INVARIANT MEANS ON LOCALLY COMPACT GROUPS'

BY
E. GRANIRER AND ANTHONY T. LauU?

Introduction

Let @ be locally compact group and LUC (G) be the space of real left uni-
formly econtinuous bounded functions on G with usual sup norm (sofe¢ LUC (G)
iff f is bounded and whenever a, — a, @, , o € G then

lim, sup: | f(aa t) — f(at)| = 0).

Iffe LUC(G), a, s e G define o (s) = f(as),f*(s) = f(sa),laf = fa,raf = f*.
Let R(f) = {raf;a€G}, £(f) = {l.f; a € G} be the right and left orbits of f and
denote by 7, the topology of uniform convergence on compacta on LUC (G).
Denote by Co A the convex hull of the set 4.

One of the purposes of the present paper is to give the following characteriza-
tion of locally compact amenable groups:

TaroreEM. If G is locally compact then LUC (G) admits a left invariant mean
(LIM) iff for any f e LUC(G) and any a € G the 7 closure of Co & (f — f.) con-
tains the zero function. This is the case iff for any f ¢ LUC (G) the 7, closure of
Co R (f) contains some constant function. In this case the set of all such constants
coincides with {o (f); ¢ a LIM on LUC(G)}.

It is interesting to note that for any topological semigroup the uniform closure
of Co £ (f — f.) contains 0 (Note that || (1/n) D1 las (f — fa) || £ @/n) || £1]).

In fact we prove much more than this theorem. We prove a theorem in ab-
stract setting which when applied to LUC (8) for any topological semigroup S
with only separately continuous multiplication yields both cases of the follow-
ing theorem and unifies their proof.

TureoreMm. Let S be a topological semigroup with separately continuous multi-
plication. Then LUC (S) admits a [mulitplicative] LIM if and only if [the =,
closure of ® (f — f.)] the 7. closure of Co R (f — f.) contains the 0 function for any
fe LUC(S) and a ¢ S. This holds if and only if [the 7. closure of R (f)] the .
closure of Co ®R(f), contains a constant function for any f ¢ LUC (S) and in this
case the set of all such constants coincides with {¢ (f); ¢ a [multiplicative] LIM on
LUC(8)}.

The amenable case of this theorem (i.e. LUC(S) admits a LIM ) for discrete
semigroups S, is due to T. Mitchell [11] while the extremely amenable case
(i.e. LUC(S) admits a multiplicative LIM ) for discrete S is due to Granirer

1 The authors are grateful to the referee for his promptness and his kindness in point-
ing out several minor errors in this paper.
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[4, p. 97]. The proofs given in [11] and [4] are entirely different and we find
some merit in the fact that we provide a unified proof for both. We also note
that our theorem yields something new even for locally compact groups G.
The topic of locally compact amenable groups arouse much recent interest and
we refer the interested reader to the recent works by F. Greenleaf [5], J. Gilbert
[2], H. Leptin [9] etc. and the bibliography given in these works.

In the last part of this paper we prove a theorem a particular case of which
implies that if S # {e} is any subsemigroup of any locally compact group G
then LUC (8) does not admit a multiplicative LIM. This result is proved for
subgroups S of locally compact abelian groups (and for several other cases)
in [4] p. 103 and has been improved by T. Mitchell (written communication)
to include all subsemigroups of locally compact abelian groups. The commu-
tativity is though heavily used in both proofs. This result is also known to
hold for all discrete right cancellation semigroups (see [4] and compare with

Mitchell [12]). The proof for this case makes though essential use of the
discreteness of S.

Some notations. Tet S be a topological semigroup m (S) [C (S)] the space
of all [continuous] bounded real functions on S with norm

I£1l = sup {|f(s) |55 €8}

Iffem(S),a,seSlet fu(s) = f(as),f*(s) =f(sa), laf = fo,raf = [, R({f) =
{raf;aeS}, £(f) = {laf;aeS}.

If X < m(S) is a linear subspace then X is snvariant if [, X < X and
r.X C XforallteS. X isintroverted if for any ¢ e X™ (the conjugate Banach
space of X) and any f e X, the function of s, ¢ (f;) belongs to X. In this case
X*, with the multiplication given by ¢ © o (f) = ¥ (k) where h(s) = ¢(f.)
becomes a Banach algebra. (This is readily checked; see for example Day
[1, p. 527] or [3, p. 103] or Namioka [14, p. 72].)

