TWISTED GROUP ALGEBRAS OVER ARBITRARY FIELDS¹

BY

WILLIAM F. REYNOLDS

1. Introduction

A twisted group algebra A for a finite group G over a field F is an F-algebra which has a basis $\{a_g : g \in G\}$ with

(1.1)
$$a_g a_{g'} = f(g, g') a_{gg'}, \qquad g, g' \in G$$

where $0 \neq f(g, g') \in F$ (see [6], [22]). This paper is devoted to determining the number k(A) of non-equivalent irreducible representations of A. The new feature of this investigation is that F is not required to be algebraically closed or even to be a splitting field for A; rather F is an arbitrary (commutative) field of characteristic $p \geq 0$.

In the algebraically closed case, k(A) was determined by Schur [18] for p = 0 and by Asano, Osima, and Takahasi [2] for $p \neq 0$ (see Theorem 1 below), in the language of projective representations. For general F, k(A) has been determined only when A is the group algebra of G, i.e. when f(g, g') = 1 for all $g, g' \in G$. (See, however, [3, Theorem VI].) This was done for the rational and real fields by Frobenius and Schur [11, §6], and for general F by Witt [21, Theorem 4] and by Berman (see [4, Theorem 5.1] and earlier papers); a simple presentation based on a permutation lemma of Brauer [5, Lemma 1] appears in [10, (12.3)].

To describe our result, let G^0 be the set of all p'-elements of G, i.e. of all elements whose order is not divisible by p; thus $G^0 = G$ if p = 0. Let n^0 be the least common multiple of the orders of the elements of G^0 , and let ω be a primitive n^0 -th root of unity in an algebraic closure E of F. For each F-automorphism σ of E, $\omega^{\sigma} = \omega^{m(\sigma)}$ where $m(\sigma)$ is an integer determined modulo n^0 . Call two elements g, g' of G^0 F-conjugate if $g' = x^{-1}g^{m(\sigma)}x$ for some $x \in G$ and for some σ . In the group-algebra case, k(A) is the number of F-conjugacy classes of elements of G^0 . Our main theorem, Theorem 6, states that in general k(A) is the number of such classes which satisfy a certain regularity condition.

The definition of F-conjugacy involves both (i) the inner automorphisms of G, which are permutations, and (ii) the permutations $g \mapsto g^{m(\sigma)}$ of G^0 . The regularity condition involves some corresponding monomial transformations of the algebra $A^{\mathcal{E}}$ obtained from A by extending the field of scalars to E: namely (i) "inner automorphisms" $\mathbf{K}_A(x)$ of $A^{\mathcal{E}}$ (see (4.1)), which are monomial, and (ii) some monomial transformations $\mathbf{S}_A(\sigma)$ of $A^{\mathcal{E}}$ (see (6.4)). While the $\mathbf{K}_A(x)$ appeared implicitly in Schur's work, the $\mathbf{S}_A(\sigma)$ are new; in fact

Received September 23, 1968.

¹ This research was supported in part by National Science Foundation grants.

the construction and study of the latter are our main task. If \mathcal{G} is the Galois group of E over F, then setting $\mathbf{D}_{\mathcal{A}}(\sigma, x) = \mathbf{S}_{\mathcal{A}}(\sigma)\mathbf{K}_{\mathcal{A}}(x)$ yields a monomial representation of $\mathcal{G} \times \mathcal{G}$ (see (8.1)), and the orbits of $\mathbf{D}_{\mathcal{A}}$ composed of p'-elements are precisely the F-conjugate classes in \mathcal{G}^0 . Then the regularity condition for an orbit in the main theorem says in effect that $\mathbf{D}_{\mathcal{A}}$ acts like a permutation representation on the orbit. This regularity condition is not what one might guess in the light of the previously known results: see the Corollary to Theorem 6.

Sections 2 and 3 are devoted mainly to establishing a viewpoint; we introduce a categorical approach for twisted group algebras for later use, and to be consistent we do the same for monomial representations. Sections 4 and 5 deal with results that we shall quote. In Sections 6 and 7, the heart of the paper, we study $S_A(\sigma)$, and in Section 8 we quickly obtain the main theorem. In the final section we consider the special case where all f(g, g')are roots of unity, and a partial reduction to this case due to Asano and Shoda [3]; this special case is the only one in which Schur's method of (finite) covering groups could be used. Throughout the paper the cases p = 0 and p prime are treated together by essentially the same arguments.

In a future paper we shall show that the restriction of $S_A(\sigma)$ to the center of A^B is an algebra-automorphism, and use this fact together with some results from Section 9 to obtain some results on the number of blocks of A when pis prime.

2. Twisted group algebras

Throughout the paper, F will be a field of characteristic $p \ge 0$, and E will be a fixed algebraic closure of F.

Following Yamazaki's approach [22, p. 170], we can recast the definition of twisted group algebras as follows: a *twisted group algebra* over F is a triple $(A, G, (A_{g}))$ where A is an F-algebra with identity 1_{A} , G is a finite group, and (A_{g}) is a family of one-dimensional F-subspaces of A indexed by G such that $A = \bigoplus_{g \in G} A_{g}$ and $A_{g} A_{g'} = A_{gg'}$ for all $g, g' \in G$ (cf. the definitions given in a more general situation by Dade [8, p. 18] and Ward [20]). Of course Ahas dimension |G|, and it is easily seen that $1_{A} \in A_{1}$ where the subscript 1 means the identity of G. We often refer loosely to the algebra A as a twisted group algebra and write A in place of $(A, G, (A_{g}))$.

The class of all twisted group algebras over F becomes a category $\mathfrak{I}(F)$ if we define morphisms as follows (cf. [8, p. 26]): a morphism (M, μ) from $(A, G, (A_g))$ to $(A', G', (A'_g))$ consists of an algebra-homomorphism $M: A \to A'$ (with $\mathbf{1}_A M = \mathbf{1}_{A'}$) and a group-homomorphism $\mu: G \to G'$ such that

$$(2.1) A_g M \subseteq A'_{g\mu}, g \epsilon G.$$

For example, if G' is any subgroup of G and if we set $A_{G'} = \bigoplus_{g' \in G'} A_{g'}$, then

 $(A_{\sigma'}, G', (A_{\sigma'}))$ is a twisted group algebra, and the embeddings of $A_{\sigma'}$ into A and of G' into G form a morphism.

