A CHARACTERIZATION OF MONOTONE FUNCTIONS

BY
Donald Ornstein ${ }^{1}$

The purpose of this note is to prove the following theorem:
Theorem. Let $f(x)$ be a real-valued function of a real variable satisfying the following.
(a) $f(x)$ is approximately continuous, i.e., for each x_{0} and $\varepsilon>0$ the set of x such that $\left|f\left(x_{0}\right)-f(x)\right|<\varepsilon$ has density 1 at x_{0};
(b) For each x_{0}, let E be the set of x, such that $f(x)-f\left(x_{0}\right) \geq 0$. Then

$$
\lim _{\sup _{|h| \rightarrow 0} m\left[E \cap\left(x_{0}, x_{0}+|h|\right)\right] /|h| \neq 0}
$$

where $m(C)$ is Lebesgue measure of C.
Then $f(x)$ is monotone increasing and continuous.
One may be tempted to weaken (b) as follows: (b^{\prime}) for each x_{0} the set of x such that $\left(f(x)-f\left(x_{0}\right)\right) /\left(x-x_{0}\right) \geq 0$ does not have 0 density at x_{0}. In this case, however, the conclusion is false, even if we assume $f(x)$ to be continuous. (We will describe such an example at the end of this note.)

Condition (b) may be replaced by the following weaker condition:

$$
\lim \sup _{x \rightarrow x_{0}}\left(f(x)-f\left(x_{0}\right)\right) /\left(x-x_{0}\right) \geqq 0, \quad x>x_{0}
$$

neglecting any set of values of x that has density 0 at x_{0}. This follows from our theorem because if $f(x)$ were not monotone we could add a linear function with positive slope to $f(x)$ in such a way that the result is still not monotone but condition (b) is satisfied.

Without loss of generality we will assume $f(x)$ to be defined only on the unit interval. We will now prove Theorem 1.

Lemma. Let A be a measurable set in the unit interval, I, of measure $\gamma>0$, and r a real number >1. Assume that $2 r \gamma<1$. Let U be the union of all the intervals J in I such that $m(A \cap J) / m(J)>r \gamma$. Then $m(U)<2 / r$.

Proof. Pick a finite subset S of the intervals which make up U, such that the measure of their union is within ε of the measure of U.

If there is an interval in S which is contained in the union of the remaining intervals delete it from S. Call the new collection S_{1}. Delete from S_{1} an interval (if there is any) that is in the union of the remaining interval in S_{1}. Call the result S_{2}. We will eventually get a collection S^{\prime} so that no interval in S^{\prime} is in the union of the remaining intervals and the union of the intervals of $S^{\prime}=$ the union of the intervals of S. It is easy to see that no point is in

[^0]more than 2 intervals of S^{\prime}. If l is the sum of the lengths of the intervals of S^{\prime}, then $l r \gamma<2 \gamma$ hence $l<r / 2$.

Proof of Theorem 1. We will assume that $f(x)$ satisfies the hypothesis of the theorem but that there is an x_{1} and x_{2} with $x_{1}<x_{2}$ and that $f\left(x_{1}\right)>f\left(x_{2}\right)$. Pick a y such that $f\left(x_{1}\right)>y>f\left(x_{2}\right)$ and let A be the set of x such that $f(x) \geq y$. We will pick a nested sequence of closed intervals, I_{n}, (I_{n+1} is in the interior of I_{n}) whose lengths tend to 0 satisfying:
(1) Let A_{n} be the set of x such that $f(x)<y-1 / n$. Then $m\left(A_{n} \cap I_{n}\right) / m\left(I_{n}\right)<1 / 2$.
(2) If R is an interval in I_{n} with left end point in the interior of I_{n+1} and right end point in A and notin I_{n+1}, then $m(A \cap R) / m(R)<1 / 2^{n-1}$.

This will give us a contradiction as follows: Let $x_{0}=\cap_{n=1}^{\infty} I_{n}$. (1) and (a) imply that $f\left(x_{0}\right) \geq y$, (2) implies that the part of A that lies to the right of x_{0} has density 0 at x_{0}. (I.e., it is impossible to have an $\alpha>0$ and a sequence of intervals K_{n} whose lengths tend to 0 and whose left end point is x_{0} and the density of A in K_{n} is greater than α. Arguing by contradiction, we could, without loss of generality, assume that the right end point of K_{n} is in A. For each K_{n} we can find an $I_{l(n)}$ such that $K_{n} \subset I_{l(n)}$ and $K_{n} \nsubseteq I_{l(n)+1}$. (2) then implies that $\alpha<1 / 2^{l(n)-1}$, but $\lim _{n \rightarrow \infty} l(n)=\infty$.)

