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Introduction
A derivation (or crossed homomorphism) from a group G to a left (resp.

right) G-module V is a map G --, V such that (ST) S (T) S (resp.
(ST) (S)T T) for all S, T e G. An inner derivation (or principal
crossed homomorphism) from G to a left (resp. right) G-module V is a deriva-
tion G -- V for which there exists an element v0 e V with T Tvo vo
(resp. iT v0 T v0) for all T e G. The derivations from G to a (right or
left) G-module V form an abelian group Der (G, V) under point-wise addition,
and the inner derivations form a subgroup, Inn (G, V). If V is a K-space,
then Der (G, V) can be regarded as a K-space in the natural way. Inn (G, V)
is then also a K-space, and so

I)er (G, V)/Inn (G, V) H (G, V),

the first cohomology group of G with coefficients in V [14, p. 130-131].
In this paper we use the representation ofH (G, V) as Der (G, V)/Inn (G, V)

to compute the K-dimension of H (G, V) for certain linear groups G over K
and their standard modules V. In particular, we compute H (G, V) for
G Sp2 (K) with n >_ 2 and K either of odd characteristic or perfect of char-
acteristic two, and for G 02 (K) with n >_ 2 and K perfect of characteristic
two. In addition, viewing S as a linear group on the (n 1)- (or (n 2)-)
dimensional F.-space V for n odd (or even), we compute H (S., V) for n >_ 5.
Each of these cohomology groups is found to have K-dimension at most one.

1. Preliminaries

In this section we collect some of the basic definitions and results on sym-
plectic and orthogonal groups over perfect fields of characteristic two that will
be used throughout this paper.

First a few remarks on notation and language. We will use G, G(V),
G (K) and G (F) interchangeably to name the group G of transformations on
the n-dimensional K-space V that preserve the form F on V, or to name the
corresponding matrix group. We will also denote linear transformations and
their matrix representations (and vectors and their representations as n-
tuples) by the same symbol. A transvection T is a linear transformation such
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that the image Im (T 1) of T 1 is a line, and the kernel Ker (T 1)
of T 1 is a hyperplane. If T is a transvection, we will say that Im (T 1
is the center of T and Ker (T 1) is its axis. The symplectic transvections
T on V are of the form Tv v - B (x, v)x for all v e V, where x e V is arbitrary.
The orthogonal transvections T are all of the form Tv v - B (x, v)x for all
v, where Q (x) 1.

THEOREM 1.1. The symplectic group Sp (V) is generated by the subgroups
() and wherex, y e V is a hyperbolicpair and T eSp (V) Tx x
and T for all e (x) "/

Proof. Arguing as in [16, Lemma 4, p. 194], we have that H ((),
is transitive on the lines of V, and hence that) _< H for all v e V. There-
fore H contains every symplectic transvection and so [2, Theorem 3.25, p. 139
equals Sp (V

THEOREM 1.2. Suppose V U W, where U, W <_ V are totally isotropic.
Then Sp (g) (Sp (g)v Sp (V)).

Proof. If the dimension of V is 2, Sp(V) SL(V), and the result is clear.
Suppose the dimension 2n of V is at least 4, and assume 1.2 is true for spaces of
dimension less than 2n. Let H (Sp (V)v, Sp (V)w). Choose a hyperbolic
pair x, y with x e U and y e W. For T e Sp (V), T RS for suitable R
<_ Sp(V)v nd S fixing (x, y) point-wise. By the induction hypothesis,
S H. Hence Sp(V) <_ H. Similarly Sp(V) <_ H. Therefore, by 1.1,
g Sp(V).

