FIELDS OF MODULAR FUNCTIONS OF GENUS 0

BY
Joseph B. Dennin, Jr.
\section*{1. Introduction}

Let Γ be the group of linear fractional transformations

$$
w \rightarrow(a w+b) /(c w+d)
$$

of the upper half plane into itself with integer coefficients and determinant 1. Γ is isomorphic to the 2×2 modular group, i.e. the group of 2×2 matrices with integer entries and determinant 1 in which a matrix is identified with its negative. Let $\Gamma(n)$, the principal congruence subgroup of level n, be the subgroup of Γ consisting of those elements for which $a \equiv d \equiv 1(n)$ and $b \equiv c \equiv 0(n) . \quad G$ is called a congruence subgroup of level n if G contains $\Gamma(n)$ and n is the smallest such integer. G has a fundamental domain in the upper half plane which can be compactified to a Riemann surface and then the genus of G can be defined to be the genus of the Riemann surface. H. Rademacher has conjectured that the number of congruence subgroups of genus 0 is finite. D. McQuillan [6] has shown that if n is relatively prime to $2 \cdot 3 \cdot 5$, then the conjecture is true. In this paper, we show that the number of subgroups of levels 5^{n} and $3^{n}, n \geq 1$, of genus 0 is finite and list explicitly which ones they are.
Consider $M_{\mathrm{\Gamma}(n)}$, the Riemann surface associated with $\Gamma(n)$. The field of meromorphic functions on $M_{\Gamma(n)}$ is called the field of modular functions of level n and is denoted by $K(n)$. If j is the absolute Weierstrass invariant, $K(n)$ is a finite Galois extension of $C(j)$ with $\Gamma / \Gamma(n)$ for Galois group. Let $S L(2, n)$ be the special linear group of degree two with coefficients in $Z / n Z$ and let $L F(2, n)=S L(2, n) / \pm \mathrm{Id}$. Then $\Gamma / \Gamma(n)$ is isomorphic to $\operatorname{LF}(2, n)$. If $\Gamma(n) \subset G \subset \Gamma$ and H is the corresponding subgroup of $L F(2, n)$, then by Galois theory H corresponds to a subfield F of $K(n)$ and the genus of F equals the genus of G.

The following notation will be standard. A matrix

$$
\pm\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

will be written $\pm(a, b, c, d)$.

$$
T= \pm(0,-1,1,0) ; \quad S= \pm(1,1,0,1) ; \quad R= \pm(0,-1,1,1)
$$

T and S generate $L F(2, n)$ and $R=T S . \quad F$ will be a subfield of $K(n)$ containing $C(j)$ and H, the corresponding subgroup of $\operatorname{LF}(2, n) . \quad g(H)=$ the genus of H and h or $|H|=$ the order of $H . \quad[A]$ or $[\pm(a, b, c, d)]$ will denote the group generated by A or $\pm(a, b, c, d)$ respectively.

Received February 4, 1969.

We now concentrate on $\operatorname{LF}\left(2, p^{n}\right), p>2$, whose order is $p^{3 n-2}\left(p^{2}-1\right) / 2$. McQuillan [6] obtained the following formula for the genus of H.

Let r, t and $s\left(p^{r}\right)$ be the number of distinct cyclic subgroups of H generated by a conjugate in $L F\left(2, p^{n}\right)$ of R, T and $S^{p^{r}}$ respectively where $1 \leq p^{r}<p^{n}$. Then

$$
\begin{align*}
g(H)=1+p^{2 n-2}(& \left.p^{2}-1\right)\left(p^{n}-6\right) / 24 h-p^{n-1}(p-(-3 / p)) r / 3 h \\
& -p^{n-1}(p-(-1 / p)) t / 4 h-p^{2 n-2}(p-1)^{2} W / 4 h \tag{1.1}
\end{align*}
$$

where $W=\sum s\left(p^{r}\right)$. One immediate consequence of this is that if two groups are conjugate, they have the same genus.

We also need the following results from Gierster [2] which is a chief source of information on $\operatorname{LF}\left(2, p^{n}\right), p>2$.

Lemma 1.1. Suppose $p>2$. An element of $L F\left(2, p^{n}\right)$ is conjugate to T if and only if its trace is 0 . Consequently every element of order 2 is conjugate to T and has the form $\pm(a, b, c,-a)$ where $-a^{2}-b c \equiv 1\left(p^{n}\right)$. An element of $L F\left(2, p^{n}\right)$ is conjugate to R if and only if its trace is 1 .

Let f_{r}^{n} be the natural homomorphism from $L F\left(2, p^{n}\right)$ to $L F\left(2, p^{r}\right)$, $0<r<n$, given by reducing an element $\bmod p^{r}$. The kernel of this homomorphism is denoted by K_{r}^{n} and has order $p^{3(n-r)}$.

Proposition 1.1. If $H \cap K_{n-1}^{n}$ is the identity, $H \cap K_{r}^{n}$ is the identity for $r=1, \cdots, n-2$.

Proposition 1.2. If $\left|H \cap K_{n-1}^{n}\right|=p$, then $H \cap K_{1}^{n}$ is cyclic and

$$
\left|H \cap K_{1}^{n}\right| \leq p^{n-1}
$$

Proposition 1.3. If $\left|H \cap K_{n-1}^{n}\right|=p^{2}$, then $H \cap K_{1}^{n}$ is generated by two transformations U and U^{\prime} of order p^{n-r} and $p^{n-r^{\prime}}$ respectively and

$$
\left|H \cap K_{1}^{n}\right|=p^{2 n-r-r^{\prime}}
$$

So $\left|H \cap K_{1}^{n}\right| \leq p^{2 n-2}$.
We use the groups K_{r}^{n} to define the concept of level for $H . \quad H$ is of level p^{r} if H contains K_{r}^{n} and does not contain K_{r-1}^{n}. Similarly we say a subfield F of $K\left(p^{n}\right)$ is of level p^{r} if F is a subfield of $K\left(p^{r}\right)$ and not a subfield of $K\left(p^{r-1}\right)$. Note that F is of level p^{r} if and only if its Galois group is of level p^{r}.