The *E*-algebra $A^{E} = E \otimes_{F} A$ has a twisted group algebra structure $(A^{E}, G, (A^{E}_{g}))$ where $A^{E}_{g} = E \otimes_{F} A_{g}$; we usually regard *A* as being embedded in A^{E} . Each morphism (M, μ) of *A* to *A'* extends uniquely to a morphism (M^{E}, μ) of A^{E} to $(A')^{E}$, so that extension of the ground field is a functor from $\mathfrak{I}(F)$ to $\mathfrak{I}(E)$.

3. Monomial representations

By a monomial space over F we mean a triple $(V, S, (V_s))$ where V is a vector space over F, S is a finite set, and (V_s) is a family of one-dimensional F-subspaces of V indexed by S such that $V = \bigoplus_{s \in S} V_s$; thus the dimension of V equals the cardinality of S. These triples are the objects of a category $\mathfrak{M}(F)$ where a morphism from $(V, S, (V_s))$ to $(V', S', (V'_{s'}))$ is a pair (L, λ) , where L is a linear transformation of V into V' and λ a mapping of S into S' such that $V_s L \subseteq V'_{s\lambda}$ for all $s \in S$. In particular, each subset S' of S determines a monomial space $(V_{S'}, S', (V_{s'}))$ where $V_{S'} = \bigoplus_{s' \in S'} V_{s'}$. There is a forgetful functor from $\mathfrak{I}(F)$ to $\mathfrak{M}(F)$ which drops the multiplications in A and G: in other words, each twisted group algebra over F can be regarded as a monomial space over F.

By a monomial representation of a finite or infinite group H on $(V, S, (V_s))$ we mean a homomorphism $h \mapsto (\mathbf{R}(h), \mathbf{r}(h))$ of H into the group of invertible morphisms from $(V, S, (V_s))$ to itself; we denote it by (\mathbf{R}, \mathbf{r}) . (Usually \mathbf{R} is called a monomial representation of H on V, and \mathbf{r} is called the associated permutation representation of H on S: cf. [10, p. 44]; some authors allow only the case where \mathbf{r} is transitive.) For each subset S' of S which is invariant under \mathbf{r} there is a subrepresentation of (\mathbf{R}, \mathbf{r}) on $(V_{S'}, S', (V_{s'}))$ defined by restricting \mathbf{R} and \mathbf{r} .

We shall be concerned with the *fixed-point space* of **R**, i.e. the set of those $v \in V$ such that $v\mathbf{R}(h) = v$ for all $h \in H$. If $(\mathbf{R}_i, \mathbf{r}_i)$ is the subrepresentation of (\mathbf{R}, \mathbf{r}) determined by the orbit S_i of \mathbf{r} , then the fixed-point space of **R** is the direct sum of the fixed-point spaces of all the \mathbf{R}_i , while the dimensions of these spaces are all 0 or 1. Call S_i an **R**-regular orbit of \mathbf{r} if this dimension is 1. Thus:

LEMMA 1 (Cf. Berman [4, Lemma 3.1]). The dimension of the fixed-point space of \mathbf{R} is the number of \mathbf{R} -regular orbits of \mathbf{r} .

This simple lemma will play a role analogous to Brauer's permutation lemma [5, Lemma 1], [10, (12.1)].

 S_i is **R**-regular if and only if there exists a basis $\{v_s : s \in S_i\}$ of V_{S_i} with $v_s \in V_s$ such that \mathbf{R}_i acts as a permutation representation of G on this basis. It is possible to determine whether S_i is **R**-regular by looking at a single element s_i of S_i , as follows. Let $H_i(\subseteq H)$ be the stability group of s_i under \mathbf{r} ; then

[12, p. 582, Lemma 18.9] \mathbf{R}_i is induced by a linear representation of H_i on V_{s_i} . Easily, S_i is **R**-regular if and only if this is the 1-representation of H_i , i.e. if and only if H_i is also the stability group of v_{s_i} under **R**, where v_{s_i} is any non-zero element of V_{s_i} . In other words:

LEMMA 2. S_i is **R**-regular if and only if $v_{s_i} \mathbf{R}(h) \in V_{s_i}$ and $h \in H$ imply that $v_{s_i} \mathbf{R}(h) = v_{s_i}$.

For any monomial space $(V, S, (V_s))$, the dual space V^* of V has a monomial space structure $(V^*, S, (V^*_s))$ where an element of V^* lies in V^*_s if and only if it annihilates $V_{s'}$ for all $s' \neq s$; thus if $\{v_s\}$ is a basis of V with $v_s \in V_s$ and if $\{v^*_s\}$ is the dual basis of V^* , then $v^*_s \in V^*_s$. If (L, λ) is an *in*vertible morphism of $(V, S, (V_s))$ to itself, then (L^*, λ^{-1}) is a morphism of $(V^*, S, (V^*_s))$, where L^* is the linear transformation of V^* to V^* which is dual (i.e. transposed) to L. If (\mathbf{R}, \mathbf{r}) is a monomial representation of H on $(V, S, (V_s))$, then the contragredient monomial representation of H on $(V^*, S, (V^*_s))$ is defined to be $(\mathbf{R}^*, \mathbf{r})$ where $\mathbf{R}^*(h) = (\mathbf{R}(h^{-1}))^*$.

LEMMA 3. An orbit of \mathbf{r} is \mathbf{R}^* -regular if and only if it is \mathbf{R} -regular.

