ASYMPTOTIC DISTRIBUTION OF EIGENVALUES AND EIGENFUNCTIONS OF A GENERAL CLASS OF ELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS ${ }^{1}$

BY
Bui An Ton

The asymptotic distribution of eigenvalues and eigenfunctions of a class of elliptic pseudo-differential operators considered recently by Eskin and Visik [2], was studied by the writer in [6]. The purpose of this paper is to extend those results to the more general class of elliptic pseudo-differential operators A of positive order α on a bounded open set Ω of R^{n}.

More specifically, let A be an elliptic operator of positive order α on Ω with symbol $\tilde{A}(x, \xi)$ and let $\tilde{A}_{j}\left(x^{j}, \xi\right)$ be the symbol of the principal part of A in a local coordinates system. Suppose that

$$
\tilde{A}_{j}\left(x^{j}, \xi\right)=\tilde{A}_{j}^{+}\left(x^{j}, \xi\right) \tilde{A}_{j}^{-}\left(x^{j}, \xi\right) \text { for } x_{n}^{j}=0
$$

where \tilde{A}_{j}^{+}is homogeneous of order k in $\xi, k \geq 0$ and independent of x^{j}, analytic in $\operatorname{Im} \xi_{n}>0 ; \tilde{A}_{j}^{-}$is homogeneous of order $\alpha-k$ in ξ with an analytic continuation in $\operatorname{Im} \xi_{n} \leq 0$.

Let A_{2} be the realization of A as an operator in $L^{2}(\Omega)$ under null "regular" boundary conditions. If A_{2} is self-adjoint, it is shown that

$$
\begin{gather*}
N(t)=\sum_{\lambda_{j} \leqq t} 1=(2 \pi)^{-n} t^{n / \alpha} \int_{\Omega} \int_{\tilde{A}(x, \xi)<1} d \xi d x+o\left(t^{n / \alpha}\right) \tag{i}\\
e(x, x, t)=(2 \pi)^{-n} t^{n / \alpha} \int_{\tilde{A}(x, \xi)<1} d \xi+o\left(t^{n / \alpha}\right) ; \quad x \text { in } \Omega . \tag{ii}\\
e(x, y, t)=\sum_{\lambda_{j} \leqq t} \varphi_{j}(x) \overline{\varphi_{j}(y)}=o\left(t^{n / \alpha}\right) ; \quad x \neq y .
\end{gather*}
$$

λ_{j}, φ_{j} are respectively the eigenvalues and eigenfunctions of A_{2}.
We shall use the method of Garding [3] as extended by Browder in [1]. The notations and the definitions are essentially those of Eskin and Visik [2], they are given in Section 1. The asymptotic behavior of the kernel of $\left(A_{2}+t I\right)^{-2 m}$ where m is the smallest positive integer such that $m \alpha>n / 2$. is studied in Section 2. The results are obtained by an application of the Hardy-Littlewood Tauberian theorem.

Section 1

Let Ω be a bounded open set of R^{n} with a smooth boundary $\partial \Omega . \quad H^{s, 2}(\Omega)$, $s \geq 0$, which shall be written as $H^{s}(\Omega)$ for short, denotes the usual Sobolev

[^0]space and $H_{+}^{s}(\Omega)$ is the space of generalized functions f defined on all of R^{n}, equal to 0 on $R^{n} / \mathrm{cl} \Omega$ and coinciding with functions in $H^{s}(\Omega)$ on $\mathrm{cl} \Omega$.

Definition 1. $\tilde{A}_{+}(\xi)$ is in C_{k}^{+}iff:
(i) $\tilde{A}_{+}(\xi)$ is homogeneous of order k in ξ, continuous for $\xi \neq 0$ and has an analytic continuation in $\operatorname{Im} \xi_{n}>0$ for each fixed $\xi^{\prime}=\left(\xi_{1}, \cdots, \xi_{n-1}\right)$.
(ii) $\widetilde{A}_{+}(\xi) \neq 0$ for $\xi \neq 0$ and for any positive integer p, there is an expansion

$$
\tilde{A}_{+}(\xi)=\sum_{s=0}^{p} c_{s}\left(\xi^{\prime}\right) \xi_{+}^{-k s}+R_{k, p+1-k}(\xi) ; \quad \xi_{+}=\xi_{n}+i\left|\xi^{\prime}\right|
$$

where all the terms are homogeneous of orders k in ξ with analytic continuation in $\operatorname{Im} \xi_{n}>0$ and

$$
\left|R_{k, p+1-k}(\xi)\right| \leq C\left|\xi^{\prime}\right|^{p+1}\left(\left|\xi^{\prime}\right|+\left|\xi_{n}\right|\right)^{k-p-1}
$$

Definition 2. $\tilde{A}(x, \xi)$ is in $\hat{D}_{\alpha, 1}^{1}$ iff:
(i) $\tilde{A}(x, \xi)$ is infinitely differentiable in X and in ξ for $\xi \neq 0$.
(ii) $\tilde{A}(x, \xi)$ is homogeneous of order α in ξ.
(iii) $\left|D_{x}^{p} \tilde{A}(x, \xi)\right| \leq C_{p}(+|\xi|)^{\alpha} ; \quad 0 \leq|p|=\sum_{j=1}^{n} p_{j}<\infty$.
(iv) For any x in R^{n} and for any $s \geq-\alpha$, there is a decomposition

$$
\left(\xi_{-}-i\right)^{s} \tilde{A}(x, \xi)=\tilde{A}_{-}(x, \xi)+R(x, \xi) ; \quad \xi_{-}=\xi_{n}-i\left|\xi^{\prime}\right|
$$

$\tilde{A}_{-}(x, \xi)$ and $R(x, \xi)$ are infinitely differentiable with respect to x. Moreover $\tilde{A}_{-}(x, \xi)$ has an analytic continuation in $\operatorname{Im} \xi_{n} \leq 0$ and

$$
\begin{gathered}
\left|D_{x}^{p} \tilde{A}_{-}(x, \xi)\right| \leq C_{p}(1+|\xi|)^{s+\alpha},\left|D_{x}^{p} D_{\xi} \tilde{A}_{-}(x, \xi)\right| \leq c_{p}(1+|\xi|)^{s+\alpha-1} \\
\left|D_{x}^{p} R(x, \xi)\right| \leq C_{p}\left(1+\left|\xi^{\prime}\right|\right)^{s+1+\alpha}(1+|\xi|)^{-1} \\
\left|D_{x}^{p} D_{\xi} R(x, \xi)\right| \leq c_{p}\left(1+\left|\xi^{\prime}\right|\right)^{s+\alpha}(1+|\xi|)^{-1}
\end{gathered}
$$

Let $\tilde{A}(\xi)$ be homogeneous of positive order α in ξ and $\tilde{A}(\xi) \neq 0$ for $\xi \neq 0$. Let $u \in H^{s}\left(R_{+}^{n}\right)$ with $u(x)=0$ for $x_{n} \leq 0$. Then $A u=F^{-1}\{\tilde{A}(\xi) \tilde{u}(\xi)\}$ where the inverse Fourier transform F^{-1} is taken in the sense of the theory of distributions is well-defined. Here $\tilde{u}(\xi)$ denotes the Fourier transform of $u(x)$.