For each r, K_{r}^{n} is a normal subgroup of $L F\left(2, p^{n}\right)$ and if $p>3$, these are all the normal subgroups of $L F\left(2, p^{n}\right)$ [5]. Since K_{r}^{n} is normal, $H \cdot K_{r}^{n}$ is a subgroup of $L F\left(2, p^{n}\right)$ and we have the following useful formulas:

$$
\begin{gather*}
\left|H \cdot K_{r}^{n}\right|=|H|\left|K_{r}^{n}\right| /\left|H \cap K_{r}^{n}\right| \tag{1.2}\\
\left|H \cap K_{r}^{n}\right|=|H|\left|K_{r}^{n}\right| /\left|H \cdot K_{r}^{n}\right| \tag{1.3}
\end{gather*}
$$

In addition to the propositions from Gierster [2], we also use his tables extensively and when we use the phrase "by Gierster" we are referring to
this paper. Gierster writes an element of K_{r}^{n} :

$$
U_{r}=\varphi(\mu, \nu, \rho)_{r} \equiv\left(u+p^{r} \mu, p^{r} \nu, p^{r} \rho, u-p^{r} \mu\right) \bmod p^{n}
$$

where μ, ν, ρ belong to the set of residues $\bmod p^{n-r}$,

$$
u^{2} \equiv 1+2^{2 r}\left(\mu^{2}+\nu \rho\right) \quad \bmod p^{n} \quad \text { and } \quad u \equiv 1 \quad(p)
$$

A final group we find useful is the one generated by K_{1}^{n} and S which we denote by E and which has order $p^{3 n-2}$.

To compute the genus of H, we have to calculate r, t and $s\left(p^{r}\right)$. Lemma 1.1 and the Sylow theorems are very useful in calculating r and t. We now give a method for calculating $s\left(p^{r}\right)$. Note a conjugate of $S^{p^{r}}$ has the form

$$
\pm\left(1-p^{r} a c, p^{r} a^{2},-p^{r} c^{2}, 1+p^{r} a c\right)
$$

Lemma 1.2.

$$
\left(1-p a c, p a^{2},-p c^{2}, 1+p a c\right)^{k}=\left(1-k p a c, k p a^{2},-k p c^{2}, 1+k p a c\right)
$$

Proof. Induction on k.
Lemma 1.3. Suppose A is a subgroup of $L F\left(2, p^{n}\right)$ and A is conjugate to [$\left.S^{p^{r}}\right]$ where $0 \leq r \leq n-1$. Then A contains an element conjugate to $S^{p^{r}}$,

$$
\alpha= \pm\left(1-p^{r} a c, p^{r} a^{2},-p^{r} c^{2}, 1+p^{r} a c\right)
$$

If $\left(a, p^{n}\right)=1$, then A contains one and only one element of the form $\pm\left(x, p^{r}, y, z\right)$.

Proof. Consider

$$
\left\{\alpha^{k}\right\}=\left\{ \pm\left(1-k p^{r} a c, k p^{r} a^{2},-k p^{r} c^{2}, 1+k p^{r} a c\right)\right\}, \quad 1 \leq k \leq p^{n-r}
$$

Since $\left(a^{2}, p^{n}\right)=1$, the set $\left\{k a^{2}\right\}$ consists of the p^{n-r} different elements of $Z / p^{n-r} Z$ and so $k a^{2}=1$ for exactly one k.

Lemma 1.4. Suppose $\pm\left(x, p^{r}, y, z\right)$ belongs to a group conjugate to $\left[S^{p^{r}}\right]$. Then $\pm\left(x, p^{r}, y, z\right)$ is conjugate to $S^{p^{r}}$ and further if

$$
\pm(a, b, c, d) \cdot \pm\left(1, p^{r}, 0,1\right) \cdot \pm(a, b, c, d)^{-1}= \pm\left(x, p^{r}, y, z\right)
$$

then $\left(a, p^{n}\right)=1$.
Proof. If $\pm\left(x, p^{r}, y, z\right)$ is conjugate to $\pm\left(1, s_{0} p^{r}, 0,1\right)$, then

$$
p^{r} \equiv s_{0} a^{2} p^{r}\left(p^{n}\right)
$$

for some a. Thus $(a, p)=1$ and s_{0} is a quadratic residue $\bmod p^{n-r}$. But $\pm\left(1, s_{0} p^{r}, 0,1\right)$ is conjugate to $S^{p^{r}}$ if and only if s_{0} is a quadratic residue $\bmod p^{n-r}$.

Proposition 1.4 Any group A conjugate to $\left[S^{p^{r}}\right]$, where

$$
\pm\left(1-p^{r} a c, p^{r} a^{2},-p^{r} c^{2}, 1+p^{r} a c\right)
$$

is an element of A and $\left(a, p^{n}\right)=1$, contains one and only one element of the form $\pm\left(x, p^{r}, y, z\right)$ and it is conjugate to $S^{p^{r}}$.

Thus if it is known that, for conjugates of $\pm\left(1, p^{r}, 0,1\right),(a, p)=1$, to calculate $s\left(p^{r}\right)$ it is sufficient to set $a=1$ and see how many choices of c yield distinct elements of $\operatorname{LF}\left(2, p^{n}\right)$. In particular, this is the case if it can be shown that p divides c since $a d-b c \equiv 1\left(p^{n}\right)$.

2. $L F\left(2,5^{n}\right)$

Let $H^{\prime}=\{ \pm(x, y, 0, z)\}$ where x, y, z belong to the set of residues $\bmod 25$ and $x z \equiv 1$ (25).

Theorem 1. The only subfields of $K\left(5^{n}\right), n \geq 1$, which have genus 0 are the subfields of $K(5)$ and the following two classes of subfields of $K(25)$ of level 25: (1) $\left\{k_{1}\right\}$ where $G\left(K(25) \mid k_{1}\right)$ has order 250 and is conjugate to $H^{\prime} ;(2)\left\{k_{2}\right\}$ where $G\left(K(25) \mid k_{2}\right)$ has order 125 and is conjugate to $H^{\prime} \cap E$.

Note that all subfields of $K(5)$ have genus 0 since a subfield of a field of genus 0 has genus 0 . The rest of the proof will follow from propositions 2.1 and 2.2.

Suppose that H is a subgroup of $L F\left(2,5^{2}\right)$ of level 25 . Then $\left|H \cap K_{1}^{2}\right| \leq 5^{2}$ and so $\left|H \cdot K_{1}^{2}\right| \geq|H| \cdot 5$ which implies that $|H| \leq 5^{3} \cdot 12$. By using formula 1.1, Sylow to get upper bounds on t and r, Sylow and Gierster to get upper bounds on W and the fact that $g(H) \geq 0$, we calculate that $g(H)>0$ if $|H|=2,3,4,5,6,10,12,15,20,25,30,50,60$ or 75 . In this section, r_{0} will denote a fixed non-zero residue mod 5 .

Lemma 2.1. $I f|H|=5^{2} \cdot 12$ or $5^{3} \cdot 12$, then $g(H) \neq 0$.
Proof. Suppose $|H|=5^{2} \cdot 12$. Then, by formula 1.2, $\left|H \cap K_{1}^{2}\right| \geq 5$. If $\left|H \cap K_{1}^{2}\right|=5$, then $H \cdot K_{1}^{2}=\operatorname{LF}(2,25)$ and $H(\bmod 5)=L F(2,5)$. So H contains $K_{1}^{2}[6,484]$ which is a contradiction. If $\left|H \cap K_{1}^{2}\right|=25, H$ is of the third type [2,353]; but there are no groups of order $12 \cdot 5^{2}$ of the third type $[2,357-360]$. Suppose $|H|=5^{3} \cdot 12$. Then $\left|H \cap K_{1}^{2}\right|=25$ which implies that $\left|H \cdot K_{1}^{2}\right|=5^{4} \cdot 12$. So $H(\bmod 5)=L F(2,5)$ implying H contains K_{1}^{2}, a contradiction.