Our proof will now be finished when we have constructed our sequence I_{n} satisfying (1) and (2). We will do this inductively and in order to go from I_{n} to I_{n+1} we will construct a sequence of I_{n} that, in addition to (1) and (2), satisfies:
(3) $m\left(A \cap I_{n}\right) / m\left(I_{n}\right)<1 / 2^{n+2}$;
(4) the left end point of I_{n} is in A.

We will demand that I_{1} satisfy only (3) and (4). Since the density of A at x_{2} is 0 , it is easy to see that we can pick an interval I_{1} with right end point x_{2}, and left end point in A, and $m\left(A \cap I_{1}\right) / m(I)<1 / 2^{3}$.

Assume, now, that we have picked I_{n} with properties (3) and (4). We will construct I_{n+1} with properties (1), (2), (3) and (4) and $m\left(I_{n+1}\right) \leq \frac{1}{2} m\left(I_{n}\right)$.

Let T be the collection of subintervals L, of I_{n} with right end point in A, and such that $m(A \cap L) / \mathrm{m}(L)>1 / 2^{n-1}$. Let \bar{T} be the set covered by T. Note that \bar{T} covers A except for a set of measure 0 .

Let M be a finite subcollection of T such that $m(\bar{T})-m(\bar{M})<\left(1 / 2^{n+4}\right) m(B)$ where B is the part of A that lies in the left half of $I_{n} . \quad(\bar{M}$ is the set covered by M.) Note that B must have non-zero measure because of (4) and (b).

We will next pick r subintervals of $I_{n} J_{i}, 1 \leq i \leq r$, with disjoint interiors such that $\bigcup_{i=1}^{r} J_{i} \supset \bar{M} \cap I_{n}^{l}$ (I_{n}^{l} is the left half of $\left.I_{n}\right), m\left(J_{i}\right)=2 \mathrm{~m}\left(\bar{M} \cap J_{i}\right)$ and the left end point of each J_{i} is also the left end point of some interval in M. We will pick the J_{i} as follows: Of all the points that are left end points of some interval in M, pick the one farthest to the left. Call it p_{1}. (p_{1} lies in the left half of I_{n} since \bar{M} covers part of B.) Let J_{1} be the smallest interval
whose left end point is p_{1} and such that $m\left(\bar{M} \cap J_{1}\right) \leq \frac{1}{2} m\left(J_{1}\right)$. (To see that $J_{1} \subset I_{n}$, we first note that our lemma implies that $m(\bar{T}) \leq \frac{1}{4} m\left(I_{n}\right)$ $m(\bar{M}) \leq m(\bar{T})$, so $m\left(J_{1}\right) \leq 1 / 2$. Since the left end point of J_{1} is in the left half of $I_{n}, J_{1} \subset I_{n}$.) Note that if J_{1} intersects the interior of an interval in M, then it covers the interval completely. Of all the points that are end points of some interval in M not covered by J_{1}, let p_{2} be the one farthest to the left. If $p_{2} \notin I_{n}^{l}$ we are finished because of the preceding remark. Other wise, we let J_{2} be the smallest interval whose left end point is p_{2} and such that $m\left(\bar{M} \cap J_{2}\right) \leq \frac{1}{2} m\left(J_{2}\right)$. A continuation of this process yields $J_{1} \cdots J_{r}$.

Let J be the part of $\mathrm{U}_{i=1}^{r} J_{1}$ that does not lie in \bar{M} (i.e., $J=\mathrm{U}_{i=1}^{r} J_{i}-\bar{M}$). J is the union of a finite number of disjoint intervals, each of which has its left end point in A (because the right end points of the intervals in M are in $A) . \quad J$ is in the interior of I_{n} and has length $<\frac{1}{2} m\left(I_{n}\right)$.

The density of \bar{T} in $J<1 / 2^{n+3}$. This is an immediate consequence of the following inequalities: $m(\bar{T}-\bar{M}) \leq\left(1 / 2^{n+4}\right) m(B)$ and

$$
m(J) \geq\left(1-1 / 2^{n+4}\right) m(B)
$$

(The second inequality comes from the fact that

$$
\left.m\left(\bigcup_{i=1}^{r} J_{i} \cap \bar{M}\right) \geq\left(1-1 / 2^{n+4}\right) m(B) .\right)
$$

Now pick one of the intervals making up J in which the density of $\bar{T}<1 / 2^{n+3}$. It is clear that we can move the right end point a little to the left so that the density of \bar{T} in this new interval is still $<1 / 2^{n+3}$ and the right end point is not in \bar{T}. Call this interval H^{1}.

