
ABELIAN GALOIS EXTENSIONS OF RINGS CONTAINING ROOTS
OF UNITY

BY
L. N. CHILDS

Let R be a commutative ring and A a Galois extension of R with abelian
group G of exponent n. Then A is a rank one projective R[G]-module and is a
free R[G]-module iff A has a normal basis. If R is connected, and contains
1In and a primitive n-th root of unity, then R[G] decomposes into the direct
sum R of copies of R(as rings), so that as R[G]-module, A Aj, a
direct sum of rank one projective R-modules. In this paper we first show
(Theorem 1 that in this situation this decomposition makes A into a kind of
generalized group ring with nicely described G-structure, so that if all the A
are isomorphic to R, i.e., A has a normal basis, then A is a projective group
algebra.
We then give two applications of Theorem 1. In Section 2 we investigate

for central Galois extensions the relationship between Theorem 1 and a
similar result of Kanzaki, to obtain a description of central abelian extensions
with normal basis.
The set of isomorphism classes of all Galois extensions of R with abelian

group G which are R-algebras forms an abelian group, with a subgroup
consisting of classes of extensions which have normal basis. In Section 3 we
use Theorem 1 and a result of G. Garfinkel and M. Orzech to compute the
group of Galois extensions modulo those with normal basis when R and G
satisfy the hypotheses cited above.

I wish to thank M. Orzech for suggesting some useful improvements.

O. Definitions and notation

All rings have units. A commutative ring R will be called connected if it
has no idempotents but 0 and 1.

Let A be a ring, G a finite group of automorphisms, and R Aa, the fixed
ring of G. Assume R is contained in the center of A. Then A is a Galois
extension of R with group G if there exist xl xn, yl yn in A so that

x a(y) . for all in G. This particular choice of definition of
Galois extension is equivalent to several other standard conditions (since
[CHR 1.3 (b) , (c) ** (d) (e) =, (a)] remains valid). In particular, A is a
separable R-algebra [D1, Theorem 1].

If A, A’ are Galois extensions of R with group G, we say A and A’ are iso-
morphic as Galois extensions if there is an R-algebra isomorphism of A onto
A’ which is at the same time a G-module homomorphism.

Received November 22, 1968.
Research partially supported by a National Science Foundation grant at North-

western University.

273



274 . N. CHILDS

If G is abelian (resp. R is the center of A) we say A is an abelian (resp.
central) Galois extension.
Let ( =Hom (G, U (R)) where U (R) denotes the units of R. We will

denote elements of G by , r, p, and elements of by x, 9.

1. The structure theorem
THEOREM 1. Let R be a connected commutative ring, G a finite abelian group

of exponent n and order m and assume that R contains 1In and a primitive n-th
root of unity. Let A be a Galois extension ofR with group G. Then A (R) x, 5 Ix
where for each x,

Ix a A (a x (( )a for all ( in G}

is a rank one projective R-module, and for x, in , Ix.I Ix.
Proof. We first note that since R is connected, there exist at most n n-th

roots of unity ([J]), so that ----- G and R[G] decomposes as R[G] Rvx
where

--1

satisfy

Set

Clearly if b x- ()r(a)/m ghen x ()b r(b) for all r in G. Con-
versely, if b is in A and x (o-)b o-(b) for all o- in G, then

b (l/m)
so b is in v (A).

Since A is a rank 1 projective R[G]-module, each Ix is a rank 1 projective
R-module.

It is easy to show that Ix"I
_

Ix,. Conversely, if a is in I, then

a .X-h- ((r) (a)/m.