Lemma 2.2 If $|H|=5^{3} \cdot k, k=3,4,6$ or 10 , then $g(H) \neq 0$.
Proof. Since, if $\left|H \cap K_{1}^{2}\right|<25,\left|H \cdot K_{1}^{2}\right|$ would be greater than $\left|L F\left(2,5^{2}\right)\right|,\left|H \cap K_{1}^{2}\right|=25$. If $|H|=5^{3} \cdot 3$ or $5^{3} \cdot 4,\left|H \cdot K_{1}^{2}\right|=5^{4} \cdot 3$ or $5^{4} \cdot 4$ and so $H(\bmod 5)=15$ or 20 . But $L F(2,5)$ has no subgroups of order 15 or 20 . If $|H|=5^{3} \cdot 6$ or $5^{3} \cdot 10$, then $\left|H \cdot K_{1}^{2}\right|=5^{4} \cdot 6$ or $5^{4} \cdot 10$. But $L F\left(2,5^{2}\right)$ has no such subgroups.

Lemma 2.3. If $|H|=5^{2} \cdot 4, g(H) \neq 0$.
Proof. Note that $\left|H \cap K_{1}^{2}\right|=5$ or 25 . If $\left|H \cap K_{1}^{2}\right|=5,\left|H \cdot K_{1}^{2}\right|=5^{4} \cdot 4$
and so $|H(\bmod 5)|=20$ which is impossible. If $\left|H \cap K_{1}^{2}\right|=25$, then $g(H)=(115-t-20 W) / 20$. By Sylow, $t \leq 75$ and by Gierster pp. 329-330, $W \leq 2$. Thus $g(H)=0$ if and only if $W=2$ and $t=75$. We show that $t<75$.

Let $B=\{$ identity, $T, \pm(7,0,0,-7), \pm(0,7,7,0)\}$ and let A be a subgroup of H of order 4. Since, by Sylow, A and B are conjugate and since conjugate groups have the same genus, we may assume that, by conjugating H, B is a subgroup of H. Further note that $\left(H \cap K_{1}^{2}\right) \cdot B$ has 100 elements and so $H=\left(H \cap K_{1}^{2}\right) \cdot B$. So in order to obtain 75 elements of order 2 in H, it is necessary that each element (\neq identity) of B yield 25 elements of order 2 when multiplied by ($H \cap K_{1}^{2}$).

$$
K_{1}^{2} \cdot T=\{ \pm(-5 y, 1-5 x, 1+5 x, 5 z)\}
$$

where x, y, z describe all values mod 5 . The 25 elements of order 2 in this set are given by $y \equiv z(5)$; so

$$
\left(H \cap K_{1}^{2}\right)=\{ \pm(1-5 x, 5 y, 5 y, 1+5 x)\}
$$

But then

$$
\left(H \cap K_{1}^{2}\right) \cdot \pm(0,7,7,0)=\{ \pm(10 y, 7-10 x, 7+10 x, 10 y)\}
$$

yields only 5 more elements of order 2 given by $y=0$. So $t<75$.
Lemma 2.4. If $|H|=5^{2} \cdot 6, g(H) \neq 0$.
Proof. $\left|H \cap K_{1}^{2}\right|=5$ or 25 . If $\left|H \cap K_{1}^{2}\right|=5$, then $\left|H \cdot K_{1}^{2}\right|=5^{4} \cdot 6$ which is impossible. If $\left|H \cap K_{1}^{2}\right|=25$,

$$
W \leq 2[2,329-330] \quad \text { and } \quad g(H)=(125-r-t-20 W) / 30
$$

So if $g(H)=0$ we have 3 possibilities: $W=0$ and $r+t=125 ; W=1$ and $r+t=105 ; W=2$ and $r+t=85$. But by Sylow, $r+t \neq 105$ or 85 and if $r+t=125, t=75$ and $r=50$. Thus if $g(H)=0$, the only possible orders for elements of H are 2,3 and 5 . But $H(\bmod 5)$ is a dihedral group of order 6 containing 3 elements of order 2. So each element of order 2 in H $(\bmod 5)$ must have 25 elements of order 2 in its pre-image in H. Therefore in H, any element of order 2 multiplied by $H \cap K_{1}^{2}$ has to yield 25 elements of order 2.

As in Lemma 2.3, we may assume T is in H and so to get 25 elements of order 2 from ($H \cap K_{1}^{2}$) $\cdot T, H \cap K_{1}^{2}$ has to be

$$
\{ \pm(1-5 x, 5 y, 5 y, 1+5 x)\}
$$

To get $t=75$, we must find 2 elements of order 2 in addition to T which, when multiplied by $H \cap K_{1}^{2}$, will yield 25 elements of order 2 different from those in $\left(H \cap K_{1}^{2}\right) \cdot T$. Now

$$
\begin{aligned}
& \left(H \cap K_{1}^{2}\right) \cdot \pm(a, b, c,-a) \\
& \quad=\{a-5 a x+5 y c, b-5 b x-5 y a, 5 y a+c+5 a x,-a-5 a x+5 y b)\}
\end{aligned}
$$

So we wish to find a, b, c such that $-10 a x+5 y c+5 y b \equiv 0$ (25) for $x, y=0, \cdots, 4$. If $x=0$, we need $(c+b) \equiv 0$ (5). If $y=0$, we need $a \equiv 0$ (5). Further, from the determinant, we need $a^{2}+b c \equiv-1$ (25). So we have to solve simultaneously $(c+b) \equiv 0(5)$ and $-b c \equiv 1$ (25). The only solutions are the pairs $\{1,-1\},\{4,6\},\{9,11\}$ and their negatives. The elements of order 2 corresponding to these pairs all belong to $\left(H \cap K_{1}^{2}\right) \cdot T$. So $t<75$ and $g(H)>0$.

Lemma 2.5. If $|H|=5^{3} \cdot 2$, then $g(H)=0$ if and only if H is conjugate to H^{\prime}.

