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O. Introduction

If U is an associative unitary algebra with a commutative subalgebra A and

’ a (R) bi (R) c e A (R) A (R) A is an Amitsur 2-cocycle, then we can define
new multiplication on U by setting

0.1 U,V Zaibi
Vofor all u, v e The Amitsur 2-cocycle condition guarantees that U is associ-

ative and unitary with the multiplication. If U was originally a central
separable (simple) algebra then U is still central separable under the new
multiplication. We show that the central separable algebra resulting from an
Amitsur 2-cocycle is isomorphic to the Rosenberg Zelinsky central separable

--1algebra coming from the 2-cocycle a

If K is an intermediate field (A K k) we show how mapping 2-cocycles
in A (R) k A (R) k A into A (R) K A (R) K A corresponds to taking the centralizer of K
in central separable k algebras with maximal commutative subfield A. On the
way to these results we prove that if A is a finite purely inseparable field ex-
tension of k and U is an algebra containing A then U is isomorphic to A (R) A
as an A-bimodule if and only if U is a central separable k algebra of k-dimension

By being careful about what we mean by a 2-cocycle we are able to obtain
an associative unitary algebra by means of 0.1 even when A is not a com-
mutative subalgebra of U. We prove that if U is a central separable n-dimensional k algebra and is any n%dimensional k-algebra then there is a 2-
cocycle in U (R) U (R) U making U isomorphic to (via 0.1). Moreover we
show that if U is a central separable k algebra with simple subalgebra L which
has centralizer A then there is a 2-cocycle in A (R) A (R) A making U isomorphic
to if and only if contains a copy of L and is isomorphic to U as an L-
bimodule. If A is commutative and is a 2-cocycle in A (R) A (R) A then a is an
Amitsur 2-cocycle if is invertible.
We define when two 2-cocycles in A (R) A (R) A are cohomologous and show

that this is equivalent to the associated algebras being isomorphic by an iso-
morphism which is the identity on L. This gives a bijective correspondence
between a 2-cohomology set (not group) and equivalence classes of algebras.

1. Linear Algebra
Throughout this paper k is at least a commutative unitary ring (and some-

times a field). All k algebras are unitary. A subalgebra has the same unit
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as the over algebra. Unadorned (R), Hom and End mean (R), Horn, and End
respectively. We speak of a central separable k algebra in the sense of [8,
p. 330, footnote 9]. "Finite projective module" means "finitely generated
projective module". (R) ] M means M (R), (R) M (n-times).
Suppose U is a k algebra with subalgebras L and A, where A is in the cen-

tralizer of L in U. We consider U as a right L-module by

Hom_L(U, U) denotes the set of fight L-module morphisms from U to U.
Since A is in the centralizer of L in U there is a map

1.1 f U (R) A -- Hom_L (U, U), u (R) a ---+ fu(R)a

where fua (V) uva for u, v e U, a e A.
We say that (U, L, A satisfies H1 if

1.2
0. A is the full centralizer of L in U,
1. f is a bijection,
2. A is a finite projective k-module.

We shall show in 1.6 that if k is a field and U a central separable k algebra, then
(U, k, U) satisfies H1.

1.3 LEMMA. (a) If (U, k, U) and (U, L, A) satisfy H1 and (R)’ U has the
right L-module structure given by

then
(ul (R) (R) u,,).l ul (R) (R) u,_ (R) (u,l)

(R)"U (R) A Hom_L ((R)" U, U),

ul (R) (R) us (R) a--+ fl(R)...(R).(R)
where

fl"’(R)tn(R)a (Vl Vn Ul )1 U2 V2 Un )n a

is a bijection.
(b) Since U is also a left L-module we can form U (R) U (where

ul (R) v u (R) lv ) which is a right L-module by

(u (R) v).l=- u (R) (vl).

If (U, L, A satisfies H1 then

U(R) (R)A- j )Hom_,((R)V, V),

u (R) a (R) (R) am "-’> fu(R)at(R)."(R)an
where

](R)1(R)...(R),, (vl (R) (R) v, uv a v2 a v a,

is a bijection.

Proof. Since the proofs of (a) and (b) run parallel we work on both simul-
taneously and keep track in the margin.
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Given rings X, Y and modules M, Nr, 0r (notation of [6]) there is a
natural correspondence

Hom_r (M (R)x N, 0) -, Hom_ (M, Hom_r (N, 0)),

[6, p. 25, Prop. 5.2’]. This gives natural correspondences

(a) Hom_ ((R) U, U) *- Hom (U, Hom_ ((R)- U, U)),
(b) Hom_,. ((R) ,. U, U)*- Hom_ (U, Hom_ ((R) . U, U)).

By induction (taking ff- and ]- as identifications) the right hand sides are
equal to

(a) Hom (U, (R)-U (R) A),
(b) Hom_L (V, U (R) (R)-A),

where U (R) (R)-’A is a right L-module by

(u (R) a (R) (R) a,_).l (ul) (R) a (R) (R) a,_.

