
FIELDS OF MODULAR FUNCTIONS OF GENUS 0

BY
JOSEPH B. DENNIN, JR.

1. Introduction
Let 1, be the group of linear fractional transformations

w (aw + b)/(cw + d)

of the upper half plane into itself with integer coefficients and determinant 1.
F is isomorphic to the 2 2 modular group, i.e. the group of 2 X 2 matrices
with integer entries and determinant 1 ia which a mtr is identified th
its negative. Let F(n), the principal congruence subgroup of level n, be
the subgroup of F consisting of those elements for which a d 1 (n) and
b c 0 (n). G is called a congruence subgroup of level n if G contains
F(n) and n is the smallest such integer. G has a fundamental domain ia the
upper half plane which can be compactified to a Riemana surface and then
the genus of G can be defined to be the genus of the Riemaaa surface. H.
Rademacher has conjectured that the number of congruence subgroups of
genus 0 is finite. D. McQuillan [6] has shown that if n is relatively prime to
2.3.5, then the conjecture is tree. Ia this paper, we show that the number
of subgroups of levels 5" and 3", n 1, of genus 0 is finite and list expfcitly
which ones they are.

Consider Mr(.), the Riemann surface associated with r(n). The field
of meromorphic functions oa Mr() is called the field of modular functions of
level n and is denoted by K(n). If j is the absolute Weierstrass invariant,
K(n) is a finite Galois extension of C(j) with r/r(n) for Galois group. Let
SL(2, n) be the special linear group of degree two with coefficients in Z/nZ
and let LF(2, n) SL(2, n)/ Id. Then r/r(n) is isomorphic to LF(2, n).
If F(n) G F and H is the corresponding subgroup of LF(2, n), then by
Galois theory H corresponds to a subfield F of K(n) and the genus of F equals
the genus of G.
The follong notation will be standard. A matrix

will be written (a, b, c, d).

T (0, -1,1, 0) S (1, 1,0, 1); R (0,-1, 1, 1).

T and S generate LF(2, n) and R TS. F ll be a subfield of K(n) con-
taining C(j) and H, the corresponding subgroup of LF(2, n). g(H) the
genus of H and h or lH the order of H. [A] or [(a, b, c, d)] ll denote
the group generated by A or (a, b, c, d) respectively.
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We now concentrate on LF(2, p"), p > 2, whose order is p""-(p 1)/2.
McQuillan [6] obtained the following formula for the genus of H.
Let r, and s(pr) be the number of distinct cyclic subgroups of H generated

by a conjugate in LF(2, p") of R, T and Sr respectively where 1 _< pr < p’.
Then

g(H) 1 + p"-(p-- 1)(p"- 6)/24h- p-l(p_ (-3/p))r/3h
(1.1)

p-(p-- (-- 1/p))t/4h p’"-’(p 1)’W/4h
where W s(/). One immediate consequence of this is that if two
groups are conjugate, they have the same genus.
We also need the following results from Gierster [2] which is a chief source

of information on LF(2, p’), p > 2.

LEMMA 1.1. Suppose p > 2. An element of LF(2, p") is conjugate to T
if and only if its trace is O. Consequently every element of order 2 is conjugate
to T and has the form -+- (a, b, c, -a) where -a bc =- 1 (p"). An element
of LF(2, p") is conjugate to R if and only if its trace is 1.

Let f be the natural homomorphism from LF(2, p’) to LF(2, p),
0 < r < n, given by reducing an element mod pr. The kernel of this homo-
morphism is denoted by K’ and has order p"(’-r).

PROPOSITION 1.1.
r 1,...,n--2.

PROPOSITION 1.2.

If H n K-I is the identity, H n K is the identity for

If IH K-I p, then H K is cyclic and

IH nK ,-1

PROPOSITION 1.3. If lH n K_, p, then H n K" is generated by two
transformations U and U’ of order p"- and p’-’ respectively and

IHnK"11 P"--’.
So lH n g <_ p"-.
We use the groups K to define the concept of level for H. H is of level

p if H contains K’ and does not contain K’-. Similarly we say a subfield
F of K(p) is of level p if F is a subfield of K(/) and not a subfield of K(/-).
Note that F is of level p if and only if its Galois group is of level/.
For each r, K is a normal subgroup of LF(2, p") and if p > 3, these are

all the normal subgroups of LF(2, p) [5]. Since K is normal, H.K is a
subgroup of LF(2, p") and we have the following useful formulas:

(1.3)

In addition to the propositions from Gierster [2], we also use his tables
extensively and when we use the phrase "by Gierster" we are referring to
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this paper. Gierster writes aa element of K
Ur (, ,, p)r =- (u + p, p,, pp, u pr) mod p

where , , p belong to the set of residues mod p-,
u---- 1 W22(-t- p) modp and u 1 (p).