Proof. Note $\left|H^{\prime}\right|=5^{3} \cdot 2$ and $g\left(H^{\prime}\right)=0$ since $t=25$ and $W=6$, the 25 elements of order 2 being given by $\{ \pm(7, y, 0,-7)\}$ where $0 \leq y \leq 24$ and the 6 groups contributing to W being generated by

$$
\begin{aligned}
& \pm(-4,1,0,6), \quad \pm(-9,1,0,11), \quad \pm(11,1,0,-9) \\
& \pm(6,1,0,-4), \quad \pm(1,1,0,1) \text { and } \pm(1,5,0,1)
\end{aligned}
$$

In general if $|H|=5^{3} \cdot 2,\left|H \cap K_{1}^{2}\right|=25$ and so H is of type 3. So there are 2 possibilities for H, [2,357-360]. First H could be one of 30 conjugate $G_{250}^{\prime \prime \prime}(I, I)_{0}$ containing $1(1,2)(I, I)_{0}$ and $25 G_{10} \cdot H^{\prime}$ is an example of this type and so all these groups have genus 0 .

Second, H could belong to one of 4 types of 30 conjugate $G_{250}^{\prime \prime}\left(I, I^{\prime}, 1\right)_{0}$ containing $1(1,2)\left(I, I^{\prime}, 1\right)$ and $25 G_{10}$. So to calculate W, it is necessary to investigate a $(1,2)\left(I, I^{\prime}, 1\right)$. In $\operatorname{LF}\left(2,5^{2}\right)$, there are 4 given by

$$
\left\{ \pm\left(1+5(\xi+z), \xi, 5 r_{0} \xi, 1-5(\xi+z)\right)\right\}
$$

where z describes all values $\bmod 5$ and ξ all values $\bmod 25$. The 4 different groups correspond to choices for r_{0}.

Recall a conjugate of S^{r} has the form

$$
\pm\left(1-5^{r} a c, 5^{r} a^{2},-5^{r} c^{2}, 1+5^{r} a c\right)
$$

where at least one of a and c is not congruent to $0 \bmod 5$. So if a conjugate of S belongs to $(1,2)\left(I, I^{\prime}, 1\right)_{0},-c^{2} \equiv 5 r_{0} \xi(25)$ so that 5 divides c so that $-c^{2} \equiv 0$ (25) so that $5 r_{0} \xi \equiv 0(25)$ which, together with $r_{0} \neq 0$ (5) implies that $\xi \equiv 0(5)$ so that $a^{2} \equiv 0(5)$ which is a contradiction since then 5 divides both a and c. If a conjugate of S^{5} belongs to (1,2) $\left(I, I^{\prime}, 1\right)_{0}, 5 r_{0} \xi \equiv-5 c^{2}$ (25) and $5 a^{2} \equiv \xi(25)$ so that $0 \equiv 25 r_{0} a^{2} \equiv-5 c^{2}(25)$. Thus 5 divides c so that $(a, 5)=1$. By Proposition 1.4, we let $a=1$ and find there is only one conjugate of $\left[S^{5}\right]$ in $(1,2)\left(I, I^{\prime}, 1\right)_{0}$, namely $\left[S^{5}\right]$ itself. Thus $W=1$ and $g(H)=(125-t) / 50=0$ if and only if $t=125$. But H contains 124 elements of order divisible by 5 in $(1,2)\left(I, I^{\prime}, 1\right)_{0}$ and at least one element of order 10 in G_{10}. Since $|H|=250, t \neq 125$ and $g(H) \neq 0$.

Lemma 2.6. Suppose $|H|=5^{3}$ and $H \neq K_{1}^{2}$. Then $g(H)=0$ if and only if H is coniugate to $H^{\prime} \cap E$.

Proof. First observe that $g(H)=(24-4 W) / 5$. Also note, from Gierster, pp. 345-352, that any group of order $5^{3}\left(\neq K_{1}^{2}\right)$ can be gotten by intersecting a group of order 250 with E. So we must consider a $(1,2)(I, I)_{0}$ and a $(1,2)\left(I, I^{\prime}, 1\right)_{0}$. From Lemma 2.5, we see that $H^{\prime} \cap E$ is an example of the first type so that $W=6$ and $g(H)=0$. We also see that in the second case $W=1$ and $g(H)=4$.

From Lemmas 2.1 to 2.6, we now have
Proposition 2.1. There exist two classes of subfields of $K(25)$ of level 25, $\left\{k_{1}\right\}$ and $\left\{k_{2}\right\}$, which have genus 0 . These are distinguished by the fact that $G\left(K(25) \mid k_{1}\right)$ has order 250 and is conjugate to H^{\prime} and that $G\left(K(25) \mid k_{2}\right)$ has order 125 and is conjugate to $H^{\prime} \cap E$.

Lemma 2.7. If F is a subfield of $K(125)$ and $F_{1}=F \cap K(25)$ is contained in $K(5)$, then F is contained in $K(5)$.

Proof. Note that since F_{1} is a subfield of $K(5), F_{1}$ equals $F \cap K(5)$ so that

$$
H \cdot K_{1}^{3}=H \cdot K_{2}^{3}=G\left(K(125) \mid F_{1}\right) .
$$

Also $G\left(K(5) \mid F_{1}\right)$ has order $5^{k} \cdot m$ where $k=0 ; m=1,2,3,4,6$ or 12 or $k=1 ; m=1,2,12$. We show that F is a subfield of $K(25)$ which is sufficient since $F \cap K(25)$ is a subfield of $K(5)$. If F is not a subfield of $K(25)$, then

$$
\left|H \cap K_{2}^{3}\right|=\left|\left(H \cap K_{1}^{3}\right) \cap K_{2}^{3}\right|=1,5 \text { or } 25 .
$$

Using the fact that $\left|H \cdot K_{2}^{3}\right|=\left|H \cdot K_{1}^{3}\right|=5^{6} \cdot 5^{k} \cdot m$ and formula 1.2, we see that $|H|=5^{3} \cdot 5^{k} \cdot m, 5^{4} \cdot 5^{k} \cdot m$ or $5^{5} \cdot 5^{k} \cdot m$ as $\left|H \cap K_{2}^{3}\right|=1,5$ or 25 . But then by formula $1.3,\left|H \cap K_{1}^{3}\right|=5^{3}, 5^{4}$ or 5^{5} which contradicts Proposition 1.1, 1.2, or 1.3 respectively.

Remark. This type of argument, using the orders of the various groups obtained from H and K_{r}^{n}, formulas 1.2 and 1.3 and Propositions 1.1-1.3, will be used frequently and will be referred to as the usual argument using Propositions 1.1-1.3.

Lemma 2.8. Suppose F is a subfield of $K(125)$ of genus 0 so that $F_{1}=$ $F \cap K(25)$ also has genus 0 . If the level of F_{1} is $25, F$ is contained in $K(25)$.

Proof. Since the level of F_{1} is $25, H_{1}=G\left(K(25) \mid F_{1}\right)$ is conjugate to H^{\prime} or $H^{\prime} \cap E$. If F is not a subfield of $K(25),\left|H \cap K_{2}^{3}\right|=1,5$ or 25. If $\left|H \cap K_{2}^{3}\right|=1$ or 5 , the usual argument using Proposition 1.1 or 1.2 leads to a contradiction. If $\left|H \cap K_{2}^{3}\right|=25$, then $\left|H \cap K_{1}^{3}\right|=5^{4}$ by the standard calculations using formulas 1.2 and 1.3.