Let xi, yi, i 1, ..-, n, be in A so that -xa(y) 1.,. Then

SO

a i,xir(y)r(a)b-0.),

is in Ix" I, completing the proof.
In case A is a Galois extension of R with normal basis, we have the follow-

ing corollary.
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Coov 2. With G, R, A as in Theorem 1, the following conditions are
equivalent"

(i) For each x in there exists ux in Ix so that Ix Rux.
(ii) A has normal basis.
(iii) A is a projective group algebra, i.e., A @ x,a Rux with multiplication

rux’sux rsa(x, )ux, a(x, ) in U (R), with G acting on A via

x

Proof. (i) (iii) is immediate from Theorem 1.
(i) (ii). Having normal basis is equivalent to being free as an R[G]-

module. But A is free R[G] @ x Rvx-module iff A (R) ,a Rvx vx (A Ix
is free over Rvx R for each x.

(iii) (i). If A x& Rux with a in G cting on ux by a (ux) x (a)ux,
then clearly Rux

_
Ix for ull x in , so (i) follows.

Remarks 3. The R-algebra isomorphism classes of projective group al-
gebras with group G ure in 1-1 correspondence with elements of H (G, U (R)).
The verification that in fact with R as above there is n isomorphism between
the group of isomorphism classes of Galois extensions with group G, having
normal basis, and elements of H (G, U (R)), is a slight extension of results in
[W], or can be obtained as a special case of the more general cohomological
classification of abelian Galois extensions with normal basis in [CR] and [0].

4. With R, G as in Theorem 1, suppose S is a commutative Galois extension
with group G. Then the decomposition of S as in Theorem 1 yields a collec-
tion of rank 1 projective R-modules Ix split by S, whose isomorphism classes
form u subgroup of

Pic (S/R) ker/Pie (R) -- Pic (S)}.

In terms of the well-known cohomological description

Pic (S/R) U (G, U (S

(e.g. [CHR, Corollary 5.5]) it is very easy to describe the subgroup consisting
of the Ix. For the map H (G, U (S)) -- Pic (R) is induced by sending a
cocycle h" G-- U (S) to

I {seSla(s) h (a )s for all a e G}

Thus the subgroup of H (G, U (S)) corresponding to the Ix is the image of
Hom(G, U(R)) under the obvious map from Hom(G, U(R)) to
H(G, V(S)).

2. On central abelian Galois extensions

For R connected, in order to have central Galois extensions of R with abelian
group G of exponent n it is necessary that 1In and a primitive n-th root of 1
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be in R. Over local rings R this follows by resultsin [D1] and [D2]; the general
statement follows by localizing. Thus the description of Theorem 1 applies
in particular to all central abelian Galois extensions.

In [K3], T. Kanzaki obtained a description similar to that of Theorem 1
for central Galois extensions with not necessarily abelian Galois group G.
In order to state his result we recall a definition:

Let A be a central separable (= Azumaya) R-algebra. Let a be an R-al-
gebra automorphism of A and let

J {ainA[a(x)a axforallxinA}.

Then J is a rank one projective R-module and is free if and only if a is an inner
automorphism. If a, r are in Aut (A) then J.J J (see [RZ]).

Kanzaki’s description is the following"

PROPOSITION 5 [K3, Corollary 2]. If A is a central Galois extension of R
with group G, then A @aJ.
Assume now that A is a central abelian extension of R with group G. Our

Theorem 1 showed that A ,5 Ix, where

Ix {a in Air(a) x(r)a for all r in G}.
But in fact,

PROPOSITION 6. There exists a map G ---, such that I() J.
Proof. Write ain Ix as a a, a, in J. Since r in G leaves

stable one has easily that each a is then in Ix. Thus Ix (Ix n J,)
But by a rank argument only one of those summands can be non-zero.
Let t" ( --* G be defined by setting/(x) to be that a in G such that Ix
J 0. Then it follows easily that is onto, hence bijective, and Ix
for all x. That is a homomorphism follows from the multiplicative proper-
ties of the Ix and J. Setting - completes the proof.

