FIELDS OF MODULAR FUNCTIONS OF GENUS 0

BY

JOSEPH B. DENNIN, JR.

1. Introduction

Let Γ be the group of linear fractional transformations

 $w \rightarrow (aw + b)/(cw + d)$

of the upper half plane into itself with integer coefficients and determinant 1. Γ is isomorphic to the 2 \times 2 modular group, i.e. the group of 2 \times 2 matrices with integer entries and determinant 1 in which a matrix is identified with its negative. Let $\Gamma(n)$, the principal congruence subgroup of level n, be the subgroup of Γ consisting of those elements for which $a \equiv d \equiv 1$ (n) and $b \equiv c \equiv 0$ (n). G is called a congruence subgroup of level n if G contains $\Gamma(n)$ and n is the smallest such integer. G has a fundamental domain in the upper half plane which can be compactified to a Riemann surface and then the genus of G can be defined to be the genus of the Riemann surface. H. Rademacher has conjectured that the number of congruence subgroups of genus 0 is finite. D. McQuillan [6] has shown that if n is relatively prime to $2 \cdot 3 \cdot 5$, then the conjecture is true. In this paper, we show that the number of subgroups of levels 5^n and 3^n , $n \ge 1$, of genus 0 is finite and list explicitly which ones they are.

Consider $M_{\Gamma(n)}$, the Riemann surface associated with $\Gamma(n)$. The field of meromorphic functions on $M_{\Gamma(n)}$ is called the field of modular functions of level n and is denoted by K(n). If j is the absolute Weierstrass invariant, K(n) is a finite Galois extension of C(j) with $\Gamma/\Gamma(n)$ for Galois group. Let SL(2, n) be the special linear group of degree two with coefficients in Z/nZand let $LF(2, n) = SL(2, n)/\pm Id$. Then $\Gamma/\Gamma(n)$ is isomorphic to LF(2, n). If $\Gamma(n) \subset G \subset \Gamma$ and H is the corresponding subgroup of LF(2, n), then by Galois theory H corresponds to a subfield F of K(n) and the genus of F equals the genus of G.

The following notation will be standard. A matrix

$$\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

will be written $\pm(a, b, c, d)$.

$$T = \pm (0, -1, 1, 0); \quad S = \pm (1, 1, 0, 1); \quad R = \pm (0, -1, 1, 1).$$

T and S generate LF(2, n) and R = TS. F will be a subfield of K(n) containing C(j) and H, the corresponding subgroup of LF(2, n). g(H) = the genus of H and h or |H| = the order of H. [A] or $[\pm (a, b, c, d)]$ will denote the group generated by A or $\pm (a, b, c, d)$ respectively.

Received February 4, 1969.

We now concentrate on $LF(2, p^n)$, p > 2, whose order is $p^{3n-2}(p^2 - 1)/2$. McQuillan [6] obtained the following formula for the genus of H.

Let r, t and $s(p^r)$ be the number of distinct cyclic subgroups of H generated by a conjugate in $LF(2, p^n)$ of R, T and S^{p^r} respectively where $1 \le p^r < p^n$. Then

(1.1)
$$g(H) = 1 + p^{2n-2}(p^2 - 1)(p^n - 6)/24h - p^{n-1}(p - (-3/p))r/3h - p^{n-1}(p - (-1/p))t/4h - p^{2n-2}(p - 1)^2W/4h$$

where $W = \sum s(p^r)$. One immediate consequence of this is that if two groups are conjugate, they have the same genus.

We also need the following results from Gierster [2] which is a chief source of information on $LF(2, p^n)$, p > 2.

LEMMA 1.1. Suppose p > 2. An element of $LF(2, p^n)$ is conjugate to T if and only if its trace is 0. Consequently every element of order 2 is conjugate to T and has the form $\pm (a, b, c, -a)$ where $-a^2 - bc \equiv 1 (p^n)$. An element of $LF(2, p^n)$ is conjugate to R if and only if its trace is 1.

Let f_r^n be the natural homomorphism from $LF(2, p^n)$ to $LF(2, p^r)$, 0 < r < n, given by reducing an element mod p^r . The kernel of this homomorphism is denoted by K_r^n and has order $p^{\mathfrak{d}(n-r)}$.

PROPOSITION 1.1. If $H \cap K_{n-1}^n$ is the identity, $H \cap K_r^n$ is the identity for $r = 1, \dots, n-2$.

PROPOSITION 1.2. If $|H \cap K_{n-1}^n| = p$, then $H \cap K_1^n$ is cyclic and

$$|H \cap K_1^n| \le p^{n-1}$$

PROPOSITION 1.3. If $|H \cap K_{n-1}^n| = p^2$, then $H \cap K_1^n$ is generated by two transformations U and U' of order p^{n-r} and $p^{n-r'}$ respectively and

$$|H \cap K_1^n| = p^{2n-r-r}$$

 $So \mid H \cap K_1^n \mid \leq p^{2n-2}.$

We use the groups K_r^n to define the concept of level for H. H is of level p^r if H contains K_r^n and does not contain K_{r-1}^n . Similarly we say a subfield F of $K(p^n)$ is of level p^r if F is a subfield of $K(p^r)$ and not a subfield of $K(p^{r-1})$. Note that F is of level p^r if and only if its Galois group is of level p^r .

For each r, K_r^n is a normal subgroup of $LF(2, p^n)$ and if p > 3, these are all the normal subgroups of $LF(2, p^n)$ [5]. Since K_r^n is normal, $H \cdot K_r^n$ is a subgroup of $LF(2, p^n)$ and we have the following useful formulas:

(1.2) $|H \cdot K_r^n| = |H| |K_r^n| / |H \cap K_r^n|$

(1.3)
$$|H \cap K_r^n| = |H| |K_r^n| / |H \cdot K_r^n|.$$

In addition to the propositions from Gierster [2], we also use his tables extensively and when we use the phrase "by Gierster" we are referring to this paper. Gierster writes an element of K_r^n :

$$U_r = \varphi(\mu, \nu, \rho)_r \equiv (u + p^r \mu, p^r \nu, p^r \rho, u - p^r \mu) \mod p^n$$

where μ , ν , ρ belong to the set of residues mod p^{n-r} ,

$$u^2 \equiv 1 + 2^{2r}(\mu^2 + \nu\rho) \mod p^n$$
 and $u \equiv 1$ (p).