If we let $I_{n+1}=H^{1}$, then I_{n+1} would satisfy (3) and (4). (2) would hold because the right end point of H^{1} is not in \bar{T}.

If the density A_{n+1} in $H^{1}<1 / 2$, then we will let $I_{n+1}=H^{1}$. If not, we will pick an interval $H^{2} \subset H^{1}$ precisely as we picked H^{1} except that H^{1} will play the role of I_{n}. Then pick $H^{3} \subset H^{2}$ with H^{2} playing the role of I_{n}.

We will now show that for some integer t, the density of A_{n+1} in $H^{t}<1 / 2$. Assume the above statement is false. Then $H^{t}, t=1,2, \cdots$ determine a nested sequence of intervals and a point x_{0}. By (a), $f\left(x_{0}\right) \leq y-1 /(n+1)$. However x_{0} is contained in another nested sequence of intervals, $J_{i(t)}^{t}$. (When we are determining H^{t+1}, we will let M^{t}, J^{t}, etc. denote what corresponds to M, J, etc. $J_{i(t)}^{t}$ will be the interval in $\bigcup_{i=1}^{r(t)} J_{i}^{(t)}$ in which H^{t+1} lies.) The density of A in $J_{i(t)}^{t}>2 / 2^{n-1}$. (a), together with the above fact shows that $f\left(x_{0}\right) \geq y$, giving a contradiction.

Pick a t such that the density of A_{n+1} in $H^{t}<1 / 2$, and let $I_{n+1}=H^{t}$.
I_{n+1} obviously satisfies (1), (3) and (4). To show (2): suppose there were an interval R, with left end point in $I_{n+1}=H^{t}$ and right end point in A but not in H^{t}, and $\mathrm{m}(A \cap R) / m(R)>1 / 2^{n-1}$. Pick H^{s} so that $R \subset H^{s}$ and $R \not \subset H^{s+1}$ (let $H^{0}=I_{n}$). But then R will be an interval in T^{s} and that means that the right end point of H^{s+1} is in \bar{T}^{s}, contradicting the construction of H^{s+1}. (This was insured by the very last step in picking H^{s+1}.)

Description of a continuous function satisfying (b^{\prime}) which is not monotone. We will first describe a function $g(x) 0 \leq x \leq 1$ as follows: Pick six points $0<p_{1}<p_{2}<p_{3}<p_{4}<p_{5}<p_{6}<1$. Let $f(0)=1, f\left(p_{1}\right)=1+1 / 3$, $f\left(p_{2}\right)=1 / 3, f\left(p_{3}\right)=1+1 / 3, f\left(p_{4}\right)=-1 / 3, f\left(p_{5}\right)=2 / 3, f\left(p_{6}\right)=-1 / 3$, $f(1)=0$. Choose $g(x)$ to be linear on each of the intervals $\left(0, p_{1}\right),\left(p_{2}, p_{2}\right)$ $\cdots\left(p_{5}, p_{6}\right),\left(p_{6}, 1\right)$.

It is easily checked that there is an $\alpha>0$ such that for each x_{0} $\left(0 \leq x_{0} \leq 1\right)$ the set of $x(0 \leq x \leq 1)$ such that $\left(g(x)-g\left(x_{0}\right)\right) /\left(x-x_{0}\right)>0$ has measure $>\alpha$.

We will now define a sequence of functions g_{n}. Let $g_{1}=g$ and assume that we have defined g_{n} such that $g(0)=1, g(1)=0$ and the graph of g_{n} consists of a finite number of straight line segments. To get g_{n+1} we simply replace each line segment of the graph of g_{n}, having negative slope, with a linear transformation of the graph of g. (I.e., suppose g_{n} is linear on (a, b) but not in any larger interval and has negative slope in (a, b). Let $T(x)=c x+d$ and $T^{\prime}(x)=C^{\prime} x+d^{\prime}$. Determine T so that $T(a)=0, T(b)=1$ and T^{\prime} so that $T^{\prime}(0)=g_{n}(a), T^{\prime}(1)=g_{n}(b)$ and replace g_{n} on (a, b) by $T^{\prime}[g(T(x)]$ on (a, b).)

It is easily checked that g_{n} converges pointwise to a continuous function, g_{∞} and that g_{∞} satisfies $\left(b^{\prime}\right)$ and $g_{\infty}(0)=1$ and $g_{\infty}(1)=0$.

Stanford University

Stanford, California

[^0]: Received September 22, 1968.
 ${ }^{1}$ This research is supported in part by a National Science Foundation grant.

