ASYMPTOTIC DISTRIBUTION OF EIGENVALUES AND EIGEN-FUNCTIONS OF A GENERAL CLASS OF ELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS¹

BY

BUI AN TON

The asymptotic distribution of eigenvalues and eigenfunctions of a class of elliptic pseudo-differential operators considered recently by Eskin and Visik [2], was studied by the writer in [6]. The purpose of this paper is to extend those results to the more general class of elliptic pseudo-differential operators A of positive order α on a bounded open set Ω of \mathbb{R}^n .

More specifically, let A be an elliptic operator of positive order α on Ω with symbol $\tilde{A}(x,\xi)$ and let $\tilde{A}_j(x^j,\xi)$ be the symbol of the principal part of A in a local coordinates system. Suppose that

$$\widetilde{A}_{j}(x^{j},\xi) = \widetilde{A}_{j}^{+}(x^{j},\xi)\widetilde{A}_{j}^{-}(x^{j},\xi) \quad \text{for } x_{n}^{j} = 0$$

where \tilde{A}_{j}^{+} is homogeneous of order k in $\xi, k \geq 0$ and independent of x^{j} , analytic in Im $\xi_{n} > 0$; \tilde{A}_{j}^{-} is homogeneous of order $\alpha - k$ in ξ with an analytic continuation in Im $\xi_{n} \leq 0$.

Let A_2 be the realization of A as an operator in $L^2(\Omega)$ under null "regular" boundary conditions. If A_2 is self-adjoint, it is shown that

(i)
$$N(t) = \sum_{\lambda_j \le t} 1 = (2\pi)^{-n} t^{n/\alpha} \int_{\Omega} \int_{\tilde{A}(x,\xi) < 1} d\xi \, dx + o(t^{n/\alpha})$$

(ii)
$$e(x, x, t) = (2\pi)^{-n} t^{n/\alpha} \int_{\tilde{I}(x,\xi) < 1} d\xi + o(t^{n/\alpha}); \quad x \text{ in } \Omega$$

$$e(x, y, t) = \sum_{\lambda_j \leq t} \varphi_j(x) \overline{\varphi_j(y)} = o(t^{n/\alpha}); \quad x \neq y$$

 λ_j , φ_j are respectively the eigenvalues and eigenfunctions of A_2 .

We shall use the method of Garding [3] as extended by Browder in [1]. The notations and the definitions are essentially those of Eskin and Visik [2], they are given in Section 1. The asymptotic behavior of the kernel of $(A_2 + tI)^{-2m}$ where *m* is the smallest positive integer such that $m\alpha > n/2$. is studied in Section 2. The results are obtained by an application of the Hardy-Littlewood Tauberian theorem.

Section 1

Let Ω be a bounded open set of \mathbb{R}^n with a smooth boundary $\partial\Omega$. $H^{s,2}(\Omega)$, $s \geq 0$, which shall be written as $H^s(\Omega)$ for short, denotes the usual Sobolev

Received November 25, 1968.

¹ Research sponsored by the Air Force of Scientific Research, Office of Aerospace Research, United States Air Force.

space and $H^{*}_{+}(\Omega)$ is the space of generalized functions f defined on all of \mathbb{R}^{n} , equal to 0 on $\mathbb{R}^n/\mathrm{cl}\ \Omega$ and coinciding with functions in $H^s(\Omega)$ on cl Ω .

DEFINITION 1. $\tilde{A}_+(\xi)$ is in C_k^+ iff:

(i) $\tilde{A}_{+}(\xi)$ is homogeneous of order k in ξ , continuous for $\xi \neq 0$ and has an analytic continuation in Im $\xi_n > 0$ for each fixed $\xi' = (\xi_1, \dots, \xi_{n-1})$.

(ii) $\tilde{A}_{+}(\xi) \neq 0$ for $\xi \neq 0$ and for any positive integer p, there is an expansion

$$\tilde{A}_{+}(\xi) = \sum_{s=0}^{p} c_{s}(\xi') \xi_{+}^{-ks} + R_{k,p+1-k}(\xi); \qquad \xi_{+} = \xi_{n} + i |\xi'|$$

where all the terms are homogeneous of orders k in ξ with analytic continuation in Im $\xi_n > 0$ and

$$|R_{k,p+1-k}(\xi)| \leq C |\xi'|^{p+1} (|\xi'| + |\xi_n|)^{k-p-1}.$$

DEFINITION 2. $\tilde{A}(x,\xi)$ is in $\hat{D}^{1}_{\alpha,1}$ iff:

- (i) $\tilde{A}(x,\xi)$ is infinitely differentiable in X and in ξ for $\xi \neq 0$.
- (ii) $\tilde{A}(x, \xi)$ is homogeneous of order α in ξ .
- (iii) $\left| D_x^p \widetilde{A}(x,\xi) \right| \leq C_p (+ |\xi|)^{\alpha}; \quad 0 \leq |p| = \sum_{j=1}^n p_j < \infty.$ (iv) For any x in \mathbb{R}^n and for any $s \geq -\alpha$, there is a decomposition

$$(\xi_{-} - i)^{s} \tilde{A}(x, \xi) = \tilde{A}_{-}(x, \xi) + R(x, \xi); \quad \xi_{-} = \xi_{n} - i|\xi'|,$$

