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1. Introduction

Let G be an belian lttice-ordered group (/-group). We investigate the
ring P (G) generated by the semiring P+ (G) of all group endomorphisms a of
G such that for x, y e G

x/ky 0 implies x/kya O.

P (G) is u po subring of the ring B (G) of 11 order-bounded endomorphisms of
G with P+ (G) as its positive cone. If A is any ring of/-endomorphisms of G
that contains the identity automorphism I, then A

___
P (G). Thus P (G)

is the largest such ring. We show (Theorem 3.4) that the class

{P (G) G is an archimedeun/-group}

is identical with the class of archimedean f-rings with identity. This allows
us to derive many useful properties of P+ (G).

For an archimedean/-group G, the lurgest f-ring of B (G) that contuins the
identity is P (G). Let G be an urchimedean/-group with a weuk order unit e.
Then there is at most one multiplication on G so that G is anf-ring with identity
e, and such a multiplicution exists if and only if lea a P+ (G)I G+.
The elements in P+ (G) preserve minimal prime subgroups. In Section 6 we

investigate those group endomorphisms of G which preserve all the prime sub-
groups. In Section 7 we upply our theory to solve a problem posed by G.
Birkhoff.

Notation and terminology. If G is an/-group, then we denote its positive
cone by G+ {g e G g ->_ 0}. An l-subgroup of G is a subgroup K whichis
also sublattice. If, in addition, 0 x /c e K implies x e K, then we suy that
K is a convex 1-subgroup. An 1-ideal is u normal convex/-subgroup. A prime
subgroup is a convex/-subgroup M such that x/ y e M implies x e M or y e M.
Various other characterizations of prime subgroups are given in [4] and [9].
An 1-endomorphism of G is a group endomorphism that also preserves the lattice
operations. Thus an endomorphism a of G is an/-endomorphism if and only
if x/ y 0 implies xa/ ya 0 [7].

If X is a subset of G, then

is called he polar of X. X’ is convex/-subgroup of G and he set p (G) of
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all polars of G forms u complete Boolean algebra [11]. Note that P+(G)
consists of those group endomorphisms of G that preserve ech polar.

2. Polar preserving endomorphisms of a lattice-ordered group
Let G be a lattice-ordered group (/-group). Then a polar preserving endo-

morphism or p-endomorphism of G is a group endomorphism a of G such that
for all x, y e G

x/y 0 implies x/ya 0.

Note that a is an/-endomorphism and hence G+a G+. For if x/ y 0,
then x/ ya 0 and hence xa/ ya O.

In the first part of this section we give several characterizations of p-
endomorphisms. Then we show that the semiring of all p-endomorphisms of
an abelian/-group G is the unique maximal subsemiring of the ring of group
endomorphisms of G which contains the identity automorphism I and which
consists of lattice endomorphisms. Finally we investigate this semiring in the
case where G is a subdirect sum of subgroups of the reals.

2.1 PROPOSITION. Let a be a group endomorphism of the 1-group G. Then
the following are equivalent.

(a) a is a p-endomorphism.
(b) G+a G+ and Ma

_
M for each minimal prime subgroup M of G.

(c) G+a G+ and Pa P for each polar P of G.
(d) G+a

_
G+ and x’

_
(xa)’ for each x e G+.

Moreover if G is abelian, then (a) is equivalent to
(e ) G+a

_
G+ and a - I is an l-endomorphism.

Proof. (a) implies (b). If0 < xeM, then there is a y c M such that
x/ y 0 (see [6] or [9]). But then xa/ y 0, so that xa e M since y M
and M is prime. It follows that Ma

_
M.

(b) implies (c). This follows from the fact that a polar of G is the inter-
section of minimal prime subgroups of G [4].

(c) implies (d). Let y e x’ be positive. Then x/ y 0 and so x
Thus xa e y’a

_
y’. But xa >_ 0, so that xa / y 0. Hence y e (xa)’,

and it follows that x’ (xa)’.
(d) implies (a). Ifx/y 0, thenyex’ (xa)’andxaeG+. Thus

xa/ y 0 and hence a is a p-endomorphism.
Finally suppose that G is abelian and let a be a p-endomorphism of G. Then

x/ y 0impliesxa/ y Oandhence (xa W x) / y 0. Therefore
a -t- I is a p-endomorphism and hence an/-endomorphism. Conversely if
a W I is an/-endomorphism and G+a

_
G+ and x/ y 0, then

0 x(a+I) /kY(a+I) (xa-l-x) / (ya-l-y) >_ xa/y>_ O.

Thus 0 xa/k y and so a is a p-endomorphism.
We now characterize p-endomorphisms in the case where G is a subdirect
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sum of totally ordered groups (o-groups). In particular, this characterization
holds for abelian/-groups. Recall that an/-group is representable if there is an
/-isomorphism o- of G into a cardinal sum rGx of a family {Gx k e I} of o-
groups. In general, the intersection of all minimal prime subgroups of G is
zero, and Byrd has shown that G is representable if and only if each minimal
prime subgroup is normal [3].

2.2 PROPOSITION. Let G be a representable l-group and let a be a group
endomorphism of G such that G+a G+. Then the following are equivalent.

(a) a is a p-endomorphism.
(b) There is a set 9t of normal prime subgroups of G such that 9l 0 and

Na

_
N for each N 9t.

Proof. (a) implies (b). Let be the set of all minimal prime subgroups
of G.

(b) implies (a). Since Na N, a induces an o-endomorphism on the o-
group G/N and so it induces an o-endomorphism of {G/N N }. Let o-

be the natural map of G into G/N"

go" (...,g + N, ...).