Suppose $\tilde{A}(x, \xi)$ for x in $\mathrm{cl} \Omega$ is infinitely differentiable with respect to x and ξ, homogeneous of order α in ξ and $\widetilde{A}(x, \xi) \neq 0$ for $\xi \neq 0$. We extend $\widetilde{A}(x, \xi)$ with respect to x to all of R^{n} with preservation of homogeneity with respect to ξ. $\widetilde{A}(x, \xi)$ may be expanded in Fourier series

$$
\tilde{A}(x, \xi)=\sum_{k=-\infty}^{\infty} \psi(x) \exp (-i \pi k x / p) \tilde{L}_{k}(\xi), \quad k=\left(k_{1}, \cdots, k_{n}\right)
$$

and

$$
\tilde{L}_{k}(\xi)=(2 p)^{-n} \int_{-p}^{p} \exp (-i \pi k x / p) \tilde{A}(x, \xi) d x
$$

$\psi(x) \in C_{c}^{\infty}\left(R^{n}\right) ; \psi(x)=1$ for $|x| \leq p-\varepsilon ; \psi(x)=0$ for $|x| \geq p$.
Let P^{+}be the restriction operator of functions from R^{n} to Ω. For $u \epsilon H_{+}^{\alpha}(\Omega)$, define

$$
P^{+} A u=P^{+}\left(\sum_{k=-\infty}^{\infty} \psi(x) \exp (-i \pi k x / p) L_{k} u\right)
$$

Let $\left\{\varphi_{j}\right\}$ be a finite partition of unity corresponding to a finite open covering
$\left\{N_{j}\right\}$ of cl Ω and let $\left\{\psi_{j}\right\}$ be the infinitely differentiable functions with compact supports in N_{j} and such that $\varphi_{j} \psi_{j}=\varphi_{j}$.

Throughout the paper, we consider elliptic pseudo-differential operators

$$
P^{+} A u=\sum_{j} P^{+} \varphi_{j} A \psi_{j}+\sum_{j} P^{+} \varphi_{j} A\left(1-\psi_{j}\right)
$$

of positive order α on Ω with the following properties:
(i) If $\varphi_{j} A_{j} \psi_{j}$ is the principal part of $\varphi_{j} A \psi_{j}$ in a local coordinates system then $\widetilde{A}_{j}\left(x^{j}, \xi\right)$ is homogeneous of order α in ξ and for $x_{n}^{j}=0$, admits a factorization

$$
\tilde{A}_{j}\left(x^{j}, \xi\right)=\tilde{A}_{j}^{+}\left(x^{j}, \xi\right) \tilde{A}_{j}^{-}\left(x^{j}, \xi\right)
$$

where $\widetilde{A}_{j}^{+} \epsilon C_{k}^{+}, \widetilde{A}_{j}^{-}$is homogeneous of order $\alpha-k$ in ξ and has an analytic continuation in $\operatorname{Im} \xi_{n} \leq 0$.
(ii) $\widetilde{A}_{j}^{+}\left(x^{j}, \xi\right) \in \hat{D}_{\alpha, 1}^{1}$ for $x \in N_{j} \cap \partial \Omega \neq 0$.

If $k>0$, we consider

$$
P^{+} B_{r}=\sum_{j} P^{+} \varphi_{j} B_{r} \psi_{j}+\sum_{j} P^{+} \varphi_{j} B_{r}\left(1-\psi_{j}\right) ; \quad r=1, \cdots, k
$$

B_{r} are pseudo-differential operators of orders α_{r} with $0 \leq \alpha_{r}<\alpha$. Let $\varphi_{j} B_{r j} \psi_{j}$ be the principal part of $\varphi_{j} B_{r} \psi_{j}$ in a local coordinates system; then $\widehat{B}_{r j}\left(x^{j}, \xi\right)$ are assumed to be in $\widehat{D}_{\alpha_{i}, 1}^{1}$.

Set

$$
a=\sum_{j, s}^{\prime} \varphi_{j} A \varphi_{s}
$$

where the summation is taken over all j, s with $\operatorname{supp} \varphi_{j} \cap \operatorname{supp} \varphi_{s} \neq 0$
Define the operator A_{2} on $L^{2}(\Omega)$ as follows:

$$
D\left(A_{2}\right)=\left\{u: u \in H_{+}^{\alpha}(\Omega) ; \gamma P^{+} B_{r} u=0 ; r=1, \cdots, k\right\}
$$

and $A_{2} u=P^{+} Q u$ if $u \in D\left(A_{2}\right) . \quad \gamma$ denotes the passage to the boundary.
If $k=0$, no boundary conditions are required.
Assumption (I). We assume throughout the paper that for $t \geq t_{0}>0$, $\left(A_{2}+t I\right)$ is a 1-1 mapping of $D\left(A_{2}\right)$ onto $L^{2}(\Omega)$. Moreover there exist positive constants C_{1}, C_{2} independent of t such that

$$
\|u\|_{s \alpha}+t^{s}\|u\| \leq C_{1}\left\|\left(A_{2}+t\right)^{s} u\right\| \leq C_{2}\left\{\|u\|_{s \alpha}+t^{s}\|u\|\right\}
$$

for all u in $D\left(A_{2}+t\right)^{s} ; s \geq 1$.
Concrete hypotheses on $\widetilde{A}_{j}\left(x^{j}, \xi\right) ; \widetilde{B}_{r j}\left(x^{j}, \xi\right)$ may be given so that Assumption (I) is verified (cf. [5]).

