ON THE INVERSE FUNCTION THEOREM IN COMMUTATIVE
BANACH ALGEBRAS

BY
BAarNETT W. GLICKFELD

Introduction

Let A be a complex commutative Banach algebra, and D a domain in 4.
An analytic isomorphism of D is an injective, L-analytic (i.e. analytic in the
sense of Lorch [4]) mapping f : D — A so that f(D) is also a domain, and f~*
is L-analytic on f(D). It is known that if f: D — A is L-analytic and f’ (ao)
is invertible, then there is some open neighborhood U of ao in D so that f| U
is an analytic isomorphism of U. This result sets the classical inverse fune-
tion theorem for analytic functions of a complex variable in the Lorch theory
of analytic functions of an A-variable. It is an immediate consequence of
the remarks of Arens and Calderon [2, p. 214] on the inversion of a power
series with coefficients in 4, and was first explicitly given by Mibu [5, p. 333].

The central goal of this paper is to prove the following two theorems, which
are both related to, and corollaries of, the above inverse function theorem.

Treorem 1. If f: D — A is L-analytic and injective, f(D) is a domain,
and f7 is continuous on f (D), then f is an analytic isomorphism of D.

TareorEM 2. Suppose A = C(X), where X is a compact Hausdorff space.
If f : D — A is L-analytic and injective, then either f is an analytic tsomorphism
of D, or there is some fixed x ¢ X so that f (g) (x) <s identically constant, all g € D.

In a preliminary section, we discuss the quotient function fr (which may
or may not exist) and the general quotient (possibly multiple-valued) func-
tion f* (which always exists) of an L-analytic f : D — A by a maximal ideal
F of A. Both fr and f* will be used in the proofs of Theorems 1 and 2, and
are of interest in their own right. In this regard, we will prove that if D is
star-shaped, then fr exists, and then give an example where fr does not exist
even though D is simply connected.

The author would like to raise the following questions.

(a) Can the hypothesis that f ™ be continuous be removed from Theorem 1?
(b) Can Theorem 2 be generalized to other Banach algebras?
Notation and terminology

1. A will denote a complex, commutative Banach algebra with identity.
2. D will denote a domain in A, i.e. an open, connected subset of 4.
3. D is simply connected iff each loop in D is homotopic to a point in D.
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D is star-shaped iff there is some ao ¢ D so that the line segment connecting
ao and @ is contained in D for all @ ¢ D.

4. Asis usual, we identify the maximal ideals M of A with the associated
complex homomorphisms F : 4 — C. IR = the maximal ideal space of 4.

5. Asis usual, we identify the complex number 1 with the identity element
of A. Thus C is considered to be a subset of A.

6. 2z will be used to denote complex numbers and complex variables, while
a will be used to denote elements of A and A-variables.

7. If A-domains and C-domains are under consideration at the same time,
the C-domains will be called complex domains, while the A-domains will
simply be called domains.

8. Except when preceded by “general”, “function” will have the same
meaning as ‘‘single-valued function”.

9. The composition of two functions ¢ and 4 will be denoted by g o h.

10. If @pe 4, and R is a non-negative number, B (a, : R) denotes the open
norm ball in A of radius R about ao. For simplicity, we will use Bz in place
of BO:R).

11. If zeC, and R is a non-negative number, K (z : R) and K (2 : R)
respectively denote the open and closed discs of radius R about 2 in C. For
simplicity, we will use Kz in place of K(O : R). C(z: R) will denote the
circumference of K (2 : R).

12. If K is an open disc in C, dK will denote the boundary of K.

1. Quotient functions

Suppose that f: D — A is L-analytic, and F is a maximal ideal of 4. If
there is a (necessarily unique) complex analytic function ¢ defined on the
complex domain F (D) so that goF = Fof on D, we say g is the quotient
function of f with respect to F, and write ¢ = fr. (This definition first
appears in [3, p. 16].)

