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The asymptotic distribution of eigenvalues and eigenfunctions of a class of
elliptic pseudo-differential operators considered recently by Eskin and Visik
[2], was sudied by he writer in [6]. The purpose of his pper is o exend
hose results o he more general class of ellipic pseudo-differential operors
A of positive order on bounded open se of.
ore specifically, le A be n elliptic opera,or of positive order on

with symbol (x, ) nd let (x ) be the symbol of the principal prt of A
in a local coordinates system. Suppose that

x, ) (x, )7 x, ) for x 0

where is homogeneous of order k in , k 0 and independent of x, analytic
in Im > 0;7 is homogeneous of order a k in with an analytic continua-
tion in Im g 0.

Let A be the realization of A as an operator in L () under nl "regular"
boundary conditions. If A2 is self-adjoint, it is shown that

o( n/a)

(ii) e(x,x,t) (2r)-’t""fz d-[-o(t""); x in 2.
(,)<1

e(x, y, t) x_,.(x).(y) o(tn/"); x y.

X, . are respectively the eigenvalues and eigenfunctions of A2.
We shall use the method of Garding [3] as extended by Browder in [1].

The notations and the definitions are essentially those of Eskin and Visik
[2], they are given in Section 1. The asymptotic behavior of the kernel of
(A2 tI)-2" where m is the smallest positive integer such that ma > n/2.
is studied in Section 2. The results are obtained by an application of the
Hardy-Littlewood Tauberian theorem.

Section

Let 2 be a bounded open set of R" with a smooth boundary 02. H8’2 (),
s >_ 0, which shall be written as H (2) for short, denotes the usual Sobolev
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space and H(f) is the space of generalized functions f defined on all of Rn,
equal to 0 on R’/cl 2 and coinciding with functions in H

DEFINITION 1. + ([) is in C iff"
(i) + () is homogeneous of order in , continuous for 0 and has an

analytic continuation in Im > 0 for each fixed ’ (1, "", ,-1).
(ii) + () 0 for 0 and for any positive integer p, there is an expansion

)i+ () =0 c. (’)7’ + R.+_, (); + + i ’!
where all the terms are homogeneous of orders tc in with analytic continuation in
Im > 0 and

,+-()I-< cl ’1+(I ’l + !1)--.
DEFiNiTION 2. (X, }) is in fi. iff

(i) (x, is infinitely differentiable in X and in for O.
(ii) (x, is homogeneous of order ia .
(iii) ]D(x, )] C(+ ]}); 0 p] %p < .
(iv) For any x in R and for any s -a, there is a decompositi

(}_ i)’(z,}) _(z,}) + R(x,}); }_ } i]}’,_
(x, ) and R (x, ) are infinitely differentiable with respect to x. Moreover

_(x, ) has an analytic continuation in Im } 0 and

D2_(z, })[ C(1 + [}[)’+", ]DD}_(x, )[ c(1 +
]D(x, })] C( + }’[)’++"(1 +

]DD}R(x,})] c(1 + }’[)’+"(1 + ])-.
Let (}) be homogeneous of positive order a in } and (}) 0 for } 0.

Let u e H’ (R) with u (x) 0 for x _< 0. Then Au F-{ (}) (}) where
the inverse Fourier transform F- is tuken in the sense of the theory of distri-
butions is well-defined. Here (}) denotes the Fourier transform of u (x).

Suppose (x, }) for x in cl is infinitely differentiable with respect to x and
}, homogeneous of order a in } and (x, }) 0 for } 0. We extend (x, })
with respect to x to all of R with preservation of homogeneity with respect to
}. (x, }) may be expanded in Fourier series

(x, })

_
@(z) exp (-i}x/p) (), (, ..., )

and

(() 2p)- exp ik/p)X(, ) dz,

(z) eC(R);() lforzl Np-e;() =Oforl P.
Leg P+ be ghe resgriegion operagor of funegions from R go . or eH(),

define
P+Au P+(_ (z) exp (-iz/p)g ).

Leg {i} be a finige pargigion of unigy corresponding go a finige open eoefing
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{N} of cl 2 and let {} be the infinitely differentiable functions with compact
supports in N and such that k .
Throughout the paper, we consider elliptic pseudo-differential operators

P+Au _.z P+ A,, + _, P+ A (1 k)

of positive order a on t with the following properties"

(i) If A j is the principal part of Akj in a local coordinates system
then (xj, ) is homogeneous of order a in and for x 0, admits a factoriza-
tion

where C+, -7 is homogeneous of order a k in and has an analytic con-
tinuation in Im , _< 0.

(ii) (xj,) ,.xforxeNn02 0.

If k > 0, we consider

P+Br ,P+ Br k -t- ., P+ S, (1 kj); r--- 1, ...,k.