The hypothesis of (a) implies that (R)- U (R) A is a finite projective k-module
and the hypothesis of (b) implies that (R) - A is a finite projective k-module so
that the above terms are naturally equivalent to

(a) Horn (U, U) (R) (R)-U (R) A,
(b) Hom_ (U, U) (R) (R)-A.

Under the hypothesis of (a) and (b) these are isomorphic to

(a) (V (R) U) (R) (R)"-V (R) A,
(b) (V (R) A) (R) (R)-A.

Checking all the correspondences shows that they give f" and ], Q.E.D.
With the right and left L-module structures on U, U is an L-bimodule.

We let Hom,._,. (U, U) denote the set of simultaneously right and left L-module
morphisms from U to U. Since A is contained in the centralizer of L in U
we have the map

A (R)A g Hom,._(U, U), a(R) b--,g(R)

where g(R) (u aub.
We say that (U, L, A satisfies H2 if

1. g is a bijection,
1.4

2. (U, L, A satisfies H1.

1.5 L.. If (U, L, A satisfies H2 and (R) U has the L-bimodule structur
given by

1.(u (R) (R) u,) (lug) (R) u. (R) (R) u,,

(u @ (R) u,).l u (R) (R) u,_ (R) (u,l),
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Then

where

(R)-IA I-Iom_. ((R) U, U),

a0(R) (R) a.--*ga (R) (R) a

gao (R) (R) a,) (ul (R) (R) u,,) aoul al u2 a,)_lu,

is a bijection.

Proof. Given rings X, Y, Z and modules xMy, yNz, rOz [notation of 6]
there is a natural correspondence

Homx_z(M (R)r N, 0) (-. Homx_r (M, Hom_z (N, 0))

induced by the correspondence in [6, p. 28, Prop. 5.2’]. This gives the natural
correspondence

n--1I-Iom_. ((R) U, U) <-) Hom_. (U, Hom_L ((R) U, U)).

By the previous lemma and taking j-i as an identification we have that
n--i )n--II-Iom_L((R) U, U) U(R) A.

Plugging this in above gives

Hom (U, U (R) (R)’-1A),
where U (R) (R)-IA has the L-bimodule structure given by

1. (u (R) al @ @ an_l).m (lure) (R) al @ @ an-1.

Since (R)-IA is a finite projective/c-module (.) is naturally isomorphic to

Hom._ (U, U) @ (R).-1A.

Since (U, L, A satisfies condition 1 of H2 the above is isomorphic to

(A (R) A) (R)

Checking through the correspondences shows that they give g’, Q.E.D.

1.6 PROPOSITION. If k is a field, U a finite-dimensional central separable
k algebra and L a simple subalgebra of U with A the centralizer of L in U then
(U, L, A satisfies H1 and H2.

Proof. By [1, p. 53, Theorem 13],

1.7 L is the centralizer of A in U and A is simple,
1.8 (dim A (dim L) dim U,
1.9 A and L have common center F which is a field and

A (R)L----> U, a @ L---->al

induces an algebra isomorphism between A @ L and the centralizer of F in U.
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It can easily be shown using [1, p. 42, Theorem 14]

MU (R) Up --; End U, u (R) vp -- f(R)

where f,(R) (w) uwv is an algebra isomorphism. (Up is the opposite algebra
to U, i.e., for u, v e U upvp (vu)p.)

Consider /c @ Lp c U (R) Up in the natural way. Then--via M--
Hom_,. (U, U) corresponds to the centralizer of/c (R) Lp in U (R) Up. Now
/c (R) Lp is a simple subalgebra of the central separable/c algebra U (R) Up and
U (R) Ap lies in the centralizer. Counting dimensions and applying 1.8 shows
that U (R) Ap is the full centralizer of/c (R) Lp. In view of the correspondence
M we have that condition 1 of H1 is satisfied. Condition 0 is satisfied by
hypothesis and condition 2 is satisfied since we assume U is finite dimensional
over k.

Consider L (R) Lp c U (R) iop in the natural way. Then--via Mc
HomL_L (U, U) corresponds to the centralizer of L (R) Lp in U @ /cp.

As shown above U (R) Ap is the centralizer of/c (R) Lp and similarly A Up
is the centralizer of L (R) /cp L (R) /c in U (R) Up. Thus the centralizer of
L(R)Lp is (U(R)Ap) n (A (R) Up) which is equal to A (R)Ap. In view of
the correspondence M we have that the first condition of H2 is satisfied. We
have already shown that the second condition is satisfied, Q.E.D.

1.10 :PROPOSITION. Suppose is a field with extension field L, U is a
algebra containing L and (U, L, A satisfies H1. Then L is a finite field exten-
sion of , U is a finite-dimensional central separable lc algebra, A is a simple
Ic algebra with center L and (U, L, A satisfies H2.

Proof. L is commutative implies that L lies in its centralizer A.
is a ’finite projective’/c-module, L must be finite dimensional.