The map Q V -- K is a quadratic form on V if

Q (ax -t- y) (x) -t- fQ (y) - aB (x, y)

for all x, y e V, a, f e K, where B is a bilinear form on V. We will say B is
associated with Q, Q is associated with B. If the characteristic of K is 2, the
form B determined by Q is alternate. From this point, we will consider only
fields of characteristic 2, unless we explicitly say otherwise. We will further
restrict our attention to those quadratic forms Q for which B is non-degenerate,
unless we specify otherwise, so that 0 (Q) <_ Sp (B).
We denote the index of the form Q by (Q) or (V). Since the index of

quadratic form on a 2n-dimensional space over a perfect field is n or n 1
[4, Theorem 1.3.2, p. 13], for K perfect we write 0 (W 1, K) or 0 (W 1, V) for
the group of a form of maximal index, and 0 (-1, K) or 0 (-1, V) for the
group of a form of non-maximal index.

THEOREM 1.3. 0 (Q is primitive in its action on the singular lines of V, its
standard module.

Proof. The theorem is trivial if the dimension 2n of V is 2. For n >_ 2
we will show that 0 is of rank 3 in its action on the singular lines of V. Choose
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a hyperbolic pair of singular vectors x, y V. Consider 0() acting on r (x),
the set of singular lines off (x). Choose (z) r (x) and assume B (x, z) 1.
The map T (x, y) -o (x, z) definedby Tx x and Ty z isa Q-isomorphism

and, by Witt’s theorem [4, Theorem 1.4.1, p. 16], may be extended to an ele-
ment of 0(). Hence 0() is transitive on F (x).

Let h (x) be the set of singular lines (x) on (x). By Witt’s theorem, for
(v}, (u) a (x) such that (v,} (u}

_
(x, y}, there exists T 0 ((x, y}) taking v to

u. T may be extended to an element of 0() by defining Tx x, Ty y.
If (ax + u), (v} h (x), with u, v (x, y} and a 0, then since u is singular,
Witt’s theorem implies that there is a T e 0 ((x, y)’) taking v to u. Define
A e 0<) by Ax ax, As aB(Ts, w)x + Ts for s e (x, y), and
Ay aQ (w)x + w + (1/a)y, where w (x, y} is such that B (u, w) 1.
Then A(v} (ax + u}. Hence 0() is transitive on A (x).
Now suppose a set I of singular lines is a set of imprimitivity for O. Since

0 is of rank 3 on the singular lines, for every (v} e I, I n A (v) 0 or A (v) and
I n F(v) 0 or F(v). Choose (x} e I. Suppose I a A(x) A(X) (SO
r(Q) >_ 2). Then for(z) eh(x),IaA(z) 0, and soh(z) I. Since
(x} (z}, (x} (z)’-. Choose (y’)

_
(z}, $ (x}. Assume B (x, y’) 1,

and let y y’ -t- Q (y’)x. Then (y) e I n F (x), so 1’ (x) I, and I contains all
the singular lines of V. Suppose, on the other hand, that I n I (x) I’ (x).
Let <z} e F (x ). ThenF(z) _I. Ifn 2ands(Q) 1, thenh(x) 0,
and we are done. Assume (Q) _> 2, and choose a singular (u} e (x, y}.
Then (u + z} e F (x) I, and so (u -{- z) e I n A (z). Hence again I contains
all singular lines.
We remark that for x e V singular, 0+ (V)() is a maximal parabolic subgroup.

Thus 0+ (V), and so 0 (V), is primitive on the singular lines of V (see the
proof of 1.12).

THEOREM 1.4. Let K be perfect. Let x in the K-space V be singular, and let
T be the transvection taking v V to v + B(v, x)x. Then if 0 O(V),
OnOr 0.

