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A well known theorem of R. Nevanlinna (see e.g. [2, Theorem 2.6]) states
that two nonconstant meromorphic functions of a complex variable which at-
tain five distinct values at the same points must be identical. The functions
e and e and the values 0, , 1, -1 show that four distinct values are not
enough even when the multiplicities are the same. On the other hand, two
nonconstant polynomials f, g over an algebraically closed field of characteristic
zero are identical iffor two distinct (finite) values a, b we hayer(x a =, g (x a
and f(x) b = g (x) b. To see this let the two polynomials be f and g and
assume (without loss of generality) that the two values are 0 and 1. So
f(x) 0=g(x) 0andf(x) l=g(x) 1. Suppose thatn degf_>
deg g > 0. Now f divides f’ (f g) since every zero of f is a zero of f g.
Also f 1 divides f’ (f g), and thus, since f and f 1 are relatively prime,
f (f 1 ) dividesf’ (f g). But degf(f 1 2n and degf’ (f g) _< 2n 1,
and sol- g-- 0.

This result does not remain valid if the condition that the field is of charac-
teristic ero is dropped. For example, x and xq attain each value in GF (q)
at the same unique point.

Entire functions over a (complete, algebraically closed) non-Archimedian
field of characteristic zero behave, in many ways, more like polynomials than
like entire functions of a complex variable. This is also true in connection with
the problem under discussion here. In the following it is assumed that the
non-Archimedian variable ranges over a complete algebraically closed field of
characteristic ero.

THEOREM 1. Let f, g be two nonconstant entire functions of a non-Archimedian
variable, so that for two distinct (finite) values a, b we have f (x a = g (x a
and f (x) bg(x) b. Then f g.

It may be desirable to define our concepts of analyticity to the extent that
they are used here. By an analyticfunction we mean the values of a convergent
Luurent series in some domuin. A meromorphic function is the ratio of two
analytic functions. A function analytic in a punctured neighborhood of a
point has an essential singularity at that point if the Laurent series about the
point contains an infinite number of negative powers. For further reference
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see, for example, the appendix of [1]. The fcts about analytic functions
that we need are summarized in the following lemma.

LEMMA. Let

be an analytic function of a non-Archimedian variable in the domain

Ro < <
where 0 <_ Ro < R1

_
and define

Ms(r) supll=rlf(x)i,R0 < (=)r < (=)R1.

Mr(r) maxn ]c, r and hence the maximum-modulus principle
holds and Mf (r is continuous;

(ii) the maximum on the right of (i) is attained for a unique value of n except
for a discrete sequence of values {r} in the open interval (Ro, RI)

(iii) if r r,} and Ro < Ix] r < R then f(x =Mr(r);
(iv) if f is a nonconstant entire function then M(r as r oo

(v) for two analytic functions f, g,

Then
(i)

Msg (r M(r)Mg (r

(vi) M,(r) <_ M(r)/r (r > 0).

Proof. To prove (i) suppose that nl < n2 < < nk are all the values of
n such that

max Icn[ r Ic,l r’ (i 1, ..-,k).
Then if

(1) sup,,_, Cnl xTM + + ca xnk Cnl

we would have by the ultrametric inequality

m xo co x" + +

as desired. So we must show (1). If k 1 the result is clear, so assume
k 1. Write

c,, x’ + + c x c xP(x)

where P (x) is a polynomial of degree nk n and we must show that

maxll-, P(x) 1.

If Ix < r then P (x) is dominated by its constant term and if Ix > r then
P (x) is dominated by its leading term. Thus IF (x)! > 1 whenever Ix r.
So every root of P (x) satisfies i[ r. Write

P (x (1- x/ (1- x/,
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wherel,l =r (i= 1,...,). If Ial -< l denote by a the image of a in the
residue class field. Then since the residue class field is infinite there is an Xo
such that

[Xol r and (x-) (-) (i 1, ...,).

Thus 1 Xo/( 1 for i 1, ,, since 1 Xo/ < 1 implies

I/a 0/1 < 1

contradicting the choice of x0. Hence ]P(x0)] 1 nd (i) is proved. In
(ii) the sequence {r} consists of the rel numbers r such that M(r)
c r [c r for some m n nd this clearly is discrete set. So (iii)
is obvious from the definition of the r nd (iv) follows from (i) nd (ii).
Fuher (v) is clear,from (iii) for ll r outside some discrete set nd so follows
for ll r by (i). Finally to prove (vi) we hve by (i)

M],(r) mx nc r- mx c r- M,(r)/r.