Section 2

In this section, we shall first study the asymptotic behavior of the kernel $\mathcal{G}(x, y, t)$ of $\left(A_{2}+t I\right)^{-2 m}$ as $t \rightarrow+\infty$ where m is the smallest integer such that $2 m \alpha>n$. Then we show that

$$
\lim _{t \rightarrow+\infty} t^{2 m-n / \alpha}\{G(x, y, t)-G(x, y, t)\}=0
$$

where $G(x, y, t)$ is the kernel of $\left(A_{2}+t I+T\right)^{-2 m} . \quad T$ is such that T^{j} is $A_{2^{-}}^{j}$ bounded with zero A_{2}^{j}-bound; $1 \leq j \leq m$.

Theorem 1: Let A_{2} be as in Section 1. Suppose further that
(i) Assumption (I) is satisfied,
(ii) $C_{c}^{\infty}(\Omega) \subset D\left(A_{2}\right)$,
(iii) A_{2} is self-adjoint.

Then for $t \geq t_{0}>0$,

$$
\left(A_{2}+t I\right)^{-2 m} f(x)=\int_{\Omega} \varrho(x, y, t) \overline{f(y)} d y
$$

for f in $L^{2}(\Omega) . \quad m$ is the smallest positive integer such that $2 m \alpha>n$. Moreover

$$
|g(x, y, t)| \leq C t^{-2 m+n / \alpha}
$$

for all x, y in Ω;

$$
\left\|\left(A_{2}+t I\right)^{m} \mathcal{G}(x, \cdot, t)\right\| \leq C t^{-m+n / 2 \alpha}
$$

Let L be an extension of $\mathcal{G}(x, \cdot, t)$ from Ω to R^{n} such that

$$
\|L \mathcal{G}(x, \cdot, t)\|_{H^{m \alpha}\left(R^{n}\right)} \leq C\|\mathcal{G}(x, \cdot, t)\|_{H^{m \alpha}(\Omega)}
$$

Then $\operatorname{Lg}(x, \cdot, t) \in D\left(A_{2}+t I\right)^{m}$. The different constants C are all independent of x, t.

Proof. The proof is essentially the same as that of Lemma 1.7 of Browder [1]. Cf. also [6]. We shall not reproduce it.

Proposition 1. Let $\varphi \in C_{c}^{\infty}(\Omega)$; then $Q \varphi \in C_{c}^{\infty}(\Omega)$.
Proof. Since $\varphi \in C_{c}^{\infty}(\Omega)$ and $\widetilde{A}_{j}\left(x^{j}, \xi\right) \in \hat{D}_{\alpha, 1}^{1}$, it follows from a result of Eskin and Visik [2] that $\mathbb{Q} \varphi \in C^{\infty}(\Omega)$. It is trivial to check that supp $(\mathbb{Q} \varphi) \subset \Omega$.

Proposition 2. $\mathfrak{Q}^{s} u=A^{s} u+T_{s} u$ for all u in $H^{s \alpha}\left(R^{n}\right)$ where s is a positive integer and T_{s} is a bounded linear mapping of $H^{s \alpha+k}\left(R^{n}\right)$ into $H^{k+1}\left(R^{n}\right) ; k \geq 0$.

Proof. By hypothesis, we have

$$
\begin{aligned}
\mathfrak{Q u} & =\sum_{j, s}^{\prime} \varphi_{j} A \varphi_{s} u, \\
\mathbb{Q}^{2} u=\mathbb{Q}(\mathbb{Q} u) & =\sum_{r, k}^{\prime} \varphi_{r} A \varphi_{k}\left(\sum_{j, s}^{\prime} \varphi_{j} A \varphi_{s} u\right)=\sum_{r, k}^{\prime} \sum_{j, s}^{\prime} \varphi_{r} A\left(\varphi_{k} \varphi_{j} A \varphi_{s} u\right)
\end{aligned}
$$

By Lemma 3.D. 1 of [2, p. 144], one may write

$$
\varphi_{r} A\left(\varphi_{k} \varphi_{j} A \varphi_{s} u\right)=A\left(\varphi_{r} \varphi_{k} \varphi_{j} A \varphi_{s} u\right)+T^{(1)}\left(\varphi_{k} \varphi_{j} A \varphi_{s} u\right)
$$

where $T^{(1)}$ is a "smoothing" operator with respect to A in the sense of EskinVisik; i.e. $\left\|T^{(1)} v\right\|_{m} \leq C\|v\|_{\alpha+m-1}$ for any positive integer m. So

$$
\alpha^{2} u=\sum_{j, s}^{\prime} A\left(\varphi_{j} A \varphi_{s} u\right)+T^{(1)}\left(\sum_{j, s}^{\prime} \varphi_{j} A \varphi_{s} u\right)
$$

Applying the same lemma again, one gets

$$
\begin{aligned}
\alpha^{2} u & =A^{2} u+T^{(2)}(A u)+T^{(1)}\left(\sum_{j, s}^{\prime} \varphi_{j} A \varphi_{s} u\right) \\
& =A^{2} u+T^{(3)} u
\end{aligned}
$$

where $\left\|T^{(3)} u\right\|_{m} \leq C\|u\|_{2 \alpha+m-1}$.

We prove by induction. Suppose that

$$
\mathbb{Q}^{s-1} u=A^{s-1} u+T_{s-1} u \quad \text { with }\left\|T_{s-1} u\right\|_{m} \leq C\|u\|_{(s-1) \alpha+m-1}
$$

We show that it is true for s.

$$
\begin{aligned}
\mathfrak{Q}^{s} u & =\mathbb{Q}\left(\mathfrak{Q}^{s-1} u\right)=\sum_{j, k}^{\prime} \varphi_{j} A\left(\varphi_{k} \mathbb{Q}^{s-1} u\right) \\
& =\sum_{j k}^{\prime} \varphi_{j} A\left(\varphi_{k} A^{s-1} u+\varphi_{k} T_{s-1} u\right)
\end{aligned}
$$

Applying the same lemma again, we obtain

$$
\mathfrak{Q}^{s} u=A^{s} u+T^{\prime}\left(A^{s-1} u\right)+\sum_{j k}^{\prime} \varphi_{j} A\left(\varphi_{k} T_{s-1} u\right)=A^{s} u+T_{s} u
$$