A final group we find useful is the one generated by K_1^n and S which we denote by E and which has order p^{3n-2} .

To compute the genus of H, we have to calculate r, t and $s(p^r)$. Lemma 1.1 and the Sylow theorems are very useful in calculating r and t. We now give a method for calculating $s(p^r)$. Note a conjugate of S^{p^r} has the form

$$\pm (1 - p^{r}ac, p^{r}a^{2}, -p^{r}c^{2}, 1 + p^{r}ac).$$

LEMMA 1.2.

$$(1 - pac, pa^2, -pc^2, 1 + pac)^k = (1 - kpac, kpa^2, -kpc^2, 1 + kpac)$$

Proof. Induction on k.

LEMMA 1.3. Suppose A is a subgroup of $LF(2, p^n)$ and A is conjugate to $[S^{p^r}]$ where $0 \le r \le n-1$. Then A contains an element conjugate to S^{p^r} ,

 $\alpha = \pm (1 - p^{r}ac, p^{r}a^{2}, -p^{r}c^{2}, 1 + p^{r}ac).$

If $(a, p^n) = 1$, then A contains one and only one element of the form $\pm (x, p^r, y, z)$.

Proof. Consider

$$\{\alpha^k\} = \{\pm (1 - kp^r ac, kp^r a^2, -kp^r c^2, 1 + kp^r ac)\}, \qquad 1 \le k \le p^{n-r}.$$

Since $(a^2, p^n) = 1$, the set $\{ka^2\}$ consists of the p^{n-r} different elements of $Z/p^{n-r}Z$ and so $ka^2 = 1$ for exactly one k.

LEMMA 1.4. Suppose $\pm(x, p^r, y, z)$ belongs to a group conjugate to $[S^{p^r}]$. Then $\pm(x, p^r, y, z)$ is conjugate to S^{p^r} and further if

$$\pm (a, b, c, d) \cdot \pm (1, p^{r}, 0, 1) \cdot \pm (a, b, c, d)^{-1} = \pm (x, p^{r}, y, z),$$

then $(a, p^n) = 1$.

Proof. If $\pm(x, p^r, y, z)$ is conjugate to $\pm(1, s_0 p^r, 0, 1)$, then

$$p^r \equiv s_0 a^2 p^r \ (p^n)$$

for some a. Thus (a, p) = 1 and s_0 is a quadratic residue mod p^{n-r} . But $\pm (1, s_0 p^r, 0, 1)$ is conjugate to S^{p^r} if and only if s_0 is a quadratic residue mod p^{n-r} .

PROPOSITION 1.4 Any group A conjugate to $[S^{p^r}]$, where

 $\pm (1 - p^{r}ac, p^{r}a^{2}, -p^{r}c^{2}, 1 + p^{r}ac)$

444

is an element of A and $(a, p^n) = 1$, contains one and only one element of the form $\pm(x, p^r, y, z)$ and it is conjugate to S^{p^r} .

Thus if it is known that, for conjugates of $\pm (1, p^r, 0, 1)$, (a, p) = 1, to calculate $s(p^r)$ it is sufficient to set a = 1 and see how many choices of c yield distinct elements of $LF(2, p^n)$. In particular, this is the case if it can be shown that p divides c since $ad - bc \equiv 1$ (p^n) .

2.
$$LF(2, 5^n)$$

Let $H' = \{\pm (x, y, 0, z)\}$ where x, y, z belong to the set of residues mod 25 and $xz \equiv 1$ (25).

THEOREM 1. The only subfields of $K(5^n)$, $n \ge 1$, which have genus 0 are the subfields of K(5) and the following two classes of subfields of K(25) of level 25: (1) $\{k_1\}$ where $G(K(25) | k_1)$ has order 250 and is conjugate to H'; (2) $\{k_2\}$ where $G(K(25) | k_2)$ has order 125 and is conjugate to $H' \cap E$.

Note that all subfields of K(5) have genus 0 since a subfield of a field of genus 0 has genus 0. The rest of the proof will follow from propositions 2.1 and 2.2.

Suppose that H is a subgroup of $LF(2, 5^2)$ of level 25. Then $|H \cap K_1^2| \leq 5^2$ and so $|H \cdot K_1^2| \geq |H| \cdot 5$ which implies that $|H| \leq 5^3 \cdot 12$. By using formula 1.1, Sylow to get upper bounds on t and r, Sylow and Gierster to get upper bounds on W and the fact that $g(H) \geq 0$, we calculate that g(H) > 0if |H| = 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60 or 75. In this section, r_0 will denote a fixed non-zero residue mod 5.

LEMMA 2.1. If $|H| = 5^2 \cdot 12$ or $5^3 \cdot 12$, then $g(H) \neq 0$.

Proof. Suppose $|H| = 5^2 \cdot 12$. Then, by formula 1.2, $|H \cap K_1^2| \ge 5$. If $|H \cap K_1^2| = 5$, then $H \cdot K_1^2 = LF(2, 25)$ and $H \pmod{5} = LF(2, 5)$. So H contains K_1^2 [6,484] which is a contradiction. If $|H \cap K_1^2| = 25$, H is of the third type [2,353]; but there are no groups of order $12 \cdot 5^2$ of the third type [2,357-360]. Suppose $|H| = 5^3 \cdot 12$. Then $|H \cap K_1^2| = 25$ which implies that $|H \cdot K_1^2| = 5^4 \cdot 12$. So $H \pmod{5} = LF(2, 5)$ implying H contains K_1^2 , a contradiction.