For a ¢ S let p, e m(S)™ be the point measure at a, i.e. p, f = f(a) for all
fem(S)*. Any element in Co {p,; a ¢ S} is said to be a finite mean (on
m(S)). ¢ eX™issaid to be a finite mean on X iff ¢ is the restriction to X of
some finite mean on m(S).

In all that follows X < m (S) will stand for a linear invariant subspace con-
taining 1. ¢eX™*isameanon Xifo(1) = 1and¢(f) > 0forfe X withf > 0.
The finite means on X are ¢ (X*, X) (i.e. w*) dense in the w* compact convex
set of meanson X. (This holds for X = m (S) as stated in Day [1, p. 513] and
readily follows from it.) ¢ e X™is a left invariant mean LIM on X iff ¢ is a
mean and ¢ (fa) = o (f) forallfe X andaeS. Ife = Y 1 aips, is a finite mean
onm(S) let

Tyl t M(S) = m(S)
be defined by 7, = D a;r,; and l, = D7 a:il,. It is clear that o (f,) =

(rof)(t) for all fe X and ¢t ¢ S. The restriction of r, to X is also denoted by
r¢ .
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A triple (S, X, Z) will always mean in what follows that S is a semigroup, X
is an invariant sntroverted linear subspace of m (S) with 1 ¢ X (hence X* is a
Banach algebra with respect to © ) and £ < X*isa o (X*, X) closed subsemi-
group of means (with respeet to © ) for which the set of finite means in 2 is
w*(.e. o (X* X)) dense in Z.

Main example. Let S be a semigroup with a topology in which multiplica-
tion is separately continuous. Let LUC(S) be the space of all f e C(S) for
which whenever s, — 8 84, se S thenlim, || f,, — fs|| =0. Then X = LUC(S)
is an invariant Banach subalgebra of m (S) with 1 ¢ X, which is in addition
introverted as easily seen (see Namioka [14, pp. 64, 68, 72]).

As Z we can take either all multiplicative means on LUC (S) or all means
on LUC(S). In both cases (S, X, 2) are triples as readily seen. In particu-
larif S is discrete then LUC(8) = m (S) so (8, m (S), 88) or (S, m(8), M (S))
where M (S) is the set of all means on m(S), are triples. BS is the Stone
Céch compactification of S.

Lemma 1. Let (S, X,Z) beatriple. Then there is some ¢ € Z which ts a LIM
on X of and only if (%) for any f ¢ X, a € S there is some u ¢ = such
that pll, (f — fa)] = 0 for all s € S.

Proof. Any LIM uon X satisfies (x). Conversely assume (x) and let
K(f,a) = {eeZ;0[L(f — fa)] = 0 forall sin S}.
We show that

X ={K(,a);feX,aeS}

has the finite intersection property. The fact that each K (f, a) and 2 are
o(X* X) compact will imply then that there is some ¢ in T such that
o(l.(f —fa)) =0forallt,aeS. p=¢OpeZ willbea LIM on X.

So assume that u € Nyer,aea K(f, a) = K(Y, A) forsubsets Y € X, 4 S
and let g e X, b e S.

Define ¢’ (8) = u(ls 9), pick ve K(¢’,b) and let A = vOueZ. We show that
Ne KY, A) N K(g,b). IffeY, ae A and s ¢ S are fixed then
v O plls(f — fa)] = v(h) where

h(t) = plle L(f — fo)] = pllee(f — fa)l = 0
since pe K(Y, A). Thus A\ e K(Y, A). Nowv O u(g — g») = »(h) where
h(t) = ullilg — b)) = ulg) — ulg) = ¢'€) — g ©).
Thus »(h) = 0 since » ¢ K(¢/, b) which finishes the proof.

We use in what follows the following notation: If = < X™*is a set of means
then Fx < m (S)™ will denote the set of all finite means on m (S) whose restric-
tions to X belong to =. Forany ¥ < m(S), p cl Y will denote the pointwise
closure of Y in m(8).
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TreoreEMm 1. Let (S, X, 2) be a triple.

(a) Ifeisa LIM on X and ¢, 18 a net of finite means such that oo (f) — ¢ (f)
for all fin X then (rp, f) () = o (f) for alltin S. Thusr,,(f — fa) ) — 0 for
alla,teS, feX.