Proof. IfSeO,thenforveV, TSTv Sv, and S e O n Or; thus O

_
0 n 0r. If K Y. (the field of two elements), 0 is maximal in 0 by 1.3, and
we are done. So assumeK F. LetSeOnOr;then

Q(TSTv) Q(v) + B(Sv, x) + B(v, x) + B(v, x)B(Sx, x) Q(v),

and hence
B(Sv, x)= B(v,x)(1 + B(Sx, x))

for all v e V. If v e (x}, we see Sv (x}’. Suppose y is chosen singular with
B(x,y) 1, and supposeSx ax + u, with u e (x, y}’. Ifwe(x,y)’,
Sw (w)x + Tw with t (w) e K and T e 0 ((x, y)). Thus 0 B (x, w)
B (Sx, Sw) B (Tw, u) for all w (x, y}’-; so u 0, S e 0() and

Q(TSTv) Q(v) + B(Sv, x) + B(v, x).
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Hence B (v, S-x x) 0 for all v e V, and S e 0. Therefore 0 Or _< 0.
THEOREM 1.5. If (Q >_ 1, B is associated with Q, and K is perfect, then

0 (Q) is maximal in Sp (B).

Proof. First we show that, for T e Sp (B), if T (x) is singular whenever x is
singular, then T e 0 (Q). Since K is perfect, it suffices to show that Q (Tx) 1
whenever Q (x) 1. Choose x e V with Q (x) 1. The theorem is trivial if
O(Q) 02(1, Y2), for then O(Q) is of order2 and Sp(B) is of order 6. Ex-
cluding this case, 0 (Q) is irreducible [4, Theorem 1.6.7, p. 33], so there are
singular vectors off (x). Choose y singular such that B (x, y) 1. Then
x -t- y is singular, so 0 Q (Tx Ty) Q (Tx) 1, and Q (Tx) 1.
Now we show that if T Sp (B ), T 0 (Q ), then (0 (Q ), T) Sp (B ). Let

G (0 (Q), T). Since T 0 (Q), there is u singular x such that Tx is non-
singular. O(Q) contains a transvection with center (Tx), so G contains
transvection with center (x). 0 (Q) is transitive on the singular vetors, so
G contains all symplectic transvections with singular centers. Since G thus
contains all the symplectic transvections with center (x), G contains all those
with center (Tx). K is perfect, so Q takes all values in K* (= K {0} on
(Tx}. For each a K, 0 (Q) is transitive on the set of v V with Q (v) .
Hence G also contains every symplectic transvection having a non-singular
center. Since Sp (B) is generated by the symplectic transvections, G Sp (B).

THEOREM 1.6. Let K be a perfect field, and let B and Q be associated forms on
the K-space V. Define a map u: Sp (B ----> V by

B (u (T), Tv) /Q(Tv) - Q(v) for all v e V, for T e Sp (B).

Then (i) u is a derivation; (ii) u (T) 0 if and only if T e 0 (Q) (iii) for T the
transvection taking v V to v - B (x, v )x, u T %/1 + Q(x) x; and (iv)
X - X Q (u (T)) has a solution in K for every T Sp (B).

Proof. (i), (ii) and (iii) are easily verified. By (iii), for a transvection T
taking v e V to v - B(x, v)x, Q(u(T)) Q(x) - Q(x). Suppose for T,
S Sp (S), Q (u (T)) a - a and Q (u (S)) f -[- , with a, f e K. Then

Q (u (TS)) , - , for " /Q(Tu(S)) - - ae K.

Since Sp (B) is generated by transvections, we see that X - X Q (u (T))
has a solution in K for every T Sp(B).

THEOREM 1.7 Let K be a perfect field, and let x, y be a hyperbolic pair of
non-singular vectors with Q (x) 1. Then a symplectic transformation A is
in 0 (Q)() if and only if Ax x, Av B (Tv, u (T))x W Tv for all v e (x, y)’,
and Ay x - u (T) - y, where T e Sp ((x, y)’-), u is defined as in 1.6, and a

is a solution in K of X - X Q (u (T) ).

Proof. Clearly A eSp(B)() if and onlyif Ax x, Av B(Tv, u)x + Tv
for all v e (x, y}, and Ay ax - u + (1/t)y, with T e Sp ((x, y}’), a e K,
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g,e A e Sp (B) is a Q-isometry if and only if/ 1, a W a Q (u) and
u u (T). For such an A e 0 (Q)(), write A A (T, a).