There is a bijection between the set of isomorphisms of G and ( and the set
of pairings, or bimultiplicative maps G G --* U (R) which are non-singular
(O(a, G) 1 1), as follows: :G --* ( an isomorphism yields
O: G X G -+ U(R) by 0(, r) ()(r); G X G--U(R)anon-singular
pairing, yields # G --* ( by # (a) (r) v (a, r).

In terms of the map and its associated pairing 0 we have the following
immediate results on the structure of A"

COROLLARY 7. (i) For a in J I() r (a ( (r)a 0 (, r)a.
(ii) For a in J, b in J, ab 0(r, a)ba,.

In the special case where we have an extension of the form

A Ru Ru(),
then

u,



ABELIAN GALOIS EXTENSIONS OF RINGS 277

for some factor set a((r, r), so

and the map t of Proposition 6 arises from the factor set a (, r).
together with Corollaries 2 and 7, yields

This fact,

THEOREM 8. Let R be connected and let A be a central abelian Galois exten-
sion with normal basis. Then A Ru is a projective group algebra with
elements r of G acting on A via conjugation by u.

This is a converse to Theorem 13 of [D2].

3. On Galois extensions without normal basis
In this section we apply Theorem 1 to describe (with R, G as in Theorem 1

the group of Galois extensions modulo those with normal basis.
Let R be a commutative ring, and denote by Gal (R, G) the set of isomor-

phism classes (as Galois extensions) of Galois extensions of R with abelian
group G. Denote by NGal (R, G), Comm (R, G) and NComm (R, G)
the subsets of Gal (R, G) consisting of those isomorphism classes of Galois
extensions which have normal basis, which are commutative, and which are
commutative with normal basis, respectively. An abelian group structure
can be put on Gal (R, G) which makes the subsets NGal (R, G), etc.,
subgroups. This group structure was first described by Harrison ([H], see
also [O]), and is obtained by setting the product (A). (B) of two Galois
extensions A, B of R with group G, as the fixed ring of A (R) R B, an element of
Gal (R, G X G), with respect to the subgroup of G G consisting of the kernel
of the multiplication map G X G -- G.
For any commutative ring R let Pic (R) denote the group of isomorphism

classes of rank one projective R-modules, with multiplication induced by
tensor product (over R) [BAC 2].

G. S. Garfinkel and M. Orzech [GO, Theorem 2] showed that the map
Gal (R, G) to Pic (R[G]) induced by viewing a Galois extension as a rank one
projective RIG] module via the obvious action, is a homomorphism of abelian
groups, whose kernel, clearly, is the subgroup NGal (R, G).
Under the assumptions on R and G made in Theorem 1, we can describe

the image of that map. (All tensor products are taken over R.)
THEOREM 9. Let G be a finite abelian group which is the direct product of

cyclic groups, G X-IGI of orders el, ..., e. Let n be the exponent of G,
and let R be a connected commutative ring containing 1In and a primitive n-th
root of unity (i.e., R and G are as in Theorem 1). Denote by Pic (R)(e) the
elements of Pic (R annihilated by e (where e is a positive integer). Then we
have

Gal (R, G)/NGal (R, G)-- Comm (R, G)/NComm (R, G) )<,-1Pic (R) (e).
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Proof. Let G be as in the theorem, and fix x, a generator of (, for each i.
Then, by Theorem 1, any Galois extension is, as R (G)-module, of the form

A x Ix (R) (Ix)..@ (j 1, ..., e)

since for any x, # in
Ix @ I Ix.I Ix.