A final group we find useful is the one generated byK and S which we denote
by E and which has order
To compute the genus of H, we have to calculate r, and s(pr). Lemma

1.1 and the Sylow theorems are very useful in calculating r and t. We now
give a method for calculating s(pr). Note a coniugate of Sr has the form

+/- (1 pac, pa, --pc, 1 - pac).

LEM 1.2.

(1 pac, pa, pc, 1 - pac) (1 kpac, ]opal, kpc, 1 - tpac).

Proof. Induction on ].

LEMMX 1.3. Suppose A is a subgroup of LF(2, p) and A is conjugate to
[Sr] where 0 <_ r <_ n 1. Then A contains an element conjugate to S,

a -(1 pac, pa, --pc, 1 -k prac).

If (a, p’) 1, then A contains one and only one element of the
form +/- (x, p, y, z).

Proof. Consider

} +/- (1 ]cpac, kpa, -kpc, 1 - ]cpac) }, 1 <_ k <_ p-.
Since (a, p) 1, the set {ka} consists of the p- different elements of
Z/p’-Z and so ka 1 for exactly one

LEMMX 1.4. Suppose -(x, pr, y, z) belongs to a group conjugate to [S].
Then +/- (x, pr, y, z) is conjugate to S and further if

=t=(a, b, c, d). =i=(1, p, 0, 1). =i=(a, b, c, d)-1 -+-(x, p, y, z),

then a, p’* 1.

Proof. If =t=(x, p, y, z) is conjugate to =t=(1, So p, 0, 1), then

p soap (p’

for some a. Thus (a, p) 1 and so is a quadratic residue rood p.-r. But
=l:: (1, sop, 0, 1) is conjugate to S" if and only if so is a quadratic residue
mod p-r.
PnOeOSTON 1.4 Any group A conjugate to [S], where

=t=(1 pac, pa, -pc, 1 pac)
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is an element of A and (a, p’) 1, contains one and only one eement of the
form +/- (x, pr, Y, z) and it is conjugate to S.
Thus if it is known that, for coniugates of 4-(1, p’, 0, 1), (a, p) 1, to

calculate s(p) it is sufficient to set a 1 and see how many choices of c
yield distinct elements of LF(2, p’). In particular, this is the case if it can
be shown that p divides c since ad bc 1 (p’).

2. LF(2, 5)
Let H’ +/- (x, y, O, z)} where x, y, z belolg to the set of residues rood 25

and xz 1 (25).

THEOnM 1. The only subfields of K(5), n >_ 1, which have genus 0 are
the subfields of K(5) and the following two classes of subfields of K(25) of level
25: (1) {]cl} where G(K(25) kl) has order 250 and is conjugate to H’; (2)
where G(K(25) k2) has order 125 and is conjugate to H a E.

Note that all subfields of K(5) have genus 0 since a subfield of a field of
genus 0 has genus 0. The rest of the proof will follow from propositions 2.1
and 2.2.

Suppose that H is a subgroup of LF(2, 5) of level 25. Then H n K1_< 5
and so H’K[ >_ HI’5 which implies that HI <_ 5.12. By using for-
mula 1.1, Sylow to get upper bounds on and r, Sylow and Gierster to get
upper bounds on W and the fact that g(H) >_ O, we calculate that g(H) > 0
if HI 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60 or 75. In this section, r0
will denote a fixed non-zero residue mod 5.

LEMMA 2.1. If H 5" 12 or 53.12, then g(H) O.

Proof. Suppose HI 5.12. Then, by formula 1.2, H K
IflHaKI 5, thenH.g LF(2,25) andH(modh) LF(2,5). So
H contains K [6,484] which is a contradiction. If H K 25, H is of
the third type [2,353]; but there are no groups of order 12.5 of the third
type [2,357-360]. Suppose HI 53"12. Then H KI 25 which im-
plies that H.K 5*. 12. So H (mod 5) LF(2, 5) implying H contains
K, a contradiction.

LEMMA 2.2 If ill 53"k,/c 3, 4, 6 or 10, then g(H) O.

Proof. Since, if H KI < 25, H.KI would be greater than
[LF(2, 5) I, H ogi 25. If lH 5.3or53.4, H.K 5.3or
5’.4 and so H(mod 5) 15 or 20. But LF(2, 5) has no subgroups of order
15 or 20. If ]H 53.6 or 53.10, then lH.Kl 5’.6 or 5*.10. But
LF(2, 5) has no such subgroups.