Then it is clear that o-a aa and for x . rG/N we have that the support of
xa is contained in the support of x (since Na

_
N for each N e ). Thus

a is a p-endomorphism of G/N and so a is a p-endomorphism of G.
Let G be an abelian/-group and let E (G) denote the endomorphism ring of

G. We make E (G) into a po ring by setting

E (G)+ {a e E (G) G+a
_

G+}.
Elements of E (G)+ are called o-endomorphisms of G. In general E (G) is not
directed under this partial order and so we define B (G) E (G)+ E (G+).
Then B (G), the ring of order bounded endomorphisms of G, is a po ring with
positive cone B (G)+ E (G)+.

2.3. If G is an abelian 1-group, then the set P+ (G) of all p-endomorphisms of
G is a subsemiring of E (G)+ and

P(G) {a a, P+(G)l
is a po subring of B (G) with positive cone

P (G) n E (G)+ P+ (G).

Proof. Consider a, / P+(G) and suppose that x / y 0. Then
xa/ y 0 and hence xaf/ y 0, so that af P+ (G). Also xf/ y 0
and hence (xa -t- xf)/ y 0 so that a - f e P+ (G). Thus P+ (G) is a sub-
semiring of E (G)+ and so P (G) is a po subring of B (G).

Clearly P (G) n E (G)+
_

P+ (G). Consider a f e, P (G) n E (G)+ and
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xeG+. Thenxa>_xa-x= x(a-) >_0andsoifx/y =0, then

0 xaAy >_ x(a- ) Ay >_ O.

Therefore a e P+ (G).
Now let S be a subsemiring of E (G)+ and let {a f a, f e S} be the

subring of B (G) that is generated by S. If each element of S is an/-endo-
morphism, we say that is a ring of l-endomorphisms of G.

2.4 THEOREM. Let be a ring of l-endomorphisms of an abelian 1-group G
which satisfies (.) for each 0 < g e G there is a such that g >_ g. Then
S

_
P+ (G) and hence P (G).

Proof. LetaeSandletx, yeGbesuchthatx/ y 0. Now choose
e such that xf >_ x and write f fl f2 where fh, & S. Then f &
e S so that/ - 2 -t- a e S. But then

>_x/ya>_ x/ya>_O.

Thus x/ ya 0, so that a e P+ (G). The result now follows.

2.5 COROLLARY. If is a ring of 1-endomorphisms of an abelian 1-group G,
which contains I, S P+ (G ).

Remarks. (i) The proof of 2.4 actually shows that if S is an additive sub-
semigroup of /-endomorphisms of G, where G is an abelian /-group, and if
I eS, then S P+(G).
The examples referred to in the next three remarks can be found in 8.
(ii) A ring of/-endomorphisms of an abelian/-group G need not be con-

tained in P (G) (Example 1).
(iii) If is a ring of /-endomorphisms of an abelian /-group G and if

I e , then I need not belong to S (Example 4).
(iv) If is a ring of /-endomorphisms of an abelian /-group G and if

I e , then ()+ need not be contained in S (Example 4).

We now identify the ring P (G) in case G is a subdirect sum of subgroups of
the reals. First recall that if G is an o-group, then the set of convex subgroups
of G is totally ordered. Moreover, if G has a largest convex subgroup M, then
M is normal and G/M is o-isomorphic to a subgroup of the reals R [7]. Now
let v be an o-endomorphism of G, and let x e M with x > 0 be such that xr M.
Then since G is an o-group and x M, we have that xr >_ nx for all n >_ 0.
Thus x >_ nxr for all n >_ 0, so that x W M >_ n (x -t- M) for all n >_ 0.
This contradicts the fact that G/M is archimedean and hence xr e M, so that
Mr

___
M. Thus we have shown the following.
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2.6. Let G be an o-group with a largest convex subgroup M. Then for each
o-endomorphism of G, M M.

2.7. LEMMA. Let G be a representable l-group, let a P+ (G), and suppose that
M is a maximal convex l-subgroup of G. Then Ma

_
M.

Proof. Since M is a maximal convex/-subgroup of G, M is prime. Let P
be a minimal prime convex/-subgroup contained in M [4]. Then G/P is an
o-group and M/P is the largest convex subgroup of G/P. Now by 2.1,
Pa

_
P so that a induces an o-endomorphism 6 defined by (x -{- P)6 xa P

of G/P. But by 2.6, (M/P )6 M/P, so that Ma M.

Remark. Recall (2.1) that p-endomorphisms leave invariant all minimal
prime subgroups. Moreover, by 2.7, p-endomorphisms leave invariant maxi-
mal convex /-subgroups in representable /-groups. However, even in an
archimedean/-group a prime subgroup need not be left invariant by a p-endo-
morphism (See Example 9 of 8). In Section 6 we examine those o-endo-
morphisms which leave fixed all the prime subgroups of G.

Now suppose that G is an/-group which is a subdirect sum rs{Rx e I} of
a family {Rx’h e F} of subgroups of the reals. Then rs{Rx" e F} is an
/-subgroup of the/-group Rr of all functions from F into R where addition and
the partial order are defined pointwise. Moreover, pointwise multiplication
on Rr makes the/-group Rr into a lattice-ordered ring (/-ring) which is an
f-ring. We are now ready to prove

2.8 THEORn. Let G be an 1-group which is a subdirect sum rIRx" }
of afamily {R, r} of subgroups of the reals R and let a be an o-endomorphism
of G. Then

(i) a P+ (G) if and only if Ma Mfor all maximal 1-ideals of G;
(ii) if a P+ (G), then there is a unique extension of a to a p-endomorphism

6 of Rr; and
Rr G} of Rr.(iii) P (G) is isomorphic to the subring If e fg e G for all g e

Proof. Let (G) denote the set of maximal/-ideals of G. Then since G
is subdirect sum of subgroups of the reals, we have that a !l(G) 0.
Thus if Ma M for all M e !gt (G), then a e P+ (G) by 2.2. The converse im-
plication in (i) is immediate from 2.7.
To see (ii) let x e G and let x denote the value of x, considered as function

onF, ater. LetG {xeG’xx 0}. ThenGxD(G) and hence by
(i), Gx a Gx. Thus a induces an o-endomorphism a on G/Gx. Since
G/Gx is a subgroup of the reals R, there is a real number ax such that

(g + Gx)a* ax (g -t- Gx).