 $A_{-}(x, \xi)$ and $R(x, \xi)$ are infinitely differentiable with respect to x. Moreover $\tilde{A}_{-}(x, \xi)$ has an analytic continuation in $\text{Im } \xi_n \leq 0$ and

$$\begin{split} \left| D_{x}^{p} \widetilde{A}_{-}(x,\,\xi) \right| &\leq C_{p} (1\,+\,\left|\,\xi\,\right|)^{s+\alpha}, \quad \left| D_{x}^{p} D_{\xi} \widetilde{A}_{-}(x,\,\xi) \right| \,\leq c_{p} (1\,+\,\left|\,\xi\,\right|)^{s+\alpha-1} \\ &\left| D_{x}^{p} R\left(x,\,\xi\right) \right| \,\leq C_{p} (1\,+\,\left|\,\xi'\,\right|)^{s+1+\alpha} (1\,+\,\left|\,\xi\,\right|)^{-1}, \\ &\left| D_{x}^{p} D_{\xi} R\left(x,\,\xi\right) \right| \,\leq c_{p} (1\,+\,\left|\,\xi'\,\right|)^{s+\alpha} (1\,+\,\left|\,\xi\,\right|)^{-1}. \end{split}$$

Let $\tilde{A}(\xi)$ be homogeneous of positive order α in ξ and $\tilde{A}(\xi) \neq 0$ for $\xi \neq 0$. Let $u \in H^s(\mathbb{R}^n_+)$ with u(x) = 0 for $x_n \leq 0$. Then $Au = F^{-1}\{\tilde{A}(\xi)\tilde{u}(\xi)\}$ where the inverse Fourier transform F^{-1} is taken in the sense of the theory of distributions is well-defined. Here $\tilde{u}(\xi)$ denotes the Fourier transform of u(x).

Suppose $\tilde{A}(x,\xi)$ for x in cl Ω is infinitely differentiable with respect to x and ξ , homogeneous of order α in ξ and $\tilde{A}(x,\xi) \neq 0$ for $\xi \neq 0$. We extend $\tilde{A}(x,\xi)$ with respect to x to all of R^n with preservation of homogeneity with respect to ξ . $\tilde{A}(x,\xi)$ may be expanded in Fourier series

$$\widetilde{A}(x,\xi) = \sum_{k=-\infty}^{\infty} \psi(x) \exp((-i\pi kx/p)\widetilde{L}_k(\xi)), \qquad k = (k_1, \cdots, k_n)$$

and

$$\tilde{L}_k(\xi) = (2p)^{-n} \int_{-p}^{p} \exp\left(-i\pi kx/p\right) \tilde{A}(x,\xi) \ dx,$$

 $\psi(x) \in C^{\infty}_{c}(\mathbb{R}^{n}); \psi(x) = 1 \text{ for } |x| \leq p - \varepsilon; \psi(x) = 0 \text{ for } |x| \geq p.$

Let P^+ be the restriction operator of functions from R^n to Ω . For $u \in H^{\alpha}_{+}(\Omega)$, define

$$P^+Au = P^+(\sum_{k=-\infty}^{\infty} \psi(x) \exp((-i\pi kx/p)L_k u)).$$

Let $\{\varphi_i\}$ be a finite partition of unity corresponding to a finite open covering

 $\{N_j\}$ of cl Ω and let $\{\psi_j\}$ be the infinitely differentiable functions with compact supports in N_j and such that $\varphi_j \psi_j = \varphi_j$.

Throughout the paper, we consider elliptic pseudo-differential operators

$$P^{+}Au = \sum_{j} P^{+}\varphi_{j} A\psi_{j} + \sum_{j} P^{+}\varphi_{j} A(1-\psi_{j})$$

of positive order α on Ω with the following properties:

(i) If $\varphi_j A_j \psi_j$ is the principal part of $\varphi_j A \psi_j$ in a local coordinates system then $\tilde{A}_j(x^j, \xi)$ is homogeneous of order α in ξ and for $x_n^j = 0$, admits a factorization

$$\widetilde{A}_{j}(x^{j},\xi) = \widetilde{A}_{j}^{+}(x^{j},\xi)\widetilde{A}_{j}^{-}(x^{j},\xi)$$

where $\tilde{A}_{j}^{+} \epsilon C_{k}^{+}$, \tilde{A}_{j}^{-} is homogeneous of order $\alpha - k$ in ξ and has an analytic continuation in Im $\xi_{n} \leq 0$.

(ii) $\widetilde{A}_{j}^{+}(x^{j},\xi) \in \widehat{D}_{\alpha,1}^{1}$ for $x \in N_{j} \cap \partial \Omega \neq 0$.

If k > 0, we consider

$$P^+B_r = \sum_j P^+\varphi_j B_r \psi_j + \sum_j P^+\varphi_j B_r (1-\psi_j); \qquad r = 1, \cdots, k.$$

 B_r are pseudo-differential operators of orders α_r with $0 \leq \alpha_r < \alpha$. Let $\varphi_j B_{rj} \psi_j$ be the principal part of $\varphi_j B_r \psi_j$ in a local coordinates system; then $B_{rj}(x^j, \xi)$ are assumed to be in $\hat{D}^1_{\alpha_j,1}$.

 \mathbf{Set}

$$\alpha = \sum_{j,s}' \varphi_j A \varphi_s$$

where the summation is taken over all j, s with supp $\varphi_j \cap \operatorname{supp} \varphi_s \neq 0$

Define the operator A_2 on $L^2(\Omega)$ as follows:

$$D(A_2) = \{ u : u \in H^{\alpha}_{+}(\Omega); \gamma P^+ B_r u = 0; r = 1, \cdots, k \}$$

and $A_2 u = P^+ \alpha u$ if $u \in D(A_2)$. γ denotes the passage to the boundary. If k = 0, no boundary conditions are required.

Assumption (I). We assume throughout the paper that for $t \ge t_0 > 0$, $(A_2 + tI)$ is a 1-1 mapping of $D(A_2)$ onto $L^2(\Omega)$. Moreover there exist positive constants C_1 , C_2 independent of t such that

$$|| u ||_{s\alpha} + t^{s} || u || \le C_{1} || (A_{2} + t)^{s} u || \le C_{2} \{ || u ||_{s\alpha} + t^{s} || u || \}$$

for all u in $D(A_2 + t)^s$; $s \ge 1$.