We remark further that for every T e Sp ((x, y}’), there are two elements,
A (T, a) and A (T,
THEOREM 1.8. Let n >_ 3, let K be a perfect field, and let 0 02, (K). Then

for x, y a hyperbolic pair of non-singular vectors 0 (0() 0(}.

Proof. Clearly 0(x) contains all the orthogonal transvections centered in
(x}’. Suppose (u} is a non-singular line off both (x} and (y}. Then we may
assume u x -b v -b ty, with v e (x, y} and e K*. If v 0, then since
0 ((x, y}’) is irreducible, there is a singular vector w e (x, y}, (v)’; say
B (v, w) 1. Let T be the transvection in Sp ((x, y}) taking s e (x, y}" to s -b
B(s,w)w. Thenu(T) w by 1.6, andTv w -b v. LetA A(T, 0).
Then

If u x + y, choose T e Sp ((x, y}’ ), T 0 ((x, y}), and let A A (T, a).
Then

Au (a - 1)x - u (T) - y.

If Au (y}’, proceed as above to obtain an A’ ".e 0() such that A’Au
Thus for u non-singular off (x}’ and off (y}, there is an A e 0() such that

Au (y}’. 0( contains the orthogonal transvection with center (Au}, so
(0(, 0(} contains the orthogonal transvection with center {u}. Thus
0() contains every orthogonal transvection. Since 0 is generated by the
orthogonal transvections [8, Proposition 14, p. 42], 0 (0(), 0()}.
THEOREM 1.9. Suppose n >_ 2. Then 0 02, (Q (0() 0()} for x, y

a hyperbolic pair of singular vectors.

Proof. By 1.3, 0() and 0() are maximal subgroups of O. Since n _> 2,
0<) 0(), so 0 (0<), 0<)).
LEMMA. Let K be an arbitrary field, and let V be a K-space with a bilinear

form B. Let x x be linearly independent vectors in V, and let T be defined
by

T(v) v W B (x, v)x for all v e V, i 1, k.

Then Tx T v v if and only if v e =
Proof. Let T T T. Obviously if v e [__ (x>’, then Tv

We will prove the converse by induction on k. If k 1, it is clear. Suppose
k > 1 and assume the lemma is true for fewer than k vectors x. For v e V,

T2 T v v+ .. axi for someak.
Thus

Tv v + n (xl v )xl + "--2 ai (xi - B (x x)x).

If Tv v, the linear independence of the x implies a 0 for i 2, ..., k.
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But then T3 Tv v, and the induction hypothesis implies v e
so T1 v v and v e (xl)-’ as well.

THEORE 1.10. Let K be a perfect field (of characteristic two). If
0 02 (K) 03( 1, F2), then there exists T 0 such that T -k 1 is non-singu-
lar.

Proof. 0 is irreducible, so (x e V Q (x) 1) must be V. Hence V has a
basis xl, x3" with Q (xi) 1 for i 1, 2n. Define Ti, i 1, 2n,

N,- (x,) 0, T has noas in the lemma, and let T T T.. Then since
non-zero fixed points, and so T 1 is non-singular.

COROLLARY. For K a perfect field, if Sp (V) ---> V is a non-zero derivation
such that 0 (V) O, 0 03 (-1, 3), then is non-inner. In particular,
the derivation u defined in 1.6 is non-inner.

Let C (Q) denote the Clifford algebra of the quadratic form Q, and C+ (Q) its
even subalgebra. The elements of 0 (Q) induce automorphisms of C+ (Q)
and so of its center, Z. For T e 0 (Q), write D (T) for the automorphism of Z
induced by T. Z has a K-basis consisting of I and z ;here {x, x,}
is a symplectic basis of V with B (x, x) $_i+1 (, i if r s, and , 0
otherwise) and z xx -t- - x. x+ [4, Theorem 11.2.3, p. 44 ]. z satis-
fies z - za A (Q), where the pseudo-discriminant

(R) (Q) - Q(x)Q (x_+).