It follows that there is a unique extension of a to 6 Rr -o Rr. 5oreover, it
is now clear how to prove (iii).

An f-ring is an/-ring in which a/ b 0 and c >_ 0 imply ca /k b ac/k b O.
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Remark. In the next section we extend the above result to show that
P (G) is an archimedean f-ring whenever G is an archimedian/-group.

2.9 COROLLARY. Let X be a topological space and let C(X) denote the 1-
group of continuous real-valued functions on X. Then P(C(X)) is isomorphic
to C(X).

To close this section we remark that almost all the results in the sequel
are valid only for archimedean/-groups. Consequently, we shall restrict our
attention to the class of archimedean/-groups. The final result of this sec-
tion shows that our results will apply to archimedean vector lattices.

2.10 PROPOSITIOlXL Suppose that G is a vector lattice. Then
(i) each l-ideal of the l-group G is a subspace and
(ii) If a" G --. G is an o-endomorphism of the l-group G, then a is linear

provided that G is archimedean.

Proof. (i) Let C be an/-ideal of G, let c e C, and let r e R+. Then there is a
positive integer n > r such that 0 rc+ < nc+e C and 0

_
rc- < nc-e C.

Thus since C is convex, both rc+ and rc- are in C. Hence rc rc+ rc- e C.
(ii) For g e G and/c a rational number, we have that (kg)a k (ga) for

any o-endomorphism a of the /-group G. Now suppose that g e G+ and
r e R is strictly positive. Then for rationals rl and r. such that 0 < rl

_
r

_
r2,

we have, since a is an o-endomorphism, that 0

_
rl (ga) (r g )a

_
(rg )a

_
(r2 g )a r (ga ). Moreover, we have that r (ga <_ r (ga <_ r (ga ). Thus

(rg )a r (ga

_
r (ga rl (ga (r r (ga

and
r (ga) (rg)a

_
r. (ga) r (ga) (r r) (ga),

so that (rg )a r (ga (r r (ga ). It follows that

for 11 positive mtionMs s. Thus since G is rchimedeun, (rg)a r (ga) 0
and so (rg )a r (ga ).

Remark,. Example 10 of 8 shows that (ii) of 2.10 need not hold in the
non-archimedean case.

3. p-endomorphisms of archimedean/-groups
The main result of this section provides a generalization of 2.8 in case the

/-group G is archimedeaa but not necessarily a subdirect sum of subgroups of
the reals. Our techniques require a functional representation of the archime-
dean/-group. We use Bernau’s representation [1] of an archimedean/-group
as an/-subgroup of a vector lattice D (X) of almost finite continuous functions
on a Stone space X. We now collect the pertinent facts about this representa-
tion.
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Let G be an archimedean/-group, and let ( (G) denote the set of polars of
G. Then ((G) is a complete Boolean algebra [11], and so the associated
Stone space X is extremely disconnected, Hausdorff and compact. Let
D (X) be the collection of almost finite continuous functions from X into
R u +/- (i.e., D (X) {f X -- R u =i= f is continuous and {x X
f(x) e R is dense }). Then D (X) is a complete vector lattice and Bernau
established the following result.

THEOREM. Let G be an archimedean 1.group. Then there is an l-isomorphism
of G in D (X) (where X is the Stone space of the complete boolean algebra of

polars of G) which preserves all existing infima and suprema and such tha if
d D (X) is srictly positive, then here is a g G and an integer n such ha
0 < g < n d. Moreover, if {ex :), e r} is a maximal disjoin subset of G+,
then can be chosen so that each ex is the characteristic ]unction of a subset Xx
of X where the family /Xx e r} is a collection of compac open subsets of X
whose union is dense in X.
Now let G be an archimedean/-group and let {ex" }, e rl be maximal dis-

joint subset of G. Let be an/-isomorphism of G into D (X)with the prop-
erties of Bernau’s Theorem. We shall identify G with Ga. Thus G is an l-
subgroup of D (X) and all infima and suprema in G agree with those in D (X).
For each xeX, let G {geG’g(x) 0}. Then for each beg with

h (x) > 0 and real, we have that G is a/-ideal maximal with respect to not
containing h. Then if G is the intersection of all/-ideals of G that properly
contain G, then h e G\ G and G/G is (isomorphic to) a subgroup of the
reals R. Conversely, if g G\G, then g (x) is real. We are now ready to
prove

3.1 LEMMA. Le a be a p-endomorphism of G, le e e F} a maximal
disjoint subset of G+, let Xx be the compact open subset of X associated with ex
and let x X Then e a (x ) - if either G G or G G

Proof. First suppose that Ga G. Then there is strictly positive
G G. (x) 1, we have that ex e G\G and henceg such that ga Since e

there is an n > 0 such that G - g < G nex since G/G is archimedean.
Since G is a prime/-ideal, there is a minimal prime/-ideal N contained in G.
Thus, by 2.1, Na N so that a induces an o-endomorphisms on the o-group
G/N. If N - g >_ N - ne, then G W g >_ G - nex. Hence
N g < N - ne. ThusN
G + n(exa). Then G < G + ga

_
G - n(exa), so thatn(exa)G

and hence ex a G. Thus ex a (x) is not real, so that
Now suppose that G a G. Then there is a strictly positive g e G such

that ga G. Thus for all positive integers n we have that G
G < G - ex. Hence N - ng < N - ex where N is a minimal prime/-ideal
contained in G. Thus N -t- n (ga) _< N -t- e a, and hence G < G, -t- n (ga)
<_ G - exa. But G/G is archimedean so that exa G and thus
ex a(x)
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3.2 THEOREM. Let G be an archimedean l-group, and let {ex:h e F} be a
maximal disjoint subset of G. Consider G as a 1-subgroup ofD (X as in Bernau’s
Theorem. Then each p-endomorphism of G is a multiplication of G by an element
in D(X)+; and conversely if deD(X)+ and Gd G, then the map g gd
(g G) is a p-endomorphism of G.