Since A

The composite

1.11 U (R) Ap ---> U (R) A -f Hom_L (U, U), U (R) aOp-.- u (R) a

is an algebra homomorphism. It is an algebra isomorphism since the left
map is bijective and the right map is bijective because (U, L, A) satisfies
H1. If U has infinite dimension over k then the cardinality of dim U (R) Ap
equals the cardinality of dim U since A has finite k dimension. U must also
have infinite dimension over L so that the cardinality of dim Hom_. (U, U) is
greater than the cardinality of dim U. This contradicts the fact that 1.11 is
an isomorphism. Thus U is a finite-dimensional k algebra and Hom_. (U, U)
is a finite-dimensional central separable L algebra. Thus the isomorphism
1.11 implies that U is a central separable k algebra and Ap (hence A is a
simple k algebra with center L, since L lies in the center of A (hence Ap).
(U, L, A satisfies H2 by 1.6, Q.E.D.

1.12 LEMMA. Suppose A is a commutative k algebra. If (U, L, A) satisfies
H1 (H2) then so does (U (R) A, L (R) A, A (R) A ). IrA is a faithful finite
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projective k-module and (U (R) A, L (R) A, A (R) A satisfies H1 (H2) then so
does (U, L, A ).

Proof. If B is a/ algebra and M and N are left B-modules then

Home (M, N) (R)h A --. Home (M, N (R)h A ),
1.13

f(R) a (mf(m) (R) a),

is an isomorphism when A is a finite projective k-module.

Suppose B, C, D and E are subalgebras of U and U is a left B (R) C,-module
by

(b (R) c").u buc forbeB, cC, ueU.

If B centralizes D and C centralizes E then we have the map

h
1.14 D (R)hE ;Hom(R)eop(U, U), d(R) e (udue).

If we "base extend" by A the map in 1.14 becomes

h
1.15 (D (R)hA) (R) (E (R)hA) Hom(.(R)a)(R)a(c(R)A)o (U (R)hA, U (R)hA).

The left hand side in 1.15 is naturally isomorphic to D (R) k E (R) k A. For the
fight hand side we have the sequence of natural isomorphisms

Hom((R)a)(R)(c(R))o (U @h A, U (R)h A)

-----Homs(R)cop(R)a (U (R)h A, U (R) A)-- Hom(R)co (U, U (R) A).

The map h’ in 1.15 corresponds to

D (R) h E (R) h A -- Hom,(R)o (U, U (R) h A ),

d (R) e (R) a ----> (u ----> due (R) a),

which factors
h@ID @ E @ A Hom(R)o (U, U) @h A1.16

--, Hom(R)co,(U, U (R)h A).

(The fight hand map in 1.16 is the map in 1.13 and is an isomorphism when A
is a finite projective/c-module.)
Thus we have that h’ is bijective if h is bijective and A is a finite projective

/c-module. Also, if A is a finite projective k-module and h’ is bijective then
h (R) I (in 1.16) is bijective. If A is also a faithful k-module then h must be
bijective.
The three interesting cases are

(I) B L,C= U,D A,E k,
(II) B k,C L,D--. U,E A,

(III) B L,C L,D A,E A.
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For Case I bijectivity of 1.14 is equivalent to (U, L, A satisfying condition
0 of H1 and bijectivity of 1.15 is equivalent to (U (R) A, L (R) A, A (R) A
satisfying condition 0 of H1. Similarly Case II covers condition I of H1 and
Case III covers condition I of H2.

Finally A (R) k A is a finite projective A-module when A is a finite projective
k-module, Q.E.D.

2. Constructions
Suppose U is a k algebra.

2.1 DEFINITION. a u (R) v (R) w e U (R) U (R) U is called a
2-cocycle if

2.2 .uu. (R) v. (R) wv (R) w ,.u (R) vu (R) v. (R) ww,

and there is an element e e U where

2.3 iuiev(R) w 1 (R) 1 u(R) vew.

If a is a 2-cocycle and both e, f e U satisfy 2.3 then considering

shows that e f.
Suppose U is commutative. If a is an Amitsur 2-cocycle in U (R) U (R) U

--1[8, p. 327] where (R) (R) e U @ U (R) U then one easily checks
that a is a 2-cocycle in the above sense with e i. Clearly, if
is a 2-cocycle--in the above sense--which is invertible then is an Amitsur
2-cocycle.

If U is a flat ]-module and A is a subalgebra of U which is a flat k-module
then the natural maps

A (R) A (R) A---.U (R) A (R) A--..U (R) U (R) A.--.U (R) U(R) U

are injective and we take them for identifications.

2.4 DEFINITION. We say that a is a 2-cocycle in U (R) U @ A (respectively,
U (R) A (R) A, A (R) A (R) A) if A is a subalgebra of U, both U and A are flat
k-modules, a is a 2-cocycle in U (R) U (R) U and a lies in U @ U (R) A, (respec-
tively, U(R) A (R) A,A (R) A (R)A).