B are pseudo-differential operators of orders a with 0 _< as < a. Let
B be the principal part of B b in a local coordinates system; then

/]it1 (xj, ) are assumed to be in ).1
Set

where the summation is taken over all j, s with supp n supp a 0
Define the operator A on L (t) as follows"

D(A.) {u u e H$(2);,P+B, u 0; r 1, ..., k}

and A u P+au if u e D (A). denotes the passage to the boundary.
If k 0, no boundary conditions are required.

ASSUMPTION (I). We assume throughout the paper that for >_ to > 0,
(A tI) is a 1-1 mapping of D (A2) onto L (). Moreover there exist positive
constants Cx C. independent of such that

for all u in D (A + t)a; s >_ 1.

Concrete hypotheses on j (x, );/rj (x, ) may be given so that Assump-
tion (I) is verified (cf. [5]).

Section 2
In this section, we shall first study the asymptotic behavior of the kernel

9 (x, y, t) of (A + tI)-’* as -t- where m is the smallest integer such that
2ma > n. Then we show that

lim,+ t’"-"t"{9(x, y, t) G(x, y, t)} 0
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where G(x, y, t) is the kernel of (A - tI -t- T)-m. T is such that T is A-
bounded with zero A-bound; 1 _< j m.

THEORE 1" Le$ A be as in Section 1. Suppose further that
(i) Assumpti (I) is satisfied,
(ii) C:() D(A),
(iii) A is self-adjoint.

Then for o > 0,

(A + tI)-f(x) fa (x, y, t) dy

for f in L (). m is e allest potive integer such that 2ma > n. Moreover

i(, , )1 ct
for all x, y in

il (A + tZ)’9 (z, ", t) 11 Ct-".
Let L be an extsion of 9 (x, , t) from to R" such that

L9 (x,., t)]],,.(n,) C 9 (x, -, t)

Then L9 (x, , t) D (A W tI). The differt cstants C are all indepdt
of x, t.

Proof. The proof is essentially the same as that of Lemma 1.7 of Browder
[1]. Cf. also [6]. We shah not reproduce it.

PaOrOSTON 1. Let C( then a C7 ().

Proof. Since e C, () and (xy, ) e ,., it follows from a result of Eskin
Cand Vis [2] that a e () It is tribal to check that supp (a) .

PROeOSTION 2. a’u A’u W T, u for all u in H’" (R) where s is a positive
integer and T, is a bounded linear mapping of H""+ (R into H+ (R k O.

Proof. By hypothesis, we have

By Lemma 3.D.1 of [2, p. 144], one may write

A ( y A, u) A ( A, u) + T() ( A, u)
where T() is a "smoothing" operator with respect to A in the sense of Eskin-
Visik; i.e. T()v C v ,+ for any positive integer m. So

a Z.. A ( A. ) + V(’) (Z., A, ).
Applying the same lemma again, one gets

au Au + T() (Au) + T(" (., A, u)
A W T(S)u

where T(a)u ]l C u [,+.
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We prove by induction. Suppose that

(z’-lu A’-lu + T,_I u with T8_1 u I1, <- C u (s--1)a-i-m--1.

We show that it is true for s.

A ( + T,_t u)

Applying the same lemma again, we obtain

a’u A’u + T’ (A’-u) + A ( T,_t u) A’u + T, u.

By trivial computation, we get

PaOOStTON 3. Let A be as in Section 1 and A be the pseudo differential
operator A with symbol evaluated at xo. Then

(A A AAo)U C u ]],,+,+_ for all u e H(’+)"+ (R’)

where k is any positive integer.

Proof. By definition, we have

A (y) exp (-irym/1)i

with Z() C (N) ]a (1 + m )-. N is a large positive number.
Consider

A A A (=_ (y) exp (-iym/1)i )

A (=_ L) with (y) exp (-iym/1).

Let g e C: (R). By the Parseval formula, we have

(Ao A, e) (Ao{=- L}, g) (F{__ 0 i}, F(Ao g)).

From Lemma 1.D.1 of [2, p. 140], we get

L L+T
with

C is independent of m.
Let T -":=_ T. Taking N large enough, we obtain

So

0 A, g) (F/-- Lm(Cm)} F(Axo g)) + (Ao T, g)
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It is easy to check that

(Axo A,, g) _.,._ (FLm (4, , F (A, g) + , T, g)
__

(A, L(), g) W o T, g)
_

(LA"0()) ) + (A.. T,. )

Again by applying Lemma 1.D.1 of [2], we get

with

Hence

(Ao A, g) :__ (L Ao , g) + (2, g) T (A Y, g)
with

Z:__ LZ.
Moreover

by taking N large enough.
AgNn by the same lemma, we have

where

and C is independent of m. Therefore

(A, Ae, e)

By an easy argument, we obtain

(A, A, g) (AA, e, g) + (Se, g) for all g in C: (R).
Hence (Ao A AA;o)e 5e, Q.E.D.