(b) IfforallfeX,ae8S,pecl{r,(f — f.); e Fs} contains the zero function
then there exists ¢ € = which s a LIM on X.

(c) If there is some ¢ € Z which is a LIM on X then for any f € X,

{e(f);eeZ,¢a LIM on X} = {c;clepcl {r,(f), ¢ e F5}}.

Proof. (2) (e, f(t) = @a(l:f) = o if) = o(f) forall te S.

(b) LetfeX, aeS be fixed and choose ¢, ¢ Fs such that o,[l: (f — f.)] =
To(f — fa) (#) = 0. Let o e be ao(X™, X) limit of a subnet of the restric-
tion of the ¢,’s to X. Then ¢[l.(f — f,)] = OforallteS. By lemma 1 there
is some ¢y € £ which is a LIM on X.

(¢) If ¢(f) = c then by (a), cl e p ¢l {ro f; ¢ € Fs}. Conversely let
@a € Pz satisfy oo (1.f) = (rpo f) () = cforallteS. IfpeZisac(X™ X) limit
point of a subnet of ¢, then ¢ (I, f) = cforallteS. If pe2is a LIM then
b O o(f) = el fl =cand p © ¢ eZisa LIM on X (see Day [1, p.529])
since u © ¢(g) = w(h) where h(t) = ¢(l: g) and p © ¢(ga) = u(h’) where
K@) =¢ellag) = ¢(ag) = ha(t). Thus u(h) = p(h').

Remarks. 1. Take X = m(8), 2 the set of all means of m (S). Theorem 1
implies Theorem 3 and Theorem 4 (a) and (b) of Mitchell [11, p. 253].

2. Take X = m(S), Z = 88 all multiplicative means. Theorem 1 implies
Theorem 1 of Granirer [4, p. 97].

The following lemma seems to be of independent interest.
Let X < m (S) be an invariant linear subspace with 1 ¢ X. Asusualpecl 4
denotes the pointwise closure @n m (S) of A € m(S).

Lemma 2. X s introverted if and only if for any f e X, p el Co ®(f) € X

Proof. Assume that X is introverted. Any g ¢ Co & (f) can be written as
g = r, f for some finite mean ¢ ¢ m (S)*. Assume that (r,, f)(t) — fo(t) for
all t ¢ S where ¢, are finite means in m (S)*. Then a subnet g3 of the ¢,’s will
converge w* in m (S)* to some mean ¢ e m(S)*. Thus (rog ) @) = o(fe) —
o (fe) for all ¢ € S; thus fo(!) = ¢(f:) and since X is introverted, fo ¢ X, i.e.
pel Co R(f) C X.

Conversely assume that p ¢l Co ®(f) € X for all f ¢ X. Let ¢ e m(S)™
be a mean and ¢, e m (S)* be a net of finite means such that ¢, (k) — ¢ (h) for
all ke m(S). Now (r,, f)(t) = ea(ft) = ¢(fi) s0p(fi) epcl Co R(f) € X
for any mean ¢ on m (S) and any f e X. If ¢ ¢ X* is arbitrary let oo € m (S)*
be an extension of ¢. Then ¢y = ap; — B2 for some a, 8 > 0 and means

3 Here as well as in Lemma 1, X need only be Z-introverted that is; ¢(f:) ¢ X for all
¢eZ and all fe=.
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e1,0:inm (S)*. 1If f e X then since o; (f:) e X it follows that ¢ (f.) = ¢o(f:) € X
for all ¢ X* and f ¢ X so X is introverted.

Remark. The closed invariant subalgebra X < m (S) with 1 ¢ X is said to
to be m-introverted if ¢ (f,) ¢ X for any multiplicative ¢ ¢ X* and any f e X.
This concept is due to T. Mitchell [13, p. 121] and has applications to fixed
point theorems [13]. For any multiplicative 0 5 ¢ ¢ X™* there is a net of point
measures p,, such that p,, f = f(s.) = ¢ (f) forall fe X. Thisremark together
with a trivial adaptation of the above proof yields the following proposition
(not needed in the sequel) which is of independent interest:

ProrosiTioN. The closed invariant subalgebra X < m(S) with 1 ¢ X s m-
introverted if and only if p el R(f) < X for all f ¢ X.