4. Algebraically closed ground field

For any twisted group algebra $(A, G, (A_g))$ over F, each element x of G acts by "conjugation" on A^{E} as follows (and similarly on A): choose any non-zero element a_x of A_x , and set

(4.1)
$$a\mathbf{K}_{A}(x) = a_{x}^{-1}aa_{x}, \qquad a \in A^{E}.$$

Then $\mathbf{K}_{A}(x)$ is an algebra-automorphism of $A^{\mathbb{E}}$, and is independent of the choice of a_{x} . If $\mathbf{k}_{G}(x)$ is the inner automorphism of G determined by x, i.e. if

then $(\mathbf{K}_A, \mathbf{k}_G)$ is a monomial representation of G on $(A^E, G, (A^B_g))$ regarded as a monomial space over E. Since the set G^0 of all p'-elements g^0 of G is invariant under \mathbf{k}_G , we have a subrepresentation $(\mathbf{K}^0_A, \mathbf{k}^0_G)$ on $((A^E)^0, G^0,$ $(A^B_{g^0}))$ where $(A^E)^0 = (A^E)_{G^0}$; this in turn has a contragredient representation $(\mathbf{K}^{0*}_A, \mathbf{k}^0_G)$ on $((A^E)^{0*}, G^0, (A^E)^*_{g^0})$.

The algebraically-closed case of our main theorem can be stated as follows:

THEOREM 1 (Schur [18, Theorem VI], Asano-Osima-Takahasi [2, Theorem 4]). The number $k(A^{E})$ of non-equivalent (absolutely) irreducible representations of A^{E} is equal to the number of \mathbf{K}_{A}^{0} -regular orbits of \mathbf{k}_{G}^{0} , i.e. the number of \mathbf{K}_{A} -regular conjugate classes of p'-elements of G.

If p does not divide |G|, for example if $p = 0, A^{E}$ is semisimple [6, p. 156], [22, Theorem 4.1], so that $k(A^{E})$ is the dimension of the center of A^{E} ; since this center is the fixed-point space of $\mathbf{K}_{A} = \mathbf{K}_{A}^{0}$, the theorem holds in this

case by Lemma 1. For the general case we refer to [2] or to [6, p. 156]. (To check that our regularity condition is equivalent to that used by other authors, use Lemma 2.)

Let $\{\mathbf{F}_j: 1 \leq j \leq k(A^E)\}$ be a full set of non-equivalent irreducible repretations of A^E . By the *irreducible characters* of A^E we mean the traces $\phi_j = \text{tr } \mathbf{F}_j$, which are elements of the dual space $(A^E)^*$ of A^E ; observe that the values of ϕ_j lie in a field of characteristic p. Let ϕ_j^0 be the restriction of ϕ_j to $(A^E)^0$, so that $\phi_j^0 \in (A^E)^{0*}$. Then Theorem 1 has the following

COROLLARY. $\{\phi_j^0: 1 \leq j \leq k(A^E)\}$ is an E-basis of the fixed-point space U of \mathbb{K}_A^{0*} .

Proof. By definition, for any $a \in (A^{\mathbb{E}})^0$ and $x \in G$,

$$(\phi_j^0 \mathbf{K}_A^{0*}(x))(a) = \phi_j^0(a(\mathbf{K}_A^0(x))^{-1}) = \operatorname{tr} \mathbf{F}_j(a_x a a_x^{-1}) = \operatorname{tr} \mathbf{F}_j(a) = \phi_j^0(a)$$

so that $\phi_j^0 \in U$. Now the ϕ_j^0 form a linearly independent set: this follows from the orthogonality relations for projective Brauer characters as given by Osima [15, (11.2)], applied to A^E and then reduced (if necessary) to characteristic p. Alternatively, it can be proved by combining the linear independence of the ϕ_j (cf. the proof of [7, (30.15)] with an analogue of the fact (cf. [7, (82.3)]) that in the group-algebra case ϕ_j is constant on each p'-section of G. Thus $\{\phi_j^0\}$ is a basis of a subspace of U of dimension $k(A^E)$. On the other hand, since the \mathbf{K}_A^0 -regular orbits of \mathbf{k}_G^0 are the same as the \mathbf{K}_A^0 -regular orbits by Lemma 3, Theorem 1 shows that $k(A^E)$ is the dimension of U.

5. Extension of ground field

In this section, let A be any finite-dimensional algebra with 1 over F. Let G be the group of all F-automorphisms of E, i.e. the (infinite) Galois group of E over F. Define \mathbf{F}_j and ϕ_j as in the preceding section. For each $\sigma \in G$, let ϕ_j^{σ} be the mapping of A^E into E defined by $\phi_j^{\sigma}(a) = (\phi_j(a))^{\sigma}$, $a \in A^E$. In general ϕ_j^{σ} is not a character since it is only F-linear, not E-linear. However, the restriction $\phi_j^{\sigma} | A = (\phi_j | A)^{\sigma}$ is the trace of an irreducible representation of A over E, and is therefore the restriction of a uniquely determined irreducible character of A^E , which we shall call $\phi_j^{[\sigma]}$. Thus

(5.1)
$$\phi_j^{[\sigma]}(a) = (\phi_j(a))^{\sigma}, \qquad a \in A.$$

Clearly $(\phi_j^{[\sigma]})^{[\sigma']} = \phi_j^{[\sigma\sigma']}$, so that \mathcal{G} acts as a permutation group on the irreducible characters ϕ_j .

Let $\{\mathbf{Z}_i: 1 \leq i \leq k(A)\}$ be a full set of non-equivalent irreducible representations of A (over F). The linear extension $\mathbf{Z}_i^{\mathcal{B}}$ of each \mathbf{Z}_i to a representation of $A^{\mathcal{B}}$ (over E) is reducible but not completely reducible in general; its irreducible constituents may be taken from $\{\mathbf{F}_j\}$. We paraphrase a theorem of Noether [14, p. 541, Zusammenfassung] which generalizes a result of Schur [19, Theorem VI]. THEOREM 2 (Schur, Noether). The characters of all the irreducible constituents of $\mathbf{Z}_i^{\mathbf{E}}$ are the elements of an orbit of the action of \mathfrak{G} on $\{\phi_i\}$, each appearing with the same multiplicity.

For proof we refer to [14]. Fein [9, Theorem 1.2] has given a proof in the case that F is a perfect field; for the case of a group algebra over a perfect field see [7, (70.15)], [10, (11.4)], or [12, p. 546, Theorem 14.12]; for the case where A is commutative and F is arbitrary, see [17, Lemma 2]. It is not possible to avoid considering inseparable extensions even when A is a twisted group algebra: see the example in the last paragraph of [17]. On the other hand, the multiplicity in Theorem 2 is irrelevant for our purposes; in other words, we do not need to study the Schur index.