LEMt 2.3. If lH 5’4, g(H) O.

Proof. NotethatlHag 5or25. If lHog[ 5,1H.K 5*.4
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and so [H (modh) 20 which is impossible. If [HnK[ 25, then
g(H) (llh-t-20W)/20. By Sylow, _< 75 and by Gierster pp. 329-330,
W_< 2. Thusg(H) O if and only if W 2andt 75. We show that
t<75.

Let B {identity, T, +/- (7, 0, 0, -7), (0, 7, 7, 0)} and let A be a sub-
group of H of order 4. Since, by Sylow, A and B are conjugate and since
conjugate groups have the same genus, we may assume that, by conjugating
H, B is a subgroup of H. Further note that (H n K).B has 100 elements
and so H (H n K).B. So in order to obtain 75 elements of order 2 in H,
it is necessary that each element ( identity) of B yield 25 elements of order
2 when multiplied by (H n K).

K. T =t= 5y, 1 5x, 1 -k- 5x, 5z)

where x, y, z describe all values mod 5. The 25 elements of order 2 in this
set are given by y --- z(5); so

(H n g) =t= (1 5x, 5y, 5y, 1 -t- 5x) }.
But then

(H n g). =t= (0, 7, 7, 0) {2=(10y, 7 10x, 7 -t- 10x, 10y)}

yields only 5 more elements of order 2 given by y 0. So < 75.

LEMMX2.4. If H 5’6, g(H) 0.

Proof. H n gl 5 or 25. If lH n g 5, then H.KI 5’6
which is impossible. If H n K[ 25,

W _< 2[2,329-330] and g(H) (125-r-t-20W)/30.

So if g(H) 0 we have 3 possibilities" W 0 and r + 125; W 1 and
r + 105; W 2andr-t- 85. But bySylow, r + t 105 or 85
and if r + 125, 75 and r 50. Thus if g(H) 0, the only possible
orders for elements of H are 2, 3 and 5. But H (mod 5) is a dihedral group
of order 6 containing 3 elements of order 2. So each element of order 2 in H
(mod 5) must have 25 elements of order 2 in its pre-image in H. Therefore
in H, any element of order 2 multiplied by H n K has to yield 25 elements
of order 2.
As in Lemma 2.3, we may assume T is in H and so to get 25 elements of

order 2 from (H n K). T, H n K has to be

=t= (1 5x, 5y, 5y, 1 -k- 5x) }.
To get 75, we must find 2 elements of order 2 in addition to T which,
when multiplied by H n K, will yield 25 elements of order 2 different from
those in (H n K). T. Now
(H n Kx) =t= (a, b, c, -a)

{a 5ax 5yc, b 5bx 5ya, 5ya c -I-- 5ax, -a-hax -k- 5yb)}.
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So we wish to find a, b, c such that -lOax 5yc 5yb 0 (25)
forx, y 0, ...,4. Ifx 0, weneed (c-t- b) 0 (5). If y-- 0, we
need a 0 (5). Further, from the determinant, we need a bc -1
(25). So we have to solve simultaneously (c + b) 0 (5) and bc 1 (25).
The only solutions are the pairs {1, -1}, {4, 6}, {9, 11} and their negatives.
The elements of order 2 corresponding to these pairs all belong to (H n K). T.
So < 75 and g(H) > O.

LEMMA 2.5.
U

If H 58" 2, then g(H) 0 if and only if H is conjugate to

Proof. Note H’ 58. 2 and g(H’) 0 since 25 and W 6, the 25
elements of order 2 being given by {(7, y, 0, -7)} where 0

_
y _< 24 and

the 6 groups contributing to W being generated by

(-4, 1, 0, 6), :k(-9, 1, 0, 11), :k(ll, 1, 0, -9),

:(6, 1, 0, -4), d:(1, 1, 0, 1) and :k(1, 5, 0, 1).

In general if H 58 2, H n K11 25 and so H is of type 3. So there are
2 possibilities for H, [2,357-360]. First H could be one of 30 conjugate
G"o(I, I)o containing 1(1, 2)(I, I)0 and 25 GIo.H’ is an example of this type
and so all these groups have genus 0.

G5o(I, I’, 1)0 con-Second H could belong to one of 4 types of 30 conjugate "
taining 1 (1, 2)(I, I’, 1) and 25 G10. So to calculate W, it is necessary to
investigate a(1, 2)(I, I’, 1). In LF(2, 5), there are 4 given by

{:i:(1 - 5(} -t- z), }, 5r0}, 1 5(} - z))}

where z describes all values mod 5 and all values mod 25.
groups correspond to choices for r0.