Proof. For each g e G, the closure S (g) of the set x e X" g (x) 0} is the
support of g. Now let be a p-endomorphism of G and let ), e F. Then by
2.1,

)p, e
p,

e a e (e a c g e G S (g

_
S (e X,}.

Thus ex a is zero outside of X and is finite on a dense open subset of X.
Thus by 3.1 the set Dx {x e X G*a

_
G and G, a G,} is dense and

open. Now for each x e Dx, a induces an o-endomorphism on G*/G,. But
G/G, is a subgroup of R and hence there is a real number a, > 0 such that if
g e G and g (x) is real, then g (x) g (x). Moreover, e a (x) a(R) so
that map x --. a, is a continuous real-valued function defined on Dx. But this
holds for each e F, and hence it follows that there is a continuous real-valued
function x --. a, defined on a dense open subset of X such that x e D,
(ga) (x) g (x)a if g (x) is real. But then the map x -o a, has a unique
extension to an element of D (X)+, say a; and it follows that ga ga where ga
denotes the f-ring multiplication in D (X).

Finally, the converse is clear since D (X) is an f-ring.

We remark that a routine computation shows that the map P (G) such that
a -* a e D (X) is an/-isomorphism of/-rings. Hence we have

3.3. COROLLARY. For archimedean 1-groups G and the associated Bernau
representation in D (X) we have that P (G) is an f-ring with identity and

P(G) [deD(X)’Gd

_
G}.

Now let F be an archimedean f-ring with identity 1. Then by Bernau [1],
F is a subring of D (X) (1 is the identity of D (X)) where X is the Stone space
associated with/-group (F, -t- ). Moreover, P (F) {d D (X) F d

_
F}

and since 1 F it follows that P (F) F. This together with 3.3 proves

3.4 THEOREM. The class {P (G) G is an archimedean l-group} is identical
with the class of archimedean f-rings with identity.

We now turn our attention to some consequences of 3.2. We shall, of
course, assume that G is an archimedean/-group.

3.5. (i) For , B P+ (G) and g G+, g (a k/ ) ga / g and
g(a A ) ga A g.

(ii) For a, P+(G) and g G+\{O}, ga Oil and only if ga /k g 0;
and hence a 0 if and only if a/k O.

(iii) For a e P+ (G) and x G\{0}, xa’* 0 if and only if xa 0; and hence
a 0 implies a O.
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3.6. If a P+ (G) and a is onto, then a is one-to-one and a
-1 P+ (G).

Proof. Let y e G be non-zero. Then since a is onto, there is an x e G such
that xa y O. But then by 3.5 (iii) 0 xa ya so thut a is one-to-one.
The rest is routine.

3.7. If a P+ (G), then the subgroup of G generated by Ker (a) and Ga
is the cardinal sum Ker (a) @ Ga and it is an l-subgroup of G. In particular,
if a a, then G Ker (a Ga.

Proof. First we show that the sum of an/-ideul B and an/-subgroup C of G
is n /-subgroup of G. To this end let x b - c e B C. Then
B-t-x B-Pcandso

B- (x / O (B- x) / B (B - c) / B (B - c) / B B-P c / O

since B is an/-ideal of G. Thus x /0 b’ + c k/0 for some b e B. Thus
x /0 e B - C, and B C is an/-subgroup of G.
Now Ga is an /-subgroup of G and Ker (a) is an /-ideal of G, so that

Ker (a) - Ga is an/-subgroup of G. Now let y e Ker (a) n Ga, and let
xeGbesuchthaty xa. Then0 ya xo so that xa O by 3.5 (iii)
and hencey 0. ThusKer(a) Ga Ker (a) @ Ga. To show that
Ker (a) @ Ga Ker (a) @ Ga it suffices to show that Ga is convex in
Ker (a) @ Ga. To this end suppose that0 < x < ya where x a ba
with a e Ker (a) and b e G. Suppose that a 0. Then -ba < a < (y b)a,
so that

((-b) /0)a_ a/0_ ((y- b) /0)a
and

((--b)/0)a_ a/0_ ((y-- b)/0)a.

Thus, since a / 0 and a/ 0 are in Ker (a), there is a c e Ker (a) and an
h e G+ such that 0 < c < ha. If M is a minimal prime/-ideal of G such that
c M, then M - c

_
M - ha so that ha M. Now since G is archimedean,

there is a positive integer n such that nc $ h. Hence there is minimal
prime/-ideal N of G such that N -P nc > N - h. Now a induces an o-endo-
morphism a of G/N and we have that N - nca >_ N - ha or N >_ N - ha
sinceceKer (a). Thus ha e N since N >_ N - ha >_ N. ButccNsince
N - nc > N -P h and h >_ 0. This contradicts the fact that any minimal
prime/-ideal not containing c Mso does not contain ha, and we are done.

3.8. If a P+ (G), then a preserves all existing infima and suprema.

Proof. This follows from the fact that in any archimedean f-ring F,
Y= /{Yr’eFlandaF+implyya= /{ya’-eF}. (See [1] or [7].

3.9. If a P+ (G), then Ker (a) is a polar and G/Ker (a) is archimedean.

Proof. By 3.8 it is clear that Ker (a) is closed.
[6] and so G/Ker (a) is archimedean [5].

Hence Ker (a) is a polar
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3.10. If G is complete, then P (G) is complete.

