A CHARACTERIZATION OF MONOTONE FUNCTIONS

BY
DonaLp ORNSTEIN'

The purpose of this note is to prove the following theorem:

THEOREM. Let f(x) be a real-valued function of a real variable satisfying the
Sollowing.

(a) f(x) is approximately continuous, i.e., for each x, and & > 0 the set of
x such that | f(xe) — f(x) | < & has density 1 at xo ;

(b) For each xy, let E be the set of x, such that f(x) — f(xo) = 0. Then

lim supjn-om[E n (Xo, 2o + |h|)]/|h]| # 0

where m (C') is Lebesgue measure of C.
Then f(x) 1s monotone increasing and continuous.

One may be tempted to weaken (b) as follows: (b’) for each «, the set of «
such that (f(z) — f(x))/ (@ — x0) = 0 does not have 0 density at 2. In
this case, however, the conclusion is false, even if we assume f(z) to be con-
tinuous. (We will describe such an example at the end of this note.)

Condition (b) may be replaced by the following weaker condition:

Lim 8UPzaey (f (@) — f(20))/ (@ — @) 2 0, x> 2

neglecting any set of values of « that has density 0 at 2. This follows from
our theorem because if f () were not monotone we could add a linear function
with positive slope to f(x) in such a way that the result is still not monotone
but condition (b) is satisfied.

Without loss of generality we will assume f(x) to be defined only on the
unit interval. 'We will now prove Theorem 1.

LEMMA. Let A be a measurable set in the unit interval, I, of measure v > 0,
and r a real number > 1. Assume that 2ry < 1. Let U be the union of all the
intervals J in I such that m(A n J)/m(J) > ry. Then m(U) < 2/r.

Proof. Pick a finite subset S of the intervals which make up U, such that
the measure of their union is within ¢ of the measure of U.

If there is an interval in S which is contained in the union of the remaining
intervals delete it from S. Call the new collection S;. Delete from 8; an
interval (if there is any) that is in the union of the remaining interval in S; .
Call the result S.. We will eventually get a collection S’ so that no interval
in 8’ is in the union of the remaining intervals and the union of the intervals
of 8’ = the union of the intervals of 8. It is easy to see that no point is in

Received September 22, 1968.
1 This research is supported in part by a National Science Foundation grant.

73



74 DONALD ORNSTEIN

more than 2intervals of 8’. If [ is the sum of the lengths of the intervals of S,
then Iry < 2y hencel < r/2.

Proof of Theorem 1. We will assume that f(z) satisfies the hypothesis of
the theorem but that there is an 2, and z, with 2; < 2, and that f(x1) > f(x2).
Pick a y such that f(x1) > y > f(2:) and let A be the set of z such
that f(z) = y. We will pick a nested sequence of closed intervals, I,,
(I's41 is in the interior of I,,) whose lengths tend to 0 satisfying:

(1) Let A, be the set of x such that f(x) < y — 1/n. Then
m(A.nL)/ml.) < 1/2.

(2) If Ris an interval in I, with left end point in the interior of I,.4; and
rightend pointin A and notin I,41,thenm (AnR)/m (R) < 1/2"".

This will give us a contradiction as follows: Let #p = Np—1l,. (1) and
(a) imply that f(x,) 2 y, (2) implies that the part of A that lies to the right
of 2o has density 0 at 2,. (I.e., it is impossible to have an o > 0 and a
sequence of intervals K, whose lengths tend to 0 and whose left end point is
2o and the density of A in K, is greater than «. Arguing by contradiction, we
could, without loss of generality, assume that the right end point of K, is in
A. For each K, we can find an Iy, such that K, C I and K, E Iy -
(2) then implies that & < 1/2"™7  but limy.e I(n) = ©.)

Our proof will now be finished when we have constructed our sequence I,
satisfying (1) and (2). We will do this inductively and in order to go from
I, to I,41 we will construct a sequence of I, that, in addition to (1) and (2),
satisfies:

B) mAnl)/m(,) < 1/2",
(4) the left end point of I, is in A.

We will demand that I, satisfy only (3) and (4). Since the density of A at
Z, 18 0, it is easy to see that we can pick an interval I; with right end point z,,
and left end point in 4, and m (A n I;)/m(I) < 1/2%.

Assume, now, that we have picked I, with properties (3) and (4). We will
construct 1,1 with properties (1), (2), (8) and (4) and m (1) < Im(1,).

Let T be the collection of subintervals L, of I, with right end point in A4,
and such that m(4 n L)/m(L) > 1/2*". Let T be the set covered by T.
Note that T covers A except for a set of measure 0.

Let M be a finite subcollection of T such that m(T) — m(M) < (1/2*™)m(B)
where B is the part of A that lies in the left half of I,. (I is the set covered
by M.) Note that B must have non-zero measure because of (4) and (b).

