (b) is a restatement of Theorem 3. As for (a), in defining $\mathbf{S}_{A}(\sigma)$ and $\mathbf{S}_{A^{\prime}}(\sigma)$ we can assume that $n=n^{\prime}$ and $m\left(\sigma^{-1}\right)=m^{\prime}\left(\sigma^{-1}\right)$, and that for any fixed $g \epsilon G$ we have $a_{g \mu}^{\prime}=a_{g} M=a_{g} M^{T}$. (The meaning of the primes should be clear.) Then $u^{\prime}(g \mu)=u(g)$, so that we can take $v^{\prime}(g \mu)=v(g)$. Then (a) follows from (6.4).

Observe that (a) implies that if G^{\prime} is a subgroup of G and if $A^{\prime}=A_{G^{\prime}}$ as in Section 2, then $\mathbf{S}_{A^{\prime}}(\sigma)$ is the restriction of $\mathbf{S}_{A}(\sigma)$ to $A_{G^{\prime}}^{E}=\left(A^{E}\right)_{\sigma^{\prime}}$.

Suppose that G is cyclic, with a fixed generator g. We can choose $n=|G|$; then the algebra A^{E} is isomorphic to the polynomial algebra $E[X]$ modulo the ideal $\left(X^{|G|}-u(g)\right)$. To prove (c) it suffices to show that

$$
\begin{equation*}
a_{g}^{i} \mathbf{S}_{A}(\sigma)=\left(a_{g} \mathbf{S}_{A}(\sigma)\right)^{i}, \quad 1 \leq i \leq|G| \tag{7.2}
\end{equation*}
$$

We can suppose that $a_{g^{i}}=a_{g}^{i}$ for these values of i. Then $u\left(g^{i}\right)=(u(g))^{i}$, so that we can choose $v\left(g^{i}\right)=(v(g))^{i}$; now (6.4) implies (7.2).

Finally, suppose that G is a p-group; take $n=n_{p}=|G| . \quad$ By (6.2), we can take $m\left(\sigma^{-1}\right)=1$. Since $v(g)^{|\sigma|} \epsilon F$ for every $g \epsilon G, v(g)$ is purely inseparable over F, so that $(v(g))^{\sigma^{-1}}=v(g)$. Then (6.4) shows that $a_{g} \mathrm{~S}_{A}(\sigma)=a_{g}$, which proves (d).

Conversely, let $\mathfrak{T}(\sigma): A \mapsto \mathrm{~T}_{A}(\sigma)$ be any mapping which satisfies the analogues of (a) through (d); we want to show that $\mathbf{T}_{A}(\sigma)=\mathbf{S}_{A}(\sigma)$ for all A. It suffices to show that $a_{g} \mathbf{T}_{A}(\sigma)=a_{g} \mathbf{S}_{A}(\sigma)$ for each $g \in G$. Since the analogue of (a) implies that $\mathrm{T}_{A^{\prime}}(\sigma)$ is the restriction of $\mathrm{T}_{A}(\sigma)$ if $A^{\prime}=A_{\langle g\rangle}$ where $\langle g\rangle$ is the cyclic group generated by g, we can suppose without loss of generality that G is cyclic. Then $G=G^{\prime} \times G^{\prime \prime}$ where G^{\prime} is a cyclic p-group and $G^{\prime \prime}$ is a cyclic p^{\prime}-group, and the analogues of (a), (c), and (d) show that $\mathrm{T}_{A}(\sigma)$ is completely determined by $\mathrm{T}_{A^{\prime \prime}}(\sigma)$ where $A^{\prime \prime}=A_{G^{\prime \prime}}$; hence we can suppose that G is a cyclic p^{\prime}-group. (For $p=0$, we define that a p-group is a group of order 1 , and that every finite group is a p^{\prime}-group.) In this case A^{E} is a commutative semisimple [6, p. 156] algebra over an algebraically closed field, so that the ϕ_{j} form a basis of $\left(A^{E}\right)^{*}$. Then (b) and its analogue imply that $\mathrm{T}_{A}(\sigma)=$ $\mathbf{S}_{A}(\sigma)$, which completes the proof.

