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If G is an analytic group and if is a closed subgroup with a finite number of
components then/ is a vector bundle over a compact manifold K/W, where
K is a compact analytic group and W is a closed subgroup of K [16]. When G
is solvable the quotient G/ is called a solvmanifold. In this case is likely to
have infinitely many components. The question is natural" Is /S a vector
bundle over a compact solvmanifold? In [12], all the 2-dimensional spaces
G/ are obtained and one sees by inspection that the answer to our question is
armative. In this paper the question is answered armatively for the non-
compact solvmanifolds with fundamental group the integers.

Let G be a Lie group satisfying the second axiom of countability. If is a
closed subgroup of the space of left cosets G/ is called a Klein space. As-
sume G/S is connected. Since G0, the identity component of G, acts transi-
tively on G/S by left multiplication [7, p. 114] we can suppose that G is con-
nected. If G is solvable it is shown in [13, p. 22] that G can be assumed simply
connected with containing no proper normal analytic subgroup of and with
0, the identity component of , lying in the commutator subgroup of .
A solvmanifold is a connected Klein space G/ where G0 is a solvable analytic

group. From now on will represent a solvable simply connected analytic
group unless specifically indicated to be otherwise. We say S is full in G if S
is not contained in any proper analytic subgroup of G [13, p. 13]. Now sup-
pose that S is not full in G. Then there exists a proper closed analytic sub-
group F in G which contains S. G/S is the bundle space of a fiber bundle
with base G/F and fiber F/S [17, pp. 30-33]. Since G/F is Euclidean [13, p. 22]
G/S is topologically F/S X G/F [13, p. 23]. So, if G/S is a non-compact 3-
dimensional solvmanifold and S is not full in G then G/S is a topological prod-
uct of a Euclidean space and a solvmanifold of dimension less than 3. The
solvmanifolds of dimension less than 3 are a point, line, circle, plane, cylinder,
Moebius band, torus, and Klein bottle [12, p. 634]. Hence if S is not full in
G then G/S is indeed a vector bundle over a compact solvmanifold. Conse-
quently, we make the standing convention that S is full in G unless we specific-
ally indicate otherwise. We make also the following conventions" 9 denotes
the Lie algebra of G, S is a closed subgroup of G whose identity component
So is contained in the commutator subgroup of G, S contains no proper analytic
subgroups of G which are normal in G, $ denotes the Lie algebra of S, N de-
notes the maximum nilpotent analytic subgroup of G, and its Lie algebra.
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We remark that if G is a solvable analytic group then N contains the com-
mutator subgroup of G [2, Cot. 5, p. 67]. If B is a subset of GL (n, R) then [B]
denotes the algebraic group hull of B. If D is a subset of a vector space then
(D) denotes the linear hull of D.

If K is a group and c belongs to K then Fc denotes the map of K -- K given
by Fc (lz) ckc-1. (c) denotes the cyclic group generated by c.
We say that h (in an arbitrary Lie group H) is an exp element if h exp X

for one and only one X in , the Lie algebra of H. The Lie group H is said
to be exponential if exp is a homeomorphism of onto H. For example, a
nilpotent simply connected analytic group is exponential [9, p. 59]. We will
use repeatedly the fact that if G is a simply connected analytic group and if S
is a connected closed subgroup of G then the space G/S is simply connected
[12, p. 617].
We define the rank of G/S to be the rank of the solvable group S/So [15].

THEOREM 1.
a circle.

Every non-compact solvmanifold of rank 1 is a vector bundle over

In the following proof we use the Lemmas 1-7a which appear after the proof
of Theorem 1.