When D isanorm ball B(ao : R), frexists. Infact, if fis givenon B(a, : R)
by the Taylor series Y. ,an(a — a)", then fr is defined on

FMD) =KF(m):R)
by
fr(2) = 2onF(a) (2 — Fao))"

For general D, however, we need the following construction. For each
a ¢ D, let B, be the largest norm ball with center at @ which is contained in D,
and let f, be the restriction to B, of f. Define f*, the quotient general func-
tion of f with respect to F, to be the set of all function elements [1, p. 209]
(fur, F (B.)), where a varies over D,

Notice that if 8 : [0, 1] — D is a curve in D starting at 3(0) = a and ending
at 8(1) = b, then the function element (for, F (Bs)) is obtained by analytic
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continuation of the function element (f,r, F (B,)) along the curve F o in
F (D). Thus f* is a general analytic function [1, p. 210].

We can now obtain the following lemma, which will be useful in the proof
of Theorem 2.

Levma 1.1, Letf: D — A be L-analytic, F a maximal ideal and ¢ a complex
constant. If there is a norm ball B contained in D, so that F (f(a)) = ¢, all
aeB,then F(f(a)) = ¢, all aeD.

Proof. Let b be the center of B. Then since fyro F = Fof, on By, for is

identically ¢. Since f” is a general analytic function, f.r is identically ¢ for all
aeD. But then for a e D,

F(f(a)) = far(F(a)) = c.
We turn to showing that fr exists when D is star-shaped.

Levma 1.2, Let f: D — A be L-analytic, F a maximal ideal, suppose that
D is star-shaped. If a, b,eD and F(a) = F(b), then F(f(a)) = F((®))-

Proof. For z, ye A, let Ly, : [0, 1] = A be defined by
Ly, &) = (1 — t)x + ty.

Choose o’ ¢ D so that range L(o : ) is contained in D, all « ¢ 4. Now
(far, F(B,.)) and (for, F (Bs)) are both obtained by analytic continuation of
the function element (forr, F (Ber)) along the curve

FoL(a:a) =FoL(a:D).
Thus for = for in a neighborhood of F (a) = F (b), so
F(f(a)) = far(F (a)) = for(F (b)) = F(f(b)).

Taeorem 1.3. If f: D — A s L-analytic, D is star-shaped, and F is a
maximal ideal, then fr exists.

Proof. Tt follows from 1.2 that f* defines a single-valued function g on
F(D): g is easily seen to be fr .

We present an example which shows that the hypothesis that D be star-
shaped in 1.3 cannot be replaced by the hypothesis that D be simply connected.
Let A = C X C, with pointwise algebraic operations and the sup norm. Fix
esothat 0 < ¢ < w/4. Set

D= {(z,w):0<Rez<2,w#0,—e<Argw <m — ¢},
D;=1{(z,w):1<Rez<3w#0,7— 2 < Argw < 27 — 2¢},
Dy ={(z,w):2<Rez<4,w=0,2r —3c < Argw < 27 + ¢&}.

Clearly each D; is convex, since Dy n Dy 5 @, Dy n D; = ( and Dy n D; = @,
D = Dyu D, u D is simply connected.
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Define, forz = 1, 2, 3, f;: D; — A via
fi(z, w) = (2, Log w) where Log 1 = 0,
fo(z, w) = (2, Logw) where Log (—1) = =,
falz, w) = (2, Log w) where Log 1l = 2.

Definef : D—> Abyf(z,w) = fi(z,w)if (z,w) eD;. LetF be the maximal
ideal of A defined by F (2, w) = w. Suppose there is a function fr: F (D) — C
which satisfies the quotienting relation freF = Fof on D. Then

0=F(f(1,1)) =Ffr(1)=F(f@G 1)) = 2m;

clearly no such fr can exist.