Concrete hypotheses on $\tilde{A}_j(x^j, \xi)$; $\tilde{B}_{rj}(x^j, \xi)$ may be given so that Assumption (I) is verified (cf. [5]).

Section 2

In this section, we shall first study the asymptotic behavior of the kernel g(x, y, t) of $(A_2 + tI)^{-2m}$ as $t \to +\infty$ where *m* is the smallest integer such that $2m\alpha > n$. Then we show that

$$\lim_{t \to +\infty} t^{2m-n/\alpha} \{ \mathfrak{g}(x, y, t) - \mathfrak{G}(x, y, t) \} = 0$$

where G(x, y, t) is the kernel of $(A_2 + tI + T)^{-2m}$. T is such that T^j is A_2^j -bounded with zero A_2^j -bound; $1 \le j \le m$.

THEOREM 1: Let A_2 be as in Section 1. Suppose further that

- (i) Assumption (I) is satisfied,
- (ii) $C_{c}^{\infty}(\Omega) \subset D(A_{2}),$
- (iii) A_2 is self-adjoint.

Then for $t \geq t_0 > 0$,

$$(A_2 + tI)^{-2m} f(x) = \int_{\Omega} \mathcal{G}(x, y, t) \overline{f(y)} \, dy$$

for f in $L^2(\Omega)$. m is the smallest positive integer such that $2m\alpha > n$. Moreover

$$\left| \Im(x, y, t) \right| \leq Ct^{-2m+n/\alpha}$$

for all x, y in Ω ;

$$\| (A_2 + tI)^m \Im(x, \cdot, t) \| \leq Ct^{-m+n/2\alpha}$$

Let L be an extension of $\mathfrak{G}(x, \cdot, t)$ from Ω to \mathbb{R}^n such that

 $\|L\mathfrak{g}(x,\,\cdot\,,\,t)\|_{H^{m\alpha}(\mathbb{R}^n)}\leq C\,\|\mathfrak{g}(x,\,\cdot\,,\,t)\|_{H^{m\alpha}(\Omega)}\,.$

Then LG $(x, \cdot, t) \in D(A_2 + tI)^m$. The different constants C are all independent of x, t.

Proof. The proof is essentially the same as that of Lemma 1.7 of Browder [1]. Cf. also [6]. We shall not reproduce it.

PROPOSITION 1. Let $\varphi \in C^{\infty}_{\mathfrak{o}}(\Omega)$; then $\Omega \varphi \in C^{\infty}_{\mathfrak{o}}(\Omega)$.

Proof. Since $\varphi \in C_{\epsilon}^{\infty}(\Omega)$ and $\widetilde{A}_{j}(x^{j},\xi) \in \widehat{D}_{\alpha,1}^{1}$, it follows from a result of Eskin and Visik [2] that $\mathfrak{a}\varphi \in C^{\infty}(\Omega)$. It is trivial to check that supp $(\mathfrak{a}\varphi) \subset \Omega$.

PROPOSITION 2. $\mathfrak{A}^{s}u = A^{s}u + T_{s}u$ for all u in $H^{s\alpha}(\mathbb{R}^{n})$ where s is a positive integer and T_{s} is a bounded linear mapping of $H^{s\alpha+k}(\mathbb{R}^{n})$ into $H^{k+1}(\mathbb{R}^{n})$; $k \geq 0$.

Proof. By hypothesis, we have

$$\begin{aligned} \alpha u &= \sum_{j,s}' \varphi_j A \varphi_s u, \\ \alpha^2 u &= \alpha (\alpha u) = \sum_{r,k}' \varphi_r A \varphi_k (\sum_{j,s}' \varphi_j A \varphi_s u) = \sum_{r,k}' \sum_{j,s}' \varphi_r A (\varphi_k \varphi_j A \varphi_s u) \\ \text{By Lemma 3.D.1 of [2, p. 144], one may write} \end{aligned}$$

 $\varphi_r A (\varphi_k \varphi_j A \varphi_s u) = A (\varphi_r \varphi_k \varphi_j A \varphi_s u) + T^{(1)} (\varphi_k \varphi_j A \varphi_s u)$

where $T^{(1)}$ is a "smoothing" operator with respect to A in the sense of Eskin-Visik; i.e. $||T^{(1)}v||_m \leq C ||v||_{\alpha+m-1}$ for any positive integer m. So

$$\alpha^2 u = \sum_{j,s}' A \left(\varphi_j A \varphi_s u\right) + T^{(1)} \left(\sum_{j,s}' \varphi_j A \varphi_s u\right).$$

Applying the same lemma again, one gets

$$\begin{aligned} \mathbf{a}^{2} u &= A^{2} u + T^{(2)} (A u) + T^{(1)} (\sum_{j,s}' \varphi_{j} A \varphi_{s} u) \\ &= A^{2} u + T^{(3)} u \end{aligned}$$

where $|| T^{(3)} u ||_m \leq C || u ||_{2\alpha+m-1}$.

We prove by induction. Suppose that

 $\alpha^{s-1}u = A^{s-1}u + T_{s-1}u \quad \text{with} \parallel T_{s-1} u \parallel_{m} \le C \parallel u \parallel_{(s-1)\alpha+m-1}.$ We show that it is true for s.

$$\begin{aligned} \mathfrak{A}^{s} u &= \mathfrak{A} \left(\mathfrak{A}^{s-1} u \right) = \sum_{j,k}^{\prime} \varphi_{j} A \left(\varphi_{k} \mathfrak{A}^{s-1} u \right) \\ &= \sum_{j,k}^{\prime} \varphi_{j} A \left(\varphi_{k} \mathfrak{A}^{s-1} u + \varphi_{k} T_{s-1} u \right) \end{aligned}$$

Applying the same lemma again, we obtain

$$\alpha^{s} u = A^{s} u + T'(A^{s-1}u) + \sum_{j k}' \varphi_{j} A(\varphi_{k} T_{s-1} u) = A^{s} u + T_{s} u.$$

By a trivial computation, we get $|| T_s u ||_m \leq C || u ||_{s\alpha+m-1}$.