LEMMA 2.2 If
$$|H| = 5^3 \cdot k$$
, $k = 3, 4, 6 \text{ or } 10$, then $g(H) \neq 0$.

Proof. Since, if $|H \cap K_1^2| < 25$, $|H \cdot K_1^2|$ would be greater than $|LF(2, 5^2)|, |H \cap K_1^2| = 25$. If $|H| = 5^3 \cdot 3$ or $5^3 \cdot 4, |H \cdot K_1^2| = 5^4 \cdot 3$ or $5^4 \cdot 4$ and so $H(\mod 5) = 15$ or 20. But LF(2, 5) has no subgroups of order 15 or 20. If $|H| = 5^3 \cdot 6$ or $5^3 \cdot 10$, then $|H \cdot K_1^2| = 5^4 \cdot 6$ or $5^4 \cdot 10$. But $LF(2, 5^2)$ has no such subgroups.

LEMMA 2.3. If $|H| = 5^2 \cdot 4$, $g(H) \neq 0$.

Proof. Note that $|H \cap K_1^2| = 5$ or 25. If $|H \cap K_1^2| = 5$, $|H \cdot K_1^2| = 5^4 \cdot 4$

and so $|H \pmod{5}| = 20$ which is impossible. If $|H \cap K_1^2| = 25$, then $g(H) = (115 \cdot t \cdot 20W)/20$. By Sylow, $t \leq 75$ and by Gierster pp. 329-330, $W \leq 2$. Thus g(H) = 0 if and only if W = 2 and t = 75. We show that t < 75.

Let $B = \{\text{identity}, T, \pm (7, 0, 0, -7), \pm (0, 7, 7, 0)\}$ and let A be a subgroup of H of order 4. Since, by Sylow, A and B are conjugate and since conjugate groups have the same genus, we may assume that, by conjugating H, B is a subgroup of H. Further note that $(H \cap K_1^2) \cdot B$ has 100 elements and so $H = (H \cap K_1^2) \cdot B$. So in order to obtain 75 elements of order 2 in H, it is necessary that each element (\neq identity) of B yield 25 elements of order 2 when multiplied by $(H \cap K_1^2)$.

$$K_1^2 \cdot T = \{ \pm (-5y, 1 - 5x, 1 + 5x, 5z) \}$$

where x, y, z describe all values mod 5. The 25 elements of order 2 in this set are given by $y \equiv z(5)$; so

$$(H \cap K_1^2) = \{ \pm (1 - 5x, 5y, 5y, 1 + 5x) \}.$$

But then

$$(H \cap K_1^2) \cdot \pm (0, 7, 7, 0) = \{ \pm (10y, 7 - 10x, 7 + 10x, 10y) \}$$

yields only 5 more elements of order 2 given by y = 0. So t < 75.

LEMMA 2.4. If $|H| = 5^2 \cdot 6$, $g(H) \neq 0$.

Proof. $|H \cap K_1^2| = 5$ or 25. If $|H \cap K_1^2| = 5$, then $|H \cdot K_1^2| = 5^4 \cdot 6$ which is impossible. If $|H \cap K_1^2| = 25$,

 $W \leq 2[2,329-330]$ and g(H) = (125-r-t-20W)/30.

So if g(H) = 0 we have 3 possibilities: W = 0 and r + t = 125; W = 1 and r + t = 105; W = 2 and r + t = 85. But by Sylow, $r + t \neq 105$ or 85 and if r + t = 125, t = 75 and r = 50. Thus if g(H) = 0, the only possible orders for elements of H are 2, 3 and 5. But $H \pmod{5}$ is a dihedral group of order 6 containing 3 elements of order 2. So each element of order 2 in $H \pmod{5}$ must have 25 elements of order 2 in its pre-image in H. Therefore in H, any element of order 2 multiplied by $H \cap K_1^2$ has to yield 25 elements of order 2.

As in Lemma 2.3, we may assume T is in H and so to get 25 elements of order 2 from $(H \cap K_1^2) \cdot T$, $H \cap K_1^2$ has to be

$$\{\pm (1 - 5x, 5y, 5y, 1 + 5x)\}.$$

To get t = 75, we must find 2 elements of order 2 in addition to T which, when multiplied by $H \cap K_1^2$, will yield 25 elements of order 2 different from those in $(H \cap K_1^2) \cdot T$. Now

$$(H \cap K_1^2) \cdot \pm (a, b, c, -a) \\ = \{a - 5ax + 5yc, b - 5bx - 5ya, 5ya + c + 5ax, -a - 5ax + 5yb\}.$$

So we wish to find a, b, c such that $-10ax + 5yc + 5yb \equiv 0$ (25) for x, $y = 0, \dots, 4$. If x = 0, we need $(c + b) \equiv 0$ (5). If y = 0, we need $a \equiv 0$ (5). Further, from the determinant, we need $a^2 + bc \equiv -1$ (25). So we have to solve simultaneously $(c + b) \equiv 0$ (5) and $-bc \equiv 1$ (25). The only solutions are the pairs $\{1, -1\}, \{4, 6\}, \{9, 11\}$ and their negatives. The elements of order 2 corresponding to these pairs all belong to $(H \cap K_1^2) \cdot T$. So t < 75 and g(H) > 0.

LEMMA 2.5. If $|H| = 5^3 \cdot 2$, then g(H) = 0 if and only if H is conjugate to H'.