Since each \mathbf{F}_i appears as a constituent of $\mathbf{Z}_i^{\mathbb{F}}$ for exactly one *i* (cf. [12, p. 547, Theorem 14.13]), Theorem 2 establishes a bijection between the \mathbf{Z}_i and the orbits of \mathfrak{G} :

COROLLARY. The number k(A) of non-equivalent irreducible representations of the finite-dimensional F-algebra A with 1 is equal to the number of orbits of the action of \mathfrak{S} on the irreducible characters of $A^{\mathbb{F}}$.

6. Definition of $S_A(\sigma)$

Again let $(A, G, (A_{\sigma}))$ be a twisted group algebra over F. For each element σ of the Galois group G of E over F, we shall now define an E-linear transformation $S_A(\sigma)$ of A^B onto A^B . The motivation of this definition will appear in the following section.

For each $g \in G$, choose $a_g \in A_g$, $a_g \neq 0$; then $\{a_g\}$ is an *F*-basis of *A* and an *E*-basis of $A^{\mathcal{B}}$ (cf. (1.1)). Choose a positive integer *n* divisible by the order of every element of *G*. Write $n = n_p n_{p'}$, where the factors are the *p*-part and *p*-regular part of *n* if *p* is prime, and where $n_p = 1$, $n_{p'} = n$ if p = 0. For each $\sigma \in \mathcal{G}$, choose² an integer $m(\sigma)$ such that

(6.1)
$$\omega^{\sigma} = \omega^{m(\sigma)}$$

for every $n_{p'}$ -th root of unity $\omega \in E$, while

$$(6.2) m(\sigma) \equiv 1$$

 $m(\sigma)$ is uniquely determined modulo n. Then

for some non-zero $u(g) \epsilon E$ for each $g \epsilon G$. Choose an element $v(g) \epsilon E$ such that $v(g)^n = u(g)$. Having made these choices, define $\mathbf{S}_A(\sigma)$ for each $\sigma \epsilon G$ to be the unique *E*-linear transformation of A^E to A^E such that

(mod n_p);

² The requirements on $m(\sigma)$ are more stringent than those stated in the introduction.

TWISTED GROUP ALGEBRAS OVER ARBITRARY FIELDS

(6.4)
$$a_{\sigma} \mathbf{S}_{\mathbf{A}}(\sigma) = (v(g)^{\sigma^{-1}}/v(g)^{m(\sigma^{-1})})a_{\sigma}^{m(\sigma^{-1})}, \qquad g \in G$$

(The presence of all the inverses here is explained by Theorem 5.)

We must show that $\mathbf{S}_{\mathbf{A}}(\sigma)$ does not depend on the choices of a_{σ} , n, $m(\sigma^{-1})$, and v(g). If $m(\sigma^{-1})$ is changed without changing a_{σ} , n, or v(g), then a multiple of n is added to $m(\sigma^{-1})$, so that $a_{\sigma}\mathbf{S}_{\mathbf{A}}(\sigma)$ is multiplied by a power of $v(g)^{-n}a_{\sigma}^{n} = \mathbf{1}_{\mathbf{A}}$ and hence is unchanged. Similarly if v(g) alone is changed, v(g) is multiplied by an element ω of E such that $\omega^{n} = 1$; then $\omega^{n_{p'}} = \mathbf{1}$, and $a_{\sigma}\mathbf{S}_{\mathbf{A}}(\sigma)$ is multiplied by $\omega^{\sigma^{-1}}\omega^{-m(\sigma^{-1})}$, which is 1 by (6.1).

In changing n, we can suppose that the new choice of n is a multiple of the old, while a_g is unchanged. Then any choice of $m(\sigma^{-1})$ which satisfies (6.1) and (6.2) for the new n also satisfies them for the old n, and any choice of v(g) for the old n also works for the new n (although u(g) is changed). Then since n does not appear explicitly in (6.4), $\mathbf{S}_{4}(\sigma)$ is unchanged.

Finally if we replace a_g by $w(g)a_g$ where $0 \neq w(g) \epsilon F$ without changing n or $m(\sigma^{-1})$, we must replace u(g) by $w(g)^n u(g)$, and we can replace v(g) by w(g)v(g). Then each side of (6.4) is multiplied by w(g), so that $\mathbf{S}_A(\sigma)$ is unchanged. Therefore $\mathbf{S}_A(\sigma)$ is well-defined.

 $(\mathbf{S}_{A}(\sigma), \mathbf{s}_{\sigma}(\sigma))$ is an invertible morphism of the monomial space $(A, G, (A_{\sigma}))$, where we set

(6.5)
$$g\mathbf{s}_{\sigma}(\sigma) = g^{m(\sigma^{-1})}, \qquad g \in G.$$

Remark. Although we have taken E to be an algebraic closure of F, our arguments will use only the following properties of E: E is a normal algebraic (not necessarily separable) extension of F, E contains a primitive $n_{p'}$ -th root of 1 as well as v(g) for all $g \in G$, and E is a splitting field for A^{E} ; such fields exist which are also of finite degree over F. If the algebraic closure of F is replaced by such a field, G is replaced by a finite quotient group of itself while $S_A(G) = \{S_A(\sigma): \sigma \in G\}$, which is a group by Theorem 5 below, is replaced by an isomorphic group. Hence $S_A(G)$ is always finite.

7. Properties of $S_A(\sigma)$

We continue the notations of Section 6, and assume whenever necessary that the choices required in the definition of $\mathbf{S}_{\mathcal{A}}(\sigma)$ have been made. The following theorem will provide the main connection between the $\mathbf{S}_{\mathcal{A}}(\sigma)$ and the problem of determining k(A).