Recall a conjugate of S has the form

1 5rac, 5a, 5c, 1 + 5rac)

The 4 different

where at least one of a and c is not congruent to 0 mod 5. So if a conjugate
of S belongs to (1, 2)(I, F, 1)0, -c --- 5r0 (25) so that 5 divides c so that
-c 0 (25) so that 5r0 0 (25) which, together with r0 0 (5) implies
that 0 (5) so that a --- 0 (5) which is a contradiction since then 5 divides
both a and c. If a conjugate of S belongs to (1, 2)(I, I’, 1)0,5r0 - -5c
(25) and 5a (25) so that 0 25r0a --- -5c (25). Thus 5 divides c so
that (a, 5) 1. By Proposition 1.4, we let a 1 and find there is only one
coniugate of IS] in (1, 2)(I, I’, 1)0, namely IS5] itself. Thus W 1 and
g(H) (125-t)/50 0 if and only if 125. But H contains 124 elements
of order divisible by 5 in (1, 2)(I, I’, 1)0 and at least one element of order 10
inG10. SincelHI 250, 125 andg(H) 0.

LEMMA 2.6. Suppose lHI 5 and H K.
only if H is conjugate to H’ r E.

Then g H 0 if and
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Proof. First observe that g(H) (24 4W)/5. Also note, from Gier-
Kster, pp. 345-352, that any group of order 53 ( 1) can be gotten by inter-

secting a group of order 250 with E. So we must consider a (1, 2)(I, I)0 and
a (1, 2)(I, I’, 1)0. From Lemma 2.5, we see that H’ n E is an example of
the first type so that W 6 and g(H) O. We also see that in the second
case W 1 and g(H) 4.
From Lemmas 2.1 to 2.6, we now have

PROPOSITION 2.1. There exist two classes of subfields of K(25) of level 25,
{/c} and {]}, which have genus O. These are distinguished by the fact that
G(K(25) i]) has order 250 and is conjugate to H’ and that G(K(25) I/c) has
order 125 and is conjugate to H’ E.

LEMMA 2.7. If F is a subfield of K(125) and F F r K(25) is contained
in K (5), then F is contained in K (5).

Proof. Note that since F is a subfield of K(5), F1 equals F n K(5) so that

H.K H.K G(K(125) F).

Also G(K(5) F) has order 5.m where k 0; m 1, 2, 3, 4, 6 or 12 or
] 1; m 1, 2, 12. We show that F is a subfield of K(25) which is suffi-
cient since F K(25) is a subfield of K(5). If F is not a subfield of K(25),
then

HnK (UnK) K 1,5or25.

Using the fact that H.K H.K 56.5.m and formula 1.2, we see
that ]H 53.5.m, 5.5.m or 55.5.m as H g! 1, 5 or 25. But
then by formula 1.3, H K 53, 5 or 55 which contradicts Proposition
1.1, 1.2, or 1.3 respectively.

Remark. This type of argument, using the orders of the various groups
obtained from H and K, formulas 1.2 and 1.3 and Propositions 1.1-1.3, will
be used frequently and will be referred to as the usual argument using Propo-
sitions 1.1-1.3.

LEMMA 2.8. Suppose F is a subfield of K(125) of genus 0 so that F1
F n K(25) also has genus O. If the level of F1 is 25, F is contained in K(25).

Proof. Since the level of F1 is 25, H1 G(K(25) F) is conjugate to H’
orH’nE. IfFisnot asubfieldofK(25) HnK.1 1, 5 or 25. If
H n K 1 or 5, the usual argument using Proposition 1.1 or 1.2 leads

to a contradiction. If H KI 25, then H K,I 5 by the standard
calculations using formulas 1.2 and 1.3.
Suppose Hlis conjugate toll E. Then HI 55 andHis either a

(2, 3)(I, I)0 or a (2, 3)(I, I’, 1)0 [2, pp. 345-352]. An example of the first
is given by l:h(u - 5z, , 0, u 5z)} where describes all values rood 125
and z all values rood 25. Using Proposition 1.4, we see that H contains 5
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conjugates of [S] (given by a 1 and c 0, 25, 50, 75, 100); 5 coniugates
of[S5] given bya landc 0, 5, 10, 15, 20) and 1 coniugate of [S5]
(a 1, c 0). So W 11 and g(H) 16. An example of the
second is given by{ :i: (u - 5z, , 5r0, u 5z)} where , z are as above. For
coniugates of [S], consider -c --- 25r0 (125) which implies that 5 divides c
and (a, 5) 1. Applying Proposition 1.4, we let a 1 and get -c --- 25r0
(125). If r0 is a quadratic residue rood 5, there are 10 choices for c; if not,
there are none. For coniugates of [$5], 5a (125) and so

-5c --- 25r0 125r0a 0 (125)

which implies that 5 divides c and we see there are 5 choices for c regardless
of what r0 is. Similarly there is only one coniugate of IS25] regardless of what
r0is. So W 16 or6andg(H) 12 or 20 depending on whetherr0isa
quadratic residue or not.