Proof. Note $|H'| = 5^3 \cdot 2$ and g(H') = 0 since t = 25 and W = 6, the 25 elements of order 2 being given by $\{\pm (7, y, 0, -7)\}$ where $0 \le y \le 24$ and the 6 groups contributing to W being generated by

$$\pm (-4, 1, 0, 6), \ \pm (-9, 1, 0, 11), \ \pm (11, 1, 0, -9), \ \pm (6, 1, 0, -4), \ \pm (1, 1, 0, 1) \text{ and } \ \pm (1, 5, 0, 1).$$

In general if $|H| = 5^3 \cdot 2$, $|H \cap K_1^2| = 25$ and so *H* is of type 3. So there are 2 possibilities for *H*, [2,357-360]. First *H* could be one of 30 conjugate $G_{250}''(I, I)_0$ containing $1(1, 2)(I, I)_0$ and 25 $G_{10} \cdot H'$ is an example of this type and so all these groups have genus 0.

Second, *H* could belong to one of 4 types of 30 conjugate $G''_{250}(I, I', 1)_0$ containing 1(1, 2)(I, I', 1) and 25 G_{10} . So to calculate *W*, it is necessary to investigate a(1, 2)(I, I', 1). In $LF(2, 5^2)$, there are 4 given by

$$\{\pm (1 + 5(\xi + z), \xi, 5r_0\xi, 1 - 5(\xi + z))\}$$

where z describes all values mod 5 and ξ all values mod 25. The 4 different groups correspond to choices for r_0 .

Recall a conjugate of S^r has the form

$$\pm (1 - 5^{r}ac, 5^{r}a^{2}, -5^{r}c^{2}, 1 + 5^{r}ac)$$

where at least one of a and c is not congruent to 0 mod 5. So if a conjugate of S belongs to $(1, 2)(I, I', 1)_0$, $-c^2 \equiv 5r_0\xi$ (25) so that 5 divides c so that $-c^2 \equiv 0$ (25) so that $5r_0\xi \equiv 0$ (25) which, together with $r_0 \neq 0$ (5) implies that $\xi \equiv 0$ (5) so that $a^2 \equiv 0$ (5) which is a contradiction since then 5 divides both a and c. If a conjugate of S^5 belongs to $(1, 2)(I, I', 1)_0$, $5r_0\xi \equiv -5c^2$ (25) and $5a^2 \equiv \xi$ (25) so that $0 \equiv 25r_0a^2 \equiv -5c^2$ (25). Thus 5 divides c so that (a, 5) = 1. By Proposition 1.4, we let a = 1 and find there is only one conjugate of $[S^5]$ in $(1, 2)(I, I', 1)_0$, namely $[S^5]$ itself. Thus W = 1 and g(H) = (125 - t)/50 = 0 if and only if t = 125. But H contains 124 elements of order divisible by 5 in $(1, 2)(I, I', 1)_0$ and at least one element of order 10 in G_{10} . Since $|H| = 250, t \neq 125$ and $g(H) \neq 0$.

LEMMA 2.6. Suppose $|H| = 5^3$ and $H \neq K_1^2$. Then g(H) = 0 if and only if H is conjugate to $H' \cap E$.

Proof. First observe that g(H) = (24 - 4W)/5. Also note, from Gierster, pp. 345–352, that any group of order $5^3 \ (\neq K_1^2)$ can be gotten by intersecting a group of order 250 with E. So we must consider a $(1, 2)(I, I)_0$ and a $(1, 2)(I, I', 1)_0$. From Lemma 2.5, we see that $H' \cap E$ is an example of the first type so that W = 6 and g(H) = 0. We also see that in the second case W = 1 and g(H) = 4.

From Lemmas 2.1 to 2.6, we now have

PROPOSITION 2.1. There exist two classes of subfields of K(25) of level 25, $\{k_1\}$ and $\{k_2\}$, which have genus 0. These are distinguished by the fact that $G(K(25) | k_1)$ has order 250 and is conjugate to H' and that $G(K(25) | k_2)$ has order 125 and is conjugate to H' $\cap E$.

LEMMA 2.7. If F is a subfield of K(125) and $F_1 = F \cap K(25)$ is contained in K (5), then F is contained in K (5).

Proof. Note that since F_1 is a subfield of K(5), F_1 equals $F \cap K(5)$ so that

$$H \cdot K_1^3 = H \cdot K_2^3 = G(K(125) \mid F_1).$$

Also $G(K(5) | F_1)$ has order $5^k \cdot m$ where k = 0; m = 1, 2, 3, 4, 6 or 12 or k = 1; m = 1, 2, 12. We show that F is a subfield of K(25) which is sufficient since $F \cap K(25)$ is a subfield of K(5). If F is not a subfield of K(25), then

$$|H \cap K_2^3| = |(H \cap K_1^3) \cap K_2^3| = 1, 5 \text{ or } 25.$$

Using the fact that $|H \cdot K_2^3| = |H \cdot K_1^3| = 5^6 \cdot 5^k \cdot m$ and formula 1.2, we see that $|H| = 5^3 \cdot 5^k \cdot m$, $5^4 \cdot 5^k \cdot m$ or $5^5 \cdot 5^k \cdot m$ as $|H \cap K_2^3| = 1$, 5 or 25. But then by formula 1.3, $|H \cap K_1^3| = 5^3$, 5^4 or 5^5 which contradicts Proposition 1.1, 1.2, or 1.3 respectively.

Remark. This type of argument, using the orders of the various groups obtained from H and K_r^n , formulas 1.2 and 1.3 and Propositions 1.1–1.3, will be used frequently and will be referred to as the usual argument using Propositions 1.1–1.3.

LEMMA 2.8. Suppose F is a subfield of K(125) of genus 0 so that $F_1 = F \cap K(25)$ also has genus 0. If the level of F_1 is 25, F is contained in K(25).

Proof. Since the level of F_1 is 25, $H_1 = G(K(25) | F_1)$ is conjugate to H' or $H' \cap E$. If F is not a subfield of K(25), $|H \cap K_2^3| = 1$, 5 or 25. If $|H \cap K_2^3| = 1$ or 5, the usual argument using Proposition 1.1 or 1.2 leads to a contradiction. If $|H \cap K_2^3| = 25$, then $|H \cap K_1^3| = 5^4$ by the standard calculations using formulas 1.2 and 1.3.