If a is a 2-cocycle we can define a new It-algebra U. As a set U is equal
to U. For an element u e U we write u to indicate that we are considering
it as an element in U. The multiplication in U is given by

2.5 uv =-- (_, uuvvw)

where u, v e U, a u (R) v (R) wi and the multiplication on the fight hand
side takes place in U. Associativity follows from 2.2. The unit of U"
is e by 2.3.
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Suppose a is a 2-cocycle in U (R) U (R) A. We define

2.6 U N UU (R) A, ---. uuv (R) vo.
One easily checks that N is an algebra homomorphism. N is injective since
the k-module morphism

U (R) A, m U, u a (ue, a

has the property mN= I.
Supposea u@v@w,r r@s@tieU@ U @ Uaretwo

2-cocycles and x @ y e U @ U.

2.7 DFTO. a r--read "a is cohomologous to r via "--if
2.8 .xu @ v @ wy ,rx @ y sx @ y t

and

2.9 e xey.

This relation is not reflexive without further assumptions.

If z r we have the algebra homomorphism

2.10 U U, u (xuy).

2.11 DEFNTmN. A 2-cocycle u @ v @ weU @ U @ Uis
vertible with verse a @ @ e U @ U @ U if

2.12 .u@ v@w 1 @ 1 @ 1 ,u@ v@ w.
If a is a vertible 2-cocycle in U @ U A with veme e U @ U @ A and

A is commutative then

2.13 U @ A U @ A, u" @ a uuv @ wa

is an Mgebra isomohism with inveme

: UAU"A, ua(uO)@a.
2.14 Example. Suppose A is a commutative k algebra which is a fite

projective k-mode. Suppose V is a finite projective and faithf A-mode.
We can consider V as a k-mode and have the injective algebra representation
:A End V. Identify A with its image under v. If a is a vertible
2-cocycle in End V @ End V @ A with verse in End V @ End V @ A then
as algebras

(EndV)"@AEndV@A

by 2.13. If the unit mapping k A, . 1 is a split monomohism then
(End V) is a central separable k algebra by [8, p. 330, Lemma 3.1].

2.15 Remark. Suppose p is a prime, k has characteristic p and A is a k
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algebra which is purely inseparable over/c in the sense that for any a e A there
is an n witha K. Then for any 2-cocycle e A @ A (R) A there is a high
enough m with ae/c (R) k (R) /c. One easily checks that e, (R) 1 (R) 1 is an
inverse to a so that a is invertible, i.e. is an Amitsur 2-cocycle.
Suppose a is a 2-cocycle in U (R) U (R) A and L is a subalgebra of U which

centralizes A. The map
H2.16 L U, (el)

is easily checked to be an algebra homomorphism. H is injective since

u (R) v e lw 1 (R)

ifa u (R) v (R) w, leL. The algebrahomomorphismH gives U a
right, left and bi L-module structure in the obvious fashion.

2.17 LEMMA. (a) If (r is in U (R) U (R) A (as above)then

UU, uu

is a right L-module isomorphism.
(b) Ifris in U (R) A (R) A then

U --> U, U -"> U

is an L-bimodule isomorphism.

Proof. The map is bijective since U equals U as a set. If u e U, e L,
u (e, l) (uuv e, lw)

(, (u, uv, e. w)l)

since L centralizes A. By 2.3 the above equals

(u).
A similar calculation shows that the map is also a left L-module homomorphism
ifaeU(R)A (R)A,Q.E.D.

If A centralizes L and A c L then A is commutative and we have a copy
of A in U via

HA’-L U.
2.18 LEMMA. Suppose A and L are subalgebras of U where A centralizes L

and A c L. Furthermore, suppose A is a faithful k-module and a is a vertible
2-cocycle in U (R) A (R) A. Then (U, L, A) satisfies H1 (H2) if and only if
(U, U (L ), H (A ) ) does.

Proof. If either (U, L, A or (U*, H (L), H (A)) satisfies H1 or H2 then
A (or H (A) ) is a finite projective k-module. Thus we may assume that A is a
faithful finite projective k-module. By 1.12, (U, L, A) satisfies H1 (H2) if

which is equal to
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and only if (U (R) A, L (R) A, A (R) A) does. An easy calculation shows that
the isomorphism/ in 2.13 gives rise to the commutative diagram

Thus (U (R) A, L @ A, A (R) A satisfies H1 (H2) if and only if

(U (R) A,H(L) (R) A,H(A) (R) A)

does. By 1.12 this is equivalent to (U, H (L), H (A)) satisfying H1 (H2),
Q.E.D.

3. Characterizations of U
In the sequel U and A are always assumed to be flat as k-modules.
We define algebra homomorphisms

e: U(R) A--U(R) A(R) A, u(R) a--u(R) 1 (R) a

e: U(R) A--+U (R)A" (R) A, u @ a’u (R) a, (R) 1

3.1 PROPOSITION. Suppose ( is a 2-cocycle in U (R) A (R) A. If
o" _Ui (R) Vi (R) Wi

let a denote ui (R) v (R) w in U (R) A (R) Ap. Then N (see 2.6) induces
an isomorphism between U and

V {xe V (R) A, ae(x) e, (x)a}
Proof. We have shown at 2.6 that N is iniective so it remains to prove that

the image is precisely V. Suppose x ; x (R) a e V. We shall show thut

3.2 x N(xe a).
Since x e V,

o op_,.uz (R) (av)’ (R) w r’ ae(x) el(x)o"0 Zijxiu (R) v (R) (wa)r,.