Suppose H1 is conjugate to H’. Then [H 55.2 and H is either
a G65o(I, I)o or one of 4 types of G6.5o(I, I’, 1). An example of the first is
given by {(x, y, 0, z)} where x, y, z describe all values rood 125 and xz
1 (125). ThenHnEisa (2, 3) (I, I)0 and so W 11. Furthert 125
since the only elements of order 2 in H are : (43, , 0, -43). So g(H) 8.
In an example of the second case, H n E is a (2, 3)(I, I’, 1)0 so W 16 or
6. Then g(H) (1625 t)/250 or (2625 t)/250. But by Sylow, has
to be a power of 5 and neither 1625 nor 2625 is. Hence g(H) O.

Remark. This type of argument, also seen in Lemma 2.5, using Proposition
1.4 to count coniugates of [Sr] will be used frequently and will be referred to
as the usual argument using proposition 1.4.

O,
PROPOSITION 2.2. Suppose F is a subfield of K Sn), n >_ 3, which has genus
Then F is a subfield of K(25).

Proof. Lemmas 2.7 and 2.8 show that the proposition is true for n 3
and we proceed by induction, i.e. we suppose that a subfield of K(Sn-1),
n >__ 4, of genus 0 is a subfield of K(25). Consider F a subfield of K(Sn).
If F is a subfield of K(5"-), we are done by the induction hypothesis. If
not, F F n K(5n-) has genus 0 and by the induction hypothesis is a sub-
field of K(25). Considering the two cases, F1 a subfield of K(5) and F a
subfield of K(25) of level 25 separately, we get a contradiction by the usual
argument using Propositions 1.1-1.3.

3. LF(2, 3")
TEOnEM 2. The only subfields of K(3), n >_ 1, which have genus 0 are a

subfield of K(3); a subfield of K(9) of level 9 whose Galois group belongs to one
of the 5 following classes" (1) H has order 9 and is either a subgroup of K with
W 2, a I’(1) or a conjugate of [S], (2) H has order 12, (3) H has order 18
and is either a GI’{ (III, a)} or the right kind of G’s{ (II, b)l, (4) H has order
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27, (5) H has order 36; and a subfield of K(27) of level 27 whose Galois group
is the right kind of (2, 3)(I, I’, 1)0.

First note that any subfield of K(3) has genus 0 and the rest of the proof
will follow from Propositions 3.1 to 3.3. Second note that Gierster denotes
a conjugate of T by F8. Now suppose H is a subgroup of LF(2, 9) of level
9. Simple calculations show that 38 is the highest power of 3 which can divide
the order of H and that if HI 2, 3,4or6, g(H) O. It also follows
from easy calculations plus Gierster, pp. 356-360, that if H 38" 2 or 38.4,
H contains K. In this section r0 will denote any fixed non-zero residue
rood 3.

LEMMA 3.1. If IH 9, there are 3 cases in which g(H) 0: (1) H is a
subgroup ofK with W 2, (2) H is a F(1) or (3) H is a conjugate of IS].

Proof. If H n g] 1 H g 351 which is impossible. If
H n K 9, H is a subgroup ofK and g(H) (18 9W)/9. So g(H)
0 if and only if W 2. IflHngl 3, g(H) (18- 3.r- 9W)/9.
So g(H) 0 if and only if (1) W 0 and r 6 which is impossible since
thenlH] >9;(2) W= landr =3whichsaysHisa 1(1); (3) W 2
in which case H is a coniugate of IS] since H n K] 3 implies there is at
most 1 conjugate of IS8] in H.

LEMMX 3.2. Any group of order 12 has genus O.

Proof. If HnKI 1, Hisatetrahedralgroupsor 4, 3and
g(H) O. If H n K, 3, H isoneof 9 G{IIII [2,356] so 7. Hence
g(H)

_
(21 21)/12 0 and since g(H) is always non-negative, g(H) O.

LEMMA 3.3. If H[ 18, there are two cases for which g(H) 0: (1)
H is one of 3 conjugate GlP’s{ (III, a)} or (2) H is one of 18 conjugate GIP{ (II, b)}
of the right kind.