Suppose H_1 is conjugate to $H \cap E$. Then $|H| = 5^5$ and H is either a $(2, 3)(I, I)_0$ or a $(2, 3)(I, I', 1)_0$ [2, pp. 345-352]. An example of the first is given by $\{\pm (u + 5z, \xi, 0, u - 5z)\}$ where ξ describes all values mod 125 and z all values mod 25. Using Proposition 1.4, we see that H contains 5

conjugates of [S] (given by a = 1 and c = 0, 25, 50, 75, 100); 5 conjugates of [S⁵] given by a = 1 and c = 0, 5, 10, 15, 20) and 1 conjugate of [S²⁵] (a = 1, c = 0). So W = 11 and g(H) = 16. An example of the second is given by $\{\pm (u + 5z, \xi, 5r_0\xi, u - 5z)\}$ where ξ, z are as above. For conjugates of [S], consider $-c^2 \equiv 25r_0\xi$ (125) which implies that 5 divides cand (a, 5) = 1. Applying Proposition 1.4, we let a = 1 and get $-c^2 \equiv 25r_0$ (125). If r_0 is a quadratic residue mod 5, there are 10 choices for c; if not, there are none. For conjugates of [S⁵], $5a^2 \equiv \xi$ (125) and so

$$-5c^2 \equiv 25r_0\xi \equiv 125r_0a^2 \equiv 0 \ (125)$$

which implies that 5 divides c and we see there are 5 choices for c regardless of what r_0 is. Similarly there is only one conjugate of $[S^{25}]$ regardless of what r_0 is. So W = 16 or 6 and g(H) = 12 or 20 depending on whether r_0 is a quadratic residue or not.

Suppose H_1 is conjugate to H'. Then $|H| = 5^5 \cdot 2$ and H is either a $G''_{6250}(I, I)_0$ or one of 4 types of $G''_{6250}(I, I', 1)$. An example of the first is given by $\{\pm (x, y, 0, z)\}$ where x, y, z describe all values mod 125 and $xz \equiv$ 1 (125). Then $H \cap E$ is a $(2, 3)(I, I)_0$ and so W = 11. Further t = 125since the only elements of order 2 in H are $\pm (43, \xi, 0, -43)$. So g(H) = 8. In an example of the second case, $H \cap E$ is a $(2, 3)(I, I', 1)_0$ so W = 16 or 6. Then g(H) = (1625 - t)/250 or (2625 - t)/250. But by Sylow, t has to be a power of 5 and neither 1625 nor 2625 is. Hence $g(H) \neq 0$.

Remark. This type of argument, also seen in Lemma 2.5, using Proposition 1.4 to count conjugates of $[S^r]$ will be used frequently and will be referred to as the usual argument using proposition 1.4.

PROPOSITION 2.2. Suppose F is a subfield of $K(5^n)$, $n \ge 3$, which has genus 0. Then F is a subfield of K(25).

Proof. Lemmas 2.7 and 2.8 show that the proposition is true for n = 3 and we proceed by induction, i.e. we suppose that a subfield of $K(5^{n-1})$, $n \ge 4$, of genus 0 is a subfield of K(25). Consider F a subfield of $K(5^n)$. If F is a subfield of $K(5^{n-1})$, we are done by the induction hypothesis. If not, $F_1 = F \cap K(5^{n-1})$ has genus 0 and by the induction hypothesis is a subfield of K(25). Considering the two cases, F_1 a subfield of K(5) and F_1 a subfield of K(25) of level 25 separately, we get a contradiction by the usual argument using Propositions 1.1–1.3.

3. $LF(2, 3^n)$

THEOREM 2. The only subfields of $K(3^n)$, $n \ge 1$, which have genus 0 are a subfield of K(3); a subfield of K(9) of level 9 whose Galois group belongs to one of the 5 following classes: (1) H has order 9 and is either a subgroup of K_1^2 with W = 2, a $\Gamma_9^1(1)$ or a conjugate of [S], (2) H has order 12, (3) H has order 18 and is either a $G_{18}''\{(III, a)\}$ or the right kind of $G_{18}''\{(II, b)\}$, (4) H has order 27, (5) H has order 36; and a subfield of K(27) of level 27 whose Galois group is the right kind of $(2, 3)(I, I', 1)_0$.

First note that any subfield of K(3) has genus 0 and the rest of the proof will follow from Propositions 3.1 to 3.3. Second note that Gierster denotes a conjugate of T by Γ_3 . Now suppose H is a subgroup of LF(2, 9) of level 9. Simple calculations show that 3^3 is the highest power of 3 which can divide the order of H and that if |H| = 2, 3, 4 or 6, $g(H) \neq 0$. It also follows from easy calculations plus Gierster, pp. 356-360, that if $|H| = 3^3 \cdot 2$ or $3^3 \cdot 4$, H contains K_1^2 . In this section r_0 will denote any fixed non-zero residue mod 3.

LEMMA 3.1. If |H| = 9, there are 3 cases in which g(H) = 0: (1) H is a subgroup of K_1^2 with W = 2, (2) H is a $\Gamma'_9(1)$ or (3) H is a conjugate of [S].

Proof. If $|H \cap K_1^2| = 1$, $|H \cdot K_1^2| = 3^5$ which is impossible. If $|H \cap K_1^2| = 9$, H is a subgroup of K_1^2 and g(H) = (18 - 9W)/9. So g(H) = 0 if and only if W = 2. If $|H \cap K_1^2| = 3$, $g(H) = (18 - 3 \cdot r - 9W)/9$. So g(H) = 0 if and only if (1) W = 0 and r = 6 which is impossible since then |H| > 9; (2) W = 1 and r = 3 which says H is a $\Gamma'_9(1)$; (3) W = 2 in which case H is a conjugate of [S] since $|H \cap K_1^2| = 3$ implies there is at most 1 conjugate of [S³] in H.