Suppose H_{1} is conjugate to $H \cap E$. Then $|H|=5^{5}$ and H is either a $(2,3)(I, I)_{0}$ or a $(2,3)\left(I, I^{\prime}, 1\right)_{0}[2, \mathrm{pp} .345-352]$. An example of the first is given by $\{ \pm(u+5 z, \xi, 0, u-5 z)\}$ where ξ describes all values mod 125 and z all values $\bmod 25$. Using Proposition 1.4, we see that H contains 5
conjugates of $[S]$ (given by $a=1$ and $c=0,25,50,75,100$); 5 conjugates of $\left[S^{5}\right]$ given by $a=1$ and $c=0,5,10,15,20$) and 1 conjugate of $\left[S^{25}\right]$ $(a=1, c=0)$. So $W=11$ and $g(H)=16$. An example of the second is given by $\left\{ \pm\left(u+5 z, \xi, 5 r_{0} \xi, u-5 z\right)\right\}$ where ξ, z are as above. For conjugates of $[S]$, consider $-c^{2} \equiv 25 r_{0} \xi$ (125) which implies that 5 divides c and $(a, 5)=1$. Applying Proposition 1.4, we let $a=1$ and get $-c^{2} \equiv 25 r_{0}$ (125). If r_{0} is a quadratic residue $\bmod 5$, there are 10 choices for c; if not, there are none. For conjugates of $\left[S^{5}\right], 5 a^{2} \equiv \xi$ (125) and so

$$
-5 c^{2} \equiv 25 r_{0} \xi \equiv 125 r_{0} a^{2} \equiv 0
$$

which implies that 5 divides c and we see there are 5 choices for c regardless of what r_{0} is. Similarly there is only one conjugate of $\left[S^{25}\right]$ regardless of what r_{0} is. So $W=16$ or 6 and $g(H)=12$ or 20 depending on whether r_{0} is a quadratic residue or not.

Suppose H_{1} is conjugate to H^{\prime}. Then $|H|=5^{5} \cdot 2$ and H is either a $G_{6250}^{\prime \prime}(I, I)_{0}$ or one of 4 types of $G_{6250}^{\prime \prime}\left(I, I^{\prime}, 1\right)$. An example of the first is given by $\{ \pm(x, y, 0, z)\}$ where x, y, z describe all values mod 125 and $x z \equiv$ 1 (125). Then $H \cap E$ is a $(2,3)(I, I)_{0}$ and so $W=11$. Further $t=125$ since the only elements of order 2 in H are $\pm(43, \xi, 0,-43)$. So $g(H)=8$. In an example of the second case, $\mathrm{H} \cap E$ is a $(2,3)\left(I, I^{\prime}, 1\right)_{0}$ so $W=16$ or 6. Then $g(H)=(1625-t) / 250$ or $(2625-t) / 250$. But by Sylow, t has to be a power of 5 and neither 1625 nor 2625 is. Hence $g(H) \neq 0$.

Remark. This type of argument, also seen in Lemma 2.5, using Proposition 1.4 to count conjugates of [S^{r}] will be used frequently and will be referred to as the usual argument using proposition 1.4.

Proposition 2.2. Suppose F is a subfield of $K\left(5^{n}\right), n \geq 3$, which has genus 0 . Then F is a subfield of $K(25)$.

Proof. Lemmas 2.7 and 2.8 show that the proposition is true for $n=3$ and we proceed by induction, i.e. we suppose that a subfield of $K\left(5^{n-1}\right)$, $n \geq 4$, of genus 0 is a subfield of $K(25)$. Consider F a subfield of $K\left(5^{n}\right)$. If F is a subfield of $K\left(5^{n-1}\right)$, we are done by the induction hypothesis. If not, $F_{1}=F \cap K\left(5^{n-1}\right)$ has genus 0 and by the induction hypothesis is a subfield of $K(25)$. Considering the two cases, F_{1} a subfield of $K(5)$ and F_{1} a subfield of $K(25)$ of level 25 separately, we get a contradiction by the usual argument using Propositions 1.1-1.3.

3. $L F\left(2,3^{n}\right)$

Theorem 2. The only subfields of $K\left(3^{n}\right), n \geq 1$, which have genus 0 are a subfield of $K(3)$; a subfield of $K(9)$ of level 9 whose Galois group belongs to one of the 5 following classes: (1) H has order 9 and is either a subgroup of K_{1}^{2} with $W=2, a \Gamma_{9}^{1}(1)$ or a conjugate of $[S]$, (2) H has order 12, (3) H has order 18 and is either $a G_{18}^{\prime \prime}\{(I I I, a)\}$ or the right kind of $G_{18}^{\prime \prime}\{(I I, b)\}$, (4) H has order

27 , (5) H has order 36; and a subfield of $K(27)$ of level 27 whose Galois group is the right kind of $(2,3)\left(I, I^{\prime}, 1\right)_{0}$.

First note that any subfield of $K(3)$ has genus 0 and the rest of the proof will follow from Propositions 3.1 to 3.3. Second note that Gierster denotes a conjugate of T by Γ_{3}. Now suppose H is a subgroup of $L F(2,9)$ of level 9. Simple calculations show that 3^{8} is the highest power of 3 which can divide the order of H and that if $|H|=2,3,4$ or $6, g(H) \neq 0$. It also follows from easy calculations plus Gierster, pp. 356-360, that if $|H|=3^{3} \cdot 2$ or $3^{3} \cdot 4$, H contains K_{1}^{2}. In this section r_{0} will denote any fixed non-zero residue $\bmod 3$.

Lemma 3.1. If $|H|=9$, there are 3 cases in which $g(H)=0$: (1) H is a subgroup of K_{1}^{2} with $W=2$, (2) H is $a \Gamma_{9}^{\prime}(1)$ or (3) H is a conjugate of $[S]$.

Proof. If $\left|H \cap K_{1}^{2}\right|=1,\left|H \cdot K_{1}^{2}\right|=3^{5}$ which is impossible. If $\left|H \cap K_{1}^{2}\right|=9, H$ is a subgroup of K_{1}^{2} and $g(H)=(18-9 W) / 9$. So $g(H)=$ 0 if and only if $W=2$. If $\left|H \cap K_{1}^{2}\right|=3, g(H)=(18-3 \cdot r-9 W) / 9$. So $g(H)=0$ if and only if (1) $W=0$ and $r=6$ which is impossible since then $|H|>9 ;(2) W=1$ and $r=3$ which says H is a $\Gamma_{9}^{\prime}(1)$; (3) $W=2$ in which case H is a conjugate of $[S]$ since $\left|H \cap K_{1}^{2}\right|=3$ implies there is at most 1 conjugate of $\left[S^{3}\right]$ in H.