Remark. We can express condition (a) in categorical terminology as follows. Let Φ be the functor from $\mathfrak{J}(F)$ to the category of all finite-dimensional E-spaces which sends each object $\left(A, G,\left(A_{g}\right)\right)$ to A^{E}, and each morphism (M, μ) to M^{E}. By [13, p. 62, Proposition 10.3], we can suppose that Φ carries distinct objects to distinct objects. (Here we do not regard A as embedded in A^{E}, and we speak a bit loosely besides.) We can now regard Φ as a morphism of $\mathcal{J}(F)$ to its image category $\operatorname{Im} \Phi[13, \mathrm{p} .62]$. Then (a) says precisely that the mapping $S(\sigma)$ is a natural transformation of Φ to Φ; since $S_{A}(\sigma)$ is invertible, $\subseteq(\sigma)$ is actually a natural equivalence. Then (b), (c), and (d) provide a characterization of this natural equivalence. A similar result holds with Φ replaced by a functor from $\mathfrak{J}(\mathrm{F})$ to $\mathfrak{T}(E)$.

I wish to thank my colleagues J. W. Schlesinger and D. C. Newell for help concerning this remark.

The proof of Theorem 4 also yields the following variant.
Corollary. Let $\left(A, G,\left(A_{g}\right)\right)$ be a fixed twisted group algebra over F, and let $\sigma \in \mathcal{G}$. Then $\mathbf{S}_{A}(\sigma)$ is the unique E-linear transformation of A^{E} to A^{E} such that the following hold.
(e) For each cyclic subgroup $\langle g\rangle$ of G, the restriction of $\mathbf{S}_{A}(\sigma)$ to $A_{\langle g\rangle}^{E}$ is an algebra-automorphism of $A_{\langle\theta\rangle}^{E}$.
(f) For each cyclic p^{\prime}-subgroup $\langle g\rangle$ of G,

$$
\psi_{j}\left(a \mathbf{S}_{A}(\sigma)\right)=\psi_{j}^{[\sigma-1]}(a)
$$

whenever $a \in A_{\langle g\rangle}^{E}$ and ψ_{j} is an irreducible character of $A_{\langle g\rangle}^{E}$.
(g) For each p-element g of $G, \mathbf{S}_{A}(\sigma)$ fixes every element of the subspace $A_{\boldsymbol{g}}^{\boldsymbol{B}}$ of A^{E}.

The characterization of $\mathbf{S}_{A}(\sigma)$ leads to the following important property.
Theorem 5. For each twisted group algebra $\left(A, G,\left(A_{g}\right)\right)$ over F, the mapping

$$
\left(\mathbf{S}_{\boldsymbol{A}}, \mathbf{s}_{G}\right): \sigma \mapsto\left(\mathbf{S}_{\boldsymbol{A}}(\sigma), \mathbf{s}_{G}(\sigma)\right)
$$

is a monomial representation of \mathcal{G} on the monomial E-space $\left(A^{E}, G,\left(A_{g}^{E}\right)\right.$).

Proof. Since $\mathbf{S}_{A}(1)$ is the identity, we need only show that if $\sigma, \sigma^{\prime} \in \mathcal{G}$, the mapping $A \mapsto \mathbf{S}_{A}(\sigma) \mathbf{S}_{A}\left(\sigma^{\prime}\right)$ satisfies the four conditions of Theorem 4 for $\mathbf{S}_{A}\left(\sigma \sigma^{\prime}\right)$. Only (b) requires an explicit calculation: let $\tau=\sigma^{-1}, \tau^{\prime}=\left(\sigma^{\prime}\right)^{-1}$; then

$$
\phi_{j}\left(a \mathbf{S}_{A}(\sigma) \mathbf{S}_{A}\left(\sigma^{\prime}\right)\right)=\phi_{j}^{\left[\gamma^{\prime}\right]}\left(a \mathbf{S}_{A}(\sigma)\right)=\left(\phi_{j}^{\left[\gamma^{\prime}\right]}\right)^{[\tau]}(a)=\phi_{j}^{\left[\gamma^{\prime} \tau\right]}(a)
$$