Let x e V be non-singular, and let T be the orthogonal transvection defined by
Tv v - (1/Q (x))B (x, v)x for all v e V. Complete x to a symplectic basis
asabove, withx x. ThenD(T)z(R) z(R)-t- 1, and soDisahomo-
morphism of 0 (Q) onto the group of automorphisms of Z over K. Therefore,
if z is any generator for Z over K of the form za for some symplectic basis
and if T is any element of 0 (Q), D (T) (z) z - d (T), where d (T) 0 or 1
according as T e Ker D or not. The rotation subgroup 0+ (Q) <_ 0 (Q) is de-
fined to be KerD (or Ker d). The map d is the Dickson Invariant;it is a homo-
morphism from 0 (Q) into the additive group of K.
For B associated with Q, the elements of Sp (B) not in 0 (Q) do not induce

automorphisms of C (Q). However, for T Sp (B) and for any symplectic
basis (B, zr(R) is an element of Z, so zr az -t- for some a, f e K. From the
relation z - z Aa (Q) we obtain

.z + + az(R) + a(Q) K;

hencea aanda 1. Thenzra z(R) + f. ForTe O(Q), Dieudonni
[9] extends d to Sp(B), defining d(T) zr - z. However, this definition
depends on the choice of the basis as well as on the choice of Q. Writing
d(R) to denote this dependence, d(R) (ST) da (S) - d (T) for T, S Sp (B).
When Sp (B) is simple, d cannot be a homomorphism, hence dra (S) must be
different from d (S) for some T Sp (B). If Sp (B) Sp3 (F3) or Sp (F3)
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and Q has non-maximal index, a direct computation shows that there exists
T . Sp (B) such that d(R) (T) depends on the choice of (.

Let K be perfect, and let B1 and Q1 be associated forms on the K-space U.
Form the K-space V U $ W, where W is a 2-dimensional K-space with as-
sociated forms B2 and Q2. Then a qudaratic form Q and its associated bilinear
form B can be defined on Y by Q V Q1, Q W Q, and B (u, w) 0 for
u e U, w e W. Choose a hyperbolic pair of non-singular vectors x, y e W and
assume Q(x) 1. By 1.7, A e 0) has the form Ax x, Av
B (u (T), Tv)x Tv for all v e U and Ay ax W u (T) W y, where T . Sp (B),
u Sp (B) U is the derivation defined in 1.6, and a e K is a solution of
X+z Q(u(T)). WriteA A(T,a).

Let To be the transvection taking v e V to v -t- B (x, v)x. If d is the Dickson
Invariant on O(Q), d(To) 1. Now To A (T, a) A (T, a -t- 1), so, since
d is a homomorphism, A (T, a) e 0+ (Q) if and only if A (T, a W 1 0+ (Q).
That is, the subgroup 0+ (Q)) contains exactly one element A (T, a) for each
T e Sp (B). Thus we have defined a function a Sp (BI) ---, K by a (T) a

if A (T, ) e 0+ (Q)).
Suppose T e 0 (Q1). Choose a symplectic basis ( for Uand complete with

x, y to a symplectic basis ( for V. Then

D(A (T, o))z(R) x(ax + y) - D(T)zI a + xy -t- zl -t-- d(T)
a + d(T) "t" z,

where dl is the Dickson Invariant on O(Q). If A(T, a) e O+(Q), then
A(T, a) eKerD, anda d(T). But forA(T, o) e O+(Q), o a(T).
Thus for T e 0 (Q), a (T) d (T), and a extends the Dickson Invariant on
0 (Q1) to Sp (B). Although this extension depends on the choice of the quad-
ratic form Q, it is independent of the choice of the basis B.