Lemma 3.2. Any group of order 12 has genus 0.
Proof. If $\left|H \cap K_{1}^{2}\right|=1, H$ is a tetrahedral group so $r=4, t=3$ and $g(H)=0$. If $\left|H \cap K_{1}^{2}\right|=3, H$ is one of $9 G_{12}^{1}\{I I I\}[2,356]$ so $t=7$. Hence $g(H) \leq(21-21) / 12=0$ and since $g(H)$ is always non-negative, $g(H)=0$.

Lemma 3.3. If $|H|=18$, there are two cases for which $g(H)=0$: (1) H is one of 3 conjugate $G_{18}^{\prime \prime}\{(I I I, a)\}$ or (2) H is one of 18 conjugate $G_{18}^{\prime \prime}\{(I I, \mathrm{~b})\}$ of the right kind.

Proof. By Sylow H has one subgroup of order 9 and $t=1,3$ or 9. $\left|H \cap K_{1}^{2}\right|=1$ or 3 yields an impossible order for $\left|H \cdot K_{1}^{2}\right|$. So $\left|H \cap K_{1}^{2}\right|=$ 9 which says that $r=0$ since no Γ_{3} belongs to K_{1}^{2} and that $W=0,1$ or 2. $g(H)=(27-3 t-9 W) / 18$ so that $g(H)=0$ if and only if $W=0, t=9$; $W=2, t=3$. The first occurs if H is one of 3 conjugate $\left.G_{18}^{\prime \prime}\{I I I, a)\right\}$ containing $1(1,1)\{I I I\}$ and $9 G_{2}$; the second if H is one of 18 conjugate $G_{18}^{\prime \prime}\{(I I, b)\}$ containing $1(1,1)\{I I\}$ and $3 G_{6}$. That not all groups of order 18 have genus 0 is shown by the existence of $18 G_{18}^{\prime \prime}\{(I I I, b)\}$ containing $1(1,1)\{I I I\}$ and $3 G_{6}$ so that $g(H)=1$.

Lemma 3.4. Any subgroup of order 36 has genus 0.
Proof. $\left|H \cap K_{1}^{2}\right| \neq 1$ since then $\left|H \cdot K_{1}^{2}\right|$ would be too large and $\left|H \cap K_{1}^{2}\right| \neq 3$ since there are no such groups $[2,356]$. So $\left|H \cap K_{1}^{2}\right|=9$ and there are two possibilities. H may be one of 9 conjugate $G_{36}^{\prime \prime}\{I I I, c\}$ or one of two types of $G_{36}^{\prime \prime}\{I I I, I I I, d\}$, each containing $1(1,1)\{(I I I)\}, 6 G_{6}$ and $9 G_{2}$. So in either case $W=0, t=15$ and $g(H)=0$.

Lemma 3.5. Any subgroup of order 27 has genus 0.
Proof. First if $H=K_{1}^{2}$, then $H=G(K(9) \mid K(3))$ and $g(H)=0$. Otherwise $\left|H \cap K_{1}^{2}\right|=9$ since, if not, $\left|H \cdot K_{1}^{2}\right|$ will be too large. So H may be one of 4 conjugate $\Gamma_{27}^{\prime \prime}(I, a)$ containing $1(1,1)(I)$ and $9 \Gamma_{3}$ so that $r=9$, $W=1$ and $g(H)=0$. On the other hand, H may be a $(1,2)(I, I)_{0}$ an example of which is given by

$$
\{ \pm(1-3(\xi+z), \xi, 0,1+3(\xi+z))\}
$$

where ξ describes all values mod 9 and z all values mod 3 . By the usual argument using Proposition 1.4, $W=3+1=4$ and $g(H)=0$.

So we now have
Proposition 3.1. Suppose F is a subfield of $K(9)$ of level 9 . Then F has genus 0 if and only if $G(K(9) \mid F)=H$ belongs to one of the following classes:
(1) $\quad H$ has order 9 and is either a subgroup of K_{1}^{2} with $W=2, a \Gamma_{9}^{\prime}(1)$ or a conjugate of $[S]$;
(2) H has order 12;
(3) H has order 18 and is either a $G_{18}^{\prime \prime}\{I I I, a\}$ or the right kind of $G_{18}^{\prime \prime}\{I I, b\}$;
(4) H has order 27 ;
(5) H has order 36 .

Now we consider subfields F of $K(27)$ and let $F_{1}=F \cap K(9)$ and $H_{1}=G\left(K(9) \mid F_{1}\right)$.

Lemma 3.6. Suppose F is a subfield of $K(27)$ of genus 0 and H_{1} has order 9. Then F is a subfield of $K(9)$.

Proof. If $\left|H \cap K_{2}^{3}\right|=1,\left|H \cap K_{1}^{3}\right| \geq 3$ contradicting Proposition 1.1. Since F_{1} has genus 0 , there are 3 possibilities for H_{1}. First suppose H_{1} is a subgroup of K_{1}^{2}. Then F_{1} contains $K(3)$ and so $F \cap K(3)=K(3)$. Thus F contains $K(3), H$ is a subgroup of $K_{1}^{3},\left|H \cap K_{2}^{3}\right|=9$ and $|H|=81 . H$ H is either a

$$
(2,2)(I) \quad \text { or } \quad(2,2)\left(I^{\prime}, 1\right)[2,338-339]
$$

So H is conjugate to either

$$
\{ \pm(u-3 x, 3 y, 0, u+3 x)\} \text { or }\left\{ \pm\left(u-3 x, 3 y,-9 r_{0} y, u+3 x\right)\right\}
$$

where x, y describe all values mod 9 . Then by the usual argument using Proposition 1.4 either $W=0+3+1=4$ and $g(H)=4$ or $W=0+0+$ $1=1$ and $g(H)=7$.

Suppose H_{1} is conjugate to [S]. If $\left|H \cap K_{2}^{3}\right|=3,|H|=27$ and $H \cap K_{1}^{3}$ is cyclic of order 9. A conjugate of S has the form $\pm(a, b, c, d)$ where

$$
((a+d) / 2)^{2}-1 \equiv 0 \quad\left(3^{n}\right) \quad \text { and } \quad a d-b c \equiv 1 \quad\left(3^{n}\right)
$$