Proof. Let {a" , e I’} be an upward directed subset of P+ (G) which is
bounded above by aeP+(G). Then for geG+, ga,

_
ga for all

Thus we set g/’ /{ga" , e F}. But then for g, h e G+, it follows since
{a" ’ e F} is directed, that (g h)f g’ - h’, and hence there is an
o-endomorphism of G such that g/ g for g e G+. Now if g/ h 0,
then

gAh gA (V{ha"r} V{gAha"r} 0

and it follows that/ e P+ (G) and hence V {a" e r}. Similarly, the
infimum of u downward directed subset of P+ (G) has an infimum, and it
follows that P (G) is complete.
Remark. If P (G) is complete, G need not be complete. See Example

5 of 8.
We close this section with some results about relationship between P (G)

and P () where is the completion of the archimedean/-group G. First we
prove

3.11. Let denote the completion of the archimedean l-group G, and let o be
an endomorphism of G which preserves all existing infima and suprema. Then
there is a unique extension of a to an endomorphism ---, which preserves
all existing infima and suprema.

Proof. Let he. Then h V{leeG’/c

_
h} A{/e

Define ha V {ka’/eeG and /

_
h}. This supremum exists since

preserves order and the set// e G" k

_
h} is bounded above by any element

of G larger than h. Now let h’ e . Then

ha-bh’c /{/ca’/cG and /e

_
h} nu /{’a’lc’G and

V{(k + k’)a’k, k’eG, /

_
h and k’

_
h}

_
(h -b h’)a.

To see the reverse inequality, let x e G be such that

x

_
h - h’ V k" e G und/

_
h} -b V {k’ k’ e G and/c’

_
h’}.

Then

and
x /{ (/ -/e’) A x" h,/’ e G,/e

_
h, and k’

_
h’},

xa V {(/ca W /e’a) A xa "/e, /’e G, /e

_
h, and /’ _< h’}_

V (kc -b ’" , ldG,

_
h, and/’

Since h nu h’ is the supremum of all such x’s, we have (h -b h’)5

_
h5 - h’5.

Thus 5 is an endomorphism of . The rest is straightforward.

3.12 PROPOSiTiON. Let G be an archimedean l-group, and let a e P+(G).
Then there is a unique extension of a to e P+ (). Moreover, a is one-to-one

if and only if is one-to-one; and is onto if o is onto.
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Proof. Let a e P+(G). Then by 3.8 and 3.11, there is an extension of
atoa’--. Now leth, h’eCwithh /k h’ 0. Then

ha /{ka k e G+ and/ _< h},
so that

ha/h’ k/{ka’lG+and/_<h}/kh’= /{ka/kh’’kG+and/_<h}
/{ka/ k’’k,k’eG+,/_< h, andk’_< h’} 0.

Thus a e P+ ().
Now suppose that a is one-to-one on G, and let g e +\{0} be such that

ga 0. Then there is a g’ e G+\{0} such that 0 < g’ < g. But then
0 _< g’d E ga 0 so that g’a 0. Thus a is one-to-one on .

Finally suppose that a is onto, and let h e with

where g e G. Since a is onto, a is one-to-one by 3.6 and hence a is an/-automor-
phism of G. Now k _< g implies ka-1 _< ga-1, so that

k/{ka-1"/ eG and k _< h}
Thus

[k/{ka-l"kehandk_< h})a k/{/ca-la "keGandk_< h} h

so that a is onto.

Remark. Example 11 of 8 shows that a e P+ () can be onto without
a e P+ (G) being onto.

As usual let G be an archimedean/-group, and its completion. Then it
follows from 3.10 that P2 P () is a complete f-ring with identity, and it
follows from 3.11 that there is a natural embedding of P1 P (G) into P2.
Example 5, 8 shows that P2 need not be the completion of the archimedean
f-ring P1. However we are able to show

3.13 THEOREM. If G is a divisible archimedean 1-group with a strong order
unit and a basis, then P2 P () is the completion of P1 PI(G).

Proof. We may assume that P1 P2. Thus since P is complete, it is
+sufficient to show that for e P\{0}, there are a, e P1 such that

0 < a < < , (See[6]).
Now since G is divisible and has a basis, we may assume that

where {Rx ), e P} is fmily of divisible subgroups of the rels. Then [4]
0 is the/-idel of IX {Tx" e 11 (Tx R for ll e r) generated by G nd
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/By Theorem 2.8, e P\{0} has the form (..., f, ...) where fx e R+.
Suppose that x > 0 and choose n so that 1In < x and let

a= (0, , 0, l/n, 0, .., 0)

where the 1In is in the -th place. Then a e P since G

_
’ {Rx" ), e F}

and each Rx is divisible. Moreover, 0 < a < . Finally, we can assume with-
out loss of generality that (1, 1, is strong order unit for G nd hence
fore. But then (1, 1, ...) (..., x, "") and the set /x’),el} is
bounded, by n say. Thus if we set x’), nx for x e G, we huve a , e P such
that # < ,.

Remarks. 3.13 fails without the assumption of divisibility (See Example
5 of 8). However, we do not know if any of the other assumptions can be
omitted.
Note that the intersection of all the laterally complete/-subgroups of D (X)

that contain G is the lateral completion of G (see [5]). In particular, each
p-endomorphism a of G has a unique extension to a p-endomorphism of the
lateral completion of G.

4. A characterization of P+(G)
In this section we prove a single theorem. It shows, for an archimedean

/-group G, that the largest f-ring of B (G) containing the identity is P (G).
Precisely

4.1 THEOREM. Let G be an a.rchimedean 1-group, and let F be a subring of the
ring B (G) of ordered-bounded endomorphisms of G containing the identity 1.
Moreover, suppose that F is an f-ring where the order is given by the
cone F+ B (G)+ n F. Then F+ P+ (G) and hence (See 3.3)P (G) is the
largest sub-po ring of B (G) which is an f-ring and contains 1.