Proof. S Z. So (semi-direct) since S/So is isomorphic to Z, where Z (a)
for some a in S. Since S is full in G and GIN has no torsion SN (a).N
(semi-direct). SN projects onto a cyclic group (c) in GIN. () is contained
in a line group W in GIN. If dim (G/N) > 1 then the lift of W to G is a proper
analytic subgroup of G which contains S, a contradiction of the fullness of S.
Hence dim (G/N) 1. Since SN (a).N, SN is closed in G (Lemma 1).
Hence G/S is a fiber bundle with base the circle G/SN, fiber SN/S and group
SN. SN (a).N and (a).N/(a) N (topologically), which is solid.
Hence the group is reducible to (a) which is contained in S. The fiber
SN/S N/S N N/So 1 (topological equality). Since (a) is con-
tained in S the fiber can be taken as N/So with the group (a) acting by inner
automorphisms. We now suppose that G is an analytic subgroup of GL (n, R)
and that N consists only of unipotent matrices [8, Thm. 3.1, p. 219]. Then
Lemmas 5a and 7a give us that G/S is a vector bundle over a circle. This
concludes Theorem 1 in the event that S is full in G. Now drop the assump-
tion that S be full in G. Assume Theorem 1 is true whenever dim (G) < n.
Suppose dim G n. If S is full in G we already have Theorem 1. Suppose S
is not full in G. Then there exists F, a proper analytic subgroup of G, contain-
ing S. G/S is the bundle space of a fiber bundle with base G/F and fiber F/S.
Since G/F is Euclidean [13, p. 22] G/S G/F X F/S (topologically) [13, p. 23].
Since F is a proper analytic subgroup of G the induction assumption applies
to give us that F/S is a vector bundle over a circle. Therefore the product
G/S G/F X F/S is a vector bundle over a circle. Hence Theorem 1.
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LEMMA 1. Let c be an elenent of a solvable simply connected analytic group G
and let L be a normal analytic subgroup of G. Then (c )L is closed.

Proof. First we show that any cyclic subgroup (c) of G is closed. If c is in
N then (c) is closed since {cn/ exp {n log cl is u closed subset of N where
log c is the unique element of 9 such that exp log c c. If c is not in N then
(c) is sent onto a cyclic subgroup (5) of G/N which is discrete in GIN since
GIN is u vector group. Hence the components of (c)N do not accumulate in
G. Also, a’N a’N implies that n m since GIN has no torsion. Hence if
c"} is a convergent sequence from (c) the n’s are all the same for i sufficiently

large and so (c) is closed. Now G/L is a simply connected solvable Lie group
since L is closed and connected [2, p. 100], [3, p. 127]. (5), the image under the
quotient map :G -- G/L of (c) is a cyclic subgroup of G/L and hence closed.
Therefore -1 (5) (c)L is closed.

LEMMA 2. Let G be a locally compact Hausdorff topological group satisfying
the second axiom of countability and let B be a closed normal subgroup of G. Sup-
pose A and AB are closed subgroups of G and that C is a topological group which
is an abstract subgroup ofA such that i: C-/ A, the inclusion map, is continuous.
Then the transformation group (C, B (A n B)) where C acts on B (A B) by
inner automorphisms is topological; the transformation group (C, AB/A where C
acts by left multiplication is topological; and (C, B/ (A B)) is isomorphic to
(C, AB/B ).

LEMMA 3. If G is exponential then
(a) every analytic subgroup M of G is exponential,
(b) if M is normal then G/M is exponential.

Proof. (a) Let 9 be the Lie algebra of M. Let denote the complement
of 9. G exp 9 exp 9 u exp 9. Hence exp r is a closed subset of G
and therefore is closed in M. Exp restricted to is a one-one continuous map
of i) into the manifold M. Hence exp g is an open subset of M in the topoi-
ogy of M. Since M is connected exp M and so M is exponential.

(b) G/M is simply connected [12, p. 617]. Suppose G/M is not exponen-
tial. Then /i) has a quotient which contains the (unique) 3-dimensional
solvable Lie algebra, 1, which is not exponential [6]. Suppose (9/9)/A is
the quotient. Let ( be the lift of A back to 9 under the natural mapping
:9 "-9/9. Then ( contains 9 and (9/)/A is isomorphic to /( and hence
oo has a quotient containing 91. This contradicts G’s being exponential [6].
Therefore if M is a normal analytic subgroup of G then G exponential implies
that G/M is exponential.