Thus

N(x e, a)" .ux e, a. v (R) w
3.3 ..x u. e v. (R) (we a) x (R) a,. x.

We have shown that V Im N. The first cocycle condition 2.2 implies
that V Im N, Q.E.D.

In [8, p. 339, Theorem 2] Rosenberg and Zelinsky give a correspondence
from Amitsur 2-cocycles to central separable algebras. If A is a commutative
algebra over k which is a finite projective k-module and where the unit mapping
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k --, A is a split monomorphism then by example 2.14, (End A ) is a central
separable ]c algebra, if a is an Amitsur 2-cocycle in A @ A @ A. Since A is
commutative A Ap and Proposition 3.1 shows that (End A ) is isomorphic
to a subalgebra V of (End A (R) A. Since A is a finite projective k-module
the two maps

(End A ) (R) A -, Endl(R)a (A (R) A ),

3.4
f (R) a--+ (b (R) c f(b (R) ac)

(EndA) @A @A--,Endl(R)(R)a(A (R)A @A),

f (R) a (R) b (c (R) d(R) e f(c) (R) ad (R) be)
are A and A (R) A algebra isomorphisms respectively. (See [8] for the nota-
tion End(R) and End(R)(R).) Moreover with these isomorphisms v and 78
[8, p. 339, Theorem 2] correspond to our e and e respectively. Thus if a is
an Amatsur 2-cocycle the subalgebra V of (End A) (R) A is isomorphic to
A (-) [8, p. 339, Theorem 2] with the isomorphism induced by 3.4.

3.5 THEOREM. (a) Assume (U, Is, U)and (U, L, A) satisfy H1. Let
be a ] algebra and h" L -- an algebra homomorphism, (giving a right

L-module structure.) If U ---> U is a right L-module isomorphism then there
is a unique 2-cocycle U (R) U (R) A and algebra isomorphism U --where the following diagram is commutative"

3.6

L

U
(b) Assume (U, L, A satisfies H2. Let U be a k algebra and h" L U

an algebra homomorphism (giving U and L-bimodule structure.) If U U
is an L-bimodule isomorphi then there is a unique 2-cocycle a A @ A @ A
(with e, A) and algebra isomorphism " U C such that 3.6 is commuta-
tive. In particular h is injective.

(c) Assume (U, L, A satisfies H2, A L (so that A is commutative) and
h L U is an injective algebra homomorphism giving U an L-bimodule struc-
ture. If " U is an L-bimodule isomorphi and (, h(L), h(A))
satisfies H2 then there is a unique invertible 2-cocycle a A @ A @ A (with
e, e A and an algebra isorphism " U such that 3.6 is commutative.

Proof. Since U is a right L-module isomohism it is a k-mode
isomorphism and we have defined
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Similarly for -1. ._. U, the right L-module isomorphism inverse to , we
have defined - @- (R)7 (R) U.

If (R)U and (R)n have the right L-module structure given by

(ul(R) (R)un).l ul(R) (R)u_(R) (ul)

then is a right L-module isomorphism with inverse

We use to give U a new algebra structure by "pulling back" the algebra
structure of U. Let C be the composite

U (R) U multiplication,U(R)U , ,U3.7

and let

3.8 e ,I,- (1E,).

Then C is an associative multiplication with unit e and U 7 is an algebra
isomorphism between U with this new algebra structure and U.

All the maps in the composite 3.7 are right L-module morphisms so that C is.
Thus by 1.3 there is a unique element a u (R) v @ we U (R) U (R) A
where

C (u (R) v) ,uuvvw
for allu (R) veU (R) U. The mapC(C (R) I)" U @ U @ U--. Uisaright
L-module homomorphism. However,

U (R) U (R) U U, x (R) y (R) z---. _,.iuuixviywivzw
is precisely C(C (R) I), so that .,.uu (R) v (R) wv (R) w is the unique ele-
ment in U (R) U (R) U (R) A corresponding to C(C (R) I), per 1.3. Similarly

is the unique element corresponding to C (I @ C). By associativity of C it
follows that a satisfies 2.2.

Since e is the unit for C the map

UU, uC(u(R) e)
is the identity. This map is precisely

U --* U, --, ,uv
Thus u (R) v ew is the unique element in U @ U corresponding to the
identity, per 1.3. (Here we are using that (U, k, U) satisfies H1 and using
(U, k, U) for (U, L, A) in 1.3). But 1 (R) 1 corresponds to the identity so
that ., u (R) v ew 1 (R) 1. Similarly using that C (e (R) u) u we have that_, u evi (R) wi 1 (R) 1. Thus satisfies 2.3 and is a 2-cocycle.
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If

then

U

h(1) l.l.

(-lh(1) -(1B./) -(I)/ el.