By a trivial computation, we get $\left\|T_{s} u\right\|_{m} \leq C\|u\|_{s \alpha+m-1}$.
Proposition 3. Let A be as in Section 1 and $A_{x_{0}}$ be the pseudo differential operator A with symbol evaluated at x_{0}. Then

$$
\left\|\left(A_{x_{0}}^{s} A-A A_{x_{0}}^{s}\right) u\right\|_{k} \leq C\|u\|_{s \alpha+\alpha+k-1} \quad \text { for all } u \in H^{(s+1) \alpha+k}\left(R^{n}\right)
$$

where k is any positive integer.
Proof. By definition, we have

$$
A \varphi=\sum_{m=-\infty}^{\infty} \psi(y) \exp (-i \pi y m / 1) L_{m} \varphi
$$

with $\left|\tilde{L}_{m}(\xi)\right| \leq C(N)|\xi| \alpha(1+|m|)^{-N} . \quad N$ is a large positive number. Consider

$$
\begin{aligned}
A_{x_{0}}^{s} A \varphi & =A_{x_{0}}^{s}\left(\sum_{m=-\infty}^{\infty} \psi(y) \exp (-i y m / 1) L_{m} \varphi\right) \\
& =A_{x_{0}}^{s}\left(\sum_{m=-\infty}^{\infty} \phi_{m} L_{m} \varphi\right) \quad \text { with } \phi_{m}=\psi(y) \exp (-i \pi y m / 1)
\end{aligned}
$$

Let $g \in C_{c}^{\infty}\left(R^{n}\right)$. By the Parseval formula, we have

$$
\left(A_{x_{0}}^{s} A \varphi, g\right)=\left(A_{x_{0}}^{s}\left\{\sum_{m=-\infty}^{\infty} \phi_{m} L_{m} \varphi\right\}, g\right)=\left(F\left\{\sum_{m=-\infty}^{\infty} \phi_{m} L_{m} \varphi\right\}, F\left(A_{x_{0}}^{s} g\right)\right)
$$

From Lemma 1.D. 1 of [2, p. 140], we get

$$
\phi_{m} L_{m} \varphi=L_{m} \phi_{m} \varphi+T_{m} \varphi
$$

with

$$
\left\|T_{m} \varphi\right\|_{k} \leq C|m|^{n+3+k+} \alpha(1+|m|)^{-N}\|\varphi\|_{k+\alpha_{-1}}
$$

C is independent of m.
Let $T=\sum_{m=-\infty}^{\infty} T_{m} . \quad$ Taking N large enough, we obtain

$$
\|T \varphi\|_{k} \leq C\|\varphi\|_{k+\alpha-1}
$$

So

$$
\left(A_{x_{0}}^{s} A \varphi, g\right)=\left(F\left\{\sum_{m=-\infty}^{\infty} L_{m}\left(\phi_{m} \varphi\right)\right\}, F\left(A_{x_{0}}^{s} g\right)\right)+\left(A_{x_{0}}^{s} T \varphi, g\right)
$$

It is easy to check that

$$
\begin{aligned}
\left(A_{x_{0}}^{s} A \varphi, g\right) & =\sum_{m=-\infty}^{\infty}\left(F L_{m}\left(\phi_{m} \varphi\right), F\left(A_{x_{0}}^{s} g\right)\right)+\left(A_{x_{0}}^{s} T \varphi, g\right) \\
& =\sum_{m=-\infty}^{\infty}\left(A_{x_{0}}^{s} L_{m}\left(\phi_{m} \varphi\right), g\right)+\left(A_{x_{0}}^{s} T \varphi, g\right) \\
& =\sum_{m=-\infty}^{\infty}\left(L_{m}\left(A_{x_{0}}^{s}\left(\phi_{m} \varphi\right)\right), g\right)+\left(A_{x_{0}}^{s} T \varphi, g\right) .
\end{aligned}
$$

Again by applying Lemma 1.D. 1 of [2], we get

$$
A_{x_{0}}^{s}\left(\phi_{m} \varphi\right)=\phi_{m} A_{x_{0}}^{s} \varphi+S_{m} \varphi
$$

with

$$
\left\|S_{m} \varphi\right\|_{k} \leq C|m|^{n+3+k+s}\|\varphi\|_{s \alpha+k-1}
$$

Hence

$$
\left(A_{x_{0}}^{s} A \varphi, g\right)=\sum_{m=-\infty}^{\infty}\left(L_{m} \phi_{m} A_{x_{0}}^{s} \varphi, g\right)+(£ \varphi, g)+\left(A_{x_{0}}^{s} Y \varphi, g\right)
$$

with

$$
\mathfrak{L}=\sum_{m=-\infty}^{\infty} L_{m} S_{m}
$$

Moreover
$\|£ \varphi\|_{k} \leq C \sum_{m=-\infty}^{\infty}|m|^{n+3+k+s}(1+|m|)^{-N}\|\varphi\|_{(s+1) \alpha+k-1} \leq C\|\varphi\|_{(s+1) \alpha+k-1}$ by taking N large enough.

Again by the same lemma, we have

$$
L_{m} \phi_{m} A_{x_{0}}^{s} \varphi=\phi_{m} L_{m}\left(A_{x_{0}}^{s} \varphi\right)+R_{m}\left(A_{x_{0}}^{s} \varphi\right)
$$

where

$$
\left\|R_{m}\left(A_{x_{0}}^{s} \varphi\right)\right\|_{k} \leq C|m|^{n+3+k+\alpha}(1+|m|)^{-N}\left\|A_{x_{0}}^{s} \varphi\right\|_{k+\alpha-1}
$$

and C is independent of m. Therefore

$$
\begin{aligned}
& \left(A_{x_{0}}^{s} A \varphi, g\right) \\
& \quad=\sum_{m=-\infty}^{\infty}\left(\phi_{m} L_{m}\left(A_{x_{0}}^{s} \varphi\right), g\right)+(J \varphi, g) \quad \text { with }\|J \varphi\|_{k} \leq C\|\varphi\|_{(s+1) \alpha+k}
\end{aligned}
$$

By an easy argument, we obtain

$$
\left(A_{x_{0}}^{s} A \varphi, g\right)=\left(A A_{x_{0}}^{s} \varphi, g\right)+(J \varphi, g) \text { for all } g \text { in } C_{c}^{\infty}\left(R^{n}\right)
$$

Hence $\left(A_{x_{0}}^{s} A-A A_{x_{0}}^{s}\right) \varphi=\Im \varphi$, Q.E.D.
Proposition 4. Suppose the hypotheses of Theorem 1 are satisfied. Then

$$
\phi(x)=\left((\mathbb{Q}+t)^{m} L \mathcal{G}(x, \cdot, t),(\mathbb{Q}+t)^{m} \phi\right) \text { for all } \phi \in C_{c}^{\infty}\left(R^{n}\right)
$$