PROPOSITION 3. Let A be as in Section 1 and A_{x_0} be the pseudo differential operator A with symbol evaluated at x_0 . Then

 $\| (A_{x_0}^{s} A - A A_{x_0}^{s}) u \|_{k} \leq C \| u \|_{s\alpha + \alpha + k - 1} \text{ for all } u \in H^{(s+1)\alpha + k}(\mathbb{R}^{n})$

where k is any positive integer.

Proof. By definition, we have

$$A\varphi = \sum_{m=-\infty}^{\infty} \psi(y) \exp((-i\pi ym/1)L_m \varphi)$$

with $|\tilde{L}_m(\xi)| \leq C(N) |\xi| \alpha (1 + |m|)^{-N}$. N is a large positive number. Consider

$$A_{x_0}^s A\varphi = A_{x_0}^s \left(\sum_{m=-\infty}^{\infty} \psi(y) \exp\left(-iym/1\right) L_m \varphi \right)$$
$$= A_{x_0}^s \left(\sum_{m=-\infty}^{\infty} \phi_m L_m \varphi \right) \quad \text{with } \phi_m = \psi(y) \exp\left(-i\pi ym/1\right).$$

Let
$$g \in C_{c}^{\infty}(\mathbb{R}^{n})$$
. By the Parseval formula, we have
 $(A_{x_{0}}^{s} A\varphi, g) = (A_{x_{0}}^{s} \{ \sum_{m=-\infty}^{\infty} \phi_{m} L_{m} \varphi \}, g) = (F\{ \sum_{m=-\infty}^{\infty} \phi_{m} L_{m} \varphi \}, F(A_{x_{0}}^{s} g)).$
From Lemma 1.D.1 of [2, p. 140], we get

$$\phi_m L_m \varphi = L_m \phi_m \varphi + T_m \varphi$$

with

$$\|T_{m}\varphi\|_{k} \leq C |m|^{n+3+k+} \alpha (1+|m|)^{-N} \|\varphi\|_{k+\alpha-1}.$$

C is independent of m.

Let $T = \sum_{m=-\infty}^{\infty} T_m$. Taking N large enough, we obtain

$$|| T\varphi ||_k \leq C || \varphi ||_{k+\alpha-1}.$$

 \mathbf{So}

$$(A_{x_0}^{s} A\varphi, g) = (F\{\sum_{m=-\infty}^{\infty} L_m(\phi_m \varphi)\}, F(A_{x_0}^{s} g)) + (A_{x_0}^{s} T\varphi, g).$$

It is easy to check that

$$(A_{x_0}^s A\varphi, g) = \sum_{m=-\infty}^{\infty} (FL_m(\phi_m \varphi), F(A_{x_0}^s g)) + (A_{x_0}^s T\varphi, g)$$
$$= \sum_{m=-\infty}^{\infty} (A_{x_0}^s L_m(\phi_m \varphi), g) + (A_{x_0}^s T\varphi, g)$$
$$= \sum_{m=-\infty}^{\infty} (L_m(A_{x_0}^s(\phi_m \varphi)), g) + (A_{x_0}^s T\varphi, g).$$

Again by applying Lemma 1.D.1 of [2], we get

$$A_{x_0}^s(\phi_m \varphi) = \phi_m A_{x_0}^s \varphi + S_m \varphi$$

with

$$\|S_m \varphi\|_k \leq C \|m\|^{n+3+k+s} \|\varphi\|_{s\alpha+k-1}.$$

Hence

$$(A_{x_0}^s A\varphi, g) = \sum_{m=-\infty}^{\infty} (L_m \phi_m A_{x_0}^s \varphi, g) + (\pounds\varphi, g) + (A_{x_0}^s Y\varphi, g)$$

with
$$\pounds = \sum_{m=-\infty}^{\infty} L_m S_m.$$

Moreover

$$\|\mathfrak{L}\varphi\|_{k} \leq C \sum_{m=-\infty}^{\infty} |m|^{n+3+k+s} (1+|m|)^{-N} \|\varphi\|_{(s+1)\alpha+k-1} \leq C \|\varphi\|_{(s+1)\alpha+k-1}$$

by taking N large enough

by taking N large enough.

Again by the same lemma, we have

$$L_m \phi_m A_{x_0}^s \varphi = \phi_m L_m(A_{x_0}^s \varphi) + R_m(A_{x_0}^s \varphi)$$

where

$$\|R_m(A_{x_0}^s\varphi)\|_k \leq C |m|^{n+3+k+\alpha}(1+|m|)^{-N} \|A_{x_0}^s\varphi\|_{k+\alpha-1}$$

and C is independent of m. Therefore

$$(A_{x_0}^{s} A\varphi, g) = \sum_{m=-\infty}^{\infty} (\phi_m L_m(A_{x_0}^{s} \varphi), g) + (\Im\varphi, g) \quad \text{with} \| \Im\varphi \|_k \le C \| \varphi \|_{(s+1)\alpha+k}$$

By an approximate we obtain

By an easy argument, we obtain

$$(A_{x_0}^s A\varphi, g) = (AA_{x_0}^s \varphi, g) + (\Im\varphi, g) \text{ for all } g \text{ in } C_{\varepsilon}^{\infty}(\mathbb{R}^n).$$

Hence $(A_{x_0}^s A - AA_{x_0}^s)\varphi = \Im\varphi$, Q.E.D.