THEOREM 3. For each irreducible character ϕ_j of A^E and each $\sigma \in \mathcal{G}$,

(7.1)
$$\phi_j(a\mathbf{S}_A(\sigma)) = \phi_j^{[\sigma^{-1}]}(a), \qquad a \in A^E.$$

Proof. It suffices to take $a = a_g$. For fixed g and ϕ_j , let $\lambda_1, \lambda_2, \cdots$ be the characteristic roots of $\mathbf{F}_j(a_g)$. By (6.3), $\lambda_i^n = u(g)$, so that $\lambda_i = v(g)\omega_i$ where $\omega_i^{n_{p'}} = 1$. Setting $\tau = \sigma^{-1}$, by (6.1)

$$\phi_j^{[\tau]}(a_g) = (\operatorname{tr} \mathbf{F}_j(a_g))^{\tau} = (\sum_i \lambda_i)^{\tau} = v(g)^{\tau} \sum_i \omega_i^{\tau} = v(g)^{\tau} \sum_i \omega_i^{m(\tau)};$$

on the other hand, by (5.1)

$$\begin{split} \phi_j(a_\sigma \, \mathbf{S}_A(\sigma)) &= (v(g)^r / v(g)^{m(\tau)}) \operatorname{tr} \, (\mathbf{F}_j(a_\sigma))^{m(\tau)} \\ &= (v(g)^r / v(g)^{m(\tau)}) \, \sum_i \lambda_i^{m(\tau)} \\ &= v(g)^r \sum_i \omega_i^{m(\tau)}. \end{split}$$

The property expressed in Theorem 3 is not enough to characterize $S_{A}(\sigma)$ in general, but the following theorem and its corollary provide characterizations.

THEOREM 4. For any fixed $\sigma \in \mathcal{G}$, the mapping

 $\mathfrak{S}(\sigma)$: $A \mapsto \mathbf{S}_A(\sigma)$

of objects $A = (A, G, (A_a))$ of $\mathfrak{I}(F)$ to E-linear transformations of A^E to A^E is characterized by the following four conditions:

(a) For each morphism (M, μ) of A to A' in $\mathfrak{I}(F)$,

$$\mathbf{S}_{A}(\sigma)M^{E} = M^{E}\mathbf{S}_{A'}(\sigma).$$

(b) For each irreducible character of ϕ_j of A^E ,

$$\phi_j(a\mathbf{S}_A(\sigma)) = \phi_j^{[\sigma^{-1}]}(a), \qquad a \in A^E.$$

(c) If G is cyclic, then $S_A(\sigma)$ is an algebra-automorphism of A^E .

(d) If the characteristic p of F is prime and if G is a p-group, then $S_A(\sigma)$ is the identity mapping.

Proof. First we show that $\mathfrak{S}(\sigma)$ satisfies the four conditions. Condition (b) is a restatement of Theorem 3. As for (a), in defining $\mathbf{S}_{\mathcal{A}}(\sigma)$ and $\mathbf{S}_{\mathcal{A}'}(\sigma)$ we can assume that n = n' and $m(\sigma^{-1}) = m'(\sigma^{-1})$, and that for any fixed $g \in G$ we have $a'_{g\mu} = a_g M = a_g M^{\mathcal{E}}$. (The meaning of the primes should be clear.) Then $u'(g\mu) = u(g)$, so that we can take $v'(g\mu) = v(g)$. Then (a) follows from (6.4).

Observe that (a) implies that if G' is a subgroup of G and if $A' = A_{G'}$ as in Section 2, then $\mathbf{S}_{A'}(\sigma)$ is the restriction of $\mathbf{S}_{A}(\sigma)$ to $A_{G'}^{\mathbf{E}} = (A^{\mathbf{E}})_{G'}$.

Suppose that G is cyclic, with a fixed generator g. We can choose n = |G|; then the algebra $A^{\mathcal{B}}$ is isomorphic to the polynomial algebra E[X] modulo the ideal $(X^{|G|} - u(g))$. To prove (c) it suffices to show that

(7.2)
$$a_g^i \mathbf{S}_A(\sigma) = (a_g \mathbf{S}_A(\sigma))^i, \qquad 1 \le i \le |G|.$$

We can suppose that $a_{g^i} = a_g^i$ for these values of *i*. Then $u(g^i) = (u(g))^i$, so that we can choose $v(g^i) = (v(g))^i$; now (6.4) implies (7.2).

Finally, suppose that G is a p-group; take $n = n_p = |G|$. By (6.2), we can take $m(\sigma^{-1}) = 1$. Since $v(g)^{|G|} \in F$ for every $g \in G$, v(g) is purely inseparable over F, so that $(v(g))^{\sigma^{-1}} = v(g)$. Then (6.4) shows that $a_\sigma \mathbf{S}_A(\sigma) = a_\sigma$, which proves (d).

98

Conversely, let $\mathfrak{T}(\sigma) : A \mapsto \mathbf{T}_{A}(\sigma)$ be any mapping which satisfies the analogues of (a) through (d); we want to show that $\mathbf{T}_{A}(\sigma) = \mathbf{S}_{A}(\sigma)$ for all A. It suffices to show that $a_{\sigma}\mathbf{T}_{A}(\sigma) = a_{\sigma}\mathbf{S}_{A}(\sigma)$ for each $g \in G$. Since the analogue of (a) implies that $\mathbf{T}_{A'}(\sigma)$ is the restriction of $\mathbf{T}_{A}(\sigma)$ if $A' = A_{\langle \sigma \rangle}$ where $\langle g \rangle$ is the cyclic group generated by g, we can suppose without loss of generality that G is cyclic. Then $G = G' \times G''$ where G' is a cyclic p-group and G'' is a cyclic p'-group, and the analogues of (a), (c), and (d) show that $\mathbf{T}_{A}(\sigma)$ is completely determined by $\mathbf{T}_{A'}(\sigma)$ where $A'' = A_{\sigma''}$; hence we can suppose that G is a cyclic p'-group. (For p = 0, we define that a p-group is a group of order 1, and that every finite group is a p'-group.) In this case A^{E} is a commutative semisimple [6, p. 156] algebra over an algebraically closed field, so that the ϕ_{j} form a basis of $(A^{E})^{*}$. Then (b) and its analogue imply that $\mathbf{T}_{A}(\sigma) = \mathbf{S}_{A}(\sigma)$, which completes the proof.