Proof. From Theorem 1, we have

$$
\phi(x)=\left(\left(A_{2}+t\right)^{m} L \mathcal{G}(x, \cdot, t),\left(A_{2}+t\right)^{m} \phi\right) \text { for all } \phi \in D\left(A_{2}+t\right)^{m} .
$$

Let $f \in D\left(A_{2}+t\right)^{2 m-1}$; then since A_{2} is self-adjoint,

$$
\begin{aligned}
f(x) & =\left(\left(A_{2}+t\right) L \mathcal{G}(x, \cdot, t),\left(A_{2}+t\right)^{2 m-1} f\right) \\
& =\left((Q+t) L \mathcal{G}(x, \cdot, t),\left(A_{2}+t\right)^{2 m-1} f\right)
\end{aligned}
$$

So

$$
\begin{aligned}
& \left|\left((a+t) L g(x, \cdot, t),\left(A_{2}+t\right)^{2 m-1} f\right)\right| \\
& \quad=|f(x)| \leq \max _{x \epsilon \bar{\Omega}}|f(x)| \leq M\|f\|_{2 m-1} \leq C\left\|\left(A_{2}+t\right)^{2 m-2} f\right\|
\end{aligned}
$$

by using the Sobolev imbedding theorem and Theorem 1.
Let $v=\left(A_{2}+t\right)^{2 m-2} f ;$ then

$$
\left((\mathfrak{a}+t) L \mathcal{G}(x, \cdot, t),\left(A_{2}+t\right) v\right) \mid \leq M\|v\|
$$

for v in $D\left(A_{2}\right) \cap R\left(A_{2}+t\right)^{2 m-2}$. The inequality is true for all v in $D\left(A_{2}\right)$. Indeed, $R\left(\mathrm{~A}_{2}+t\right)^{2 m-2}=L^{2}(\Omega)$.

Therefore $L(v)=\left((a+t) L g(x, \cdot, t),\left(A_{2}+t\right) v\right)$ is a linear functional on $D\left(A_{2}\right)$ and since $D\left(A_{2}\right)$ is dense in $L^{2}(\Omega)$, we may extend $L(v)$ to all of $L^{2}(\Omega)$. Using the Riesz representation theorem, we get

$$
L(v)=\left((a+t) L G(x, \cdot, t),\left(A_{2}+t\right) v\right)=(h, v)
$$

for all v in $D\left(A_{2}\right)$. h is an element of $L^{2}(\Omega)$. Hence $L \mathcal{S}(x, \cdot, t) \in D\left(A_{2}\right)$ since $A_{2}+t$ is self-adjoint.

Repeating the same argument $m-2$ times, we get $(\mathbb{Q}+t)^{m-1} L \mathcal{G}(x, \cdot)$ in $D\left(A_{2}\right)$. Therefore if $\phi \in C_{c}^{\infty}(\Omega)$,

$$
\begin{aligned}
\phi(x) & =\left(\left(A_{2}+t\right)^{m} L \mathcal{G}(x, \cdot, t),\left(A_{2}+t\right)^{m} \phi\right) \\
& =\left((a+t) L G(x, \cdot, t),\left(A_{2}+t\right)^{2 m-1} \phi\right) \\
& =\left((a+t)^{2} L \mathcal{G}(x, \cdot, t),\left(A_{2}+t\right)^{2 m-2} \phi\right) \\
& =\left((a+t)^{m} L G(x, \cdot, t),\left(A_{2}+t\right)^{m} \phi\right) \\
& =\left((a+t)^{m} L G(x, \cdot, t),(a+t)^{m} \phi\right)
\end{aligned}
$$

by taking into account Proposition 1.
Theorem 2. Suppose the hypotheses of Theorem 1 are satisfied. Then

$$
\mathcal{G}(x, x, t)=(2 \pi)^{-n_{t}-2 m+n / \alpha} \int_{R^{n}}(\tilde{A}(x, \xi)+1)^{-2 m} d \xi+o\left(t^{-2 m+n / \alpha}\right)
$$

as $t \rightarrow+\infty$, for x in Ω.
Proof. Let $N_{d}(x)=\{y:|y-x|<d\}$ and d_{0} be such that $N_{d_{0}}(x) \subset \Omega$. $N_{d}(x)$ is contained in Ω for $d<d_{0}$.

Let $\phi \in C_{c}^{\infty}\left(N_{d}(x)\right)$, then from Theorem 1 we have

$$
\begin{aligned}
\phi(x) & =\left(\left(A_{2}+t\right)^{m} L \mathcal{G}(x, \cdot, t),\left(A_{2}+t\right)^{m} \phi\right) \\
& =\left((a+t)^{m} L \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right)
\end{aligned}
$$

by taking into account Proposition 4.

We may write $(a+t)^{m}=\sum_{k=0}^{m} t^{k} Q^{m-k}$. Taking into account Proposition 2 we get

$$
(\mathrm{a}+t)^{m} L \mathcal{G}(x, \cdot, t)=(A+t)^{m} L \mathcal{G}(x, \cdot, t)+\sum_{k=0}^{m-1} t^{k} T_{m-k} L \mathcal{L}(x, \cdot, t)
$$

where T_{j} is a "smoothing" operator with respect to A^{j}, i.e.

$$
\left\|T_{j} u\right\|_{k} \leq M\|u\|_{j \alpha+k-1} .
$$

Hence

```
\(\phi(x)\)
\(=\left((A+t)^{m} L \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right)+\sum_{k=0}^{m-1} t^{k}\left(T_{m-k} L \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right)\)
```

Since $\phi \in C_{c}^{\infty}(\Omega)$, the first expression may be written as

$$
\begin{aligned}
\left((A+t)^{m} L \mathcal{G}(x,\right. & \left., t),(a+t)^{m} \phi\right) \\
& =\int_{R^{n}}(A+t)^{m} L \mathcal{G}(x, y, t) \overline{(a+t)^{m} \phi(y)} d y \\
& =\left((A+t)^{m} L \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right)_{R^{n}}
\end{aligned}
$$