LEMMA 3.2. Any group of order 12 has genus 0.

Proof. If $|H \cap K_1^2| = 1$, *H* is a tetrahedral group so r = 4, t = 3 and g(H) = 0. If $|H \cap K_1^2| = 3$, *H* is one of 9 $G_{12}^1\{III\}$ [2,356] so t = 7. Hence $g(H) \leq (21-21)/12 = 0$ and since g(H) is always non-negative, g(H) = 0.

LEMMA 3.3. If |H| = 18, there are two cases for which g(H) = 0: (1) H is one of 3 conjugate $G_{18}''\{(III, a)\}$ or (2) H is one of 18 conjugate $G_{18}''\{(II, b)\}$ of the right kind.

Proof. By Sylow H has one subgroup of order 9 and t = 1, 3 or 9. $|H \cap K_1^2| = 1 \text{ or } 3 \text{ yields an impossible order for } |H \cdot K_1^2|$. So $|H \cap K_1^2| =$ 9 which says that r = 0 since no Γ_3 belongs to K_1^2 and that W = 0, 1 or 2. g(H) = (27 - 3t - 9W)/18 so that g(H) = 0 if and only if W = 0, t = 9; W = 2, t = 3. The first occurs if H is one of 3 conjugate $G_{18}''[III, a]$ containing $1(1, 1)\{III\}$ and $9G_2$; the second if H is one of 18 conjugate $G_{18}''[(II, b)]$ containing $1(1, 1)\{II\}$ and $3G_6$. That not all groups of order 18 have genus 0 is shown by the existence of 18 $G_{18}''[(III, b)]$ containing $1(1, 1)\{III\}$ and $3G_6$ so that g(H) = 1.

LEMMA 3.4. Any subgroup of order 36 has genus 0.

Proof. $|H \cap K_1^2| \neq 1$ since then $|H \cdot K_1^2|$ would be too large and $|H \cap K_1^2| \neq 3$ since there are no such groups [2,356]. So $|H \cap K_1^2| = 9$ and there are two possibilities. H may be one of 9 conjugate $G_{36}^{"}\{III, c\}$ or one of two types of $G_{36}^{"}\{III, III, d\}$, each containing $1(1, 1)\{(III)\}$, $6G_6$ and $9G_2$. So in either case W = 0, t = 15 and g(H) = 0.

LEMMA 3.5. Any subgroup of order 27 has genus 0.

Proof. First if $H = K_1^2$, then H = G(K(9) | K(3)) and g(H) = 0. Otherwise $|H \cap K_1^2| = 9$ since, if not, $|H \cdot K_1^2|$ will be too large. So H may be one of 4 conjugate $\Gamma_{27}''(I, a)$ containing 1(1, 1)(I) and $9\Gamma_3$ so that r = 9, W = 1 and g(H) = 0. On the other hand, H may be a $(1, 2)(I, I)_0$ an example of which is given by

$$\{\pm (1 - 3(\xi + z), \xi, 0, 1 + 3(\xi + z))\}$$

where ξ describes all values mod 9 and z all values mod 3. By the usual argument using Proposition 1.4, W = 3 + 1 = 4 and g(H) = 0.

So we now have

PROPOSITION 3.1. Suppose F is a subfield of K(9) of level 9. Then F has genus 0 if and only if G(K(9) | F) = H belongs to one of the following classes:

(1) *H* has order 9 and is either a subgroup of K_1^2 with W = 2, a $\Gamma'_9(1)$ or a conjugate of [S];

- (2) H has order 12;
- (3) *H* has order 18 and is either a G_{18}'' {*III*, a} or the right kind of G_{18}'' {*II*, b};
- (4) H has order 27;
- (5) H has order 36.

Now we consider subfields F of K(27) and let $F_1 = F \cap K(9)$ and $H_1 = G(K(9) | F_1)$.

LEMMA 3.6. Suppose F is a subfield of K(27) of genus 0 and H_1 has order 9. Then F is a subfield of K(9).

Proof. If $|H \cap K_2^3| = 1$, $|H \cap K_1^3| \ge 3$ contradicting Proposition 1.1. Since F_1 has genus 0, there are 3 possibilities for H_1 . First suppose H_1 is a subgroup of K_1^2 . Then F_1 contains K(3) and so $F \cap K(3) = K(3)$. Thus F contains K(3), H is a subgroup of K_1^3 , $|H \cap K_2^3| = 9$ and |H| = 81. H H is either a

(2, 2)(I) or (2, 2)(I', 1)[2,338-339].

So H is conjugate to either

 $\{\pm (u - 3x, 3y, 0, u + 3x)\}$ or $\{\pm (u - 3x, 3y, -9r_0y, u + 3x)\}$

where x, y describe all values mod 9. Then by the usual argument using Proposition 1.4 either W = 0 + 3 + 1 = 4 and g(H) = 4 or W = 0 + 0 + 1 = 1 and g(H) = 7.

Suppose H_1 is conjugate to [S]. If $|H \cap K_2^3| = 3$, |H| = 27 and $H \cap K_1^3$ is cyclic of order 9. A conjugate of S has the form $\pm (a, b, c, d)$ where

 $((a + d)/2)^2 - 1 \equiv 0$ (3ⁿ) and $ad - bc \equiv 1$ (3ⁿ).