Proof. Consider G as an/-group of almost finite extended real-valued con-
tinuous functions on the Stone space X of the Boolean algebra of polars as in
3. Then it is sufficient to show that the support of gp is contained in the
support of g for each g e G+ and each p e F+.
To this end suppose that there is an z e support (gp) which is not in sup-

port (g). Then there is a neighborhood V1 of z such that g(V) {0}.
However, since z e support (gp), there is a y e V[ such that (gp)(y) > O.
Since gp is continuous, there is a neighborhood V of y contained in V1 such that
(gp) () > 0 for each e V1. It follows that there is z X and a neighbor-
hood V3 of zl such that g (V3) {0} and (gp) () > 0 for all 0 e Va. Now gp
is finite on an open dense subset of X and hence there is a y e Va such that
0 < (gp) (y) - . Again, it follows that there is a z e X and a neighborhood
V4 of z2 such that g (V4) {0}, and 0 < (gp) () < + for all e V4. Also
we have that (gp)(y) < - for some y e V4. Consequently there is an
x e X such that g(x) 0, 0 < (gp)(x) < + , and 0

_
(gp)(x)< T .
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Pick an integer n > 0 such that ngp (x) > gp (x) and let p/ nl. Then
0= (p-a)/ (nl-a)sothat (p-a)(nl-a)--0sincep-andnl-i
are disioint elements of the f-ring F. We obtain a contradiction to our assump-
tion that support (gp) is not contained in support (g) by showing that
g (p ) (nl i) 0. To this end note that

e (x) (x) (z) (x)

since0_ _nlandg(x) 0. Thusg(p- ) hwhere0 < h < gpand
h(x) gp(x). Moreover, hnl(x) ngp(x) and h(x)

_
hp(x)

_
gp2 (x < ngp (x ). Thus

g(p )(nl () (x)

h(nl )(x) hnl(x) h(x) ngp(x) h(x) > O,

and we’re done.

Remark. By a similiar proof, one can show the following result. Theorem.
Let G be an archimedean/-group and let F be a subring of B (G) which contains
1, is an/-ring in the partial order F+ B (G)+ n F, and satisfies" a, f e F and
g G+ imply g (a/ ) ga/ g. Then F+ P+ (G).

5. The additive subgroup of an archimedean f-ring with identity
The obiect of this section is to prove

(5.1 THEOREM. Let (G, be an archimedean 1-group with weak order unit
e. Then (a there is at most one multiplication on G so that (G, , is an
f-ring with identity e, and (b) such a multiplication exists if and only if

{ea a eP+(G)} G+.
Before proving 5.1 we lay some groundwork. Let G be an archimedean

/-group with a weak order unit e, and let eP+ (G) {ea" a P+ (G)}. For
a,feP+(G),letea- e e(a + ), ea /k e e(a / ) and ea / e
e(a / ). Then eP+ (G) is a subsemigroup and a sublattice of G+. Now
for ea, e e P+ (G), define (ea)(e) ea. Then since e is a weak order
unit, it follows from 3.2 that if e e, where , e P+ (G), then t . Hence
the multiplication (ea)(eft) ea is well defined. It follows that eP+ (G)
is a semiring. Let G denote the subgroup of G generated by eP+ (G). Then

G {ea e’a, eP(G)} {e e’tt, ,eP(G) andett / e 0}.

For if a, eP(G), then ea ea / e/ + s and e/ ea / e/ - where
s/t 0. Thus

s ea e (a / e(a (a / ett wherett= a- (a//)eP(G)

t= ef--e(a/)-- e(f-- (a/f)) e, where,,-- - (a/)eP(G).
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Thus ea e eg e,. In particular, e (ea e + and e, (ea -e)-.
Thus (ea e +, (ea e)- e eP+ (G ), so that G is an/-subgroup of G with
positive cone eP+ (G). Now by linearity, one can extend the multiplication
on eP+ (G) to Ge, and it then follows easily that the map a ea from P (G)
onto G is an /-isomorphism. Thus P (G) is /-isomorphic to G. Thus if
G+ eP+ (G), we have that (G, - can be made into an f-ring with e as
identity. This proves one way of part (b) of 5.1. To see the converse of
part b), let g e G+ and assume that. (G, -) is an f-ring with e as identity.
Then since the map x xg is a p-endomorphism and eg g, we have that
eP+ (G) G+. This completes the proof of part (b) of 5.1.
To see part (a) let o and be two multiplications on G making G+ into an

archimedean f-ring with identity e. Then for g e G+\I0}, the map x --* x o g
and x -- x. e are p-endomorphisms of G. But a p-endomorphism is determined
by its action on a weak order unit and since e o g g e. g, we have that
x o g x.g for all x e G and g e G+. It follows that x o y x.y for all x, y e G
and we’re done.

This theorem is more or less "well known" (see [8]). The novelty is the
discription in terms of P (G).

6. Contractors on archimedeaa/-groups
Previously we have considered those endomorphisms of an/-group G which

leave invarient all minimal prime subgroups of G (see 2.1). We now turn
our attention to those endomorphisms of G which leave invarient all prime
subgroups of G.

6.1 DEFINITION. A contractor a on an 1-group G is a group endomorphism
a of G such that G+a G+ and for each g e G+ there is an integer n n (g) such
that ga <_ ng.

6.2 PROPOSITION. Let G be an 1-group and let a be an endomorphism of G
such that G+a G+. Then the following are equivalent:

(i) a is a contractor on G;
(ii) a leaves invarient each convex l-subgroup of G; and
(iii) a leaves invarient each prime subgroup of G.

Proof. That (i) is equivalent to (ii) is clear. That (ii) is equivalent to
(iii) follows from the fact [4] that each convex/-subgroup is the interesection
of prime convex/-subgroups of G.
Note that the set C+ (G) of contractors on G is closed under multiplication

and if G is abelian, it is closed under addition. Thus for abelian/-groups we
have that

C(G) { : , C+(G)}

Langford’s contractors [10] are our contractors with n(g) I for all g G. Langford
asks if contractors on archimedean/-groups commute. Since each contractor is a p-
endomorphism the answer is yes.
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is a po subring of P (G) with positive cone

C (G) n P+ (V) C+ (G).