This gives commutativity of

and we have proved (a).
Now we prove (b). We define

@" (R)U--(R)

Note we are tensoring over L. is well defined since is an L-bimodule
isomorphism. We have

0 @ U.

If @ U and @ have the L-bimode structure given by

1. (u @ @ u, m (lug) @ u2 @ @ u,_ @ (u, m

1. ( @ @ , m (1. @ @ @

_
@ (, m

then " is an L-bimodule isomorphism with inverse -".
As in the proof of part (a) we give U a new algebra structure by letting

C be the composite

U @ U multiplication -and let
e - (1)

Thus

is commutative and is the unique map U" -- making the diagram com-
mutative. P is an algebra isomorphism by the definition of C and a. Since
a is uniquely determined by C it is the unique 2-cocycle making an algebra
homomorphism.
By definition of the right L-module structure on we have that
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Clearly, ll 1 for all e L. Since is an L-bimodule isomorphism we have
that le el for all L. This implies that e is in A, the centralizer of L.
The rest of the proof of part (b) is analogous to the proof of part (a) except

that we rely on Lemma 1.5 instead of Lemma 1.3.
Now we prove part (c). By part (b) we only need to show that # is invert-

ible. The correspondence

3.9 (R)+IA -- Hom_L ((R) , ), ao (R) (R) a,, fao(R)...(R)a

where
fa0(R)...(R)an (ill (R) (R) ) h (a0) h (al)2 n h (a.)

is bijective by 1.5 since (, h (L), h (A) satisfies H2 and h is injective by part
(b).
The composite D

-2 multiplication )-U(R),U >U(R)U >U U

is an L-bimodule morphism and so there is a unique element

inA @A (R)Awhere

D ( (R) ) , h (u)h (v )Oh (w
for all (R) V e U (R) U.

In view of the fact that I, is an algebra isomorphism and 3.6 is commutative
we have that for u, v e U

so that

((uv)) ((uv) D(,(u) (R)L(v))

h (u)h (v)h

(H(u)uH (v)V (w))

(uv) i H(u)uH (v )vH (w
where the indicated multiplications on the right hand side taken place in U.
Since # e A (R) A (R) A we can use (2.17, b) to simplify the right hand side and
obtain (recall A L)

Applying the multiplication formula 2.5 we obtain

u, w,

for all u, .v e V. Then by 1.5 we have that

i,u.u (R)vv.(R) ww 1(R) 1(R) leA (R)A (R)A
--1anda ,Q.E.D.

Note that in the proof of part (b) we showed that e e A by considering e as
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-1 (1). Actually if a is a 2-cocycle in U @ A @ U then e lies in A since for
all e L,

el u elv ew u ev lew le

where the first and third equalities follow from (2.3) and the second from the
fact that A is the centralizer of L. Thus e centralizes L so lies in A.

3.10 COROLLARY. Assume (U, L, A) satisfies H2. U U @ A @ A is a
2-cocycle then actually e A @ A @ A and e e A.

Proof. We let

h: LU, l (e/); : UU, uu
By 2.17 (b), this is an L-bimode isomorphism. By the theorem, part .(b),
there is a unique 2-cocycle r e A @ A @ A th e e A and algebra isomorphism

U Uwhere
L

U U"

u

The commutatity of the bottom triangle implies that isis commutative.
the map

Since is an algebra isomorphism it follows from 1.3 (b) that r, Q.E.D.

3.11 COROLLARY. Suppose A and L are subalgebras of U where A centralizes
L, A c L, A is a faithful k-module and (r is a 2-cocycle in A @ A @ A. Then if
any two of the following conditions hold so does the third

(a) (U, L, A) satisfies H2,
(b) V, H (L ), H (A ) satisfies H2,
(c) is invertible, i.e. (r is an Amitsur 2-cocycle.

Proof. This is just a combination of 2.18 and 3.5 (c), Q.E.D.

4. Coboundaries
Recall the definition 2.7 for two 2-cocycles to be cohomologous.

2-cocycles in U (R) U (R) A we have the algebra homomorphisms
If , r are

as at 2.16. Suppose -- r and e U (R) A. There is the algebra homo-
morphism R U --, U as defined at 2.10. One easily checks that with the
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additional assumption that U (R) A we have commutativity of

L

4.1

U U

We call x (R) y U @ U vertible if there is

= a@/7 U @ U
where

4.2 ’, a x @ y/ 1 @ 1 ,x a @ y.