Remark. We can express condition (a) in categorical terminology as follows. Let Φ be the functor from $\Im(F)$ to the category of all finite-dimensional E-spaces which sends each object $(A, G, (A_{\sigma}))$ to A^{E} , and each morphism (M, μ) to M^{E} . By [13, p. 62, Proposition 10.3], we can suppose that Φ carries distinct objects to distinct objects. (Here we do not regard A as embedded in A^{E} , and we speak a bit loosely besides.) We can now regard Φ as a morphism of $\Im(F)$ to its image category Im Φ [13, p. 62]. Then (a) says precisely that the mapping $\mathfrak{S}(\sigma)$ is a natural transformation of Φ to Φ ; since $\mathbf{S}_{A}(\sigma)$ is invertible, $\mathfrak{S}(\sigma)$ is actually a natural equivalence. Then (b), (c), and (d) provide a characterization of this natural equivalence. A similar result holds with Φ replaced by a functor from $\Im(F)$ to $\mathfrak{M}(E)$.

I wish to thank my colleagues J. W. Schlesinger and D. C. Newell for help concerning this remark.

The proof of Theorem 4 also yields the following variant.

COROLLARY. Let $(A, G, (A_{\sigma}))$ be a fixed twisted group algebra over F, and let $\sigma \in \mathfrak{G}$. Then $S_{\mathcal{A}}(\sigma)$ is the unique E-linear transformation of $A^{\mathbb{E}}$ to $A^{\mathbb{E}}$ such that the following hold.

(e) For each cyclic subgroup $\langle g \rangle$ of G, the restriction of $\mathbf{S}_{\mathcal{A}}(\sigma)$ to $A_{\langle g \rangle}^{\mathcal{B}}$ is an algebra-automorphism of $A_{\langle g \rangle}^{\mathcal{B}}$.

(f) For each cyclic p'-subgroup $\langle g \rangle$ of G,

$$\psi_j(a\mathbf{S}_A(\sigma)) = \psi_j^{[\sigma^{-1}]}(a)$$

whenever $a \in A_{\langle g \rangle}^{\mathbb{B}}$ and ψ_j is an irreducible character of $A_{\langle g \rangle}^{\mathbb{B}}$.

(g) For each p-element g of G, $S_A(\sigma)$ fixes every element of the subspace A_g^B of A^B .

The characterization of $S_A(\sigma)$ leads to the following important property.

THEOREM 5. For each twisted group algebra $(A, G, (A_s))$ over F, the mapping

$$(\mathbf{S}_{\mathbf{A}}, \mathbf{s}_{\mathbf{G}}) : \boldsymbol{\sigma} \mapsto (\mathbf{S}_{\mathbf{A}}(\boldsymbol{\sigma}), \mathbf{s}_{\mathbf{G}}(\boldsymbol{\sigma}))$$

is a monomial representation of \mathcal{G} on the monomial E-space $(A^{E}, G, (A^{E}_{g}))$.

Proof. Since $\mathbf{S}_{A}(1)$ is the identity, we need only show that if σ , $\sigma' \in \mathcal{G}$, the mapping $A \mapsto \mathbf{S}_{A}(\sigma)\mathbf{S}_{A}(\sigma')$ satisfies the four conditions of Theorem 4 for $\mathbf{S}_{A}(\sigma\sigma')$. Only (b) requires an explicit calculation: let $\tau = \sigma^{-1}, \tau' = (\sigma')^{-1}$; then

$$\phi_j(a\mathbf{S}_A(\sigma)\mathbf{S}_A(\sigma')) = \phi_j^{[\tau']}(a\mathbf{S}_A(\sigma)) = (\phi_j^{[\tau']})^{[\tau]}(a) = \phi_j^{[\tau'\tau]}(a).$$

8. The main theorem

Let $(A, G, (A_g))$ be a twisted group algebra over F. We have found monomial representations $(\mathbf{S}_A, \mathbf{s}_G)$ and $(\mathbf{K}_A, \mathbf{k}_G)$ of \mathcal{G} and G respectively on the same space $(A^{\mathcal{B}}, \mathcal{G}, (A_g^{\mathcal{B}}))$, by Theorem 5 and Section 4. By applying (a) of Theorem 4 to the morphism $(\mathbf{K}_A(x) | A, \mathbf{k}_G(x))$ of A to A, we can define a monomial representation $(\mathbf{D}_A, \mathbf{d}_G)$ of the abstract direct product $\mathcal{G} \times \mathcal{G}$ on the same space by setting

(8.1)
$$\mathbf{D}_{A}(\sigma, x) = \mathbf{S}_{A}(\sigma)\mathbf{K}_{A}(x) = \mathbf{K}_{A}(x)\mathbf{S}_{A}(\sigma),$$

(8.2)
$$\mathbf{d}_{G}(\sigma, x) = \mathbf{s}_{G}(\sigma)\mathbf{k}_{G}(x) = \mathbf{k}_{G}(x)\mathbf{s}_{G}(\sigma)$$

for all $\sigma \in \mathcal{G}$, $x \in G$. Thus

(8.3)
$$g\mathbf{d}_{\mathbf{G}}(\sigma, x) = x^{-1}g^{m(\sigma^{-1})}x, \qquad g \in G.$$

As in Section 4, we have subrepresentations $(\mathbf{S}_{A}^{0}, \mathbf{s}_{G}^{0})$, $(\mathbf{K}_{A}^{0}, \mathbf{k}_{G}^{0})$, and $(\mathbf{D}_{A}^{0}, \mathbf{d}_{G}^{0})$ on $((A^{E})^{0}, G^{0}, (A_{g^{0}}^{E}))$ and their contragredients $(\mathbf{S}_{A}^{0*}, \mathbf{s}_{G}^{0})$, etc. Now we can state the main theorem.

THEOREM 6. The number k(A) of non-equivalent irreducible representations of the twisted group algebra A is equal to the number of \mathbf{D}_{A}^{0} -regular orbits of \mathbf{d}_{G}^{0} , i.e. the number of \mathbf{D}_{A} -regular F-conjugacy classes of p'-elements of G.