PROPOSITION 4. Suppose the hypotheses of Theorem 1 are satisfied. Then

$$\phi(x) = ((\alpha + t)^m L \mathfrak{g}(x, \cdot, t), (\alpha + t)^m \phi) \text{ for all } \phi \in C^{\infty}_{\mathfrak{c}}(\mathbb{R}^n).$$

Proof. From Theorem 1, we have

 $\phi(x) = ((A_2 + t)^m L \mathfrak{g}(x, \cdot, t), (A_2 + t)^m \phi) \text{ for all } \phi \in D(A_2 + t)^m.$ Let $f \in D(A_2 + t)^{2m-1}$; then since A_2 is self-adjoint,

$$f(x) = ((A_2 + t)Lg(x, \cdot, t), (A_2 + t)^{2m-1}f)$$

= ((\alpha + t)Lg(x, \cdots, t), (A_2 + t)^{2m-1}f).

So

$$| ((\alpha + t)Lg(x, \cdot, t), (A_2 + t)^{2m-1}f) |$$

= $|f(x)| \le \max_{x \in \overline{\Omega}} |f(x)| \le M ||f||_{2m-1} \le C || (A_2 + t)^{2m-2}f ||$

by using the Sobolev imbedding theorem and Theorem 1.

Let
$$v = (A_2 + t)^{2m-2} f$$
; then
 $((\alpha + t)Lg(x, \cdot, t), (A_2 + t)v) | \le M ||v||$

for v in $D(A_2) \cap R(A_2 + t)^{2m-2}$. The inequality is true for all v in $D(A_2)$. Indeed, $R(A_2 + t)^{2m-2} = L^2(\Omega)$.

Therefore $L(v) = ((\alpha + t)L\Im(x, \cdot, t), (A_2 + t)v)$ is a linear functional on $D(A_2)$ and since $D(A_2)$ is dense in $L^2(\Omega)$, we may extend L(v) to all of $L^2(\Omega)$. Using the Riesz representation theorem, we get

$$L(v) = ((a + t)Lg(x, \cdot, t), (A_2 + t)v) = (h, v)$$

for all v in $D(A_2)$. h is an element of $L^2(\Omega)$. Hence $L_{\mathcal{G}}(x, \cdot, t) \in D(A_2)$ since $A_2 + t$ is self-adjoint.

Repeating the same argument m - 2 times, we get $(\alpha + t)^{m-1}Lg(x, \cdot)$ in $D(A_2)$. Therefore if $\phi \in C_c^{\infty}(\Omega)$,

$$\begin{split} \phi(x) &= ((A_2 + t)^m Lg(x, \cdot, t), (A_2 + t)^m \phi) \\ &= ((\alpha + t) Lg(x, \cdot, t), (A_2 + t)^{2m-1} \phi) \\ &= ((\alpha + t)^2 Lg(x, \cdot, t), (A_2 + t)^{2m-2} \phi) \\ &= ((\alpha + t)^m Lg(x, \cdot, t), (A_2 + t)^m \phi) \\ &= ((\alpha + t)^m Lg(x, \cdot, t), (\alpha + t)^m \phi) \end{split}$$

by taking into account Proposition 1.

THEOREM 2. Suppose the hypotheses of Theorem 1 are satisfied. Then

$$\mathfrak{g}(x,x,t) = (2\pi)^{-n_z - 2m + n/\alpha} \int_{\mathbb{R}^n} (\tilde{A}(x,\xi) + 1)^{-2m} d\xi + o(t^{-2m + n/\alpha})$$

as $t \to +\infty$, for x in Ω .

Proof. Let $N_d(x) = \{y : |y - x| < d\}$ and d_0 be such that $N_{d_0}(x) \subset \Omega$. $N_d(x)$ is contained in Ω for $d < d_0$.

Let $\phi \in C_c^{\infty}(N_d(x))$, then from Theorem 1 we have

$$\phi(x) = ((A_2 + t)^m Lg(x, \cdot, t), (A_2 + t)^m \phi)$$

= ((a + t)^m Lg(x, \cdot, t), (a + t)^m \phi)

by taking into account Proposition 4.

296

We may write $(\alpha + t)^m = \sum_{k=0}^m t^k \alpha^{m-k}$. Taking into account Proposition 2 we get

 $(\alpha + t)^m L\mathfrak{g}(x, \cdot, t) = (A + t)^m L\mathfrak{g}(x, \cdot, t) + \sum_{k=0}^{m-1} t^k T_{m-k} L\mathfrak{g}(x, \cdot, t)$ where T_j is a "smoothing" operator with respect to A^j , i.e.

$$|| T_j u ||_k \leq M || u ||_{j\alpha+k-1}.$$

Hence

$$\begin{split} \phi(x) &= ((A+t)^m L \mathbb{G}(x, \cdot, t), \ (\alpha+t)^m \phi) + \sum_{k=0}^{m-1} t^k (T_{m-k} L \mathbb{G}(x, \cdot, t), \ (\alpha+t)^m \phi) \\ \text{Since } \phi \in C^{\infty}_{\epsilon}(\Omega), \text{ the first expression may be written as} \\ ((A+t)^m L \mathbb{G}(x, \cdot, t), \ (\alpha+t)^m \phi) \\ &= \int_{\mathbb{R}^n} (A+t)^m L \mathbb{G}(x, y, t) \overline{(\alpha+t)^m \phi(y)} \ dy. \\ &= ((A+t)^m L \mathbb{G}(x, \cdot, t), \ (\alpha+t)^m \phi)_{\mathbb{R}^n}. \end{split}$$