THEOREM 1.11. Let Q be a quadratic form on the K-space V for K a perfect
field. Let x, y V be a hyperbolic pair of non-singular vectors with Q (x 1.
Then if V is of dimension at least 4, the linear transformation A 0+ (Q)() if
and only if Ax x, Av B(u(T), Tv)x - Tv for all v (x, y)’, and
Ay a(T)x + u(T) - y, where T eSp((x, y)’), u is definedasin 1.6, anda is

defined as above. If T O((x, y)), a(T) d(T), where d is the Dickson In-
variant on 0 ((x, y)’- ).

THEOREM 1.12. Let Q be of maximal index on the F-space V of dimension
2n >_ 4. Let V U W with U, W totally singular. Then

o+ (v) (o o

Proof. First we will show that Or, O

_
0+. Choose bases u, ..., u.

and w, ..., w of U and W respectively such that B (u, w) , i, j
1, n. For X e Horn (U, U) and X’ Horn (W, W), define T (X, X) on
VbyT(X,X)u XuandT(X,X)w X’wforallue U, weW. Then
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T (X, X’ Sp (B) if and only if X’ X-1. for X GL, (). Write T (X)
T (X, X-l*). For Y e Hom (W, U), define S (Y) on V by S (Y)u u and
S (Y)w Yw w for all u e U, w e W. Then S (Y) Sp (B) if and only if
Y Y*. Clearly T (X) e 0 (V) for every X e GL, (F), and S (Y) e 0 (V) if
and only if Y is alternate. Thus we see that Ov is generated by the elements
T (X) and S (Y) for X GL (F) and Y alternate, n X n.
Let {u, u, w, w}, and define z as above. Let

S S(E + E), i # j, i, j 1, ..., n,

where E, is the n X n matr having a 1 in the intersection of the r-th row and
the s-th column, and all other entries zero. Then we see that S za z, so
SeO+,i#j,i,j 1, ...,n. SinceS(Y)S(Y’) S(Y+ Y’),andsince
the E + Eel, i # j, i, j 1, n generate the alternate n X n matrices
additively, S (Y) e 0+ for every alternate n X n Y.
Let X be a transvection in GL (U) with center (x), and choose (y) so that

U <y) Ker (X 1). ComNete basis x x, x2, ..., x_ for
Ker (X 1) with x. y to a basis for U, and choose a basis yz, y for
WsothatB(x,:,y) .,i,j 1,...,n. Thenif

{x, ...,x,y, ...,y},

T (X)z z, and T (X) e 0+. Since GL (U) SL (U) is generated by
transvections, T (X) e 0+ for all X GL,(F). Hence Ov 0+. Similarly
O 0+.
To show that (0, 0) 0+, we will draw on the Lie Theory. We refer

the reader to [15] and [5] or [3] for discussion of the relevant material. 0+

is the Chewlley group coming from the Lie algebra of type D.. With respect
to the original basis , the 2n X 2n diagonal elements

h l E E,+, F, i 1, n,

of D yield the positive roots r q, 1 p q n, corresponding to
the root vectors

Evq 0
Xr

0 Eq

and r X W Xq, 1 p < q n, corresponding to the root vectom

0 E- Eq

0 0

For r (X Xq), the root vector is

0 0

Eq- Eq 0
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We have a fundamental set F {al, an} of roots with

a - k+l,i 1,...,n- 1 and a n-
xr(r) 1 d- rXr for r a root and r e F2, and

0+ (x(r) reF and raroot).

0+ has B N structure for

and

B (x (r) r e F and r a positive root)

N <03a "i 1, "", n),
where

Since a maps SL2 (F2) onto (Xa (r), X--a (r)}, with

we see that a Xa (1)X--a (1)Xa (1).
For S F, we have the parabolic subgroups Gs BNsB, with Ns
( a e S}. For S a maximal subset of F, Gs is maximal in 0+. We will
show that Ov is a maximM parabolic subgroup. We see immediately that
B Ov. Since

(1 + Eq) (1 +Eq) (1 + Eq) Rpq 1 + E + Eqq + Eq + Eqp,

forr q,1 < p q <n.