Proof. (7.1) implies that $\phi_j^0 \mathbf{S}_A^{0*}(\tau) = (\phi_j^{[\tau]})^0$ for all $\tau \in \mathfrak{G}$; thus $\mathbf{S}_A^{0*}(\tau)$ permutes the set $\{\phi_j^0\}$ in the same way that τ permutes $\{\phi_j\}$ in (5.1). Then the mapping $\tau \mapsto \mathbf{S}_A^{0*}(\tau) \mid U$ is a permutation representation of \mathfrak{G} on the space U of the corollary to Theorem 1; in other words the family $(\phi_j^0 E)$ of subspaces of U defines a monomial-space structure on U indexed by $\{\phi_j\}$ on which \mathbf{S}_A^{0*} yields a monomial representation of \mathfrak{G} with all orbits regular. By the Corollary to Theorem 2, k(A) is the number of orbits of \mathfrak{G} on $\{\phi_j\}$; by Lemma 1, this is the dimension of the fixed-point space W of the restriction of \mathbf{S}_A^{0*} to U. Since U is in turn the fixed-point space of \mathbf{K}_A^{0*} , i.e. W is the fixed-point space of \mathbf{D}_A^{0*} . Then Lemmas 1 and 3 imply that k(A) is the number of \mathbf{D}_A^0 -regular orbits of $\mathbf{d}_{\mathfrak{G}}^0$. To see that these orbits coincide with F-conjugacy classes, use the fact that the integer n^0 of the Introduction can be taken as n in defining $\mathbf{s}_{\mathfrak{G}}(\sigma) \mid \langle g \rangle$ for p'-elements G.

If A is a group algebra, then all F-conjugacy classes are D_A -regular, so that Theorem 6 implies the known results in this case. Theorem 6 also implies Theorem 1.

COROLLARY. k(A) is less than or equal to the number of F-conjugacy classes of p'-elements of G which are unions of \mathbf{K}_{A} -regular conjugacy classes.

An example of strict inequality here is provided by taking G cyclic of order 4 and $A = \mathbb{Q}[X]/(X^4 + 1)$ as in the discussion preceding (7.2): all three Q-conjugacy classes are \mathbb{K}_A -regular, but k(A) = 1 since A is a field.

9. Relationships with a special case

The definition (6.4) of $\mathbf{S}_{\mathcal{A}}(\sigma)$ can be simplified in the special case where the a_{σ} in (1.1) can be chosen in such a way that all f(g, g') are *l*-th roots of 1 for some positive integer *l*, i.e. such that

$$(9.1) fl = 1$$

for the 2-cocycle $f \in Z^2(G, F^{\times})$. (Here F^{\times} is the multiplicative group of F, the action of G on F^{\times} is trivial, and the notation is multiplicative.) Since $a_g^e \in A_1$ where e is the exponent of G, (9.1) implies that $a_g^{el} = 1_A$ for all $g \in G$. Then in (6.3) we can choose n so that $a_g^n = 1_A$ for all g. For such n we can take v(g) = 1, so that (6.4) becomes

(9.2)
$$a_g \mathbf{S}_A(\sigma) = a_g^{m(\sigma-1)}, \qquad g \in G.$$

Since $m(\sigma\sigma') \equiv m(\sigma)m(\sigma') \equiv m(\sigma'\sigma) \pmod{n}$ by (6.1) and (6.2), (9.2) implies that the group $\mathbf{S}_{\mathcal{A}}(\mathcal{G})$ is abelian whenever (9.1) holds. In general $\mathbf{S}_{\mathcal{A}}(\mathcal{G})$ can be non-abelian, e.g. for $A = \mathbf{Q}[X]/(X^3 - 2) \cong \mathbf{Q}(\sqrt[3]{2}), \mathbf{S}_{\mathcal{A}}(\mathcal{G})$ is the symmetric group on 3 letters.

For an arbitrary twisted group algebra $A = (A, G, (A_g))$, a construction due to Asano and Shoda produces a related twisted group algebra A^{\sharp} (not unique in general) which satisfies the condition of the previous paragraph, as follows. Choose $\{a_g\}$ as in (1.1). As Schur showed in [18] (cf. [7, p. 360]), the order r of the cohomology class $fB^2(G, E^{\times})$ of f in $H^2(G, E^{\times})$ divides the p'-part of |G|, and this class contains at least one 2-cocycle $f^{\sharp} \in Z^2(G, E^{\times})$ of the same order r. Asano and Shoda [3, p. 237, lines 15 and 16] proved that in fact

(9.3)
$$f^{\sharp} \epsilon Z^2(G, F^{\times}).$$

It seems worthwhile to give a proof of (9.3) that (unlike the original proof) avoids using covering groups. Let

$$f^{\sharp} = (\delta c)f, c \in C^{1}(G, E^{\times});$$

for $\sigma \in \mathcal{G}$ define f^{σ} by $f^{\sigma}(g, g') = f(g, g')^{\sigma}$, etc. Then $(f^{\sharp})^{\sigma} = (\delta c)^{\sigma} f^{\sigma} = \delta (c^{\sigma}) f = \delta (c^{\sigma} c^{-1}) f^{\sharp}$. Since $(f^{\sharp})^{r} = 1$, $f^{\sharp}(g, g')$ is separable over F, and there is an integer $q(\sigma)$ such that $f^{\sharp}(g, g')^{\sigma} = f^{\sharp}(g, g')^{q(\sigma)}$ for all $g, g' \in G$. Hence f^{\sharp} is cohomologous to $(f^{\sharp})^{\sigma} = (f^{\sharp})^{q(\sigma)}$ over E, and by the assumption on orders $f^{\sharp} = (f^{\sharp})^{q(\sigma)}$; i.e. $f^{\sharp} = (f^{\sharp})^{\sigma}$ for all σ , so that $f^{\sharp}(g, g') \in F$ as stated.

If we set $a_g^{\sharp} = c(g)a_g \in A^E(\supseteq A)$, then $a_g^{\sharp}a_{g'}^{\sharp} = f^{\sharp}(g, g')a_{gg'}^{\sharp}$, and by (9.3)

 $\{a_g^{\sharp}\}\$ is an *F*-basis of a twisted group algebra A^{\sharp} over *F*, with $(A^{\sharp})^{E} = A^{E}$ as twisted group algebras. Although $k(A^{\sharp}) \neq k(A)$ in general, as for $A \cong Q(\sqrt[3]{2})$, we shall use A^{\sharp} to gain information about *A* in a future paper.