Let
$$A_x$$
 be the operator A with symbol evaluated at the fixed point x . Then
 $((A + t)^m Lg(x, \cdot, t), (a + t)^m \phi)_{\mathbb{R}^n}$
 $= ((A_x + t)^m Lg(x, \cdot, t), (a + t)^m \phi)_{\mathbb{R}^n}$
 $+ (\{(A + t)^m - (A_x + t)^m\}Lg(x, \cdot, t), (a + t)^m \phi)_{\mathbb{R}^n};$
 $((A + t)^m Lg(x, \cdot, t), (a + t)^m \phi)_{\mathbb{R}^n}$
 $= ((A_x + t)^m Lg(x, \cdot, t), (a + t)^m \phi)_{\mathbb{R}^n}$
 $+ \sum_{k=0}^{m-1} t^k ((A^{m-k} - A_x^{m-k})Lg(x, \cdot, t), (a + t)^m \phi)_{\mathbb{R}^n}.$

One can show easily that

$$A^{s} - A_{x}^{s} = \sum_{j=0}^{s-1} A_{x}^{j} (A - A_{x}) A^{s-j-1}$$

Hence

$$((A + t)^{m}L\mathfrak{g}(x, \cdot, t), (\mathfrak{a} + t)^{m}\phi)_{\mathbb{R}^{n}}$$

= $((A_{x} + t)^{m}L\mathfrak{g}(x, \cdot, t), (\mathfrak{a} + t)^{m}\phi)_{\mathbb{R}^{n}}$
+ $\sum_{k=0}^{m-1} \sum_{j=0}^{m-k-1} t^{k} (A_{k}^{j}(A - A_{x})A^{m-k-j-1}L\mathfrak{g}(x, \cdot, t), (\mathfrak{a} + t)^{m}\phi)_{\mathbb{R}^{n}}$

Applying Proposition 2 to the first expression of the equation, one obtains

$$((A + t)^{m}LG(x, \cdot, t), (a + t)^{m}\phi)_{R^{n}}$$

$$= ((A_{x} + t)^{m}LG(x, \cdot, t), (A_{x} + t)^{m}\phi)_{R^{n}}$$

$$+ \sum_{k=0}^{m-1} \sum_{j=0}^{m-k-1} t^{k} (A_{x}^{j}(A - A_{x})A^{m-k-j-1}LG(x, \cdot, t), (a + t)^{m}\phi)_{R^{n}}$$

$$+ \sum_{k=0}^{m-1} \sum_{j=0}^{m-k-1} t^k ((A_x + t)^m L \mathcal{G}(x, \cdot, t), A_x^j (A - A_x) A^{m-k-j-1} \phi)_{\mathbb{R}^n} + \sum_{k=0}^{m-1} t^k ((A_x + t)^m L \mathcal{G}(x, \cdot, t), T_{m-k} \phi)_{\mathbb{R}^n}.$$

Denote by R_1 , R_2 , R_3 the second, third, and fourth expressions on the right hand side of the equation respectively, then

$$\left|\phi(x) - ((A_{x} + t)^{m}L\mathfrak{g}(x, \cdot, t), (A_{x} + t)^{m}\phi)_{\mathbb{R}^{n}}\right| \leq |R_{1}| + |R_{2}| + |R_{3}| + |R_{4}|$$

where

$$R_{4} = \sum_{k=0}^{m-1} t^{k} (T_{m-k} L \mathcal{G}(x, \cdot, t), (\alpha + t)^{m} \phi)$$

We have

$$|R_3| \leq \sum_{k=0}^{m-1} t^k || (A_x + t)^m LG(x, \cdot, t) ||_{L^2(\mathbb{R}^n)} || T_{m-k} \phi ||_{L^2(\mathbb{R}^n)}$$

$$\leq \sum_{k=0}^{m-1} t^{k-m+n/2\alpha} || \phi ||_{H^{(m-k)\alpha-1}(\mathbb{R}^n)}.$$

by applying Theorem 1.

Using a well-known inequality of the theory of Sobolev spaces, we get

$$R_{3} | \leq t^{-m+n/2\alpha} \{ \sum_{k=0}^{m-1} t^{k} \varepsilon \| \phi \|_{(m-k)\alpha} + K(\varepsilon)t^{m-1} \| \phi \| \}$$

$$\leq t^{-m+n/2\alpha} \{ \varepsilon \| (A_{2} + t)^{m} \phi \| + K(\varepsilon)t^{-1} \| (A_{2} + t)^{m} \phi \| \}$$

$$\leq t^{-m+n/2\alpha} \{ \varepsilon + K(\varepsilon)t^{-1} \} \| (A_{2} + t)^{m} \phi \|$$

by taking into account Assumption (I).

Consider a typical term in R_2 . We have

$$t^{k}(A_{x}^{j}(A - A_{x})A^{m-k-j-1}L\mathfrak{g}(x, \cdot, t), (\mathfrak{a} + t)^{m}\phi)_{R^{n}}.$$

From Proposition 4, we know that $A_x^j A - A A_x^j = T_{j+1}$ and T_{j+1} is a "smoothing" operator with respect to A^{j+1} . So

$$t^{k} (A_{x}^{j}(A - A_{x})A^{m-k-j1}Lg(x, \cdot, t), (\alpha + t)^{m}\phi)_{R^{n}}$$

= $t^{k} ((A - A_{x})A_{x}^{j}A^{m-k-j-1}Lg(x, \cdot, t), (\alpha + t)^{m}\phi)_{R^{n}}$
+ $t^{k} (T_{j+1}A^{m-k-j-1}Lg(x, \cdot, t), (\alpha + t)^{m}\phi)_{R^{n}}.$