Let now S be a semigroup with a topology in which multiplication is sepa-
rately continuous.

LEmMA 3. Forany fe LUC(S), pel Co®(f) € LUC(S) and p ¢l Co R (f)
coincides with the 7, closure tn LUC (S) of Co ®(f). Furthermore 7, coincides
with the pointwise topology on p cl Co & (f).

Proof. Letfe LUC(S) c C(8). Then Co ®(f) is an equicontinuous set of
functions. Since if a ¢ S there is some nieghborhood V, of a such that
I fs — fall < €ifv e V,, hence

| N @) — @f)@)] = [F0t) — flat)| < e
forallteSandveV,. Ifa; >0, 2 1 ai=1,teS then
| 228 aiCre /) @) — 228 ai(res £) (@) |
< maxi<i<n | G f)@) — (i f(@)] < e ifveV,.

By Kelley [8, p. 232, Theorems 14, 15], p ¢l Co ® (f) is equicontinuous and =,
coincides with the pointwise topology on thisset. ThatpclCo®(f) < LUC(S)
follows from the previous lemma. If now f, e Co ® (f) and f, — f pointwise
then f, — fin 7, hence p ¢l Co ® (f) coincides with the 7. closure in LUC (S)
of Co &(f). r.cl A will denote the 7, closure of A < LUC(S) in LUC(S).

TuEOREM 2. Let S be a topological semigroup.

(1) IfLUC(S) has a [multiplicative] LIM ¢ and ¢, e m(S)* are finite means
such that oo (f) — ¢ (f) for all f e LUC(S) then r,, f — o (f)1 in 7..

@) Ifforanyfe LUCS)andaeS,pecl CoR(f — fo) [p el R(f — fa)l
contains the O function then LUC (S) admits a [multiplicative] LIM. In this
case 7. cl Co R (f) [r. el R (f)] contains some constant function for any f e LUC (S)
and (for fixed f e LUC (S)) the set of all such constants coincides with

{o(f); ¢ a [multiplicative] LIM on LUC (S)}.

Remarks. (a) We note that by Lemma 3, p ¢l Co & (f) or p el ®(f) coin-
cides with 7, ¢l Co R (f), 7. cl. ®R (f) resp. for any f ¢ LUC(S).
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(b) (1) clearly implies that 7. el Co R (f — fo) [r. ¢l R(f — fa)] contains
the 0 constant function for all f ¢ LUC(S) and a € S.

Proof. Combine the example preceding Lemma 1 with Theorem 1 and
Lemma 3. Note that if ¢ ¢ LUC (S)* is multiplicative LIM we can take in
(1) point measures, ¢, = P, , and then 75, f — ¢ (f) in 7.

For locally compact groups G a stronger statement is true, namely:

ProposirioN. Let G be a locally compact group, UC (G) the bounded real
left and right uniformly continuous functions on G. If p ¢l Co R (f — f,) con-
tains the zero function for each a € G and f e UC (G) then LUC(G) admits a LIM.

Proof. Letfe UC(R), a ¢ G be fixed and ¢, a net of finite means in m (G)*
such that r,, (f — fo) @) = @a (l: (f — fa)) — Oforalltin G. By possibly passing
to subnets we can assume that ¢, (h) — ¢ (k) for all & e m (G) to some mean ¢ on
m(G@). Thus[l:(f — fo)] = Oforalltin G. Hence for any a ¢ G, f ¢ UC(G)
there is a mean ¢ on UC(G) such that ¢ (I:(f — fa)) = Oforall{e G. Let
now E be a compact symmetric neighborhood of the identity (E = E~) and
fe LUC(@), aeGbefixed. Leteogbe the normalized characteristic function of
E. Thenf x¢re UC(G)[5, Leroma 2.1.2]and (f — fo) * oz =f * oz — la (f *¢z)

(see Hewitt-Ross, Abstract harmonic analysis, Springer, 1963, p. 292). Hence
there is a mean m on UC (G)such that m (l,[f * oz — la (f * ¢=)]) = O for all
s € G. Define now the mean m’ on LUC(G)bym'(h) = m(h * ¢z). Then

m'[l(f — fo)] = m[(L(f — fa)) * @zl = mLI(f — fa) * 0s])
=mlrer — L(f*xex))] =0
for all s in G. Lemma 1 now implies that LUC (@) admits a LIM.