2. The proof of Theorem 1

Suppose that f: D — A is L-analytic and injective, f(D) is a domain, and
f is continuous on f(D). In view of the inverse function theorem, to prove
Theorem 1 it is sufficient to show that f/ (a) is invertible for all ¢ in D. Two
translations enable us to assume without loss of generality that 0eD and
f(0) = 0, and to reduce the problem of showing f’ (a) invertible for all a ¢ D
to that of showing f’ (0) invertible.

Choose some § > 0 so that B; € D. For each maximal ideal F let fr : K;—C
be the quotient function of f| B, with respeet to F. Obviously f»(0) = 0
but fr is not identically zero because of the quotienting relation froF = Fof
and the openness of f. Since (f#) (0) = F (' (0)), to prove f/(0) invertible
it is sufficient to prove (fr)'(0) # 0, all F ¢ M.

Fix a maximal ideal F. Choose positive numbers € and uso that u < ¢ < §
and

(1) fr(K.) < f(Bs) and fr(K,) < f(Be),
2) fr(z) £ 0 when 0 < lz| < & and
() (fr)' (2) # O when0 < |2| < e.

Define by : Ko — Ks by by = Fof " ofy. Clearly kg is continuous, and maps
K, into K.. The two crucial properties (4) and (5) of ks are directly ob-
tained via the quotienting relation froF = Fof,

(@) hr(hr(2)) = hr(z) when | 2| < u, and
(5) fF(hF(Z)) = fp'(z) When[zl < e.

Now by (2), (56) and f¢(0) = 0, we see that
(6) hr(2) £ 0when0 < Iz] < e

Set
S ={z2:he(z) = 2zand 0 < | 2| < ¢},

Obviously S is closed in K. ~ {0}. hr(u/2) eS8 via (4) and (6), so S is non-
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empty. But 8 is also open, in view of (5) and the local conformality (via
(3)) of fr at each z where 0 < |z| < &. Thus S = K. ~ {0}, i.e.

he(2) = 2z when0 < |z| < e.

But since A is injective on K, ~ {0}, sois fr. Therefore by classical function
theory, (fr)' (0) # 0, Q.E.D.

3. The proof of Theorem 2 (beginning)

The setting of this section is the realm of classical function theory; the
prime tool is Rouché’s theorem. No mention will be made of abstract fune-
tion theory. The goal is to prove Lemmas 3.2 and 3.3, from which Theorem
2 will be directly obtained in Section 4.

Let H be the metrizable space of complex-valued analytic functions defined
on the unit dise K, with the topology of uniform convergence on compacta.

DerinitioN. A fundamental pair is an ordered pair (4, K), where h ¢ H,
K is an open complex disc whose closure K is contained in K;, and there is
some (unique) complex number A so that

1) »@) =0,
(2) 2e¢K and W (2) = 0 implies z = \, and
(3) zeKand h(z) = h()\) impliesz = .

\ is called the analytic center of (h, K).

The order J of a fundamental pair (h, K) with analytic center A is defined
to be the order of the zero of A(z) — Ah(\) at 2 = \. Clearly J — 1 is the
order of the zero of A’/ (2) atz = \,and J > 2.

DeriniTioN. Let (h, K) be a fundamental pair with analytic center A.
A non-negative number u is free iff

p < inf {|h(z) — R(\)| : zedK]}.

The following two basic remarks can be proved by standard winding
number, local conformality, and piecing together arguments, and are thus
left to the reader.

Remark 1. If (h, K) is a fundamental pair with analytic center A and order
J, and pu is free, then A(z) — (A (\) + u) has exactly J zeros (counting mul-
tiplicity) in K and none on dK. When p > 0, condition (2) above thus

guarantees that h(z) — (R(\) + p) has J distinet zeros in K, each of mul-
tiplicity 1.