So H_1 contains an element of this form and hence H contains an element $\alpha = \pm (a', b', c', d')$ where $a'd' - b'c' \equiv 1$ (27) and $a' = a + 9k_1$, $b' = b + 9k_2$, $c' = c + 9k_3$, $d' = d + 9k_4$ where the k_i are integers. Then

$$\Delta' = \left((a' + d')/2 \right)^2 - 1 \equiv 9s_0 \quad (27)$$

where $s_0 = 0, 1, 2$. So $[\alpha]$ is either a $G_{27}(I)$ or $G_{27}(I, 1)$ and has order 27. Thus *H* is cyclic, $W \leq 3$ and $g(H) \geq 13$. If $|H \cap K_2^3| = 9$, |H| = 81 and $|H \cap K_1^3| = 27$. If W = 0, g(H) > 0. If W > 0, H is either a $(1, 3)(I, I)_0$ or one of 2 types of $(1, 3)(I, I', \epsilon), \epsilon = 1$ or 2 [2,345-351]. As a $(1, 3)(I, I)_0$ *H* is conjugate to

$$\{\pm (u + 3\xi + 9z, \xi, -9\xi, u - (3\xi + 9z))\}$$

and as a $(1, 3)(I, I', 1)_0 H$ is conjugate to one of

$$\{\pm (u + 3\xi + 9z, \xi, 9r_0\xi, u - (3\xi + 9z))\}$$

where ξ describes all values mod 27, z all values mod 3. In either case W = 3 + 3 + 1 = 7 so that g(H) = 1. As a $(1, 3)(I, I', 2)_0$, H is conjugate to one of

$$\{\pm (u + 3\xi + 9z, \xi, 3r_0\xi - 9\xi, u - (3\xi + 9z))\}$$

with ξ , z as above. Here W = 0 + 0 + 1 and g(H) = 7.

Suppose $H_1 = \Gamma'_9(1)$. If $|H \cap K_2^3| = 3$, |H| = 27 and $H \cap K_1^3$ is cyclic of order 9. So [2,364–366] H is one of 3 types of 108 $\Gamma'_{27}(I', 2), W \le 2, r = 3$ and $g(H) \ge 15$. If $|H \cap K_2^3| = 9$, $|H| = 3^4$ and $|H \cap K_1^3| = 27$. So [2,364–366], H contains either a (1, 2)(I, I) or a (1, 2')(I, I', 1). An example of a (1, 2)(I, I) is given by

$$\{\pm (u + 9(\xi + z), 3\xi, 0, u - 9(\xi + z))\}$$

with ξ , z as above and W = 0 + 3 + 1 = 4. An example of a (1, 2)(I, I', 1) is given by

$$\{\pm (u + 9(\xi + z), 3\xi, 9\xi r_0, u - 9(\xi + z))\}$$

with ξ , z as above and so W = 0 + 0 + 1 = 1. Now H itself belongs to one of the following classes and has the genus indicated: (1) H is one of 36 conjugate $\Gamma_{s1}''(I, I), W = 4, r = 9$ and g(H) = 3; (2) H is one of 12 conjugate $\Gamma_{s1}''(I, I', 1, a), W = 1, r = 27$ and g(H) = 4; (3) H is one of 2 types of 12 $\Gamma_{s1}''(I, I', 1, b), W = 1, r = 0, g(H) = 7$; (4) H is one of 36 conjugate $\Gamma_{s1}''(I, I', 1, c), W = 1, r = 9$ and g(H) = 6. So g(H) > 0 in all cases.

LEMMA 3.7. Suppose F is a subfield of K(27) of genus 0 and H_1 has order 12, 18 or 36. Then F is a subfield of K(9).

Proof. Suppose $|H_1| = 12$. If $|H \cap K_2^3| = 1$, H is a tetrahedral group and g(H) = 43. If $|H \cap K_2^3| = 3$, |H| = 36 and $H \cap K_1^3$ is cyclic of order 9. Then $W \leq 2$ and by Sylow, $t \leq 27$ so that $g(H) \geq 22/4$. If $|H \cap K_2^3| = 9$, $|H| = 3^3 \cdot 4$ and $|H \cap K_1^3| = 27$. So [2, pp. 345-352], H is one of 2 types of 81 $G_{108}''(III, III, d)$ for which W = 0 and $t \leq 39$ so that $g(H) \geq 4$. Suppose $|H_1| = 18$ or 36. If $|H \cap K_2^3| = 1$ or 3, one gets a contradiction to Proposition 1.1 or 1.2. If $|H \cap K_2^3| = 9$, then $|H| = 3^4 \cdot k$ where k = 2or 4 and $|H \cap K_1^3| = 3^4$. So $H \cap K_1^3$ is either a (2, 2)(I) or a (2, 2)(I', 1). But [2, pp. 351-361] there are no groups of order $3^4 \cdot k$ containing either of these.

LEMMA 3.8. Suppose F is a subfield of K(27) of genus 0 and H_1 has order 27. Then either F is a subfield of K(9) or H belongs to the right kind of $(2, 3)(I, I', 1)_0$.

Proof. If $|H \cap K_2^3| = 1$ or 3, one gets the usual contradiction using Proposition 1.1 or 1.2. If $|H \cap K_2^3| = 9$, then $|H| = 3^5$ and $|H \cap K_1^3| = 3^4$. Suppose H does not contain any Γ_3 or Γ_9 . Then H is either a $(2, 3)(I, I)_0$ or one of two types of $(2, 3)(I, I', 1)_0$. An example of the first is given by

$$\{\pm (u + 3(3\xi + z), \xi, 0, u - 3(3\xi + z))\}$$

where ξ describes all values mod 27 and z all values mod 9. Then W = 3 + 3 + 1 = 7 and g(H) = 1. An example of the second is given by

$$\{\pm (u + 3(3\xi + z), \xi, 9r_0\xi, u - 3(3\xi + z))\}$$

where ξ , z are as above. If $r_0 \equiv 1$ (3), s(1) = 0; if $r_0 \equiv 2$ (3), s(1) = 6. In either case, s(3) = 3 and s(9) = 1. So W = 4 or 10 and g(H) = 2 or 0 depending on whether $r_0 \equiv 1$ or 2 (3).