Our purpose in what follows is to show that the only subsemigroups S of a
locally compact group G for which LUC (S) admits a LIM ¢ which belongs to
Co (M) where M is the set of all multiplicative ¢ ¢ LUC(S)* are the finite
subgroups of G. We prove this result in a sequence of lemmas.

Lemma 4. Let G be a locally compact group. If LUC(Q) admiis a multi-
plicative LIM then G = consists of tdentity e only.

Proof. Assume that G = {e} and that LUC(G) admits a multiplicative
LIM. LetV # {e} be an open symmetric neighborhood of e with compact
closure. Let it e V,# #= e. @ is completely regular so there exists f ¢ C(@),
0< f<1lsuchthatf(e) = Lf({thu{G—V})=0(@G—V = {geG;9¢V}).
f has compact support (included in V) and by Theorem 28B in [10, p. 109], f
is left (and right) uniformly continuous. Applying Zorn’s lemma one easily
selects a family {15, 8 ¢ I} of elements of G’ maximal with respect to the property
Vien Vig = 0if o # 8. Let g(t) = sups f(tfz'). ¢(t) restricted to Vis
coincides with 7,;* f and it is readily checked that g ¢« LUC(G), g () = 1 and
g(ots) = O for all 3. By Theorem 2 there is a net r,, and a real ¢, for which
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e, ¢ — cl uniformly on compacta. Hence for some oy, Ig(ts,,o) - c[ <4
for all ¢ ¢ V2. By the maximality of {5}, Vse, n Vig, 7 O for some 8. Thus
ts, € Vsqo and Vig, C V®s,,. Hence tg, = 01 84, and fo tg, = vz 84, for some
v1,0¢ V. Thusg(®ise,) = 1,9 sq) = 0, sol 1—c| <%and [ c l < %
which cannot be. Hence G = {e}.

Remark. If H C G then 1z e m (@) is the function which is one on H and
zero outside H.

LEmMMA 5. Let G be any topological group and assume that LUC (G) admits a
LIM g of type o = D1 i i whereQ = o; e LUC(G)* are multiplicative, a; > 0,
foralll <i<n D tai=1,andg; #= ¢;if i % j. Then thereis some open and
closed normal subgroup N C G such that G/N s a finite group and LUC (N)
admits a muliiplicative LIM .

Proof. Asknown, if ¢, + -+, & e LUC(G)* are nonzero multiplicative and
¥ # ¢;if © 5 j then {¢n, - -+, ¢u} is linearly independent. In fact if M is the
set of all multiplicative nonzero elements of LUC (G)* with the w™ topology
then the map F : LUC(G) — C (M) defined by (Ff)e = ¢(f) is an isometry
and algebraic isomorphism of LUC (G) onto C(M). M is compact hausdorff
then 1, -- -, ¥x become different point measures on C (M) which as readily
seen are linearly independent on C () and hence on LUC(G).

IfL, = lf,", a € G then >:{‘ a; Lgo; = Z{‘ a;¢i = ¢. Lgis one to one and
L oi e M. The linear independence implies that

{Lag1, **+, Laga} = {e1, "+, 0a}
for all,a ¢ G. Denote by L, the restriction of L, to {¢1, -+, ¢x}. Then
a — L, is a homomorphism of @ onto a subgroup G’ of the finite group of all
one to one maps of {¢1, - -, ¢} into itself. If

N ={aeG;Logi = 0i, 1 <3< n}

then G/N is finite, as being (algebraically ) isomorphic to .

Now N is closed since a — L, ¢ (f) is continuous for all f ¢ LUC (G) and
e e LUC(G)*. I ay, -+, & € G are different representatives of G/N with
a1 = e the identity then @ = U¥a; N, aiNna; N = §if ¢ # j, and Uj a; N is
closed. Thus N is open too. Now 1y e LUC(G). Sinceif a, e G and a, — ¢
thenif @« > ap, 0, ¢ N, forsome ap. Thenl,, 1y = lyifa > a.

Denote now a;° = b;, 1 < ¢ < k. Then

1=9() = 21 Le(n) = Dier D2 im1 @i 0i(ls; 1n).