8. The main theorem

Let $\left(A, G,\left(A_{g}\right)\right)$ be a twisted group algebra over F. We have found monomial representations $\left(\mathbf{S}_{A}, \mathbf{S}_{G}\right)$ and $\left(\mathbf{K}_{A}, \mathbf{k}_{G}\right)$ of \mathcal{G} and G respectively on the same space $\left(A^{E}, G,\left(A_{g}^{\boldsymbol{E}}\right)\right)$, by Theorem 5 and Section 4. By applying (a) of Theorem 4 to the morphism $\left(\mathbf{K}_{A}(x) \mid A, \mathbf{k}_{G}(x)\right)$ of A to A, we can define a monomial representation $\left(D_{A}, d_{G}\right)$ of the abstract direct product $\mathcal{G} \times G$ on the same space by setting

$$
\begin{align*}
\mathbf{D}_{A}(\sigma, x) & =\mathbf{S}_{A}(\sigma) \mathbf{K}_{A}(x)=\mathbf{K}_{A}(x) \mathbf{S}_{A}(\sigma) \tag{8.1}\\
\mathbf{d}_{G}(\sigma, x) & =\mathbf{s}_{G}(\sigma) \mathbf{k}_{G}(x)=\mathbf{k}_{G}(x) \mathbf{S}_{G}(\sigma) \tag{8.2}
\end{align*}
$$

for all $\sigma \in \mathcal{G}, x \in G$. Thus

$$
\begin{equation*}
g \mathbf{d}_{G}(\sigma, x)=x^{-1} g^{m\left(\sigma^{-1}\right)} x, \quad \quad g \in G \tag{8.3}
\end{equation*}
$$

As in Section 4, we have subrepresentations $\left(\mathbf{S}_{A}^{0}, \mathbf{s}_{G}^{0}\right)$, $\left(\mathbf{K}_{A}^{0}, \mathbf{k}_{G}^{0}\right)$, and ($\mathbf{D}_{A}^{0}, \mathbf{d}_{G}^{0}$) on $\left(\left(A^{E}\right)^{0}, G^{0},\left(A_{g^{0}}^{F}\right)\right)$ and their contragredients $\left(\mathbf{S}_{\boldsymbol{A}}^{0 *}, \mathbf{s}_{G}^{0}\right)$, etc. Now we can state the main theorem.

Theorem 6. The number $k(A)$ of non-equivalent irreducible representations of the twisted group algebra A is equal to the number of $\mathbf{D}_{\mathbf{A}}^{0}$-regular orbits of \mathbf{d}_{G}^{0}, i.e. the number of \mathbf{D}_{A}-regular F-conjugacy classes of p^{\prime}-elements of G.

Proof. (7.1) implies that $\phi_{j}^{0} \mathbf{S}_{A}^{0 *}(\tau)=\left(\phi_{j}^{[\tau]}\right)^{0}$ for all $\tau \in \mathcal{G}$; thus $\mathbf{S}_{A}^{0 *}(\tau)$ permutes the set $\left\{\phi_{j}^{0}\right\}$ in the same way that τ permutes $\left\{\phi_{j}\right\}$ in (5.1). Then the mapping $\tau \mapsto \mathbf{S}_{A}^{0 *}(\tau) \mid U$ is a permutation representation of \mathcal{G} on the space U of the corollary to Theorem 1 ; in other words the family ($\phi_{j}^{0} E$) of subspaces of U defines a monomial-space structure on U indexed by $\left\{\phi_{j}\right\}$ on which $\mathbf{S}_{A}^{0 *}$ yields a monomial representation of \mathcal{G} with all orbits regular. By the Corollary to Theorem $2, k(A)$ is the number of orbits of \mathcal{G} on $\left\{\phi_{j}\right\}$; by Lemma 1 , this is the dimension of the fixed-point space W of the restriction of $\mathbf{S}_{A}^{0 *}$ to U. Since U is in turn the fixed-point space of $\mathbf{K}_{A}^{0 *}, W$ consists of those elements of $\left(A^{E}\right)^{0 *}$ which are fixed by both $\mathbf{K}_{A}^{0 *}$ and $\mathbf{S}_{A}^{0 *}$, i.e. W is the fixed-point space of $\mathbf{D}_{A}^{0 *}$. Then Lemmas 1 and 3 imply that $k(A)$ is the number of \mathbf{D}_{A}^{0}-regular orbits of \mathbf{d}_{G}^{0}. To see that these orbits coincide with F-conjugacy classes, use the fact that the integer n^{0} of the Introduction can be taken as n in defining $\mathbf{s}_{G}(\sigma) \mid\langle g\rangle$ for p^{\prime}-elements G.