Proof of Theorem 1. Assume without loss of generality that f(x) 0
g (x) 0 ndf(x) 1 g (x) 1. Thenf g hs ero whereverf ff 1
has ero. Thus for every ero of f (f 1 the function (f g) hs ero
of multiplicity t least s high. In other words, there is n entire function F
such that

(2) f’ff- ) Ffff- ).

Now we my ssume that M(r) M (r) for some rbitrrily lrge vlues of
r, nd we restrict our ttention to these vlues of r. Assume r is chosen so
lrge that M (r) > 1. Thus M]_ (r) M (r). Then prts (v) nd (vi)
of the lemm yield from (2),

M(r)M(r) M]_(r)M], (r)

M](r)M],(r) M(r)/r.
SoMa(r) 1/rorF 0. Sincef’0wehvef g.

If we nlye the proof of Theorem 1 we cn get quantitative result.

Coov. Let f, g be different nonconstant entire functions of a non.Archi-
median variable and let a, b be distinct values. For any Xo for which the expression
on the right is defined let

]f(xo) (z0) /’(x0) ](z0) f(0)] ’(z0)

_
Then there exists an x such that x Xo R (Xo and one off (x ), g (x is a or b
while f (x g (x ).

Proof. We my ssume without loss of generality that x0 0, a 0, b 1.
We my further ssume that the first term in the definition of R (0) is the lrger.
Suppose the reset is flse, so that f (x) g (x) whenever f (x) or g (x) is 0 or 1
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and x < R where R is the least absolute value of a 0- or 1-point of f or g out-
side the disc xl

_
R (0). Let R > r > R (0). Define F by equation (2);

so F (x) is analytic for Ix < R. Moreover as in Theorem 1 M(r) <_ 1/r.
But by definition

IF(O)[ 1/R (O > 1Iv.
This gives the desired contradiction.

The method of proof of Theorem 1 allows us to prove the following more
general theorem.

TEOgEM 2. Let f, g be nonconstant entire functions of a non-Archimedian
variable. Suppose that Mg (r o (rM] (r for an infinite sequence of values of
r tending to . Let a, b be two distinct values. Assume thatf (x) a g (x) a
and f(x b g (x b. Then f=- g.

Proof. Reasoning as in Theorem i we obtain an entire function F such that

f’(f- g) F(J’- a)(f- b)

and our hypothesis suffices to prove that F 0.

We have thus shown that whenever the distinct a-points and b-points of a
nonconstant entire function f are contained among the a-points and b-points
respectively of a different entire function g, the function g must have a sig-
nificantly higher growth-rate than f.

In trying to generalize Theorem 1 to meromorphic functions of u non-
Archimedian variable, we are again guided by the analogy with rational func-
tions over an algebraically closed field of characteristic zero. A first guess
might be that a nonconstant rational function is determined by the pre-images
of three distinct values. However this is not the case. For example the func-
tions

f(x) x/(x x - 1), g(x) x/(x x - 1)

ttain the vulues 0, 1, at the same points. The multiplicities of the values
0 and 1 are not the same.
A degree argument very similar to the one used for polynomials shows that

a nonconstant rational function over an algebraically closed field of charac-
teristic zero is indeed determined by the pre-images of four distinct values.
The unulogous theorem holds for meromorphic functions of a non-Archimedian
variable.

TEOaEM 3. Let f, g be two nonconstant meromorphic functions of a non-
Archimedian variable so that for four distinct values ax a aa a we have f(x )
aic:} g (x ai i 1, 2, 3, 4. Then f g.

Proof. Let f fx/f and g g/g where fx, f, g, g. are entire functions
and, f andf as well as g and g have no common zeros. We may assume 0,
are two of the given values; that is we assume fx 0 , g 0, fi 0 , g 0,
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fl af : gl ag and f bfi. :, g bg for values a, b different from 0, .
Further, without loss of generality, we may assume that

MI, (r) >_ max {MI, (r), Mg (r), Mg, (r)}
for some arbitrarily large values of r. From now on we restrict our attention
to these values of r.
Now the function f, g (f .-- g) f g f. g vanishes whenever f 0, , a

or b. Thus the function (f fi fl f) (f g f g) has zeros at every zero of
f f: (f aft) (fl bfl.) of multiplicity at least as great. In other words there
exists an entire function F such that

(3)

Now let

Since

M (r) min {M]I (r), Ml_a] (r), M]_bf,. (r)}.

we obtain from parts (v) and (vi) of the lemma

(4) M_,;.(r)

_
M(r)M(r).

r

Thus again using the lemma and equations (3), (4) we see

M(r)ii(r)i(r)i(r)

_
i(r)M(r) i(r)

r

so that M (r)

_
1/r. So we have F 0 and since f’ 0 we must have

f g fi g =- 0 off--- g.
Our method of proof can also be applied to certain classes of analytic and

meromorphic functions in an annulus, although the results may not be best
possible.