So H_{1} contains an element of this form and hence H contains an element

$$
\alpha= \pm\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)
$$

where $a^{\prime} d^{\prime}-b^{\prime} c^{\prime} \equiv 1(27)$ and $a^{\prime}=a+9 k_{1}, b^{\prime}=b+9 k_{2}, c^{\prime}=c+9 k_{3}$, $d^{\prime}=d+9 k_{4}$ where the k_{i} are integers. Then

$$
\begin{equation*}
\Delta^{\prime}=\left(\left(a^{\prime}+d^{\prime}\right) / 2\right)^{2}-1 \equiv 9 s_{0} \tag{27}
\end{equation*}
$$

where $s_{0}=0,1,2$. So $[\alpha]$ is either a $G_{27}(I)$ or $G_{27}(I, 1)$ and has order 27. Thus H is cyclic, $W \leq 3$ and $g(H) \geq 13$. If $\left|H \cap K_{2}^{3}\right|=9,|H|=81$ and $\left|H \cap K_{1}^{3}\right|=27$. If $W=0, g(H)>0$. If $W>0, H$ is either a $(1,3)(I, I)_{0}$ or one of 2 types of $(1,3)\left(I, I^{\prime}, \epsilon\right), \epsilon=1$ or $2[2,345-351]$. As a $(1,3)(I, I)_{0}$ H is conjugate to

$$
\{ \pm(u+3 \xi+9 z, \xi,-9 \xi, u-(3 \xi+9 z))\}
$$

and as a $(1,3)\left(I, I^{\prime}, 1\right)_{0} H$ is conjugate to one of

$$
\left\{ \pm\left(u+3 \xi+9 z, \xi, 9 r_{0} \xi, u-(3 \xi+9 z)\right)\right\}
$$

where ξ describes all values $\bmod 27, z$ all values $\bmod 3$. In either case $W=3+3+1=7$ so that $g(H)=1$. As a $(1,3)\left(I, I^{\prime}, 2\right)_{0}, H$ is conjugate to one of

$$
\left\{ \pm\left(u+3 \xi+9 z, \xi, 3 r_{0} \xi-9 \xi, u-(3 \xi+9 z)\right)\right\}
$$

with ξ, z as above. Here $W=0+0+1$ and $g(H)=7$.
Suppose $H_{1}=\Gamma_{9}^{\prime}(1)$. If $\left|H \cap K_{2}^{3}\right|=3,|H|=27$ and $H \cap K_{1}^{3}$ is cyclic of order 9. So [2,364-366] H is one of 3 types of $108 \Gamma_{27}^{\prime}\left(I^{\prime}, 2\right), W \leq 2, r=3$ and $g(H) \geq 15$. If $\left|H \cap K_{2}^{3}\right|=9,|H|=3^{4}$ and $\left|H \cap K_{1}^{3}\right|=27$. So $[2,364-366], H$ contains either a $(1,2)(I, I)$ or a $\left(1,2^{\prime}\right)\left(I, I^{\prime}, 1\right)$. An example of a $(1,2)(I, I)$ is given by

$$
\{ \pm(u+9(\xi+z), 3 \xi, 0, u-9(\xi+z))\}
$$

with ξ, z as above and $W=0+3+1=4$. An example of a $(1,2)\left(I, I^{\prime}, 1\right)$ is given by

$$
\left\{ \pm\left(u+9(\xi+z), 3 \xi, 9 \xi r_{0}, u-9(\xi+z)\right)\right\}
$$

with ξ, z as above and so $W=0+0+1=1$. Now H itself belongs to one of the following classes and has the genus indicated: (1) H is one of 36 conjugate $\Gamma_{81}^{\prime \prime}(I, I), W=4, r=9$ and $g(H)=3$; (2) H is one of 12 conjugate $\Gamma_{81}^{\prime \prime}\left(I, I^{\prime}, 1, a\right), W=1, r=27$ and $g(H)=4$; (3) H is one of 2 types of $12 \Gamma_{81}^{\prime \prime}\left(I, I^{\prime}, 1, b\right), W=1, r=0, g(H)=7$; (4) H is one of 36 conjugate $\Gamma_{81}^{\prime \prime}\left(I, I^{\prime}, 1, c\right), W=1, r=9$ and $g(H)=6$. So $g(H)>0$ in all cases.

Lemma 3.7. Suppose F is a subfield of $K(27)$ of genus 0 and H_{1} has order 12,18 or 36 . Then F is a subfield of $K(9)$.

Proof. Suppose $\left|H_{1}\right|=12$. If $\left|H \cap K_{2}^{3}\right|=1, H$ is a tetrahedral group and $g(H)=43$. If $\left|H \cap K_{2}^{3}\right|=3,|H|=36$ and $H \cap K_{1}^{3}$ is cyclic of order 9. Then $W \leq 2$ and by Sylow, $t \leq 27$ so that $g(H) \geq 22 / 4$. If $\left|H \cap K_{2}^{3}\right|=9,|H|=3^{3} \cdot 4$ and $\left|H \cap K_{1}^{3}\right|=27$. So [2, pp. 345-352], H is one of 2 types of $81 G_{108}^{\prime \prime}\{(I I I, I I I, d)\}$ for which $W=0$ and $t \leq 39$ so that $g(H) \geq 4$.

Suppose $\left|H_{1}\right|=18$ or 36 . If $\left|H \cap K_{2}^{3}\right|=1$ or 3 , one gets a contradiction to Proposition 1.1 or 1.2 . If $\left|H \cap K_{2}^{3}\right|=9$, then $|H|=3^{4} \cdot k$ where $k=2$ or 4 and $\left|H \cap K_{1}^{3}\right|=3^{4}$. So $H \cap K_{1}^{3}$ is either a $(2,2)(I)$ or a $(2,2)\left(I^{\prime}, 1\right)$. But [2, pp. 351-361] there are no groups of order $3^{4} \cdot k$ containing either of these.

Lemma 3.8. Suppose F is a subfield of $K(27)$ of genus 0 and H_{1} has order 27. Then either F is a subfield of $K(9)$ or H belongs to the right kind of $(2,3)\left(I, I^{\prime}, 1\right)_{0}$.

Proof. If $\left|H \cap K_{2}^{3}\right|=1$ or 3 , one gets the usual contradiction using Proposition 1.1 or 1.2. If $\left|H \cap K_{2}^{3}\right|=9$, then $|H|=3^{5}$ and $\left|H \cap K_{1}^{3}\right|=3^{4}$. Suppose H does not contain any Γ_{3} or Γ_{9}. Then H is either a $(2,3)(I, I)_{0}$ or one of two types of $(2,3)\left(I, I^{\prime}, 1\right)_{0}$. An example of the first is given by

$$
\{ \pm(u+3(3 \xi+z), \xi, 0, u-3(3 \xi+z))\}
$$

where ξ describes all values $\bmod 27$ and z all values $\bmod 9$. Then $W=3+3+1=7$ and $g(H)=1$. An example of the second is given by

$$
\left\{ \pm\left(u+3(3 \xi+z), \xi, 9 r_{0} \xi, u-3(3 \xi+z)\right)\right\}
$$

where ξ, z are as above. If $r_{0} \equiv 1(3), s(1)=0$; if $r_{0} \equiv 2(3), s(1)=6$. In either case, $s(3)=3$ and $s(9)=1$. So $W=4$ or 10 and $g(H)=2$ or 0 depending on whether $r_{0} \equiv 1$ or 2 (3).
Suppose H contains a Γ_{3} or Γ_{9}. Then [2, pp. 364-366] H belongs to one of the following classes: (1) 12 conjugate $\Gamma_{35}^{\prime \prime}(a)$; (2) 12 conjugate $\Gamma_{3_{5}}^{\prime \prime}(b)$; (3) 12 conjugate $\Gamma_{3^{5}}^{\prime \prime}(c)$. In all three cases, to compute W we need to analyze a $(2,2)\left(I^{\prime}, 1\right)\left(s_{0} / 3\right)=-1$ of which

$$
\{ \pm(u+3 y, 3(y+z), 9 z, u-3 y)\}
$$

where z and y describe all values $\bmod 9$ is an example. So $W=0+0+$ $1=1$. Also $r=27,0$ or 54 in cases (1), (2) or (3) respectively and thus $g(H)=2,3$ or 1.