PaoeosTm 4. Suppose the hypotheses 4 Theorem 1 are satisfied. Then

e(x) ((a + t)L(x, ., t), (a + t)) for

Pro4. From Theorem 1, we have

(x) ((A, + t)Lg(z,., t), (A, + t)4) for an
Let f D (A + t)-; then since A is self-adjoint,

f(x) ((A, + t)Lg(z,., t), (A, +
((a + t)Lg(z,., t), (A, +
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So

[((a - t)Lg(x, ., t), (A-- t)’-f)

by using he Sobolev imbedding heorem nd Theorem 1.

Le v (A2 + t)2"-2f; then
((a + t)Lg(x, ., t), (A + t)v) M v [I

for v in D (A) n R (A + t)-. The inequality is true for aH v D (A).
Indeed, R (A + t)- L ().

Therefore L (v) ( (a + t)59 (x, t), (A + t)v) is a linear functional on
D (A) and since D (A) is dense in L (), we may extend L (v) to all of L ().
Using the Riesz representation theorem, we get

L(v) ((a + t)Lg(x, ., t), (A + t)v) (h, v)

for all v in D (A). h is an element of L (fl). Hence L9 (x, t) e D (A) since
A + is self-adjoint.

Repeating the same argument m 2 times, we get (a + t)-L9 (x, in
D (A). Therefore if e C7 (),

(x) ((A + t)Lg(x, ., t), (A + t))

((a + t)Lg(x,., t), (A + t)’-6)
((a + t)L9 (x, , t), (A + t)’-)
((a + t)’59 (x,., t), (A + t)’6)

((a + t)Lg(x,., t), (a + t)’)

by taking into account Proposition 1.

TaEoE 2. Suppose the hypotheses of Theorem 1 are satisfied. Then

9(z, x, t) (2)’-’" f.. ((x, f) + )-" df + 0( 2mla)

as + for x in .
Frog. LetNa(x) {y" ly-xl <d} and & be such that Na, (x ) a.

Na (x) is contained in for d < d0.

Let e C (Na (x)), then from Theorem 1 we have

(z) ((A + t)’(,., t), (A + t)%)

((a + t)L9 (x,., t), (a + t)’)

by taking into account Proposition 4.
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We may write (a -t- t) ’-0 ta’-. Taking into account Proposition 2
we get

(a + t)L9 (x,., t) (A + t)L9 (x, , t) + tT L9 (x, ., t)

where T is a "smoothing" operator with respect to A, i.e.

] Ty u i u [y+_.
Hence

(x)

((A + t)L9 (x,., t), (a + t)) + ?(T L9 (x,., t), (a + t)")

Since C (), the first expression may be written as

((A + t)Lg(x, t), (a + t):+)

f (A + t)Lg(x, y, t)(a+ t)(y) dy.

((A + t)Lg(x, t), (a +
Let A be the operator A with symbol evaluated at the ed point x. Then

((A + t)59 (x, -, t), (a + t)),

((A + t)Lg(x,., t), (a +
+ (( (A + t) (A + t)}/9(z,., t), (a + t)).

((A + t)(x,., t), (a + t)

+ ? ((A- A-)Lg(x,., t), (a +
One can show esfiy that

A’- A A(A A)A"--
Hence

( (A + )L9 (x, ), (a + )
((A + t)Lg(x,., t), (a + t)
+ 7- ?(A (A A)A---tL9 (x, .. t), (a + t)).

Applying Proposition 2 to the flint expression of the equation, one obtains

( (A + )ig (x, ), (a +
((A + t)(x,., t), (A +
+ 7- t(A(A A)A---Lg(,., t), (a +
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-t- ’2 .,7- (A -+- t)’L (x, t), A (A A)A---

+ ((A + t)L (x,., t), T ),.

Denote by R, R, Ra the second, third, and fourth expressions on the right
hand side of the equation respectively, then

(x) ((A + t)’Lg(x, t), (A + t)). R + R! + IRa[ + R
where

R4 = (T L9 (x,., t), (a + t))
We huve

Ra (A + t)n9 (x,., t) () T

by pplying Theorem 1.
Using well-known inequMity of the theory o Sobolev spees, we ge

by taking into account Assumption (I).
Consider a typical term in R. We have

t’(A(A A,)A-’--’Lg(x,., t), (a +
From roposition 4, we know thatAA AA T+ and T+ is a "smooth-

ing" operator with respect to A+. So

t’ (A (A A,)A-’-’Lg (x, , ), (a + )%

(A A A---L9-A,) (x, ,t),(a+

+ ?(T+, A---’Lg(x,., t), (a +
Since C: (N ()), (a + t) , C: (N (x)). Let , C: (N (x)) with