Since $\phi \in C_{c}^{\infty}(N_{d}(x))$, $(\alpha + t)^{m}\phi \in C_{c}^{\infty}(N_{d}(x))$. Let $\varphi \in C_{c}^{\infty}(N_{2d}(x))$ with $\varphi = 1$ on $N_{d}(x)$ and 0 outside of $N_{d_{1}}(x)$, $d < d_{1}$. Using Lemma 2.7 of [2, p. 117], we have

$$\begin{aligned} \left| t^{k} (A_{x}^{j} (A - A_{x}) A^{m-k-j-1} L \mathcal{G} (x, \cdot, t), (\mathfrak{a} + t)^{m} \phi)_{\mathbb{R}^{n}} \right| \\ &= \left| t^{k} (\varphi (A - A_{x}) A_{x}^{j} A^{m-k-j-1} L \mathcal{G} (x, \cdot, t), (\mathfrak{a} + t)^{m} \phi)_{\mathbb{R}^{n}} \right. \\ &+ t^{k} (T_{j+1} A^{m-k-j-1} L \mathcal{G} (x, \cdot, t), (\mathfrak{a} + t)^{m} \phi)_{\mathbb{R}^{n}} \right| \\ &\leq \{ Ct^{k} d \| \mathcal{G} (x, \cdot, t) \|_{(m-k)\alpha} + t^{k} \| \mathcal{G} (x, \cdot, t) \|_{(m-k)\alpha-1} \} \| (\mathfrak{a} + t)^{m} \phi \| \end{aligned}$$

where C is independent of t, d. Taking into account Theorem 1, we get

$$|R_2| \leq Ct^{-m+n/2\alpha}(d+\varepsilon+K(\varepsilon)t^{-1}) \parallel (\alpha+t)^m \phi \parallel$$

298

A similar argument gives

and

$$|R_1| \le Ct^{-m} + {}^{n/1\alpha}(d + \varepsilon + K(\varepsilon)t^{-1}) \parallel (\mathfrak{a} + t)^m \phi \parallel$$
$$|R_4| \le Ct^{-m+n/2\alpha}(\varepsilon + K(\varepsilon)t^{-1}) \parallel (\mathfrak{a} + t)^m \phi \parallel.$$

Hence

$$\begin{aligned} \left| \phi(x) - ((A_x + t)^m L g(x, \cdot, t), (A_x + t)^m \phi)_{\mathbb{R}^n} \right| \\ &\leq M t^{-m+n/2\alpha} \{ \varepsilon + K(\varepsilon) t^{-1} + d \} \parallel (\alpha + t)^m \phi \parallel. \end{aligned}$$

A simple computation yields

 $\| (\mathfrak{a} + t)^{m} \phi \| \leq C\{\| \phi \|_{m\alpha} + t^{m} \| \phi \|\} \leq C_{2} \| (A_{x} + t)^{m} \phi \| \leq C_{3} t^{-m+n/2\alpha},$ where $\phi \in C_c^{\infty}(N_d(x))$ with $d = t^{-1/\alpha}$ (cf. [1]). Therefore

$$\left|\phi(x) - \left((A_x + t)^m \mathrm{Lg}(x, \cdot, t), (A_x + t)^m \phi\right)_{\mathbb{R}^n}\right| \le M(\varepsilon + K(\varepsilon)t^{-1} + t^{-1/\alpha})$$

Now we may take Fourier transform of the expressions on the left hand side of the inequality. A proof, almost identical (with only trivial changes) to that of Theorem 3 of [1] gives the wanted result.

THEOREM 3. Under the hypotheses of Theorem 1, if $x \neq y, x, y$ in Ω , then

$$\lim_{t \to +\infty} t^{2m-n/\alpha} \mathcal{G}(x, y, t) = 0.$$

Proof. Same idea as in the proof of Theorem 2 with ϕ replaced by

 $\phi \in C_c^{\infty}(N_d(y))$ and d < |x - y|.

We shall not reproduce it.

THEOREM 4. Suppose the hypotheses of Theorem 1 are satisfied. Let T be a symmetric operator in $L^2(\Omega)$. Suppose further that T^j is A_2^j -bounded with zero A_2^j -bound for $1 \leq j \leq m$, where m is the smallest positive integer such that $m\alpha > n/2$. Then

(i) $A_2 + tI + T$ is a self-adjoint operator in $L^2(\Omega)$;

(ii) $(A_2 + tI + T)^{-2m} f(x) = \int_{\Omega} G(x, y, t) f(y) \, dy, f \text{ in } L^2(\Omega);$ (iii) $|G(x, y, t)| \leq Ct^{-2m+n, \alpha}, ||(A_2 + t + T)^m G(x, \cdot, t)|| \leq Ct^{-m+n, 2\alpha}$ for x, y in Ω, C independent of t, x.

Proof. Since $A_2 + tI$ is self-adjoint and T is symmetric with zero A_2 -bound, it follows by a well-known result that $A_2 + tI + T$ is again a self-adjoint operator in $L^{2}(\Omega)$. All the other assertions of the theorem may be proved as in Theorem 1.

THEOREM 5. Under the hypotheses of Theorem 4,

 $\lim_{t \to +\infty} t^{2m-n/\alpha} \mathcal{G}(x, y, t) = \lim_{t \to +\infty} t^{2m-n/\alpha} \mathcal{G}(x, y, t); \quad x, y \text{ in } \Omega.$

G(x, y, t), G(x, y, t) are defined respectively by Theorems 1, 4.