If we choose *n* divisible by the orders of all a_g^{\sharp} in the definition of $S_A(\sigma)$, then $c(g)^n a_g^n = 1_A$, so that we can take $v(g) = c(g)^{-1}$ in (6.4). In particular this is true if we take n = |G|, for by a result of Alperin and Kuo [1, p. 412, lines 5 and 6], *er* divides |G|, so that

$$(9.4) (a_g^{\sharp})^{|g|} = 1_{A^{\sharp}} = 1_A$$

by the discussion preceding (9.2). Furthermore if for the moment we let E be any normal algebraic extension of F which contains a primitive $|G|_{p'}$ -th root of 1 as well as all c(g), then E will fulfill the requirements of the remark in Section 6: for by the proof of [16, Theorem] (see also [1, Theorem 2] or [12, p. 641, Theorem 24.6]), E is a splitting field for $(A^{\sharp})^{B} = A^{E}$ (and similarly for $A_{g'}^{E}$, for all subgroups G' of G). This argument uses the fact that the 2-cocycles used in the proof of [16, Theorem] are defined in the same way as our f^{\sharp} ; note that that theorem does not say that every twisted group algebra for G over the field of |G|-th roots of 1 has this field as a splitting field, cf. $\mathbf{Q}(i)$!

Although $S_A \neq S_{A\sharp}$ in general, we do have agreement on the p'-commutator subgroup G'(p') of G, i.e. the intersection of all normal subgroups of G whose factor group is an abelian p'-group, as follows. In the proof of (9.3), $\delta(c^{\sigma}c^{-1}) = 1$, so that $c^{\sigma}c^{-1}$ is a homomorphism of G into E^{\times} . Then $c(g)^{\sigma} = c(g)$ for all $g \in G'(p')$. Taking n = |G| and $v(g) = c(g)^{-1}$, (6.4) yields

$$a_{\mathfrak{g}} \mathbf{S}_{\mathfrak{A}}(\sigma) = (c(g)^{m(\sigma^{-1})}/c(g))a_{\mathfrak{g}}^{m(\sigma^{-1})}, \qquad g \in G'(p').$$

This says that $a_g^{\sharp} \mathbf{S}_A(\sigma) = (a_g^{\sharp})^{m(\sigma^{-1})}$, and by (9.2) for A^{\sharp} ,

(9.5)
$$\mathbf{S}_{A}(\sigma) \mid A^{\mathbb{E}}_{\mathcal{G}'(p')} = \mathbf{S}_{A\sharp}(\sigma) \mid A^{\mathbb{E}}_{\mathcal{G}'(p')}.$$

If also F is a perfect field, then $c(g) \in F$ for these g, so that $A_{G'(p')}^{\sharp} = A_{G'(p')}$. These results are analogous to a result of Schur [18, Theorem 3], [12, p. 634, Theorem 23.6].

References

- 1. J. L. ALPERIN AND TZEE-NAN KUO, The exponent and the projective representations of a finite group, Illinois J. Math., vol. 11 (1967), pp. 410-413.
- K. ASANO, M. OSIMA, AND M. TAKAHASI, Über die Darstellung von Gruppen durch Kollineationen im Körper der Charakteristik p, Proc. Phys.-Math. Soc. Japan (3), vol. 19 (1937), pp. 199–209.
- K. ASANO AND K. SHODA, Zur Theorie der Darstellungen einer endlichen Gruppe durch Kollineationen, Compositio Math., vol. 2 (1935), pp. 230–240.
- 4. S. D. BERMAN, Characters of linear representations of finite groups over an arbitrary field, Mat. Sb., vol. 44 (1958), pp. 409–456. (Russian)
- 5. R. BRAUER, On the connection between the ordinary and the modular characters of groups of finite order, Ann. of Math., vol. 42 (1941), pp. 926-935.
- S. B. CONLON, Twisted group algebras and their representations, J. Austral. Math. Soc., vol. 4 (1964), pp. 152–173.

- 7. C. W. CURTIS AND I. REINER, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- 8. E. C. DADE, Characters and solvable groups, mimeographed notes, Univ. of Illinois, Urbana, 1968.
- 9. B. FEIN, The Schur index for projective representations of finite groups, Pacific J. Math., vol. 28 (1969), pp. 87-100.
- 10. W. FEIT, Characters of finite groups, Benjamin, New York, 1967.
- G. FROBENIUS AND I. SCHUR, Über die reellen Darstellungen der endlichen Gruppen, S.-B. Preussischen Akad. Wiss. Berlin, 1906, pp. 186–208; reprinted in F. G. Frobenius, Gesammelte Abhandlungen, vol. 3, Springer, Berlin, 1968, pp. 355– 377.
- 12. B. HUPPERT, Endliche Gruppen I, Springer, Berlin, 1967.
- 13. B. MITCHELL, Theory of categories, Academic Press, New York, 1965.
- 14. E. NOETHER, Nichtkommutative Algebra, Math. Zeitschr., vol. 37 (1933), pp. 514-541.
- 15. M. OSIMA, On the representations of groups of finite order, Math. J. Okayama Univ., vol. 1 (1952), pp. 33-61.
- W. F. REYNOLDS, Projective representations of finite groups in cyclotomic fields, Illinois J. Math., vol. 9 (1965), pp. 191–198.
- Block idempotents and normal p-subgroups, Nagoya Math. J., vol. 28 (1966), pp. 1-13.
- I. SCHUR, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math., vol. 127 (1904), pp. 20-50.
- ——, Beiträge zur Theorie der Gruppen linearer homogener Substitutionen, Trans. Amer. Math. Soc., vol. 10 (1909), pp. 159–175.
- H. N. WARD, The analysis of representations induced from a normal subgroup, Michigan Math. J., vol. 15 (1968), pp. 417-428.
- E. WITT, Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper, J. Reine Angew. Math., vol. 190 (1952), pp. 231-245.
- K. YAMAZAKI, On projective representations and ring extensions of finite groups, J. Fac. Sci. Univ. Tokyo Sect. I, vol. 10 (1964), pp. 147–195.

TUFTS UNIVERSITY

MEDFORD, MASSACHUSETTS