If A is a group algebra, then all F-conjugacy classes are D_{A}-regular, so that Theorem 6 implies the known results in this case. Theorem 6 also implies Theorem 1.

Corollary. $\quad k(A)$ is less than or equal to the number of F-conjugacy classes of p^{\prime}-elements of G which are unions of \mathbf{K}_{A}-regular conjugacy classes.

An example of strict inequality here is provided by taking G cyclic of order 4 and $A=\mathrm{Q}[X] /\left(X^{4}+1\right)$ as in the discussion preceding (7.2): all three \mathbf{Q} conjugacy classes are $\mathbf{K}_{\mathbf{A}}$-regular, but $k(A)=1$ since A is a field.

9. Relationships with a special case

The definition (6.4) of $\mathbf{S}_{A}(\sigma)$ can be simplified in the special case where the a_{g} in (1.1) can be chosen in such a way that all $f\left(g, g^{\prime}\right)$ are l-th roots of 1 for some positive integer l, i.e. such that

$$
\begin{equation*}
f^{l}=1 \tag{9.1}
\end{equation*}
$$

for the 2-cocycle $f \in Z^{2}\left(G, F^{\times}\right)$. (Here F^{\times}is the multiplicative group of F, the action of G on F^{\times}is trivial, and the notation is multiplicative.) Since $a_{g}^{e} \in A_{1}$ where e is the exponent of G, (9.1) implies that $a_{g}^{e l}=1_{A}$ for all $g \epsilon G$. Then in (6.3) we can choose n so that $a_{g}^{n}=1_{A}$ for all g. For such n we can take $v(g)=1$, so that (6.4) becomes

$$
\begin{equation*}
a_{g} \mathbf{S}_{A}(\sigma)=a_{g}^{m(\sigma-1)} \tag{9.2}
\end{equation*}
$$

$$
g \in G
$$

Since $m\left(\sigma \sigma^{\prime}\right) \equiv m(\sigma) m\left(\sigma^{\prime}\right) \equiv m\left(\sigma^{\prime} \sigma\right)(\bmod n)$ by (6.1) and (6.2), (9.2) implies that the group $\mathbf{S}_{A}(\varrho)$ is abelian whenever (9.1) holds. In general $\mathbf{S}_{A}(乌)$ can be non-abelian, e.g. for $A=\mathbf{Q}[X] /\left(X^{3}-2\right) \cong \mathbf{Q}(\sqrt[3]{2}), \mathbf{S}_{A}(乌)$ is the symmetric group on 3 letters.

For an arbitrary twisted group algebra $A=\left(A, G,\left(A_{g}\right)\right)$, a construction due to Asano and Shoda produces a related twisted group algebra $A^{\#}$ (not unique in general) which satisfies the condition of the previous paragraph, as follows. Choose $\left\{a_{a}\right\}$ as in (1.1). As Schur showed in [18] (cf. [7, p. 360]), the order r of the cohomology class $f B^{2}\left(G, E^{\times}\right)$of f in $H^{2}\left(G, E^{\times}\right)$divides the p^{\prime}-part of $|G|$, and this class contains at least one 2-cocycle $f^{\#} \epsilon Z^{2}\left(G, E^{\times}\right)$of the same order r. Asano and Shoda [3, p. 237, lines 15 and 16] proved that in fact

$$
\begin{equation*}
f^{\#} \in Z^{2}\left(G, F^{\times}\right) \tag{9.3}
\end{equation*}
$$