For if a e C (G) n P+ (G) and g belongs to a convex/-subgroup M of G,
then ga, g M and so g (a B) ga g e M. Therefore a --/ C+ (G).
Now suppose that G is an archimedean/-group and assume as in 3 that

G D (X) where X is Stone space of the Boolean algebra of polars on G.
Moreover, suppose that G has a weak order unit which we can assume is the
constant function 1 in D (X). Now let a C (G). Then since a is a p-endo-
morphism of G, a is multiplication by a function a of D (X) (Theorem 3.2).
Moreover, there is an integer n such that 0 _< ea _<: ne and hence for each
x e X we have that 0 <_ m (x) _< n. Thus m e C (X), the real-valued continuous
functions on X. Consequently, C+ (G) is isomorphic to a subring of C (X).
Example 8 of 8 shows that if G does not have a weak order unit, then C (G)

need not be contained in C (X). However, we are able to prove

6.3 PROPOSITION. Let G be an archimedean l-group. Then there is a topo-
logical space Y such that C (G) is isomorphic to a subring of C(Y).

Proof. Let {e k e r} be a maximal disjoint of subset of G and assume that
G D (X) where X is the Stone space of the Boolean algebra of polars of G
as in 3. Let {Xx k e 1} be a family of compact open subsets of X such that
ex is the characteristic function of Xx.

Let Y [J {X 1} and let a C (G). Assume that a is represented by
the function a e D (X). (Theorem 3.2) Now let x e Y and let e 1 be such
that x e Xx. Then there is an integer n such that 0 <_ ex a <_ nex so that
0 _< a (x)

_
n. Thus a (x) is real for each x e Xx, and hence a is real on Y.

It follows that C(G) is isomorphic to a subring of C(Y).
Now we show that a contractor a on an archimedean/-group G extends to a

contractor a on (, the completion of G. Note that since a is a p-endomor-
phism, a extends to a p-endomorphism a of ( (see 3.11). Thus we need only
show that a is a contractor on . First we note that if a, b, c, and d are real
numbers such that 0 _< a _< b and bc

_
db, then ac <_ da. Hence from Theorem

3.2 it follows that if a is a contractor on an archimedean/-group G and if
a, b e G+ are such that 0 _< a _< b and ba <_ nb where n is a positive integer,
then aa <_ ha. Now recall that if h e (, then h /{k :k e G and ] <_ hi
and ha is defined by ha //ka’/ceGandk <: h}. Moreover let geG
be such that g >_ h, and let n be an integer such that ga

_
ng. Then for

k _< h we have that ka _< n/c and hence

n / {’keG and <_ h} nh.

Hence a is a contractor on (. Thus we have proven

6.4 PROPOSITION. Let G be an archimedean l-group, let a be a contractor on
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G, and let denote the completion of . Then if we define --> by

h / ka G and k

_
h}

for h e , then a is a contractor on .
Remark. It can be shown that if ax , r} is a disjoint subset of an/-group

G, a /a and a is a contractor, then aa / (a a).

7. A problem of Birkhoff
In this section E will always denote a complete vector lattice. By a

bounded contractor on E we shall mean a linear transformation a:E -. E
such that E+a E+ and xa

_
x for some R+ and all x e E+.

Recall [2] that if E is a complete vector lattice, then the algebra B (E) of
order-bounded linear transformations on E is a complete /-algebra; and if
{Tx: e r} is a subset of B(E) bounded above, then the supremum of
{Tx e r} is the linear transformation T E --. E defined by

xT V {xT
for x E+.
Now let a be a bounded contractor on E. Then the family

{,_oa’/n!’k 1,2, ...}

is bounded above by eXl where 1 denotes the identity map of E and k e R+
is such that xa

_
kx for all x e E+. Thus the supremum of the family

{_..oa’/n !" 1, 2, ...}

exists in B (E). We denote this supremum by e". Birkhoff’s problem (Prob-
lem 154 of [2]) is now as follows. If a is a bounded contractor on a complete
vector lattice E, show that the family {e" e R+} is a semigroup of operators.
The proof that {e" e R+} is a semigroup of operators is broken up into a

series of steps.
1. As usual let X denote the Stone space of the Boolean algebra of polars of

E, and consider E as a sub-vector lattice of D (X) as in 3. Moreover, for
a e P (E), let a denote the function in D (X) associated with a as in Theorem
3.2. Thus for f e E, fa fa where the product on the fight is the ring mul-
tiplication in D (X).

2. LetfD(X) and let R(f) {xeX:f(x) is real}. Then for each
kx e R (f), [,_off/n !)(x)

_
e() and since the map x -o e() is continuous

on R (f) (and hence extends to an element of D (X) which we denote by
exp (f)), we have that the set ,-of/n k 1, 2, is bounded above
by an element of D (X). Thus the supremum of the set {._0J/ I. k
1, 2, exists; we denote it by e. Note that e

_
exp (f). Moreover,

ksuppose that g e D (X) is >_ ,-of’/n for each k. Then

ke(x) >
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for each ]c and each x e R (f) n R (g). It follows that g (x) >_ ef() for each
x e R (g) n R (if) and hence g >_ exp (f); and hence ef exp (f). Thus for
each x e R(f), we have that

k 1, 2,.

Thus it is clear that for f, g e D (X), we have that e(+)

3. If a is a bounded contractor on E, then e" is also a bounded contractor
by the remarks in the first paragraph of this section. Now for g e E+ we have
that

k kge g {=oa’/n!’k 1, 2, ...} / ,ga /n k 1, 2, ...}

/{7_,__oga/n !’/c 1,2, ...} k/{.=oa’/n !)g"/c 1,2, ...}.
But by 3.8,

1, 2,

Thus

and hence we have that
ge e g

e ea.
4. For a and t bounded contractors on E, we have that a + t is a bounded

contractor and
e(+ e’ eg+ eZe ee eea

so that e+ e%.
We thus have proven

7.1 THEOREM. Let E be a complete vector lattice and let a be a linear trans-
formation such that E+a

_
E+ and xa <_ x for some X e R+ and all x e E+.