Suppose *H* contains a Γ_3 or Γ_9 . Then [2, pp. 364-366] *H* belongs to one of the following classes: (1) 12 conjugate $\Gamma''_{3^5}(a)$; (2) 12 conjugate $\Gamma''_{3^5}(b)$; (3) 12 conjugate $\Gamma''_{3^5}(c)$. In all three cases, to compute *W* we need to analyze a $(2, 2)(I', 1)(s_0/3) = -1$ of which

$$\{\pm (u + 3y, 3(y + z), 9z, u - 3y)\}$$

where z and y describe all values mod 9 is an example. So W = 0 + 0 + 1 = 1. Also r = 27, 0 or 54 in cases (1), (2) or (3) respectively and thus g(H) = 2, 3 or 1.

PROPOSITION 3.2. Suppose F is a subfield of K(27) of level 27. Then F has genus 0 if and only if G(K(27) | F) has order 3^5 and is a $(2, 3)(I, I', 1)_0$ of the proper type.

Proof. If F_1 is a subfield of K(3), F is a subfield of K(3) by the usual arguments using Propositions 1.1–1.3. So we can assume F_1 has level 9 in K(9) and the proposition then follows from Lemmas 3.6–3.8.

LEMMA 3.9. Suppose F is a subfield of K(81) of genus 0 and $F_1 = F \cap K(27)$ is a subfield of K(9). If $H_1 = G(K(9) | F_1)$ has order 9, then F is a subfield of K(27).

Proof. Since F_1 has genus 0, H_1 is one of the following types: (1) a subgroup of K_1^2 , W = 2, (2) a conjugate of [S], (3) a $\Gamma'_9(1)$. In any case if $|H \cap K_3^4| = 1$ or 3 and in case (1) if $|H \cap K_3^4| = 9$, we get the usual contradiction using Propositions 1.1-1.3. In cases (2) and (3) with $|H \cap K_3^4| = 9$, we obtain $|H \cap K_1^4| = 3^6$ and $|H| = 3^7$. In case (2), *H* is either one of 3 conjugate (3, 4)(*I*, *I*)₀ such as

$$\{\pm (u + 27\xi + 3z, \xi, 0, u - (27\xi + 3z))\}$$

where ξ describes all values mod 81 and z all values mod 27 or it is one of 2 types of $(3, 4)(I, I', 1)_0$ such as

$$\{\pm (u + 27\xi + 3z, \xi, 27r_0\xi, u - (27\xi + 3z))\}$$

where ξ , z are as above. But on reduction mod 9 both of these groups have order 27 and hence can not be one of the H_1 's which have order 9. In case (3), Gierster [2, pp. 364–366] has no groups of order 3⁷ of the proper type.

LEMMA 3.10. Suppose F is a subfield of K(81) of genus 0 and $F_1 = F \cap K(27)$ is a subfield of K(9). If $H_1 = G(K(9) | F_1)$ has order 12 or $9 \cdot k$ where k = 2, 3 or 4, then F is a subfield of K(27).

Proof. The only case in which one does not get the usual contradiction to Propositions 1.1-1.3 is the one in which $|H_1| = 12$ and $|H \cap K_3^4| = 9$. But then H is of order $3^6 \cdot 4$ with $H \cap K_1^4$ a (3, 3) and Gierster, pp. 357-360, has no such subgroups.

LEMMA 3.11. Suppose F is a subfield of K(81) of genus 0 and $F_1 = F \cap K(27)$ is a subfield of K(27) of level 27. Then F is a subfield of K(27).

Proof. Since F_1 has level 27, H_1 has order 3^5 by proposition 3.2. If $|H \cap K_3^4| = 1$ or 3, we get the usual contradictions to Proposition 1.1 or 1.2. If $|H \cap K_3^4| = 9$, then $|H| = 3^7$ and $|H \cap K_1^4| = 3^6$. Then H is conjugate to one of the two groups given in Lemma 3.9. For the $(3, 4)(I, I)_0$ we have W = 9 + 3 + 3 + 1 = 16 and g(H) = 4. For the $(3, 4)(I, I', 1)_0$ we have W = 0 + 3 + 3 + 1 = 7 and g(H) = 7.

PROPOSITION 3.3. Suppose F is a subfield of $K(3^n)$, $n \ge 4$ and F has genus 0. Then F is a subfield of K(27).

Proof. The proof is by induction on *n*. Let n = 4 and $F_1 = F \cap K(27)$. If F_1 has level 3, $F \subset K(27)$ follows from the usual argument using Propositions 1.1-1.3. If F_1 has level 9 or 27, $F \subset K(27)$ follows from Lemmas 3.9-3.11. Now let $n \ge 5$ and assume a subfield of $K(3^{n-1})$ of genus 0 is contained in K(27). Then $F_1 = F \cap K(3^{n-1})$ is a subfield of K(27) and supposing F is not a subfield of $K(3^{n-1})$ leads to a contradiction by the usual argument using Propositions 1.1-1.3. So $F \subset K(3^{n-1})$ and, by the induction hypothesis, is a subfield of K(27).

BIBLIOGRAPHY

 J. GIERSTER, Die Untergruppen der galois'schen Gruppe der Modulargleichungen fur den Fall eines primzahligen Transformationsgrades, Math. Ann., vol. 18 (1881), pp. 319-365.

- -----, Uber die galois'sche Gruppe der Modulargleichungen, wenn der Transformationsgrad die Potenz einer Primzahl > 2 ist, Math. Ann., vol. 26 (1886), pp. 309-368.
- 3. R. C. GUNNING, Lectures on modular forms, Princeton University Press, Princeton, 1962.
- 4. D. L. McQUILLAN, Some results on the linear fractional group, Illinois J. Math., vol. 10 (1966), pp. 24-38.
- Classification of normal congruence subgroups of the modular groups, Amer. J. Math. vol. 87 (1965), pp. 285-296.
- 6. ——, On the genus of fields of elliptic modular functions, Illinois J. Math., vol. 10 (1966), pp. 479-487.

UNIVERSITY OF CONNECTICUT STORRS, CONNECTICUT