It seems worthwhile to give a proof of (9.3) that (unlike the original proof) avoids using covering groups. Let

$$
f^{\#}=(\delta c) f, c \in C^{1}\left(G, E^{\times}\right)
$$

for $\sigma \in \mathcal{G}$ define f^{σ} by $f^{\sigma}\left(g, g^{\prime}\right)=f\left(g, g^{\prime}\right)^{\sigma}$, etc. Then $\left(f^{\#}\right)^{\sigma}=(\delta c)^{\sigma} f^{\sigma}=\delta\left(c^{\sigma}\right) f=$ $\delta\left(c^{\sigma} c^{-1}\right) f^{\#}$. Since $\left(f^{\#}\right)^{r}=1, f^{\#}\left(g, g^{\prime}\right)$ is separable over F, and there is an integer $q(\sigma)$ such that $f^{\#}\left(g, g^{\prime}\right)^{\sigma}=f^{\#}\left(g, g^{\prime}\right)^{q(\sigma)}$ for all $g, g^{\prime} \in G$. Hence $f^{\#}$ is cohomologous to $\left(f_{\#}^{\#}\right)^{\sigma}=\left(f^{\#}\right)^{q(\sigma)}$ over E, and by the assumption on orders $f^{\#}=\left(f^{\#}\right)^{q(\sigma)}$; i.e. $f^{\#}=\left(f^{\#}\right)^{\sigma}$ for all σ, so that $f^{\#}\left(g, g^{\prime}\right) \in F$ as stated.

If we set $a_{g}^{\#}=c(g) a_{g} \in A^{E}(\supseteq A)$, then $a_{g}^{\#} a_{g^{\prime}}^{\#}=f^{\#}\left(g, g^{\prime}\right) a_{g g^{\prime}}^{\#}$, and by (9.3)
$\left\{a_{g}^{\#}\right\}$ is an F-basis of a twisted group algebra $A^{\#}$ over F, with $\left(A^{\#}\right)^{E}=A^{E}$ as twisted group algebras. Although $k\left(A^{\#}\right) \neq k(A)$ in general, as for $A \cong$ $\mathrm{Q}(\sqrt[3]{2})$, we shall use $A^{\#}$ to gain information about A in a future paper.

If we choose n divisible by the orders of all $a_{g}^{\#}$ in the definition of $\mathbf{S}_{A}(\sigma)$, then $c(g)^{n} a_{g}^{n}=1_{A}$, so that we can take $v(g)=c(g)^{-1}$ in (6.4). In particular this is true if we take $n=|G|$, for by a result of Alperin and Kuo [1, p. 412, lines 5 and 6], er divides $|G|$, so that

$$
\begin{equation*}
\left(a_{g}^{\#}\right)^{|\sigma|}=1_{A \#}=1_{A} \tag{9.4}
\end{equation*}
$$

by the discussion preceding (9.2). Furthermore if for the moment we let E be any normal algebraic extension of F which contains a primitive $|G|_{\boldsymbol{p}^{\prime}}$-th root of 1 as well as all $c(g)$, then E will fulfill the requirements of the remark in Section 6: for by the proof of [16, Theorem] (see also [1, Theorem 2] or [12, p. 641, Theorem 24.6]), E is a splitting field for $\left(A^{\#}\right)^{E}=A^{E}$ (and similarly for $A_{G^{\prime}}^{E}$, for all subgroups G^{\prime} of G). This argument uses the fact that the 2cocycles used in the proof of [16, Theorem] are defined in the same way as our $f^{\#}$; note that that theorem does not say that every twisted group algebra for G over the field of $|G|$-th roots of 1 has this field as a splitting field, cf. $\mathbf{Q}(i)$!

Although $\mathbf{S}_{A} \neq \mathbf{S}_{A \#}$ in general, we do have agreement on the p^{\prime}-commutator subgroup $G^{\prime}\left(p^{\prime}\right)$ of G, i.e. the intersection of all normal subgroups of G whose factor group is an abelian p^{\prime}-group, as follows. In the proof of (9.3), $\delta\left(c^{\sigma} c^{-1}\right)=1$, so that $c^{\sigma} c^{-1}$ is a homomorphism of G into E^{\times}. Then $c(g)^{\sigma}=c(g)$ for all $g \in G^{\prime}\left(p^{\prime}\right)$. Taking $n=|G|$ and $v(g)=c(g)^{-1},(6.4)$ yields

$$
a_{a} \mathbf{S}_{A}(\sigma)=\left(c(g)^{m\left(\sigma^{-1}\right)} / c(g)\right) a_{g}^{m\left(\sigma^{-1}\right)}, \quad g \in G^{\prime}\left(p^{\prime}\right)
$$