Let $A_{\boldsymbol{x}}$ be the operator A with symbol evaluated at the fixed point x. Then

$$
\begin{aligned}
\left((A+t)^{m} L \mathcal{G}(x, \cdot\right. & \left., t),(a+t)^{m} \phi\right)_{R^{n}} \\
= & \left(\left(A_{x}+t\right)^{m} L \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right)_{R^{n}} \\
& +\left(\left\{(A+t)^{m}-\left(A_{x}+t\right)^{m}\right\} \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right)_{R^{n}} ; \\
\left((A+t)^{m} L \mathcal{G}(x, \cdot\right. & \left., t),(a+t)^{m} \phi\right)_{R^{n}} \\
= & \left(\left(A_{x}+t\right)^{m} L \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right)_{R^{n}} \\
& \quad+\sum_{k=0}^{m-1} t^{k}\left(\left(A^{m-k}-A_{x}^{m-k}\right) L \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right)_{R^{n}} .
\end{aligned}
$$

One can show easily that

$$
A^{\varepsilon}-A_{x}^{\varepsilon}=\sum_{j=0}^{\ell-1} A_{x}^{j}\left(A-A_{x}\right) A^{\ell-j-1}
$$

Hence

$$
\begin{aligned}
&\left((A+t)^{m} L \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right)_{R^{n}} \\
& \quad\left(\left(A_{x}+t\right)^{m} L \mathcal{G}(x, \cdot, t),(\mathbb{Q}+t)^{m} \phi\right)_{R^{n}} \\
& \quad \quad+\sum_{k=0}^{m-1} \sum_{j=0}^{m=k-1} t^{k}\left(A_{k}^{j}\left(A-A_{x}\right) A^{m-k-j-1} L \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right) .
\end{aligned}
$$

Applying Proposition 2 to the first expression of the equation, one obtains

$$
\begin{aligned}
& \left((A+t)^{m} L \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right)_{R^{n}} \\
& \quad=\left(\left(A_{x}+t\right)^{m} L \mathcal{G}(x, \cdot, t),\left(A_{x}+t\right)^{m} \phi\right)_{R^{n}} \\
& \quad+\sum_{k=0}^{m-1} \sum_{j=0}^{m-k-1} t^{k}\left(A_{x}^{j}\left(A-A_{x}\right) A^{m-k-j-1} L \mathcal{G}(x, \cdot, t),(a+t)^{m} \phi\right)_{R^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k=0}^{m-1} \sum_{j=0}^{m-k-1} t^{k}\left(\left(A_{x}+t\right)^{m} L \mathcal{G}(x, \cdot, t), A_{x}^{j}\left(A-A_{x}\right) A^{m-k-j-1} \phi\right)_{R^{n}} \\
& +\sum_{k=0}^{m-1} t^{k}\left(\left(A_{x}+t\right)^{m} L \mathcal{G}(x, \cdot, t), T_{m-k} \phi\right)_{R^{n}}
\end{aligned}
$$

Denote by R_{1}, R_{2}, R_{3} the second, third, and fourth expressions on the right hand side of the equation respectively, then
$\left|\phi(x)-\left(\left(A_{x}+t\right)^{m} L \mathcal{G}(x, \cdot, t),\left(A_{x}+t\right)^{m} \phi\right)_{R^{n}}\right| \leq\left|R_{1}\right|+\left|R_{2}\right|+\left|R_{3}\right|+\left|R_{4}\right|$ where

$$
R_{4}=\sum_{k=0}^{m-1} t^{k}\left(T_{m-k} L G(x, \cdot, t),(a+t)^{m} \phi\right)
$$

We have

$$
\begin{aligned}
\left|R_{3}\right| & \leq \sum_{k=0}^{m-1} t^{t}\left\|\left(A_{x}+t\right)^{m} L \mathcal{G}(x, \cdot, t)\right\|_{L^{2}\left(R^{n}\right)}\left\|T_{m-k} \phi\right\|_{L^{2}\left(R^{n}\right)} \\
& \leq \sum_{k=0}^{m-1} t^{k-m+n / 2 \alpha}\|\phi\|_{H(m-k) \alpha-1\left(R^{n}\right)}
\end{aligned}
$$

by applying Theorem 1 .
Using a well-known inequality of the theory of Sobolev spaces, we get

$$
\begin{aligned}
\left|R_{3}\right| & \leq t^{-m+n / 2 \alpha}\left\{\sum_{k=0}^{m-1} t^{t} \varepsilon\|\phi\|_{(m-k) \alpha}+K(\varepsilon) t^{m-1}\|\phi\|\right\} \\
& \leq t^{-m+n / 2 \alpha}\left\{\varepsilon\left\|\left(A_{2}+t\right)^{m} \phi\right\|+K(\varepsilon) t^{-1}\left\|\left(A_{2}+t\right)^{m} \phi\right\|\right\} \\
& \leq t^{-m+n / 2 \alpha}\left\{\varepsilon+K(\varepsilon) t^{-1}\right\}\left\|\left(A_{2}+t\right)^{m} \phi\right\|
\end{aligned}
$$

by taking into account Assumption (I).
Consider a typical term in R_{2}. We have

$$
t^{k}\left(A_{x}^{j}\left(A-A_{x}\right) A^{m-k-j-1} \mathrm{~L}(x, \cdot, t),(\mathbb{Q}+t)^{m} \phi\right)_{R^{n}}
$$

From Proposition 4, we know that $A_{x}^{j} A-A A_{x}^{j}=T_{j+1}$ and T_{j+1} is a "smoothing" operator with respect to A^{j+1}. So

$$
\begin{aligned}
t^{k}\left(A_{x}^{j}\left(A-A_{x}\right) A^{m-k-j 1} L \mathcal{G}\right. & \left.(x, \cdot, t),(\mathbb{Q}+t)^{m} \phi\right)_{R^{n}} \\
= & t^{k}\left(\left(A-A_{x}\right) A_{x}^{j} A^{m-k-j-1} L \mathcal{G}(x, \cdot, t),(Q+t)^{m} \phi\right)_{R^{n}} \\
& \quad+t^{k}\left(T_{j+1} A^{m-k-j-1} L \mathcal{G}(x, \cdot, t),(Q+t)^{m} \phi\right)_{R^{n}}
\end{aligned}
$$