LEMMA 4. Suppose K is a normal analytic subgroup of the simply connected
solvable Lie group H. Let 2 be a subspace of (the Lie algebra of H) supple-
mentary to 3 (the Lie algebra of K). Let be the mapping on 2 - -- H
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defined by
:X Y --. exp X.exp Y,

X in 2 and Y in . If K and H/K are exponential then is a homeomorphism
between 3C and H.

Proof. Suppose exp X exp Y exp X1 exp Y1. Then

exp X exp X exp Y exp (-Y).

Now exp Y exp (-Y) is in K. Using the commutative diagram

we get
HL >H/K

exp’ 2 (exp X)~ (exp X)~ exp’ XI.
Thereforeexp’ X expt. HenceX X Lemma3). X Xtisin

n and so X Xt. Since exp X exp XI, exp Y exp Yt and therefore
Y Y. Hence is one-one. To show that is surjective let h be an arbi-
trary element of H. Then ) exp’ W (Lemma 4) (exp W)~, W in .
Sob expW (modK). Now, W X’+ Y’,X’in2, Y’in. Since
is an ideal in C, exp W exp X’./c [12, p. 620]. Therefore h expX (mod K).

Y" in .Since K is exponential (Lemma 4) h exp X’.exp Y" X’ in ,
Hence b is surjective. Since is continuous we get that is a homeomorphism
between + and H.

COROLLkRY 1. Let M be a simply connected nilpotent analytic group. Let
H be a closed subgroup of M and let W be an analytic subgroup of M which is
normal in H such that H/W is isomorphic to Z. Then there is a Y in the Lie
algebra 9 ofM such that exp {ZY @ ] H where is the Lie algebra of W.

Proof. Let exp Y be a mod W generator of H [9, p. 59].
W in H/W has the form

(exp Y)" exp nY.

If w is in H then

Hence w exp nY.m for some m in W. Since exp Y normalizes W so does
exp tY [11, p. 284]. Hence W is in the analytic group exp {RY } [9].
Hence exp nY.m exp (tY W) exp tY.m’, W in [12, p. 620]. There-
fore exp (n t)Y is in W. Since exp is one-one on RY 2, n t. Hence
Corollary 1.

COROLLARY 2. / (X,/c) --, exp X. k where X is in 2 and k is in K gives a
homeomorphism between 2 X K and H because log K .--. is a homeomorphism
onto.
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COROLLARY 3. Suppose that G is an exponential group and that

G M1DM2DM3D M
is a sub-invariant sequence of analytic subgroups. Let 9E be the Lie algebra of
M and let be a linear supplement to 9E in 9E_I for i 2, 3, ..., p. Then
the map

’’-. Y + X-- exp Y exp Y3...exp Y exp X

is a homeomorphism of 9 onto G where Y is in and X is in 9E.
LEMMA 5. Let M be a unipotent analytic subgroup of GL (n, R ), H a closed

subgroup of M, W an analytic subgroup of M normal in H such that H/W is
isomorphic to Z. Let B be a fully reducible subgroup of GL (n, R) which nor-
malizes M, H and W. Let T denote the real numbers rood Z and let V denote a

finite-dimensional real vector space. Let (B, M/H) denote the transformation
group with action given by B X M/H---,M/H defined by v(b, mH) bmb- H.
Then there exists a V and an action of B on V which is linear and an action of B
on T which satisfies the condition b[ for all b in B and all in T and a
surjective homeomorphism V X T M/H which is equivariant with respect
to the action of B on M/H and the action of B on V X T defined by
b (v, ) (by, b).

Proof. H exp {ZY W} where W is the Lie algebra of W (Cor. 1)
and since exp Y normalizes W so does exp tY for all real [11, p. 284]. Let
Mx [H], the algebraic group hull of H. Mx (exp RY).W (semi-direct)
and is invariant under B [14, p. 205]. Define inductively, M+ normalizer
in M of M. We get a B-invariant sequence of analytic groups,

Wc[H] MCM.C cM M.

C RY -t- 91Z is the Lie algebra of [HI. If b is in B then

b (exp Y)b- 1" (exp Y) exp (=t= Y + W’),

W’ in W (Cor. 1). Hence Adb(Y) :i=Y -+- W’.