This says that $a_{g}^{\#} \mathbf{S}_{A}(\sigma)=\left(a_{g}^{\#}\right)^{m\left(\sigma^{-1}\right)}$, and by (9.2) for $A^{\#}$,

$$
\begin{equation*}
\mathbf{S}_{A}(\sigma)\left|A_{G^{\prime}\left(p^{\prime}\right)}^{E}=\mathbf{S}_{A \#}(\sigma)\right| A_{\sigma^{\prime}\left(p^{\prime}\right)}^{E} \tag{9.5}
\end{equation*}
$$

If also F is a perfect field, then $c(g) \in F$ for these g, so that $A_{G^{\prime}\left(p^{\prime}\right)}^{\#}=A_{G^{\prime}\left(p^{\prime}\right)}$. These results are analogous to a result of Schur [18, Theorem 3], [12, p. 634, Theorem 23.6].

References

1. J. L. Alperin and Tzee-Nan Kuo, The exponent and the projective representations of a finite group, Illinois J. Math., vol. 11 (1967), pp. 410-413.
2. K. Asano, M. Osima, and M. Takahasi, Über die Darstellung von Gruppen durch Kollineationen im Körper der Charakteristik p, Proc. Phys.-Math. Soc. Japan (3), vol. 19 (1937), pp. 199-209.
3. K. Asano and K. Shoda, Zur Theorie der Darstellungen einer endlichen Gruppe durch Kollineationen, Compositio Math., vol. 2 (1935), pp. 230-240.
4. S. D. Berman, Characters of linear representations of finite groups over an arbitrary field, Mat. Sb., vol. 44 (1958), pp. 409-456. (Russian)
5. R. Brauer, On the connection between the ordinary and the modular characters of groups of finite order, Ann. of Math., vol. 42 (1941), pp. 926-935.
6. S. B. Conlon, Twisted group algebras and their representations, J. Austral. Math. Soc., vol. 4 (1964), pp. 152-173.
7. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
8. E. C. Dade, Characters and solvable groups, mimeographed notes, Univ. of Illinois, Urbana, 1968.
9. B. Fein, The Schur index for projective representations of finite groups, Pacific J. Math., vol. 28 (1969), pp. 87-100.
10. W. Feit, Characters of finite groups, Benjamin, New York, 1967.
11. G. Frobenius and I. Schur, Über die reellen Darstellungen der endlichen Gruppen, S.-B. Preussischen Akad. Wiss. Berlin, 1906, pp. 186-208; reprinted in F. G. Frobenius, Gesammelte Abhandlungen, vol. 3, Springer, Berlin, 1968, pp. 355377.
12. B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
13. B. Mitchell, Theory of categories, Academic Press, New York, 1965.
14. E. Noether, Nichtkommutative Algebra, Math. Zeitschr., vol. 37 (1933), pp. 514-541.
15. M. Osima, On the representations of groups of finite order, Math. J. Okayama Univ., vol. 1 (1952), pp. 33-61.
16. W. F. Reynolds, Projective representations of finite groups in cyclotomic fields, Illinois J. Math., vol. 9 (1965), pp. 191-198.
17. ——, Block idempotents and normal p-subgroups, Nagoya Math. J., vol. 28 (1966), pp. 1-13.
18. I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math., vol. 127 (1904), pp. 20-50.
19. —, Beiträge zur Theorie der Gruppen linearer homogener Substitutionen, Trans. Amer. Math. Soc., vol. 10 (1909), pp. 159-175.
20. H. N. WARD, The analysis of representations induced from a normal subgroup, Michigan Math. J., vol. 15 (1968), pp. 417-428.
21. E. Witt, Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper, J. Reine Angew. Math., vol. 190 (1952), pp. 231-245.
22. K. Yamazaki, On projective representations and ring extensions of finite groups, J. Fac. Sci. Univ. Tokyo Sect. I, vol. 10 (1964), pp. 147-195.

Tufts University
Medford, Massachusetts

[^0]: ${ }^{2}$ The requirements on $m(\sigma)$ are more stringent than those stated in the introduction.