Proof. By Sylow H has one subgroup of order 9 and 1, 3 or
9. H n K 1 or3 yields an impossible order for H.K ]. So H,K
9 which says that r 0 since no F8 belongs to K and that W 0, 1 or 2.
g(H) (27 3t 9W)/18 so that g(H) 0 if and only if W 0, 9;
W 2, 3. The first occurs if H is one of 3 conjugate G8{III, a)l con-
taining 1 (1, 1 ){ III} and 9G the second if H is one of 18 conjugate G’{ (II, b)}
containing 1 (1, 1){II} and 3G6. That not all groups of order 18 have genus
0 is shown by the existence of 18 G’{ (III, b)} containing 1(1, 1){III} and
3G6 so that g(H) 1.

LEix 3.4. Any subgroup of order 36 has genus O.

Proof. HK] 1 since then IH.K] would be too large and
]H n K 3 since there are no suchgroups [2,356]. So H KI 9 and
there are two possibilities. H may be one of 9 coniugate Gs{III, c} or one of
two types of Gs’{III, II1, d}, each containing 1(1, 1){ (III)}, 6G and 9G..
So in either case W 0, 15 and g(H) O.
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LE 3.5. Any subgroup of order 27 has genus O.

Proof. First if H K, then H G(K(9) K(3)) and g(H) O.
Otlerwise H K 9 since, if not, H’Ki will be too lrge. So H my
be one of 4 conjugate r"(I, a) containing 1 (1, 1)(I) nd 9r so that r 9,
W 1 ndg(H) O. On the otherhad, H mybe (1, 2)(I,I)0 n
example of which is given by

{=t=(1 3( -}- z), , 0, 1 -b 3( -}- z))}

where } describes 11 vlues mod 9 nd z ll vlues mod 3. By the usual rgu-
ment using Proposition 1.4, W 3 - 1 4 ad g(H) O.
So we now have

POOSITION 3.1. Suppose F is a subfield of K(9) of level 9. Then F has
genus 0 if and only if G(K(9) F) H belongs o one of the following classes:

(1) H has order 9 and is either a subgroup of K with W 2, a F(1) or a
conjugate of IS];

(2) H has order 12;
(3) H has order 18 and is either a Gt’{ III, a} or he right kind of G{II, b};
(4) H has order 27;
(5) H has order 36.

Now we consider subfields F of K(27) and let F, F n K(9) and
H, G(K(9)

LEPTA 3.6. Suppose F is a subfield of K(27) of genus 0 and H has order 9.
Then F is a subfield of K(9).

Proof. If H n K 1, H n K,I _> 3 contradicting Proposition 1.1.
Since F hs genus 0, there are 3 possibilities for H. First suppose H is
subgroup of K,. Then F, contains K(3) and so F n K(3) K(3). Thus
F contains K(3), H is a subgroup of K, H n K 9 and H 81. H
H is either a

(2, 2)(I) or (2, 2)(I’, 1)[2,338-339].

So H is coniugate to either

{=t=(u 3x, 3y, 0, u -k 3x)} or {=t=(u 3x, 3y, -9roy, u - 3x)}

where x, y describe all values mod 9. Then by the usual argument using
Proposition 1.4 either W 0 -1- 3 -b 1 4 and g(H) 4 or W 0 "b 0 -b
1 landg(H) 7.
Suppose H is coniugate to IS]. If [H n K[ 3, H[ 27 and H n K

is cyclic of order 9. A conjugate of S has the form =t= (a, b, c, d) where

((a-}-d)/2)--l--- 0 (3*) and ad-bc-- 1 (3).
So H, contains an element of this form and hence H contains an element

a =k(a’, b’, c’,



452 JOSEPH B. DENNIN, JR.

Cwhere a’d’ b’c’ =- 1 (27) anda’ a+9kl b’ b -9/c., c9k3,
d’ d 9/4 where the k are integers. Then

A’ ((a’ +d’)/2)2- 1------ 9s0 (27)
where so 0, 1, 2. So [a] is either a G27(I) or G7(I, 1) and has order 27.
Thus H is cyclic W_ 3andg(H) >_ 13. If lHng 9, [H 81 and
IHnKI 27. IfW=0, g(H) >0. IfW>0, H is either a (1, 3) (I, I)0
or one of 2 types of (1, 3) (I, I’, e), e 1 or 2 [2,345-351]. As a (1, 3) (I, I)0
H is conjugate to