Remark 2. Suppose that (h, K) is a fundamental pair with analytic
center \ and order J, and that u > 0 is free. Let { be one of the J distinet
points of K which A maps onto A(A) 4+ u. Then there is a unique curve
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B:[0, ] — K which ends at ¢ (i.e. B(u) = {), and satisfies
R@BE)) = h(N\) + ¢ 0t

Furthermore, if {' # { is another point of K which A maps into A(\) + u,
and 8’ : [0, u] — K is the unique curve which ends at {’ and satisfies

R @) =h(\) +¢ 0ty
then

(range 8) n (range 8') = {A}.

DeriniTioN. Suppose that (A, K) is a fundamental pair with analytic
center \ and order J, and that u > 0 is free. Let {1, -+, ¢s be an enumera-
tion of the J distinct points of K which 4 maps into A(\) 4+ u. For each <,
1 <7< J,let B;: [0, u] = K be the unique curve which ends at {; and satisfies

RB:@)) = h(N) + ¢, 0t

The set of curves A = {B1, -+ -, B} is called the u-system of (h, K). Note that
it follows from Remarks 1 and 2 that

Kok (k) + 10, u]) = Ui range 8;.
We need the following technical extension of Rouché’s theorem.

Lemma 3.1. Suppose that h ¢ H, h is mot identically zero, and that
Z ¢ U c K., where Z is compact and U 1is open. Then there s an open
netghborhood N of h in H, and an open set V in C, so that when g ¢ N,

h(Z)c Vcg(U).

Proof. For each w e Z, choose 6, > 0 so that K(w:48,) € U, and
h(z) — h(w) hasno zeros z on the boundary C (w : 8,). Set

Do = inf{|h(z) — h(w)|:2eC(w: b))
and
N, =1{g:9eH, Ig(z) - h(z)l < Pu/2,8ll ze C(w: dy)}.

By Rouché’s theorem, each g ¢ N, assumes the value h(w) on K(w : éy,).
But

Pu/2 < inf {{g2) — h(w)|:2eCw:d.)}.

Thus for all g e N, ,
g(K(w:8,)) D K(h(w):pw/2).

Now choose wy, -+, Wy, € Z 80 that the K (h(w;) : pu;/2),2 =1, -+, n,
are an open cover of h(Z). Set

N = N{=iNy;, and V = Ui« K (b (w:) : puwi/2).
IfgeN,and 1 <17 < n,
g(U) D g(K (wi: pu;)) D K(h(w:) : pui/2),
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0
g(U) DV DhrZ).

Lemma 3.2. Let S be a subset of H so that

(1) mno keS8 is identically constant, and
(2) there is some h € S, and [ 2| < 1, so that 1’ (z) = 0.

Then there is a non-empty, open (in S) subset U of X, a complex disc K, a
posttive integer J, and a positive number u so that

3) (h, K) is fundamental with order J, all h e U, and
4) wis (hy K)-free,all he U.

Proof. Let Q be the set of all fundamental pairs (h, K), where heS.
Conditions (1) and (2) above guarantee that @ is non-empty. Choose a
fundamental pair (h, Ko) of @ with minimal order J and analytic center), .
By Rouché’s theorem and the continuity of the mapping A — ' of H into H,
choose an open neighborhood Uy of kg in S so that when & ¢ Uy, A’ has no zeros
on dK, and exactly J — 1 zeros (counting multiplicity) in Ko. Since (h,Ko)
has minimal order, no zero of A, when b ¢ @, has order less than J — 1. Thus
when & e Uy, 2’ has exactly one zero z; (of multiplicity J — 1) in K,. Clearly
)\o = Zhg »

It follows from Rouché’s theorem and the continuity of » — A’ that h — 2
is a continuous mapping of U, into Ko. Furthermore, it is not hard to see
that the mapping A — h(2:) of U, into C is also continuous.

Set

p = inf {| ho(2) — ho(No) | : 2 e dKo}.

Since (ho, Ko) is fundamental, p > 0. Choose an open neighborhood U; of &,
in Uj so that when h e Uy,

(5) |h(z) — ho(2)| < p/3, all z¢ dKo, and
6) |hG) — k()| < p/3.