Since $\phi \in C_{c}^{\infty}\left(N_{d}(x)\right),(\mathbb{Q}+t)^{m} \phi \in C_{c}^{\infty}\left(N_{d}(x)\right)$. Let $\varphi \in C_{c}^{\infty}\left(N_{2 d}(x)\right)$ with $\varphi=1$ on $N_{d}(x)$ and 0 outside of $N_{d_{1}}(x), d<d_{1}$. Using Lemma 2.7 of [2, p. 117], we have

$$
\begin{aligned}
&\left|t^{k}\left(A_{x}^{j}\left(A-A_{x}\right) A^{m-k-j-1} L \mathcal{G}(x, \cdot, t),(\mathbb{Q}+t)^{m} \phi\right)_{R^{n}}\right| \\
&= \mid t^{k}\left(\varphi\left(A-A_{x}\right) A_{x}^{j} A^{m-k-j-1} L \mathcal{G}(x, \cdot, t),(\mathbb{Q}+t)^{m} \phi\right)_{R^{n}} \\
& \quad+t^{k}\left(T_{j+1} A^{m-k-j-1} L \mathcal{G}(x, \cdot, t),(\mathbb{Q}+t)^{m} \phi\right)_{R^{n}} \mid \\
& \leq\left\{C t^{k} d\|\mathcal{S}(x, \cdot, t)\|_{(m-k) \alpha}+t^{k}\|\mathcal{G}(x, \cdot, t)\|_{(m-k) \alpha-1}\right\}\left\|(\mathbb{Q}+t)^{m} \phi\right\|
\end{aligned}
$$

where C is independent of t, d. Taking into account Theorem 1 , we get

$$
\left|R_{2}\right| \leq C t^{-m+n / 2 \alpha}\left(d+\varepsilon+K(\varepsilon) t^{-1}\right)\left\|(Q+t)^{m} \phi\right\|
$$

A similar argument gives

$$
\left|R_{1}\right| \leq C t^{-m}+^{n / 1 \alpha}\left(d+\varepsilon+K(\varepsilon) t^{-1}\right)\left\|(Q+t)^{m} \phi\right\|
$$

and

$$
\left|R_{4}\right| \leq C t^{-m+n / 2 \alpha}\left(\varepsilon+K(\varepsilon) t^{-1}\right)\left\|(a+t)^{m} \phi\right\| .
$$

Hence

$$
\begin{aligned}
\mid \phi(x)-\left(\left(A_{x}+t\right)^{m} L \mathcal{G}(x, \cdot\right. & \left., t),\left(A_{x}+t\right)^{m} \phi\right)_{R^{n}} \mid \\
& \leq M t^{-m+n / 2 \alpha}\left\{\varepsilon+K(\varepsilon) t^{-1}+d\right\}\left\|(a+t)^{m} \phi\right\|
\end{aligned}
$$

A simple computation yields
$\left\|(a+t)^{m} \phi\right\| \leq C\left\{\|\phi\|_{m \alpha}+t^{m}\|\phi\|\right\} \leq C_{2}\left\|\left(A_{x}+t\right)^{m} \phi\right\| \leq C_{3} t^{-m+n / 2 \alpha}$,
where $\phi \in C_{c}^{\infty}\left(N_{d}(x)\right)$ with $d=t^{-1 / \alpha}$ (cf. [1]).
Therefore
$\left|\phi(x)-\left(\left(A_{x}+t\right)^{m} \operatorname{Lg}(x, \cdot, t),\left(A_{x}+t\right)^{m} \phi\right)_{R^{n}}\right| \leq M\left(\varepsilon+K(\varepsilon) t^{-1}+t^{-1 / \alpha}\right)$
Now we may take Fourier transform of the expressions on the left hand side of the inequality. A proof, almost identical (with only trivial changes) to that of Theorem 3 of [1] gives the wanted result.

Theorem 3. Under the hypotheses of Theorem 1 , if $x \neq y, x, y$ in Ω, then

$$
\lim _{t \rightarrow+\infty} t^{2 m-n / \alpha} G(x, y, t)=0
$$

Proof. Same idea as in the proof of Theorem 2 with ϕ replaced by

$$
\phi \in C_{c}^{\infty}\left(N_{d}(y)\right) \quad \text { and } \quad d<|x-y|
$$

We shall not reproduce it.
Theorem 4. Suppose the hypotheses of Theorem 1 are satisfied. Let T be a symmetric operator in $L^{2}(\Omega)$. Suppose further that T^{j} is A_{2}^{j}-bounded with zero A_{2}^{j}-bound for $1 \leq j \leq m$, where m is the smallest positive integer such that $m \alpha>n / 2$. Then
(i) $A_{2}+t I+T$ is a self-adjoint operator in $L^{2}(\Omega)$;
(ii) $\left(A_{2}+t I+T\right)^{-2 m} f(x)=\int_{\Omega} G(x, y, t) f(y) d y, f$ in $L^{2}(\Omega)$;
(iii) $|G(x, y, t)| \leq C t^{-2 m+n, \alpha},\left\|\left(A_{2}+t+T\right)^{m} G(x, \cdot, t)\right\| \leq C t^{-m+n, 2 \alpha}$ for x, y in Ω, C independent of t, x.

Proof. Since $A_{2}+t I$ is self-adjoint and T is symmetric with zero A_{2}-bound, it follows by a well-known result that $A_{2}+t I+T$ is again a self-adjoint operator in $L^{2}(\Omega)$. All the other assertions of the theorem may be proved as in Theorem 1.

Theorem 5. Under the hypotheses of Theorem 4,

$$
\lim _{t \rightarrow+\infty} t^{2 m-n / \alpha} \mathcal{G}(x, y, t)=\lim _{t \rightarrow+\infty} t^{2 m-n / \alpha} G(x, y, t) ; \quad x, y \text { in } \Omega .
$$

$\mathcal{G}(x, y, t), G(x, y, t)$ are defined respectively by Theorems $1,4$.

Proof. For f in $D\left(A_{2}^{m}\right)$, we have

$$
\begin{aligned}
f(x) & =\left(\left(A_{2}+t\right)^{m} G(x, \cdot, t),\left(A_{2}+t\right)^{m} f\right) \\
& =\left(\left(A_{2}+t+T\right)^{m} G(x, \cdot, t),\left(A_{2}+t+T\right)^{m} f\right)
\end{aligned}
$$

Since $\left(A_{2}+t+T\right)^{m} u=\left(A_{2}+t\right)^{m} u+\sum_{k=0}^{m-1}\left(A_{2}+t\right)^{k T m-k} u$,

$$
\left(\left(A_{2}+t+T\right)^{m} G(x, \cdot, t),\left(A_{2}+t+T\right)^{m} f\right)
$$

$$
\begin{aligned}
= & \left(\left(A_{2}+t\right)^{m} G(x, \cdot, t),\left(A_{2}+t\right)^{m} f\right) \\
& +\sum_{k=0}^{m-1}\left(\left(A_{2}+t\right)^{m} G(x, \cdot, t),\left(A_{2}+t\right)^{k} T^{m-k} f\right) \\
& +\sum_{k=0}^{m-1}\left(\left(A_{2}+t\right)^{m} T^{m-k} G(x, \cdot, t),\left(A_{2}+t\right)^{m} f\right) \\
& +\sum_{k=0}^{m-1} \sum_{s=0}^{m-1}\left(\left(A_{2}+t\right)^{k} G(x, \cdot, t),\left(A_{2}+t\right)^{s} T^{m-s} f\right) .
\end{aligned}
$$