{-_e(u + 3 + 9z, ,-9, u-(3 + 9z))}

and as a (1, 3)(I, I’, 1)0 H is conjugate to one of

-+- (u - 3 + 9z, , 9r0, u- (3 + 9z)

where describes all values rood 27, z all values mod 3. In either case
W 3 3 1 7sothatg(H) 1. Asa (1,3)(I,I’,2)0,Hisconju-
gate to one of

{:i= (u + 3 + 9z, , 3r0 9, u--(3 -t- 9z))}

with , z as above. HereW 0-0 landg(H) 7.
SupposeH1 1(1). IflHng] 3, HI 27 andHgiscyclic

of order 9. So [2,364-366] H is oneof 3 types of 108 1’7(I, 2), W

_
2, r 3

andg(H) >_ 15. If IHn g] 9, IHI 34and IHn gl 27. So
[2,364-366], H contains either a (1, 2) (I, I) or a (1, 2’) (I,I’, 1). An example
of a (1, 2)(I, I) is given by

{=e(u + 9(f + z), 3f, o, u 9( + z))}
with , z as above and W 0 + 3 -t- 1 4. An example of a (1, 2) (I, I’, 1
is given by

{-+-(u -t- 9( -t- z), 3, 9r0, u 9( -t- z))}
with , z as above and so W 0 -t- 0 - 1 1. Now H itself belongs to one
of the following classes and has the genus indicated" (1) H is one of 36 con-
jugate rs"(I, I), W 4, r 9 and g(H) 3; (2) H is one of 12 conjugate
r"(I, I’, 1, a), W 1, r 27 and g(H) 4; (3) H is one of 2 types of
12 rs"(I, I’, 1, b), W 1, r O, g(H) 7; (4) H is one of 36 conjugate
rs"(I, I’, 1, c), W 1, r 9 and g(H) 6. So g(H) > 0 in all cases.

LEMMA 3.7.
12, 18 or 36.

Suppose F is a subfield of K(27) of genus 0 and HI has order
Then F is a subfield of K(9).

Proof. Suppose Hll 12. If H K]I 1, H isa tetrahedral group
andg(H) 43. IflHnK]l 3,1HI 36 and H n K is cyclic of order
9. Then W

_
2 and by Sylow,

_
27 so that g(H) >_ 22/4. If

H g]l 9, HI 3’4 and H gl 27. So [2, pp. 345-352], H is
one of 2 types of 81 Glosl (III, III, d)} for which W 0 and

_
39 so that

g(H) >_ 4.
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Suppose HI 18 or 36. If H a KI 1 or 3, one gets a coatradictioa
to Proposition 1.1or1.2. IflHKI 9, thealH 3./where/ 2
or4andlUnK 3. SoHnKiseithera (2, 2)(I) or(2,2)(I’,1).
But [2, pp. 351-361] there are no groups of order 3./ containing either of
these.

LEMMA 3.8. Suppose F is a subfield of K(27) of genus 0 and H has order
27. Then either F is a subfield of K(9) or H belongs to the right ]rind of
(2, 3)(I, I’, 1)0.

Proof. If H K] I or 3, one gets the usual contradiction using Propo-
sition 1.1 or 1.2. If H aK] 9, then H 3and HaK 3.
Suppose H does not contain any Fa or F. Then H is either u (2, 3)(I, I)0
or one of two types of (2, 3)(I, I’, 1)0. Aa example of the first is given by

{-(u -t- 3(3 -t- z), , 0, u 3(3 - z))}

where describes all values mod 27 and z all values rood 9. Then
W 3+ 3- 1 7andg(H) 1. Aexampleofthesecondisgivenby

l+/-(u - 3(3 - z), , 9r0, u 3(3 - z))}

where , z are as above. If r0-- 1 (3),s(1) 0;if r0 =-- 2 (3),s(1) 6.
In either case, s(3) 3ands(9) 1. SoW 4orl0andg(H) 2or
0 depending on whether r0 1 or 2 (3).
Suppose H contains a F3 or Fg. Then [2, pp. 364-366] H belongs to one

of the following classes" (1) 12 coniugate r"(a); (2) 12 conjugate r"(b);
f!

(3) 12 conjugate Fas(c). In all three cases, to compute W we need to ana-
lyze a (2, 2)(I’, 1)(s0/3) -1 of which

/+/-(u + 3y, 3(y + z), 9z, u- 3y)}

where z and y describe all values mod 9 is aa example. So W 0 - 0 -1 1. Also r 27, 0 or 54 in cases (1), (2) or (3) respectively and thus
g(H) 2, 3 or 1.

PROPOSITION 3.2. Suppose F is a subfield of K(27) of level 27. Then F
has genus 0 if and only if G(K(27) F) has order 35 and is a (2, 3)(I, I’, 1)0
of the proper type.