(5) and (6) yield that when & e Uy and 2 € dK,,
|h(2) — ho(2) + ho(ho) — B(an)| < |Bo(2) — ho(ho) |-

Thus by Rouché’s theorem, when A e Uy, h(z) — h(z:) has no zeros on dK,,
and J zeros (counting multiplicity) on Ko. Since h(2) — h(z:) has a zero
of order J at 2, z¢ Ko and h(2) = h(z) implies 2 = 2,. Therefore when
heUy, (h, Ky) is a fundamental pair of order J with analytic center 2.
(5) and (6) also yield
|h(z) — h(zs)| > p/3 when ke U and 2 ¢ dK,.
Fix some positive number u < p/3. u is obviously (h, Ky)-free, all he U,.

Lemma 3.3. Suppose that U s a non-empty subset of H, K a complex disc,
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J a positive integer, and u o positive number so that

1) (h, K) s fundamental, with order J, all h e U, and
2) wis (h, K)-free, all he U.

Then there is a non-empty, open (in U) subset V of U, so that we can prescribe,
for each h e U, an enumeration B, -+, Prr of the u-system Ap.x) of (h, K),
so that for each i, 1 < 1 < 7, the mapping a; : V X [0, u] — K defined by

ai(h, t) = Bu()
18 CONLINUOUS.

Proof. For each heU, let N\, be the analytic center of (A, K), and set
wp = f(\). It follows from Rouché’s theorem and the continuity of » — A’
that A — N\ is a continuous mapping of U into K and thus 2 — wj is a con-
tinuous mapping of U into C.

Now fix some function ko e U, write o = My and wo = wy,. Let i, ---, ¢r
be a fixed enumeration of the J distinet points of K which Ao maps into wo + u.
Choose a positive number p so that each K (¢ : p) is contained in K, and the
K (¢;: p) are pairwise disjoint. Choose, via Lemma 3.1, an open neighborhood
V of hoin U so that when he Vand1l < ¢ < J,

wh + pef(K(Eitp)).

For h e V, since the order of (h, K) is J, there is exactly one point {z; in each
K (¢;: p) which 2 maps onto w, + u: for each ¢ let Bi; be the unique element
of the u-system Ag,x which ends at {x;. Define, for 1 < ¢z < J,
a;: V X [0, u] = K by
ai(h, t) = Bui(t).
Fix (g, 8) e V X [0, u], where s > 0, we will now show that each «; is con-
tinuous at (g, s). For each ¢ set

Z; = aoi([s/2’ N])-

Each Z; is a compact subset of K, the Z; are pairwise disjoint (by Remark 2),
and

9(Z:) = w, + [s/2, ul.
For each 7, set
YVi={z:2¢C,dist (2, Z;) < r},

where 7 is a fixed positive number small enough so that the Y; are pairwise
disjoint subsets of K, and

@) K@gp:r) C K(riip),alls.
By Lemma 3.1, choose a neighborhood W of g in V so that when he V,

(2) h(Y:) D wn+ [s/2, u], and
(B) wn+ neh(E(pizr)), alld.
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Since each w e ws + [s/2, ] is taken on by A at exactly J distinct points of K,
and the Y are disjoint, it follows from (2) that

@4) B wn +[s/2,u)n K = Ui Y, heW.

ForheWandi=1, ..-,J let Br: denote the restriction of B to [s/2, ul. It
follows from (3) that each Bi; ends in some K (f,;:r). But I3m ends at
thie K(¢::p), thus by (1) and the disjointness of the K (¢;: p), B;., ends in
K(t,i:r) € Y. Now via (4) and the connectedness of range Bi:, we see
that

(5) range B C Yi, heW,1 < i< J.