Letting iE denote the Lie lgebra ofM we get the AdB-invariuut sequence
c c c c c 91 91. Since Ad is Zariski continuous and

B is fully reducible so is AdB fully reducible. Hence there exists AdB-
invariant subspaces t of 91Z+ and aa element Q in such that
91 t 91Z+1, C RQ B and AdB (Q) RQ. We can therefore
suppose that Y in exp {ZY B / H is chosen so that AdB (Y) =h Y}.

Define
z(b) -t-1 if Adb(Y) Y

--1 ifAdb(Y) -Y.

Let be the isomorphism between T and RY/ZY given by o --* tY @ ZY.



Define the action of B on T by

(b, ) -- (b, () (b, tY @ ZY)
---, tAdb(Y) ZY ta(b)Y @ ZY
---, ta (b a (b [.

Let V -’,. Define the action of B on V by (b, u) -o Adb (u).
Define the action of B on V X T to be the direct product of the two actions
defined ubove. Define the mup V X T ---, M/H by

[-u, [] exp u exp u_ exp tY.H.

LEMMA 5. Let M be a unipotent analytic subgroup of GL(n, R), W an
analytic subgroup of M. Let B be a fully reducible subgroup of GL(n, R)
which normalizes M and W. Let V denote a finite-dimensional real vector sace.
Let (B, M/W) denote the transformation group with action given by
(b, ) ’’-. Then there exists a V and an action of B on V which is linear

and a surjective homeomorphism "V -- M/W which is equivariant with
respect to the action of B on M/W and the action of B on V.

Proof. Similar to the proof for Lemma 5.

LEMMA 6. If B is a solvable subgroup of GL (n, R) and [B] A. U is a
semi-direct product decomposition of [B] into a maximal fully reducible sub-
group A and the group of unipotent matrices of [B] then (BU) A is fully re-
ducible.

Proof. LetC [(BU) a A]. Then (BU) a A C A sinceAisal-
gebraic. The Lie algebra of C is contained in the Lie algebr a of A. Since
each element of a is semi-simple [14: p. 208] so is each element of (. Hence

is fully reducible and so C is fully reducible [14, p. 206]. Since a linear
group is fully reducible if and only if its algebraic group hull is fully reducible,
(BU) A is fully reducible.

Let M and H be as in Lemm 5.

LEMMA 7. Let M be a unipotent analytic subgroup of GL (n, 1). Let B
be a solvable topological group which is an abstract subgroup of GL (n, I ) such
that i B GL (n, I is continuous (i the inclusion map). Suppose B nor-
malizes M and H.

(0) Then (B, M/H) is a topological transformation group and
(1) if 5 is a fiber bundle having structure group and fiber (B, M/H) then

the structure group ofd may be replaced by afully reducible subgroup of GL (n, I ).

Proof. (0) Since M is a unipotent analytic group it is algebraic [5, Prop.
17, p. 127] and so is a topological subgroup of GL(n, 1). The mapping
B X M -- M given by (b, m) bmb- is the composition of the maps in
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the sequence"

BXM iXil rGL(n, R) X GL(n, R) GL(n, R)

where i, i, are inclusion maps and r (g, h) ghg-I. Hence is continuous.
Since B normalizes H the map :B X M/H M/H given by
(b, r) , (b, m).H is continuous and so (B, M/H) is a topological trans-

formation group.
(1) As in the proof of Lemma 5, AdB leaves 9r6 and ZY @ %V invariant

andAdb(Y) d=Y + Wb, W in %V, for all b in B. LetW1, ...,W, bea
basis for W. Let X, ..-, X be a basis for a subspace of supplementary
to . Then if b is in B, Adb on has a matrix with respect to

as follows"
{X, ..., X, Y, W, ..., W:}

Xl

Zl

Y, W1, Wr
0 0 0

0 0 0
0 0

where +/-i. Hence Adb on satisfies the algebraic conditions

u,+.,+- 1 0;

u..+ 0, l_<j<_ l;