Proposition 3.2. Suppose F is a subfield of $K(27)$ of level 27. Then F has genus 0 if and only if $G(K(27) \mid F)$ has order 3^{5} and is a $(2,3)\left(I, I^{\prime}, 1\right)_{0}$ of the proper type.

Proof. If F_{1} is a subfield of $K(3), F$ is a subfield of $K(3)$ by the usual arguments using Propositions 1.1-1.3. So we can assume F_{1} has level 9 in $K(9)$ and the proposition then follows from Lemmas 3.6-3.8.

Lemma 3.9. Suppose F is a subfield of $K(81)$ of genus 0 and $F_{1}=F \cap K(27)$ is a subfield of $K(9)$. If $H_{1}=G\left(K(9) \mid F_{1}\right)$ has order 9 , then F is a subfield of $K(27)$.

Proof. Since F_{1} has genus $0, \mathrm{H}_{1}$ is one of the following types: (1) a subgroup of $K_{1}^{2}, W=2$, (2) a conjugate of [S], (3) a $\Gamma_{9}^{\prime}(1)$. In any case if
$\left|H \cap K_{3}^{4}\right|=1$ or 3 and in case (1) if $\left|H \cap K_{3}^{4}\right|=9$, we get the usual contradiction using Propositions 1.1-1.3. In cases (2) and (3) with $\left|H \cap K_{3}^{4}\right|=9$, we obtain $\left|H \cap K_{1}^{4}\right|=3^{6}$ and $|H|=3^{7}$. In case (2), H is either one of 3 conjugate $(3,4)(I, I)_{0}$ such as

$$
\{ \pm(u+27 \xi+3 z, \xi, 0, u-(27 \xi+3 z))\}
$$

where ξ describes all values $\bmod 81$ and z all values $\bmod 27$ or it is one of 2 types of $(3,4)\left(I, I^{\prime}, 1\right)_{0}$ such as

$$
\left\{ \pm\left(u+27 \xi+3 z, \xi, 27 r_{0} \xi, u-(27 \xi+3 z)\right)\right\}
$$

where ξ, z are as above. But on reduction $\bmod 9$ both of these groups have order 27 and hence can not be one of the H_{1} 's which have order 9 . In case (3), Gierster [2, pp. 364-366] has no groups of order 3^{7} of the proper type.

Lemma 3.10. Suppose F is a subfield of $K(81)$ of genus 0 and $F_{1}=F \cap K(27)$ is a subfield of $K(9)$. If $H_{1}=G\left(K(9) \mid F_{1}\right)$ has order 12 or $9 \cdot k$ where $k=2,3$ or 4 , then F is a subfield of $K(27)$.

Proof. The only case in which one does not get the usual contradiction to Propositions $1.1-1.3$ is the one in which $\left|H_{1}\right|=12$ and $\left|H \cap K_{3}^{4}\right|=9$. But then H is of order $3^{6} .4$ with $H \cap K_{1}^{4}$ a $(3,3)$ and Gierster, pp. 357-360, has no such subgroups.

Lemma 3.11. Suppose F is a subfield of $K(81)$ of genus 0 and $F_{1}=F \cap K(27)$ is a subfield of $K(27)$ of level 27. Then F is a subfield of $K(27)$.

Proof. Since F_{1} has level $27, H_{1}$ has order 3^{5} by proposition 3.2. If $\left|H \cap K_{3}^{4}\right|=1$ or 3 , we get the usual contradictions to Proposition 1.1 or 1.2. If $\left|H \cap K_{3}^{4}\right|=9$, then $|H|=3^{7}$ and $\left|H \cap K_{1}^{4}\right|=3^{6}$. Then H is conjugate to one of the two groups given in Lemma 3.9. For the $(3,4)(I, I)_{0}$ we have $W=9+3+3+1=16$ and $g(H)=4$. For the $(3,4)\left(I, I^{\prime}, 1\right)_{0}$ we have $W=0+3+3+1=7$ and $g(H)=7$.

Proposition 3.3. Suppose F is a subfield of $K\left(3^{n}\right), n \geq 4$ and F has genus 0. Then F is a subfield of $K(27)$.

Proof. The proof is by induction on n. Let $n=4$ and $F_{1}=\mathrm{F} \cap K(27)$. If F_{1} has level $3, F \subset K(27)$ follows from the usual argument using Propositions 1.1-1.3. If F_{1} has level 9 or 27, $F \subset K(27)$ follows from Lemmas 3.9-3.11. Now let $n \geq 5$ and assume a subfield of $K\left(3^{n-1}\right)$ of genus 0 is contained in $K(27)$. Then $F_{1}=\mathrm{F} \cap K\left(3^{n-1}\right)$ is a subfield of $K(27)$ and supposing F is not a subfield of $K\left(3^{n-1}\right)$ leads to a contradiction by the usual argument using Propositions 1.1-1.3. So $F \subset K\left(3^{n-1}\right)$ and, by the induction hypothesis, is a subfield of $K(27)$.

Bibliography

1. J. Gierster, Die Untergruppen der galois'schen Gruppe der Modulargleichungen fur den Fall eines primzahligen Transformationsgrades, Math. Ann., vol. 18 (1881), pp. 319-365.
2. --_, Uber die galois'sche Gruppe der Modulargleichungen, wenn der Transformationsgrad die Potenz einer Primzahl >2 ist, Math. Ann., vol. 26 (1886), pp. 309-368.
3. R. C. Gunning, Lectures on modular forms, Princeton University Press, Princeton, 1962.
4. D. L. McQuillan, Some results on the linear fractional group, Illinois J. Math., vol. 10 (1966), pp. 24-38.
5. ——, Classification of normal congruence subgroups of the modular groups, Amer. J. Math. vol. 87 (1965), pp. 285-296.
6. - On the genus of fields of elliptic modular functions, Illinois J. Math., vol. 10 (1966), pp. 479-487.

University of Connecticut
Storrs, Connecticut