Now fix 2, set £ = B4,(8) = ai(g, 8); obviously g(¢) = w, + s. Consider
an ¢ > 0 and small enough so that K(¢:¢) € Y,;. Choose, by 3.1, a neigh-
borhood Wi of g in W, and an interval I about s in [s/2, u] so that

6) wn +teh(K(E:e), heWyand tel.

By (4) and (5) the only point of ¥; which h maps onto ws + £is 81 (£) = Ba: (¢).
Since K(¢:¢) < Y, it follows from (6) that Bui(t) e K(¢: ¢). In other
words, when he Wy and tel,

| Bri(t) — Boi(s)| < e.

Therefore a; is continuous at (g, s).
The proof, via Rouché’s theorem, that each «; is continuous at (g, 0) is
straightforward, and is left to the reader.

4. The proof of Theorem 2 (conclusion)

We return to the proof of Theorem 2 per se. Let A = C(X), where X is a
compact Hausdorff space, and suppose that f: D — A is L-analytic and
injective. Lemma 1.1 enables us to reduce Theorem 2 to the special case
when D is anorm ball. Two translations and a normalization reduce Theorem
2 further to the special case when D is the unit norm ball B; and f(0) = 0,
we will now prove Theorem 2 for this case. More specifically, we will show
that if f: By —» A = C(X) is L-analytic and injective, f(0) = 0, f is not an
analytic isomorphism, and there is no z ¢ X so that f(¢)(z) = 0, all g ¢ By,
then there are two distinct functions ¢; and g, in C'(X) so that f(g1) = f(g2).

For each z ¢ X, let f, : Ky — C be the quotient function of f with respect
to the maximal ideal “evaluation at «””. The equations

1) fa(g(@)) = f(9) (@), and
@) f@) ) =filg@)),geBr,zeX,

are immediate.

Set S = {fs:xeX} C H. Since there is no z¢X so that f(g)(x) =
all g ¢ By, it follows from (1) that no f, is identically constant. Since f is
not an analytic isomorphism, by the inverse function theorem there is some
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g € By at which f’(¢) is singular. This, together with (2), implies that there
issome z ¢ X and z ¢ Ky so that f, (z) = 0. Therefore S satisfies the hypotheses
of Lemma 3.2.

Choose, by 3.2 and 3.3, a non-empty open (in S) subset V of S, a complex
disec K and a positive integer J so that (k, K) is fundamental with order J
for all h eV, a positive number g which is (h, K)-free for all h ¢ V, and an
enumeration B, - - -, Bur of the u-system of each (h, K), h eV, so that for
each i, 1 < 7 < J, the mapping a; : V X [0, uy] — K defined by

@) ai(h, t) = Bni(t)

is continuous.

Now fix a point 2o e X so that f., ¢ V. Choose, by the continuity of the
mapping X — H defined by z — f, [3, p. 17] a compact neighborhood Z of
zps0 that f-e V,allz ¢ Z. Select an open neighborhood W of z, whose closure
W is contained in the interior of Z. By Urysohn’s lemma, choose a con-
tinuous function ¢ : X — [0, u] so that ¢ (xy) = pand (X — W) = 0. For
2 =1,2define g;: Z — K by

g9i(x) = ai(fs, ¢ (x)).
From (3) and Remark 2 of Section 3 we have that

(4) oi(fz,0) = \,, and
(5) fx(gt(x)) = fzo\z) + ¢(x), CCGZ, 1= 1, 2,

where A\, is the analytic center of the fundamental pair (f,, K). But it
follows from (4) that g1 (z) = g2 (z),allz e Z — W. Extend g, to a continuous
mapping of X into K via Tietze’s theorem, then extend g, to a continuous
mapping of X into K by defining g;(z) = ¢1(x),allz e X — K. Now by (5),

fa(gi(@)) = fa(g2(®)), allze X,
80 f(g1) = f(g2). But since g1(x0) # g2 (%), g1 # ¢2. Theorem 2 is proved.
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