u.,=O, 1_< k <_ l-l-1,

for all b in B. Hence [AdB] leaves 9r6 and ZY 9 "42 invariant. Since Ad
is continuous in the Zariski topology and B is contained in Ad-[AdB] so is [B].
If c is in [B] then Adc(Y) mY + W’, W’ in %V. Therefore Fc(exp Y)
exp Adc(Y) exp (=hY -b W’) is in H and so [B] normalizes M and H. Let
[B] A. U (semi-direct) where A is a maximal fully reducible subgroup of
[B] and U is the group of unipotent matrices [14, p. 217]. If we put the rela-
tive GL(n, R)-topology on BU then (BU, M/H) is a topological transforma-
tion group with the elements of BU acting on M/H by conjugation. If {g}
is a set of coordinate transformations for the bundle (B then, since i B --, BU
is continuous, the set {i o gz} is a set of coordinate transformations for (B

with the larger group BU as structure group. Because A is an algebraic
subgroup of GL (n, R) A n BU is closed in BU.
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BU (A r BU). U U (topologically).
A r BU A n BU

But U is solid [14, p. 205] and so the group BU for (B is reducible to the
group A n BU which is a fully reducible group by Lemma 6.

LEMMA 7a. Let M be a unipotent analytic subgroup of GL (n, R ). Let B be a
solvable topological group which is an abstract subgroup of GL (n, R) such that
i" B ---. GL (n, R) is continuous (i the inclusion map). Suppose B normalizes
M and W.

(0) Then (B, M/W) is a topological transformation group and
(1) if 6 is a fiber bundle having structure group and fiber (B, M/W) then

the structure group of6 may be replaced by afully reducible subgroup ofGL (n, R ).

Proof. Same as for Lemma 7 but simpler.

THEOREM 2. Every non-compact 3-dimensional solvmanifold is a vector bundle
over a compact solvmanifold. This results from the following Lemmas 8, 9, 10,
12, 13 and Theorem 1.

LEMMA 8.1 If G is 3-dimensional then G contains no discrete S Z such that
S N (e), the identity subgroup of G.

Proof. We first remark that G is not nilpotent. For suppose that G is
nilpotent. Then S full implies that S is uniform which implies that rnk
(S) 3. This contradicts S Z [11, p. 291]. Hence dim (G/N) 1
[10, p. 12]. Since S n N (e), SN/N is algebraically isomorphic to Z*.
Hence if SN/N is discrete in GIN then dim (G/N) > 1, a contradiction.
Therefore SN/N is dense in GIN and so G. Hence there exists a
regular element b in S which lies on a 1-parameter subgroup (t) of G [13,
p. 12]. Let B be the centralizer of b Since b is regular , (t) is not contained
in N and since , (t c B, BN G. Since B is a closed subgroup of G, BIB N
is homeomorphic to BN/N. Because B N is the centrali.er in N
of b exp X, and because N is exponential and GIN is a vector group it
follows that B N is connected. Hence B is connected. But S is abelian
and therefore lies in B. Since S is full B G and so S lies in the center of G.
Since

AdG Ad-f c AdSN AdN,

AdG is nilpotent nd therefore G is nilpotent. But this contradicts
dim(G/N) 1. Hence Lemma 8.

Recall the hypotheses" dim G/S 3, So is contained in N, and S is full in G.

LEMMA 9. If S/So is isomorphic to Z, S N So, and dim So >_ 1 then
G/S is a line bundle over a torus.

The proof of Lemma 8 which appears here is due to G. D. Mostow.
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Proof. (a) Let L be the normalizer of S0. Suppose L0, the identity
component of L, has codimension 2 in G. Since L is closed in G and S is
contained in L the components of L do not accumulate in G and so SLo,
a union of components of L, is closed in G. Hence G/S is the bundle space of a
fiber bundle with base G/SLo and fiber SLo/Lo. Let M denote the normalizer
in N of So. Since M is connected [11, p. 284], M is contained in L0. Since
So is contained properly in N the normalizer in N contains So properly [2, p.
56]. Therefore the codimension of M in G must be less than or equal to 2.
Since the codimension of L0 in G is 2, M L0. Therefore, since S n N So,
S n L0 So. Hence SLo/S LoIS Lo Lo/So R (topological equality).
Since R is solid the group of the bundle is reducible to S [17, p. 56]. Since
G/SLo is a 2-dimensional solvmanifold whose fundamental group SLo/Lo is
Z then G/SLo is a toms, T [12, p. 624]. The fiber can be taken to be
LoIS r Lo Lo/So and the group of the bundle to be r S/S. where S is
the intersection of all the isotopy subgroups of S, S acting on Lo/So by inner
automorphisms. Let be the Lie algebra of L0. Since $ is an ideal of codi-
mension 1 in 2 there is a mapping, e, the exponential of the 1-dimensional
Lie algebra /$ onto the vector group Lo/So, which is an isomorphism between
4/$ and Lo/So. Now,