1 on N (x) and 0 outside of N (x), d < d. Using Lemma 2.7 of [2,
p. 117], we have

A,)A Lg(z,., t), (a +
t’((A ,)A A’-’--’Lg(z,., t), (a +
+ t’(T+, A-’--’Lg(z,., t), (a +
Ct II g (, ", t) I1--) + g (, ", t) il(-)-,} (a + t)% II

where C is independent of t, d. Tking into ccount Theorem 1, we get

]R Ct-’’ (d + e + K ()r’)II (a + t)’ II.
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A similar argument gives

R <_ Ct-"---’n"(d q-- s + K (e)t-) (a q-- t)’b
and , ct-+"( + K ()t-) (a + t)% .
Hence
(x) (A. + t)L9 (x,., t), (A. + t)O)

it-+"{e + K(e)t- + d} (a + t)
A simple computation yields

where C (Na (x)) with d - (cf. [1]).
Therefore

](x) ((A + t)L(x,., t), (A + t)%).{ M(s + g()t- + -)
Now we may take Fourier transform of the expressions on the left hand side of
the inequality. A proof, almost identical (with only trivial changes) to that
of Theorem 3 of [1] gives the wanted result.

THEOREM 3. Under the hypotheses of Theorem 1, if x y, x, y in , then

limt+ t-"9 (x, y, t) 0.

Proof. Same idea as in the proof of Theorem 2 with replaced by

C eC:(N(y)) and d< x-y[.
We shM1 not reproduce it.

THEOREM 4. Suppose the hypotheses of Theorem 1 are satisfied. Let T be a
symmetric operator in L ( ). Suppose further that T is A-bounded with zero
A-bound for 1 j m, where m is the smallest positive integer such that
ma > n/2. Then

(i) A: + tI + T is a self-adjoint operator in L(
(ii) (A + tI + T)-f(x fa G (x, y, y(y dy, f in L (e
(iii) G(x, y, t) Ct-+’, (A: + + T)G(x, ., t) Ct-+’

for x, y in , C independent of t, x.

Proof. Since A tI is self-adjoint and T is symmetric with zero A-bound,
it follows by a well-known result that A tI T is again a self-adjoint
operator in L (). All the other assertions of the theorem may be proved as in
Theorem 1.

TEoaE 5. Under the hypotheses of Theorem 4,

limt+ -"9 (x, y, t) limt.+ -’"G (x, y, t); x, y in .
9 (x, y, t), G(x, y, t) are defined respectively by Theorems 1, 4.



Proof. For f in D (A), we have

f(x) ((A -F t)’9(x, ", t), (A -F t)’f)

((A -F -F T)’G(x, ", t), (A + + T)f).

Since (A + + T) (A + t)u + (A + t)r-u,
((A. + + T)G(x, ., t), (A + + T)f)

((A + t)G(x,., t), (A + t)f)

+ :2 ((A + t)G (x,., t), (A + t)T-f)
+ ((A + t)T-G (x,., t), (A + t)f)

Denote by R, R:, Ra the last three expressions on the fight hand side of the
equation. Then

((A + t){9(x,., t) G(x,., t)}, (A + t)]) R + R + R.
Consider a typical te in the expression R. We have

((A + t)G(x, t), (A + t)T-f)

by taking into account Theorem 4. ence
RI c"{ + K(e)t-} (A +

using the deflation of T and Assumption (I).
Consider a typical term in the expression R
((A + )T-e(,., t), (A + t)y)

Ct-"{e + K(e)t-} (A +
where we have used Theorem 4. So

we estimate a in a similar fashion. Finally, we get

I((A + t){9(, u, t) e(x,., t)}, (A +
Ct-"{e + K(e)t-} (A +

Since (A % t) is onto L (B), we obtain

(A + t){9(x,., t) G(x,., t)} t-"{ + g()t-’}.
But

9 (, u, t) (, u, t) Mt-+’" (A + t){9 (,., t) (,., t)} I
Mt-"{e + K (e)t-}

(cf. [1]). Therefore lim,+ t-’m{9(x, y, t) G(x, y, t)} 0.
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THEOREM 6. Suppose the hypotheses of Theorem 5 are satisfied. Let q be
respectively the eigenvalues and eigenfunctions of A T. Then

x, t) (2)-t/ f_. d o(t/"), x in 0,e(x
(x,)<l

Proof. Applying the Tauberian theorem of Hardy-Litflewood and taking
into account the resets of Theorems 4, 5, 3, 2, we get the stated resets.
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