Then the family {et e R+} is a semigroup of operators where

e /{_,,=ota/n!’k 1, 2,...}.

8. Examples
In examples (1), (2), (3) and (4), let G R ( R be the cardinal sum of

two copies of the reals R. Then each o-endomorphism of G is linear,

B(G)+ {( )" a, b, c, d >_ 0}

and B (G) is the full ring of linear transformations on G. Moreover,

P+(G) C(G) {(]]) a, deR+}.
1. Let (] ]) a e R}. The is a sub-f-ring of/-endomorphisms of

B (G) not contained in P (G).

2. S {( v) x, y e R+\{0}} is a subsemiring of/-endomorphisms of
B (G) which contains I. But ( ) (] ) ( ) ()+\S.
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3. Let ( ) a, x R}. Then is a commutative subring of B (G)
which contains 1 and is generated by the/-endomorphisms ( ) and ( ).
Now (0 )/ 1 0, but ( )1 ( ) so that is not anf-ring. Also ( )
is not an/-endomorphism since (1, 0) (0 ,) (1, 1) and (0, 1) ( ) (0, 1
are not disjoint. Finally is not real representable since ( ) 0.

4. Lets {( o+) x, y e R+}. Then S is a subsemiring of P+ (G) and
( 0) ( 0) loe S\S. In particular, ()+ S.

5. An example where P (G) is complete and proper sabring of P (). Let G
be the additive group of all rational numbers with square free denominators.
Then clearly R and so P () R+, but P+ (G) Z+. For if the map
x -- kx belongs to P+ (G), then 1 - k so that k e G and also k e G since k -- /c.
Now write k m/p p where p are primes and m is an integer.
Then it follows since/ Z+.e G that/ must be an integer and hence P+ (G)

6. A non-archimedean o-group G for which P+ (G) is commutative. Let
G Z @ Qwhere (n,q) _< (0,0) ifq > 0orq 0andn >_0. Then all
o-endomorphisms commute since o-endomorphisms are of the form
(n, q) -- (lcn, pq) where k e Z+ and p e Q+.

7. A contractor which is an 1-automorphism but whose inverse is not a con-
tractor. Let G be the direct product of countably many copies of the reals.
For (x, x., ...) e G, let (x x, )a (x x/2, xa/3, ...). Then

(1,1, ...)a- (1,2,3, ...) n(1, 1, 1 ...)

for any integer n.

8. A contractor in D (X)\C (X). Let G be the direct sum of countably
many copies of the reals and let o (1, 2, 3, ). Then since the Stone space
X of the Boolean algebra of polars of G is the Stone-Cech compactification of
the rational numbers, it is clear that p e D (X)\C (X).

9. An archimedean 1-group, a p-endomorphism , and a prime 1-ideal P such
that Pa P. Let G be the direct product of countably many copies of the
integers and let be the p-endomorphism given by (1, 2, 3, ). Then if
G(1, 1, 1, denotes the/-ideal generated by (1, 1, 1, we have that
(1, 1, 1, )a G (1, 1, 1, ). Thus there is a prime/-ideal P of G contain-
ing G(1, 1, 1, but not containing (1, 1, 1, ). Thus Pa P.

10. An o-endomorphism of the 1-group of a vector lattice which is not linear.
LetG R @Rwhere (x,y) >_ (0,0) ifx > 0orx 0andy >_0. Then
( ), where a, b e R+ and f is a non-linear group endomorphism of R, is a non-
linear o-endomorphism of G.

11. An archimedean 1-group G, and a p-endomorphism o of G such that
--> is onto but is not onto. Let G @ Qt where Q denotes the

rationals and is a transcendental number. Then G

_
R and we put the
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natural induced order on G.. Now R and the map a G --* G given by
y ty is not onto but ( --* ( is onto.

Added in proof. There is some overlap between the theory developed here,
and that in A. Bigard and K. Keimel, Sur les endomorphismes conservant les
polaires d’un groupe r$ticul$ archim$dien, Bull. Soc. Math. France, vol. 97
(1969) pp. 381-398.
Their paper was submitted after but published before ours.

REFERENCES

1. S. J. BERNAU, Unique representation of archimedean lattice groups and normal archi-
medean lattice rings, Proc. London Math. Sot., vol. XV (1965), pp. 599--631.

2. G. BIRKHOFF, Lattice theory, Amer. Math. Soc. Colloq. Publ., vol. XXV, Amer.
Math. Soc., Providence, R. I., 1967.

3. R. BYRD, Complete distributivity in lattice-ordered groups, Pacific J. Math., vol. 20
(1967), pp. 423-432.

4. P. CONRAD, Introduction a la theorie des groupes reticules, Secretariat Mathematique,
Paris, 1967.

5. ------, Lateral completions of lattice-ordered groups, Proc. London Math. Soc., vol.
19 (1969), pp. 444-480.

6. P. CONRAD AND D. MCALISTER, The completion o] a lattice ordered group, J. Austral-
ian Math. Soc., vol. 9 (1968), pp. 182-200.

7. L. FUCHS, Partially ordered algebraic systems, Pergamon, London, 1963.
8. L. KANTOROVITCH, B. VULICH AND 2k. PINSKER, Functional analysis in partially or-

dered spaces, Gostekhizdat, Moscow, 1950.
9. D. JOHNSON AND J. KIST, Prime ideals in vector lattice,,, Canadian J. Math., vol. 14

(1962), pp. 517-528.
10. E. LANGFORD, Some results on linear operators on lattice groups, Amer. Math. Monthly,

vol. 72 (1965), pp. 841-846.
11. F. SK, Theory of partially ordered groups, Czech. J. Math., vol. 81 (1956), pp. 1-25.

TUIANE UNIVERSITY
NEW ORLENS LOUISIANA