exp Ads() , ’ ()

where -s denotes the 2/S-part of Ads. Hence ex-- provides an isomorphism
between the topological transformation groups ([-dS, /$) and (1, Lo/So).
Hence the fiber and group of the bundle are a vector space and a linear group,
respectively. Therefore in case (a) G/S is a vector bundle over a toms.

(b) Note now that S c L0 because S is full in G (standing hypothesis).
Suppose Lo has codimension 1 in G. We first show that (S (N L0)) Lo
has rank 1 in Lo. G/S is a fiber bundle with G/SLo (a circle) for base and

SLo/S (Lo/So)/ (S Lo/So)

for fiber. If S r Lo/So has rank 2 then LoIS r Lo T which contradicts
G/S noncompact. Therefore S n L0 Z.So (semi-direct) and so

(SaLo)(NL0) Z.(NnL0)

is closed in Lo (with Z contained in S Lo).
connected [4] and so Lemma 1 applies. Now

This holds because L0 is simply

(SnLo).(NnL0) (S(NnL0))nLo

since N n L0 c L0. Therefore, (S (N n L0)) n L0 is closed in L0. Since the
components of a closed Lie subgroup are separated S (N n L0) is closed in SLo.
Therefore, since SLo is closed in G, S (N n Lo) is closed in G. Hence G/S
is a bundle with base G/S (N n Lo) and fiber S (N n Lo)IS. Since G/S (N n Lo)
is a 2-dimensional solvmanifold with fundamental group Z it is a torus [12
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p. 624]. S (N Lo)/S is homeomorphic to

N Lo/S (N a Lo) N Lo/So.
Since the normalizer in N of So is connected [11, p. 284], N L0 is connected
and hence N Lo/So is a line. Hence the group of the bundle is reducible to
S, acting by inner automorphisms on N Lo/So. Just as in case (a)
provides an isomorphism between (1"S, 9 2/$) and (r, N Lo/So) where
AdS denotes the 9 2/S-part of AdS and r is the N a Lo/So-part of the group
of inner automorphisms on G determined by S. Hence G/S is a line bundle
over a torus.

LEMMA 10. If G/S is a non-compact three-dimensional solvmanifold such
hat S/So is isomorphic to Z.Z (semi-direct, non-abelian), then G/S is a line
bundle over the Klein bottle.

Proof. S/So (c). () (semi-direct) with -b-- -. Let a and b
be representatives of g and , respectively, aba- b- mod S0. Since So
is normal, in S, aba-b- b- mod S0. Hence b is contained in N. Since
the vector space GIN has no torsion b is in N. Therefore (b) is contained in
N, and so SN (a)(b)So N (a)N. If a is in N then S is not full in G,
a contradiction. Since GIN has no torsion, a is not in N for n 0. Hence
SN (a).N, semi-direct. Since SN projects onto a cyclic subgroup of the
vector group G/N, SN is closed. Therefore G/S is a fiber bundle with base
G/SN, fiber SN/S, and group SN acting on SN/S by left translations.