(Of course this is equivalent to @ oberg the inverse to x @ yo.)
If is vertible then R U U is an algebra isomorphism with inverse

R- U" U", u" ( u).
4.3 THOR. (a) Asme (U, L, A and (U, k, U) satis H1 and a, r are

two 2-cocycles in U @ U @ A. If r U U is an algebra homomorphi
where

L

4.4

r U

is commutative then there is a unique element U @ A where r and r R.
Also, r
the verse, then

(b) Asme (U, L, A ) satisfies H2 and, r are two 2-cocycles in A @ A @ A.
I]r U
a unique element A @ A where and r R. Also, r is an algebra iso-
morphi

(c) Asme (U, L, A) satisfies H2, A L and a, r are two invertible 2-
cocycles in A @ A @ A. If r U U is an algebra homomorphi where 4.4
is cmutative then there is a unique element A @ A where a r and r R.
Moreover, r is an algebra isomorphism and is vertible, which is the ual noti
of invertibility since A

Proof. r induces U U where

u,U,, _:r U u

U
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is commutative. By 3.4 (a) the vertical maps are right L-module isomorphisms
and by the commutativity of 4.4, r is a right L-module morphism. Thus

e Hom_,. (U, U) and since (U, L, A satisfies H1 there is a unique element
x(R) yeU(R)Awhere

(u ., x uy
for all u e U. Thus

for all u e U.
Since r is an algebra homomorphism we have that for all u, v e U,

(_,. x us uv vw y,) r (uv) r (u)r (v)
4.6

and

4.7 e lv r(lv) x e y,

wherea us(R)v(R)wiandr r(R) s@ t.
By 4.6 and 1.3 (a),, xu (R) v (R) w y -’.,q r x (R) y st xq (R) yq t.

This and 4.7 show that a r. Equation 4.5 shows that r R.
The remarks just before the theorem plus the fact r R imply that r is an

--1If r is an algebra isomorphism with inverse risomorphism if is vertible.
then

L

--I

U r U

is commutative and by what we have just shown there is a unique element_, (R) U (R) A

where r - and r-* R. Then for all u e U

(,. x uy) r-*r(u) u
and

(. x ui y,)" rr- (u’) u’.

Thus, since (U, L, A) satisfies H1 we have that

,x @y 1 @ 1 .x @ y
and is vertible.
The proof of part (b) is analogous to the proof of part (a). We leave the

details to the reader.
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It follows from part (b) that under the hypotheses of part (c) there is an
element e A (R) A where -- r and r R. If we show that has inverse
then r is an algebra isomorphism with inverse R and r -( a by part (b).
Say u (R) v (R) w,r ’r (R) s (R) tand ’x (R) y.

Since a r we have from 2.8 that.xu (R) v (R) w y ,.,q r x. (R) y s xq (R) yq t.

This and the commutativity of A imply

4.8 _. x yi us w (R) v ,,q x yq ri t (R) y. xq s.

By hypothesis, a and r are invertible so that

a -’.u.w(R) v, b ’rt(R) s, e and e,

are all invertible. Also,
e e"1 x y

by 2.9. Thus, 4.8 implies that

(ele (R) 1)ba-’( yq (R) xq) e A (R) A

is the inverse to , Q.E.D.

5. Formalities

We can now apply our theorems to show what is classified by the 2-cohomol-
ogy.

5.1 CASE A. Assume (U, L, A) and (U,/, U) satisfy H1. Consider pairs
(, h) where is a/ algebra and h L -* is an algebra homomorphism
making isomorphic to U as a right L-module. Two pairs (, h) and
(, h’) are equivalent if there is an algebra isomorphism r --* ’ where
rh h’.
By 3.5 (a) and 4.3 (a) the equivalence classes of such pairs are in bijective

correspondence with the equivalence classes of 2-cocycles in U (R) U (R) A
where two 2-cocycles are considered equivalent if they are cohomologous via a
vertible element of U (R) A (with verse in U (R) A ).

5.2 CASE B. Assume (U, L, A) satisfies H2. Consider pairs (, h) where
is a/ algebra and h L -- is an algebra homomorphism making iso-

morphic to U as an L-bimodule. Two pairs (, h) and (’, h’) are equiva-
lent if there is an algebra isomorphism r -o ’ where rh h’.
By 3.5 (b) and 4.3 (b) the equivalence classes of such pairs are in bijective

correspondence with the equivalence classes of 2-cocycles in A (R) A @ A where
two 2-cocycles are considered equivalent if they are cohomologous via a vertible
element in A (R) A.

5.3 CASE C. Assume (U, L, A) satisfies H2, A c L (so that A is com-
mutative) and A is a faithful/c-module. Consider pairs (, h) where is a
k algebra and h" L -o is an algebra homomorphism making (, h (L), h (A) )
satisfy H2 and making isomorphic to U as an L-bimodule. Two pairs
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(, h) and (’, h’ ) are equivalent if there is an algebra isomorphism r"
where rh h.
By 2.18, 3.5 (c) and 4.3 (c) the equivalence classes of such pairs are in bi-

jective correspondence with the second Amitsur cohomology group of A over

6. Applications
6.1 THEOREM. Assume k is a field and U is an nS-dimensional (n <

central separable k algebra. If is any n%dimensional l algebra then there is a
V2-cocycle U @ U @ U where e, 1 and as an algebra.

Proof. By 1.6 (U, k, U) satisfies H1. Let L =/ and h L --* the "unit"
map. Since U and have the same dimension they are isomorphic right L-
modules and we can choose such an isomorphism U --* which has the
further property that (lv) 1. By Theorem 3.5 (a) there is a 2-cocycle

U (R) U (R) U where " U" as an algebra. From 3.8 in the proof of 3.5
we see that e, 1, Q.E.D.