Denote by R_{1}, R_{2}, R_{3} the last three expressions on the right hand side of the equation. Then

$$
\left(\left(A_{2}+t\right)^{m}\{G(x, \cdot, t)-G(x, \cdot, t)\},\left(A_{2}+t\right)^{m} f\right)=R_{1}+R_{2}+R_{3}
$$

Consider a typical term in the expression R_{1}. We have

$$
\begin{aligned}
\mid\left(\left(A_{2}+t\right)^{m} G(x, \cdot, t),\left(A_{2}+t\right)^{k} T^{m-k} f\right) & \mid \\
& \leq C t^{-m+n / 2 \alpha}\left\{\left\|T^{m-k} f\right\|_{k \alpha}+t^{k}\left\|T^{m-k} f\right\|\right\}
\end{aligned}
$$

by taking into account Theorem 4. Hence

$$
\left|R_{1}\right| \leq C t^{-m+n / 2 \alpha}\left\{\varepsilon+K(\varepsilon) t^{-1}\right\}\left\|\left(A_{2}+t\right)^{m} f\right\|
$$

using the definition of T and Assumption (I).
Consider a typical term in the expression R_{2} :

$$
\begin{aligned}
& \left|\left(\left(A_{2}+t\right)^{k} T^{m-k} G(x, \cdot, t),\left(A_{2}+t\right)^{m} f\right)\right| \\
& \quad \leq C t^{-m+n / 2 \alpha}\left\{\varepsilon+K(\varepsilon) t^{-1}\right\}\left\|\left(A_{2}+t\right)^{m} f\right\|
\end{aligned}
$$

where we have used Theorem 4. So

$$
\left|R_{2}\right| \leq C t^{-m+n / 2 \alpha}\left\{\varepsilon+K(\varepsilon) t^{-1}\right\}\left\|\left(A_{2}+t\right)^{m} f\right\|
$$

We estimate R_{3} in a similar fashion. Finally, we get

$$
\begin{aligned}
\mid\left(\left(A_{2}+t\right)^{m}\{g(x, y, t)-G(x, \cdot, t)\}\right. & \left.\left(A_{2}+t\right)^{m} f\right) \mid \\
& \leq C t^{-m+n / 2 \alpha}\left\{\varepsilon+K(\varepsilon) t^{-1}\right\}\left\|\left(A_{2}+t\right)^{m} f\right\|
\end{aligned}
$$

Since $\left(A_{2}+t\right)^{m}$ is onto $L^{2}(\Omega)$, we obtain

$$
\left\|\left(A_{2}+t\right)^{m}\{\mathcal{G}(x, \cdot, t)-G(x, \cdot, t)\}\right\| \leq C t^{-m+n / 2 \alpha}\left\{\varepsilon+K(\varepsilon) t^{-1}\right\}
$$

But

$$
\begin{aligned}
&|\mathcal{G}(x, y, t)-G(x, y, t)| \leq M t^{-m+n / 2 \alpha}\left\|\left(A_{2}+t\right)^{m}\{\mathcal{G}(x, \cdot, t)-G(x, \cdot, t)\}\right\| \\
& \leq M t^{-2 m+n / \alpha}\left\{\varepsilon+K(\varepsilon) t^{-1}\right\} \\
& \text { (cf. [1]). Therefore } \lim _{t \rightarrow+\infty} t^{2 m-n / \alpha}\{\mathcal{G}(x, y, t)-G(x, y, t)\}=0 .
\end{aligned}
$$

Theorem 6. Suppose the hypotheses of Theorem 5 are satisfied. Let λ_{j}, φ_{j} be respectively the eigenvalues and eigenfunctions of $A_{2}+T$. Then

$$
\begin{gathered}
N(t)=\sum_{\lambda_{j} \leq t} 1=(2 \pi)^{-n} t^{n / \alpha} \int_{\Omega} \int_{\tilde{A}(x, \xi)<1} d \xi d x+o\left(t^{n / \alpha}\right) \\
e(x, x, t)=(2 \pi)^{-n} t^{n / \alpha} \int_{\tilde{A}(x, \xi)<1} d \xi+o\left(t^{n / \alpha}\right), \quad x \text { in } \Omega \\
e(x, y, t)=\sum_{\lambda_{j} \leqq t} \varphi_{j}(x) \overline{\varphi_{j}(y)}=o\left(t^{n / \alpha}\right), \quad x \neq y
\end{gathered}
$$

Proof. Applying the Tauberian theorem of Hardy-Littlewood and taking into account the results of Theorems 4, 5, 3, 2, we get the stated results.

References

1. F. E. Browder, Asymptotic distribution of eigenvalues and eigenfunctions for nonlocal elliptic boundary value problems. I, Amer. J. Math., vol. 87 (1965), pp. 175-195.
2. G. I. Eskin and M. I. Visik, Equations in convolutions in a bounded region, Uspehi Mat. Nauk, vol. 20 (1965), pp. 85-157 = Russian Math. Surveys, vol. 20 (1965), pp. 85-157.
3. L. Garding, The asymptotic distribution of eigenvalues and eigenfunctions of a general vibration problem, Kungl. Fysiogr. Sallsk.i. Lund Forh, vol. 21, 11 (1951), pp. 1-9.
4. - On the asymptotic distribution of eigenvalues and eigenfunctions of elliptic differential operators, Math. Scand., vol. 1 (1953), pp. 237-255.
5. B. A. Ton, Boundary value problems for elliptic convolution equations of Wiener-Hopf type in a bounded region, Pacific J. Math., vol. 26 (1968), pp. 395-418.
6. -_, On the asymptotic behavior of the spectral function of elliptic pseudo-differential operators, Illinois J. Math., vol. 14 (1970), pp. 452-463.

University of British Columbia
Vancouver, Canada

[^0]: Received November 25, 1968.
 ${ }^{1}$ Research sponsored by the Air Force of Scientific Research, Office of Aerospace Research, United States Air Force.