We will next pick r subintervals of I, J;, 1 < 7 < r, with disjoint interiors
such that Ui, J; D M n I} (If. is the left half of I,.), m(J;) = 2m (M n J;)
and the left end point of each J; is also the left end point of some interval in M.
We will pick the J; as follows: Of all the points that are left end points of
some interval in M, pick the one farthest to the left. Call it p1. (p1 lies
in the left half of I, since M covers part of B.) Let J; be the smallest interval
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whose left end point is p; and such that m (M n J1) < 3m(J1). (To see that
Ji © I,, we first note that our lemma implies that m(T) < im(I,)
m(M) < m(T), so m(@J;1) < 1/2. Since the left end point of J; is in the
left half of I, , J1 < I,.) Note that if J; intersects the interior of an interval
in M, then it covers the interval completely. Of all the points that are
end points of some interval in M not covered by J1, let p. be the one farthest
to the left. If ps ¢ I% we are finished because of the preceding remark. Other
wise, we let J» be the smallest interval whose left end point is p, and such that
m(M n J;) < im(J,). A continuation of this process yields J; -+ J,.

Let J be the part of Uiy J1 that does not lie in M (ie., J = Ui J; — M).
J is the union of a finite number of disjoint intervals, each of which has its
left end point in A (because the right end points of the intervals in M are
in A). J isin the interior of I, and has length < 4m (1,.).

The density of T in J < 1/2"™, This is an immediate consequence of the
following inequalities: m (T — M) < (1/2"™*)m (B) and

m@) > 1 — 1/2™")ym (B).
(The second inequality comes from the fact that
m(Uiadin M) > (1 — 1/2"")m(B).)

Now pick one of the intervals making up J in which the density of
T < 1/2*". It is clear that we can move the right end point a little to the
left so that the density of 7T in this new interval is still < 1/2"™ and the right
end point is not in 7. Call this interval H'.

If we let I,;1 = H', then I,.; would satisfy (3) and (4). (2) would hold
because the right end point of H' is not in 7.

If the density A,y in H' < 1/2, then we will let I,41 = H'. If not, we will
pick an interval H* < H' precisely as we picked H' except that H will play
the role of I,. Then pick H* < H” with H® playing the role of I, .

We will now show that for some integer ¢, the density of A,y in H® < 1/2.
Assume the above statement is false. Then H', ¢t = 1, 2, -+ determine a
nested sequence of intervals and a point 0. By (a),f(@) <y — 1/(n + 1).
However , is contained in another nested sequence of intervals, Ji, . (When
we are determining H*"', we will let M*, J*, ete. denote what corresponds to M,
J, ete. Ji will be the interval in Ui J§? in which H**' lies.) The density
of AinJiw > 2/2%". (a), together with the above fact shows that f(z,) > v,
giving a contradiction.

Pick a ¢ such that the density of 4,1 in H' < 1/2, and let I, = H'.

I3 obviously satisfies (1), (3) and (4). To show (2): suppose there were
an interval R, with left end point in I,.; = H® and right end point in 4 but
not in H, and m(4 n R)/m(R) > 1/2"'. Pick H’ so that R < H’ and
R & H** (et H* = I,). But then R will be an interval in T* and that
means that the right end point of H** is in 7", contradicting the construction
of H*"'. (This was insured by the very last step in picking H**'.)
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Description of a continuous function satisfying (b’) which is not monotone.
We will first describe a function g(z) 0 < =z < 1 as follows: Pick six points
0< <P <p<pe<ps <ps <1l Letf(0)=1,f(m) =1+ 1/3,
f(p2) = 1/8,f(ps) = 1 + 1/3,f(ps) = —1/3,f(ps) = 2/3, f(ps) = —1/3,
f(1) = 0. Choose g(z) to be linear on each of the intervals (0, p1), (p2, p2)
e (pﬁ, pﬁ)) (pG’ 1)

It is easily checked that there is an o > 0 such that for each
0 <zp<1)thesetof z (0 < x < 1)suchthat (g(x) —g(xe))/ (@ —20) >0
has measure > o.

We will now define a sequence of functions g, . Let g1 = g and assume that
we have defined g, such that g (0) = 1,9 (1) = 0 and the graph of g, consists of
a finite number of straight line segments. To get gn+1 We simply replace each
line segment of the graph of g, , having negative slope, with a linear transforma-
tion of the graph of g.  (I.e., suppose g» is linear on (a, b) but not in any larger
interval and has negative slope in (a, b). Let T(z) = cx 4+ d and
T'@) = ¢ z + d. Determine T'so that T(a) = 0, T(b) = 1 and
T' so that T'(0) = g.(a), T"(1) = g.(b) and replace g, on (a, b)
by T'[g(T (x)] on (a, b).)

It is easily checked that g, converges pointwise to a continuous function,
g» and that g, satisfies (') and ¢g,(0) = 1 and g, (1) = 0.
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