6.2 THEOREM. Assume k is a field and L afinite n-dimensional extension field
of . Let L @ L have the L-bimodule structure given by. (n (R) n ) (n ) (R) (n).

Let be a k algebra with subalgebra L which gives and L-bimodule structure.
If is an n%dimensional central separable
L (R) L as an L-bimodule. If k has positive characteristic and L is a purely in-
separable extension of , then is an n%dimensional central separable k algebra if

is isomorphic to L (R) L as an L-bimodule.

Proof. Suppose that is an n%dimensional central separable k algebra.
is a projective left L-module (since L is a field) and p is a projective left

Lp L-module so that (R) , is a projective left L @ L-module.

U @ U -- End U,

where f(R); () V is an algebra isomorphism so thatby the induced ac-
tion is a projective faithful @ -module. Thus considering as an
L (R) L-module by

(l (R) m). lrn

we have that is a projective faithful n*-dimensional L (R) L-module. (Here
we have used "projectiYe over projective is projective.")
L (R) L is a commutative Artinian algebra so that as an algebra L (R) L. R where each R is a primary hence local algebra. Following the de-

composition of L (R) L we have that

where each is a projective R-module. Since/ is local each is a free
R-module and so dim n, dim R. Since is a faithful L @ L-module
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no i is equal to zero. Thus for eachi 1, ..., m,n >_ 1.
equalities

_]’-1 n dim Ri dim dim L (R) L -1 dim R

With the

we have that each n 1 and

as an L (R) L-module. Thus is isomorphic to L (R) L as an L-biomodule.
Conversely suppose --- L (R) L as an L-bimodule. As in 2.14 we consider

L as a subalgebra of U End L. Since U is an n2-dimensional central separ-
able k algebra we have that U L (R) L as an L-bimodule by what we have
already shown. Thus U as an L-bimodule. By 1.6, 2.15 and 3.5 (b)

Vthere is an invertible 2-cocycle in L (R) L @ L where as an algebra.
By 2.14, U hence is an n%dimensional central separable k algebra, Q.E.D.
We first announced Theorem 6.2 without the hypothesis of L being purely

inseparable over k; whereupon Chase gave a direct proof of the theorem with
the hypothesis of pure inseparability and then Waterhouse gave an example
showing that the hypothesis is needed. The example of Waterhouse shows
that there is a 2-cocycle in C (R)R C (R) R C which is not invertible. (C is the
complexes and R the reals.

6.3 LEMMA. Assume that L is an n-dimensional field extension of the field ,
and ’ are n2-dimensional central separable algebras and h L ,

Vh’ L ---* ’ are algebra homomorphisms. Then as algebras if and only
if there is an algebra isomorphism r -- ’ where rh h’.

Noether].
This follows immediately from [5, p. 110, Theorem of Skolem-

If K is an intermediate field L K k there is a natural map

6.4 X L (R) L (R) L---L (R)KL (R):L

which maps Amitsur 2-cocycles for L over k to Amitsur 2-cocycles for L over K.
The collection of maps of the form

(R) L--* (R) L

induces a homomorphism from the Amitsur cohomology of L over/ to the
Amitsur cohomology of L over K.

If U is a central separable k algebra with maximal subfield L then by 1.7
and 1.9 the centralizer of K in U is a central separable K algebra. Let us de-
note the centralizer of K in U by }(U). If [L:K] n and [K:k] n. then
[L’k] nn,. and dim U nn. By 1.8, dim(U) nn2sothat
dim (U) n. This implies that L is a maximal subfield of (U).
We now are in a position to prove how x and } correspond.
Consider two central separable/ algebras with maximal subfield L equiva-
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lent if they are isomorphic as k algebras. Let e(L, k) be the equivalence
classes of the central separable k algebras with maximal subfield L. Let U be
End L so that (U, L, L) satisfies H2. By 1.6, 1.10, 6.3 and 6.2 the equiva-
lence classes of pairs in 5.3 correspond to the "elements" of e (L, k). And by
5.3 we have a bijective correspondence with the second Amitsur cohomology
group of L over/. Explicitly, this correspondence is

[] [u’]

where denotes "equivalence class" and a is an Amitsur 2-cocycle.
Recall H L --* U is given by --* (e l) (3.3).
In U End L we have EndK L which is in fact (U). For x e EndK L, e K,

H (,)x (,x) (x,) xH (,),

the first and third equality follow from 2.17 (b). Thus

(End L) {x e (End L)! x e End L}

is contained in ((End L)). Counting K dimension shows that (EndK L)
is exactly ((End L)). Clearly the (sub) algebra structure induced on
(End, L) is the same as if we had taken

x(o’) e L (R)z L (R): L

and formed (End L)X(), by 2.5. Thus we have the commutative diagram

6.5

H(L, k)
[]

[x()]
H2(L, K)

(L,
[U]

$

[(U)l
e(L, K)

where H (L, ) denotes the second Amitsur cohomology group of L over -,
and a is an Amitsur 2-cocycle in L (R) L (R) L.
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