So as R[G]-module, A is completely determined by the set {Ix, "", Ix}.
We map A into the class of (Ix Ix) in..., = Pic (R). By the mul-
tiplicative properties of the Ix’s it is clear that the image of A under this map
is in X= Pic (R)(e). Since this map is the composition of the map

Gal (R, G) --. Pie (R[G]) x, Pie (R)x

followed by projection onto the factors of x& Pic (R)x corresponding to the
generators x, the map is a homomorphism. By Corollary 2 this map yields
a monomorphism of Gal (R, G)/NGal (R, G) into X Pic (R)(e).
In order to finish the proof it is enough to show that the map Comm (R, G)

to Pic (R)(e) is onto. Now it suffices to show this latter fct in ese G
is cyclic. For suppose we have shown the cyclic case. Then, given
G X G, x, e as above, for each i let P be a representative of a class in
Pic (R) (e), and let S be a Galois extension of R with group G such that

and Ix P Then S (R)=S is a commutative Galois extension with
group G, and as R[G]-module,

S (R) ’ (Ix),
so S goes under the map we have defined to the class of (Ixl, Ix), which
is the same as the class of (P1, P), in X Pic (R) (e).
The cyclic case in an immediate consequence of part (b) of the following

independently interesting result, suggested to the author by R. T. Hoobler
and G. S. Garfinkel.

PROPOSWO 10. Le R be a commutative ring. Let P represent a class in
Pic (R) (e). Denoting P (R) P (R) (R) P (r imes) by P(, le P( Ru for
some u in P(. Le R (P denote he ring T (P )/ (u 1), where T (P is the
ensor algebra over R of P (and 1 is in p(O ). Then

(a) R (P is a commutative ring, and is a separable R-algebra iff e is a unit
inR.

(b) If R is connected and contains lie and a primitive e-th root of 1, then
if x is a given generator of, R (P is a Galois extension of R with cyclic group
Z, in such a way hat

P P( {aeR(P)]g(a) x()aforallginG}

Proof. (a) That R (P) is commutative follows from Proposition 3 of [G]



ABELIAN GALOIS EXTENSIONS OF RINGS 279

(or by localizing); the separability is Proposition 4 of [G] (or can be obtained
by localizing and using results in [J, Section 2]).

(b) First note that if , i" are e-th roots of unity in R, then " "p is a
unit of R (by [J, Propositions 2.1 and 2.4], since e is a unit in R ).

Since R (P) R @ P @ @ p(e-1) as R-modules, we shall abusively
identify the two sides.

Let and x be generators of G Ze and , respectively, and define an
action of G on R (P) via (p) x (z)P for p in P p(1), extending by linearity
and by diagonal action on tensor products. Then

p(r> {a in R (P)l (a) x (r)a for all r in G}

for allr 0,...,e-- 1. In particular, R(P) R p(0. To show that
R (P) is a Galois extension of R with group G, since R (P) is separable over R,
it suffices by Theorem 1.3a of [CHR] to show that the elements of G are pair-
wise strongly distinct on R (P) (in the terminology of [CHR]). That is, if u
is a non-zero idempotent of R (P) and g, g, i j, are any two distinct elements
of G, then there exists an x in R (P) such that

()u ’()u.
Let u be an idempotent of R (P) such that for all x in P(1)

()u ’()u.
Then, since z(x) x for some primitive e-th root of unity, we have
( )xu O. But ifij,’- isaunitofRsoxu O for all x in
P(). The elements of P() generate R (P), so u must therefore be 0.
Thus the elements of G are pairwise strongly distinct on R (P), proving

(b), Proposition 10, and Theorem 9.

Remark 11. Theorem 9 shows that

aal (R, G)/NGal (R, G) H (G, Pic (R))

when R, G satisfy the hypotheses of Theorem 1. Since group cohomology
and Harrison cohomology coincide in this case [CR], Theorem 9 shows that
Gal (R, G)/NGal (R, G) is isomorphic to the "primitive" elements of Pic
(R[G]), those classes (P) in Pic (R[G]) such that

Pic (1) (P) Pic () (P) Pic (A) (P)

where el, e, A’R[G] -- R[G] (R) R[G] are defined by R-linearity and
e () 1 (R) , e () (R) 1 and A () (R) , resp. This interpretation
of Theorem 9 was pointed out by W. C. Waterhouse, who has raised the open
question whether the assumptions on R can be relaxed.
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