(a).N is contained in a 1-parameter subgroup R of the vector group GIN.
The pre-image of R is a connected closed subgroup R of G containing S.
Since S is full, this shows R- G. But then GIN R and so dim (G/N) 1.
Hence G/SN G/N/(SN/N) is the circle T. Since G is simply connected
and solvable we can assume that G is given as an analytic subgroup of
GL (n, R) with N unipotent [8, p. 219]. By Corollary 1 and Lemmas 5 and 7
we have that G/S is a fiber bundle over a circle with fiber V T, V a vector
space, T R/Z, and group B acting on V T as follows" b (v, ) (by, b)
with B acting linearly on V and acting as Z on T. Since the action on V T
by B is the direct product of the actions of B on V and T it follows that G/S
is a fiber bundle with fiber V, structure group linear on V, and a base K which
is a circle bundle over d circle [18, p. 712]. Hence K is a torus or a Klein
bottle. Hence G/S is a line bundle over a torus or a Klein bottle. Use of the
exact homotopy sequence [17, 15] gives us that II(G/S) is injected into
II of the base. If the base were a torus then II (G/S) would be abelian. This
contradiction gives the assertion of Lemma 10.

LEMMA 11. If S N is not connected and S/So is isomorphic to Z then
SN (c N (semi-direct) where (c is a cyclic subgroup of S.

Proof.
2 rank (S/So) rank (S N)/So - rank S/(S N) ([15]).
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Since G/N has no torsion, rank S/S a N 0 implies that S/S N (e)
which contradicts the fullness of S in G. Therefore rank SIS a N >_ 1. If
rank S N/So 0 then S N/So has only torsion elements. S a N is con-
tained in the normalizer M in N of So which is connected [11, p. 284]. The
quotient M/So is a simply connected nilpotent Lie group [12, p. 617] und hence
has no torsion. Therefore rank S N/So 0 implies thut S N is connected
which contradicts hypothesis of this lemmu. Hence rank SIS N >_ 1.
Since rank S/So 2, rnk SIS N 1 rnk S N/So. Since SIS N
has no torsion SIS r N is isomorphic to Z. By selecting any c in S which is a
mod S a N generator of SIS N we have SN (c).N semi-direct.

:LEMMA 12. If G/S is a non-compact three-dimensional solvmanifold such that
S/So is isomorphic to Z and S N is not connected then G/S is a line bundle
over a torus.

Proof. By Lemma 11, SN (c).N (semi-direct) with (c) contained in S.
Since the base of a vector bundle is a deformation retract of the bundle the
fundamental group of G/S must be the same as the fundamental group of the
base. Arguing as in the proof of Lemma 10 we have that the base is either a
Klein bottle (with fundamental group Z.Z Z) or a torus. Hence Lemma
12.

LEMMA 13. If G/S is non-compact then S/So is isomorphic to (e ) (the group
of only one element) Z, Z, or Z.Z (the fundamental group of the Klein bottle).

Proof. Let X K X V be a regular finite abelian covering space of G/S
where K is a compact solvmanifold nd V is Euclidean space [13, p. 25].
Let 1 and II be the fundamental groups II (K V) and II (G/S), respec-
tively. Since K V is u covering of G/S there exists an iniection of 12 into
II. We identify I2 with its image II. II/I] is isomorphic to A, a finite abelian
group. Since the fundamental group of a solvmanifold is finitely generated
solvable group [15] we huve rank (H/I]) rank A 0 rank II rank 12
[15]. Since 1 II(K X V) II(K) and dimension of K < dim (G/S)
the rnk of II equals the rank of the fundamentul group of a compact solvmani-
fold of dimension less than 3. All the fundamental groups for the solvmani-
folds of dimension less than 3 are (e), Z, Z, Z. Z [12, p. 624]. Hence the rank
of II _< 2. For II there is the following exact sequence

(s)" e--A--II--Z--e
where z is the fundamental group of a nilmanifold [1, p. 6]. Therefore

2 >_ rank II rank A q- rank Z rank h q- k [15].

For the case where ]c I and rank of II 2 we have rak A i and therefore
A Z [1, p. 5]. Hence (s) ise-+Z--+II-+Z-->e. ThereforeH/g Z
and (s) is split. Since Z has only two automorphisms II Z or Z.Z. Hence
II (e), Z, Z, or Z.Z.



196 A.w. CURRIER

Added in proof. L. Auslander and R. Tolimieri have recently proved that
all solvmanifolds are vector bundles over compact solvmanifolds. See their
paper Splitting theorems and the structure of solvmanifolds in the July 1970
Annals of Mathematics.
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