THEOREM 4. Letf be analytic and unbounded in the annulus A ro < x < r
where 0 ro r . Let g be analytic in A. If there are three distinct
(finite) values al as, aa so that f (x a - g (x ai i 1, 2, 3 then f g.

Proof. As always we may assume that 0 is one of the values, so assume

f= 0,g 0, f= acvg aandf= bcg bwhere0, a, b are distinct.
We may assume, without loss of generality, that

lim,l M] .
We may further assume that M](r) >_ M(r) through some sequence of r’s
tending to r. From now on we shall restrict our attention to these values of
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r. Now we obtain exactly as in the proof of Theorem 1 that

(5) f’(f- g) Ff(f- a)(f- b)

for some F analytic in A. We may choose r close enough to rl to guarantee
that Ms (r) > max {I a I, b ]}. Hence by parts (v) and (vi) of the lemma

(6) M(r)Ms(r) <_ Ms(r)/r.
Thus M(r) <_ (rMs (r) )-1 --. 0 (r --> rl). From this it follows that F 0.
To see this suppose the Laurent series for F has the form

(7) F (x) _-_ C, x’.

Then by part (i) of the lemma

M(r) max C,[ r" >_ CI r

for each fixed m. Thus

C[ _< rl lim M(r) 0.

It follows that F ---- 0. Then since f 0 we have f --- g.
We can extend Theorem 4 to the case where one of the discs in the comple-

ment of the annulus A degenerates to a point.

TEOaEM 5. Let f and g be analytic functions of a non-Archimedian variable
in a punctured neighborhood N of a point P. Assume f has an essential singu-
larity at P and that for three distinct (finite) values al, a., aa we have f(x).
a v: g (x a i 1, 2, 3 for all x in N. Then f g in N.

Proof. Without loss of generality we muy assume P , nd N r0 <
xl < . Now as in the proof of Theorem 4 we get (5) and (6) and hence

i (r <_ (ris (r -1

over a sequence of values of r tending to . Thus if F is expressed again by
(7) we obtain

C, - r-’U (r) <_ (r’+lis (r))-1 ----> 0

(the latter following because f has an essential singularity at ). In other
words F 0 and the theorem follows.

In a manner entirely analogous to that which led from Theorem 1 to Theorem
3 we can prove an analog to Nevanlinna’s theorem for meromorphic functions
in an annulus or in the neighborhood of an isolated essential singularity.

THEOREM 6. Let f, g be meromorphic functions of a non-Archimedian variable
in the annulus A ro < x < rl so that f cannot be expressed as the ratio of two
bounded analytic functions in A. If there are five different values ai (i 1,
5) so that f(x ai = g (x a i 1, 5 for all x in A then f g in A.

THEOREM 7. Let f, g be meromorphic functions of a non-Archimedian variable
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in a punctured neighborhood N of a point P and suppose f has an essential singu-
larity at P. If there are 5 different values a (i 1, ..., 5) so that f (x)
a :, g (x) a i 1, ..., 5 for all x in N then f g in N.

The proofs are obvious combinations of the proofs of Theorem 3 and
Theorems 4, 5.
While the method of proof in Theorems 4-7 seems to require three and five

values respectively we have not been able to prove that two and four values,
respectively, would not have sufficed. We should like to pose this as a problem.

Problem. Would the conclusions of Theorems 4-7 remain valid if the hy-
pothesis on the number of values attained at the same points are reduced
from three to two and five to four respectively?

The answer to the problem is affirmative if we strengthen the hypotheses to
saying that the two functions attain certain values at the same points with the
same multiplicities.

THEOREm 8. Let f, g be analytic functions of a non-Archimedian variable
either in an annulus A or in a punctured neighborhood N of a point P. Let f be
unbounded in A or have an essential singularity at P respectively. If there are
two (finite) values a, b which are attained by f and g at the same points with the
same multiplicities then f =- g.

If we had assumed only that f and g are meromorphic then we would have needed
three values.

Proof. Instead of equation (5) we would obtain

f- g F(f- a)(f- b)

and the proof now proceeds as for Theorems 4 and 5 respectively.
To verify the statement for meromorphic functions we note that we may as-

sume , a, b to be the common values and thus assume thatf fl/h, g gl/h
where fl, g, h are analytic in the domains in question and fl g has no zero in
common with h. Our hypotheses now show that (f ah)(f bh) divides
f gl and we can argue as before.
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