Hence Ly; ¢i(1x) = ¢i(l; 1v) > 0 for some 2, j and Ls; i € {1, -, ¢a}.
Hence ¢ (1x) > 0 for some 1 < m < n and so ¢n(ly) = 1 since ¢, is multi-
plicative. Moreover, L,¢; = piforalll < ¢ < m,aeN, and 80 L, o = ¢n for
alla ¢ N.

Iffe LUC(N) let # (f) e LUC (G) be defined by nf(a) = f(a) for a ¢ N and
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mf(a) = 0if @« ¢ N. That nf ¢ LUC(G) is readily checked: If g4 — ¢, go € G
then g, ¢ N, if @ > aofor some op. Butforany aeN and fe LUC(N) lo(xf) =
x(laf) (where I is the restriction of I, to LUC (N)). Since lim, || 1), f — f|| = 0
it follows that

limg || b, of — af || = limg || 7 (G, f — £) || = lima |G, f — f1| = 0.

We show now that = ¢n ¢ LUC (N)* is a multiplicative LIM on LUC (N).
7" ¢m is multiplicative since ¢n is so and = (f1 f2) = =fy nfafor fi, fo e LUC(N).
If a € N then

(¥on) (0 f) = en@@laf) = on(la(xf)) = on(®f) = (*ou)f,
which finishes this proof.

CoroLrLARY 1. If G s locally compact and LUC (G) admits a LIM ¢ of type
@ = 2.7 a; i where p; € LUC(G)* are multiplicative, a; > 0, 1 < 7 < n,
@i # G5 # jand D1 a; = 1, then G is a finite group of order n.

Proof. By Lemma 5, G contains an open and closed normal subgroup N for
which G/N is finite and LUC (N ) admits a multiplicative LIM. By Lemma 4,
N = {e} so Gisfinite. But as known and easily shown the unique LIM ¢ on a
finite group @ is given by

V(f) = (1/k) 221 f(g:) where G = {g, -+, gi}.
Thus ¢ = ¢ = D1 aipiso k = n.

TurorEM 3. Let S be a subsemigroup of the locally compact group G and as-
sume that LUC (S) admits a LIM ¢ of type ¢ = D1 a; @i where ¢; e LUC (S)*
are multiplicative, o; # ¢;if 1 # j,as > 0for 1 < i <mand Y7 a;i = 1. Then
S 18 a finite subgroup of G of order n.

Proof. Let Gy be the group generated by S and G, be its closure in G. Let
A be the algebra of all restrictions to S of functions in LUC(G,). De-
fine ¢o ¢ LUC(Go)* by oo(f) = o(Pf) where Pf ¢ A is the restriction,
(Pf)(s) = f(s)if seS. Denote by lg [la] the left translation operator by a in
LUC(Gy) [A]l. Then I, Pf = P(ly f) for any s ¢ S and f ¢ LUC(Go).
If s € S then ¢o(ls ) = o (PL f) = 0L (Pf)) = o (f) and o(l0-1 f) = oo
LDW-1¢) = Jo (f) forany f e LUC’(Go) Since any a € Gy is a product of ele-
ments of s and s it follows that oo (Io f) = o (f) for all a € Go and f e LUC (Gy).
It is clear that ¢o e LUC (Go)* (since ¢pis a mean). Now for fixed f e LUC (Go),
the function ¢o (l, f) is continuous on Gy and equals the constant ¢o(f) on the
dense set Go of Go. Hence g is a LIM on LUC(Go). But o = P*
3% ai P*piand P*p; e LUC (G,) are multiplicative. Assemble now the equal
P*o/s and write @0 = ¢ B; ¥; with different multiplicative ¢;’s. The pre-
vious corollary implies now that Gy is a finite group of order k. Thus S = G,
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and LUC(S) = LUC(G,). Sinceo = D 1 aipi, with all a; > 0 and different
multiplicative ¢; # 0 it will follow that S is a group of order n.*
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4 The need for the algebra A here arises from the following remark of T. Mitchell
(written communication). Let S be the additive semigroup {z; 0 < z < =} with the
usual topology. Then the function sin 1/z belongs to LUC(S) but is not the restric-
tion to 8 of any uniformly continuous function on G (the additive reals with usual top-
ology) to 8. Thanks are due to T. Mitchell for sending us this interesting remark.
Our original proof contained a minor mistake at this point.