Proof. For f in $D(A_2^m)$, we have $f(x) = ((A_2 + t)^m G(x, \cdot, t), (A_2 + t)^m f)$ $= ((A_2 + t + T)^m G(x, \cdot, t), (A_2 + t + T)^m f).$ Since $(A_2 + t + T)^m u = (A_2 + t)^m u + \sum_{k=0}^{m-1} (A_2 + t)^{k_T m - k} u$, $((A_2 + t + T)^m G(x, \cdot, t), (A_2 + t + T)^m f)$ $= ((A_2 + t)^m G(x, \cdot, t), (A_2 + t)^m f)$ $+ \sum_{k=0}^{m-1} ((A_2 + t)^m G(x, \cdot, t), (A_2 + t)^k T^{m-k} f)$ $+ \sum_{k=0}^{m-1} ((A_2 + t)^m T^{m-k} G(x, \cdot, t), (A_2 + t)^m f)$ $+ \sum_{k=0}^{m-1} \sum_{s=0}^{m-1} ((A_2 + t)^k G(x, \cdot, t), (A_2 + t)^s T^{m-s} f).$

Denote by R_1 , R_2 , R_3 the last three expressions on the right hand side of the equation. Then

$$((A_2 + t)^m \{ \mathcal{G}(x, \cdot, t) - \mathcal{G}(x, \cdot, t) \}, (A_2 + t)^m f) = R_1 + R_2 + R_3.$$

Consider a typical term in the expression R_1 . We have

$$| ((A_2 + t)^m G(x, \cdot, t), (A_2 + t)^k T^{m-k} f) |$$

$$\leq C t^{-m+n/2\alpha} \{ || T^{m-k} f ||_{k\alpha} + t^k || T^{m-k} f ||_{k\alpha} \}$$

by taking into account Theorem 4. Hence

$$|R_1| \leq Ct^{-m+n/2\alpha} \{\varepsilon + K(\varepsilon)t^{-1}\} \parallel (A_2 + t)^m f \parallel$$

using the definition of T and Assumption (I).

Consider a typical term in the expression R_2 :

$$\left| \left((A_2 + t)^k T^{m-k} G(x, \cdot, t), (A_2 + t)^m f \right) \right|$$

 $\leq C t^{-m+n/2\alpha} \{ \varepsilon + K(\varepsilon) t^{-1} \} \parallel (A_2 + t)^m f \parallel$

where we have used Theorem 4. So

$$R_2 \Big| \leq Ct^{-m+n/2\alpha} \{ \varepsilon + K(\varepsilon) t^{-1} \} \parallel (A_2 + t)^m f \parallel.$$

We estimate R_3 in a similar fashion. Finally, we get $|((A_2 + t)^m \{ \mathfrak{g}(x, y, t) - \mathfrak{G}(x, \cdot, t) \}, (A_2 + t)^m f)|$ $\leq Ct^{-m+n/2\alpha} \{ \varepsilon + K(\varepsilon)t^{-1} \} || (A_2 + t)^m f ||.$

Since $(A_2 + t)^m$ is onto $L^2(\Omega)$, we obtain

$$\| (A_2 + t)^m \{ \mathcal{G}(x, \cdot, t) - \mathcal{G}(x, \cdot, t) \} \| \le C t^{-m+n/2\alpha} \{ \varepsilon + K(\varepsilon) t^{-1} \}.$$

But

$$\begin{aligned} \left| \mathcal{G}(x, y, t) - \mathcal{G}(x, y, t) \right| &\leq M t^{-m+n/2\alpha} \parallel (A_2 + t)^m \{ \mathcal{G}(x, \cdot, t) - \mathcal{G}(x, \cdot, t) \} \parallel \\ &\leq M t^{-2m+n/\alpha} \{ \varepsilon + K(\varepsilon) t^{-1} \} \end{aligned}$$

(cf. [1]). Therefore $\lim_{t\to+\infty} t^{2m-n/\alpha} \{ \mathfrak{g}(x, y, t) - \mathfrak{G}(x, y, t) \} = 0.$

THEOREM 6. Suppose the hypotheses of Theorem 5 are satisfied. Let λ_j , φ_j be respectively the eigenvalues and eigenfunctions of $A_2 + T$. Then

$$N(t) = \sum_{\lambda_j \le t} 1 = (2\pi)^{-n} t^{n/\alpha} \int_{\Omega} \int_{\tilde{\mathcal{X}}(x,\xi) < 1} d\xi \, dx + o(t^{n/\alpha}),$$
$$e(x, x, t) = (2\pi)^{-n} t^{n/\alpha} \int_{\tilde{\mathcal{X}}(x,\xi) < 1} d\xi + o(t^{n/\alpha}), \quad x \text{ in } \Omega,$$
$$e(x, y, t) = \sum_{\lambda_j \le t} \varphi_j(x) \overline{\varphi_j(y)} = o(t^{n/\alpha}), \quad x \ne y.$$

Proof. Applying the Tauberian theorem of Hardy-Littlewood and taking into account the results of Theorems 4, 5, 3, 2, we get the stated results.

REFERENCES

- 1. F. E. BROWDER, Asymptotic distribution of eigenvalues and eigenfunctions for nonlocal elliptic boundary value problems. I, Amer. J. Math., vol. 87 (1965), pp. 175–195.
- G. I. ESKIN AND M. I. VISIK, Equations in convolutions in a bounded region, Uspehi Mat. Nauk, vol. 20 (1965), pp. 85-157 = Russian Math. Surveys, vol. 20 (1965), pp. 85-157.
- 3. L. GARDING, The asymptotic distribution of eigenvalues and eigenfunctions of a general vibration problem, Kungl. Fysiogr. Sallsk.i. Lund Forh, vol. 21, 11 (1951), pp. 1-9.
- 4. ———, On the asymptotic distribution of eigenvalues and eigenfunctions of elliptic differential operators, Math. Scand., vol. 1 (1953), pp. 237-255.
- 5. B. A. TON, Boundary value problems for elliptic convolution equations of Wiener-Hopf type in a bounded region, Pacific J. Math., vol. 26 (1968), pp. 395-418.
- 6. ———, On the asymptotic behavior of the spectral function of elliptic pseudo-differential operators, Illinois J. Math., vol. 14 (1970), pp. 452–463.

UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, CANADA