Proof. If F1 is a subfield of K(3), F is a subfield of K(3) by the usual
arguments using Propositions 1.1-1.3. So we can assume F1 has level 9 in
K(9) and the proposition then follows from Lemmas 3.6-3.8.

LEMMA 3.9. Suppose F is a subfield ofK(81) of genus 0 and F F n K(27)
is a subfield of K(9). /fH G(K(9) F) has order 9, then F is a subfield of
K(27).

Proof. Since F has genus 0, HI is one of the following types: (1) a sub-
group of K, W 2, (2) a conjugate of IS], (3) a r(1). In any case if
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H n KI 1 or 3 and in case (1) if H n KI 9, we get the usual con-
tradiction using Propositions 1.1-1.3. In cases (2) and (3) with
UnKl 9, we obtainlHaK 36and]HI 37 In case(2),His

either one of 3 conjugate (3, 4)(I, I)0 such as

{:i: (u - 27 + 3z, , 0, u (27 - 3z))}

where describes all values mod 81 and z all values mod 27 or it is one of 2
types of (3, 4)(1, I, 1)0 such as

{:t:(u W 27 - 3z, , 27r0, u-(27 - 3z))}

where , z are as above. But on reduction rood 9 both of these groups have
order 27 and hence can not be one of the Hl’s which have order 9. In case
(3), Gierster [2, pp. 364-366] has no groups of order 37 of the proper type.

LEMMA 3.10. Suppose F is a subfield of K(81) of genus 0 and
F1 F K(27) is a subfield of K(9). If H1 G(K(9) F1) has order 12 or
9. k where k 2, 3 or 4, then F is a subfield of K(27).

Proof. The only case in which one does not get the usual contradiction
to Propositions 1.1-1.3 is the one in which H1 12 and lH KI 9.
But then H is of order 36.4 with H n K a (3, 3) and Gierster, pp. 357-360,
has no such subgroups.

LEMM 3.11. SupposeF is a subfield of K(81) ofgenusO andF1 F K(27)
is a subfield of K(27) of level 27. Then F is a subfield of K(27).

Proof. Since F1 has level 27, H has order 35 by proposition 3.2. If
H n KI 1 or 3, we get the usual contradictions to Proposition 1.1 or 1.2.

If lH n Kii 9, thenlH 37 and lH K 3611 ThenHisconjugate
to one of the two groups given in Lemma 3.9. For the (3, 4)(I, I)0 we have
W 9W3-t-3-b 1 16andg(H) =4. For the (3, 4) (I, I’, l)0 we have
W 0-t-3-b3-b 1 7andg(H) 7.

PROPOSXTION 3.3. Suppose F is a subfield of K(3), n >_ 4 and F has genus
O. Then F is a subfield of K(27).

Proof. The proof is by induction on n. Let n 4 and F1 F n K(27).
If F1 has level 3, F K(27) follows from the usual argument using Proposi-
tions 1.1-1.3. If F1 has level 9 or 27, F K(27) follows from Lemmas
3.9-3.11. Now let n >_ 5 and assume a subfield of K(3-) of genus 0 is con-
tained in K(27). Then F F n K(3-) is a subfield of K(27) and sup-
posing F is not a subfield of K(3-) leads to a contradiction by the usual
argument using Propositions 1.1-1.3. So F K(3"-) and, by the induc-
tion hypothesis, is a subfield of K(27).

BIBLIOGRAPHY

1. J. GIERSTER, Die Untergruppen der galois’schen Gruppe der Modulargleichunen fur
den Fall eines primzahligen Transformationsgrades, Math. Ann., vol. 18 (1881),
pp. 319-365.



FIELDS OF MODULAR FUNCTIONS OF GENUS 0 455

2. --, Uber die galois’sche Gruppe der Modulargleichungen, wenn der Transforma-
tionsgrad die Potenz einer Primzahl > 2 ist, Math. Ann., vol. 26 (1886), pp.
309-368.

3. R. C. GUNNING, Lectures on modular forms, Princeton University Press, Princeton,
1962.

4. D. L. McQuILLxN, Some results on the linear fractional group, Illinois J. Math., vol.
10 (1966), pp. 24-38.

5. :, Classification of normal congruence subgroups of the modular groups, Amer.
J. Math. vol. 87 (1965), pp. 285-296.

6. On the genus of fields of elliptic modular functions, Illinois J. Math., vol. 10
(1966), pp. 479-487.

UNIVERSITY OF CONNECTICUT
STORRS CONNECTICUT