Forr Wq,

Now it is easily seen that wa e Ov for i 1, ...,n 1. SoGs 0for
S {a, a_}. Hence 0v Gs, Ovis maximalin 0+, and 0+ (0v, 0).
However, we can say more. Let

U (u,...,u) lotion- 2,
and let

U_ <u, ..., u_,
Then we see that B g 0 Furthermore, forj z, , e 0v, for i 1, ...,
n 1. So Gs 0 for {a "j i}. In particular, 0() is a maximal
subgroup, so we see again that 0+, and hence O, is primitive on the singular
lines of V.
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2. Hi(G, V) for G SL(V), GL(V), Sp(V)
Now we consider some of the groups H (G, V) with V a finite-dimensional

K-space and G <_ GL (V). Note that H (G, V) and H (G, V*) (V* being the
dual space of V) are isomorphic as K-spaces, so throughout this paper, deriva-
tions will be from G to V or to V*, whichever is more convenient. Note also
the elementary fact that for i a derivation from a group G to a unitary module
for G, t (lo) 0.
D. G. Higman implicitly computed the dimension of H (G, V) when G

SL (V). His results include"

THEOREM 2.1. Let V be of dimension n over an arbitrary field K. If n >_ 4,
the K-dimension ofH (SL(V), V) is zero. Ifn 2 and K F2 the dimension
is again zero. Ifn 3 and K F2 the dimension is at most one [12, Lemma 4,
p. 441].

As a corollary of this we have"

THEOREM 2.2. If the dimension n of the K-space V (K arbitrary) is at least
4, then the K-dimension of H (GL (V), V) is zero. If n 2 and K 2 the
dimension of H (GL(V), V) is again zero.

Proof. In the cases under consideration, the derivations from SL (V) to V
are all inner, so for e Der (GL(V), V), SL(V) is an inner derivation. If
necessary, change by subtracting off an inner derivation and assume

SL(V) O.
Let T GL(V) and S SL(V). Since SL(V)

__
GL(V), there exists

U SL(V) with ST TU. Hence S (iT) iT, and this equality holds for
all S SL (V). However, SL (V) has no non-zero fixed points, so T 0 and
i 0. Thus the original was inner.
We also have:

THEOREM 2.3. If the characteristic of K is not two, then the K-dimension of
HI(Sp(V), V) is zero.

Proof. Let e Der (Sp(V), V) and let T eSp(V). Then T(-lv)
(- 1v T implies

T(-1) + tT (-1)(iT) + i(-1),

so iT (T 1 (- 1/2)i (- 1 ), and i is an inner derivation.

For other similar results, see [11, Section 14].

3. Ht(G, V) for G Sp(K) or O(K), K a perfect field of
characteristic two, F

Throughout this section, K will be a perfect field of characteristic two having
more than two elements, unless specified otherwise.
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THEOREM 3.1. Let V be of dimension 2n over K. Then the K-dimension of
H (0 (V), V) is zero.

Proof. The proof will be by induction on the dimension 2n of V.

LEMMA 3.2. For V of dimension 2 over K (possibly equal to F.), the dimension
of H (0 (V), V) is zero.

Proof. Choose a hyperbolic pair x, y e V with Q (x)
If K F, we can assume a 0. Then

Q (ax "4- y) a "4" a "4- for a, t K.

Let A be the quotient of the ring of polynomials in the indeterminate 0 by the
ideal generated by -4- 0 -4- a. Then I and form a K-basis for A. The map
sending 0 to + 1 induces an automorphism of A write [ for the image of A
under this automorphism. If a + , a, t K, then

t= a2+af+t.
Hence we have a model for V and Q with V A and Q (t) t for A.
Working within this model, let O O (Q). Suppose To 0, To r 1. Then
To(l) landTo(l+0) 1 + To0. Q(I+0) Q(0) =,so

a Q(To(1 "4- 0)) 1 A- ToO "4- ToO "4- Q(ToO).

Hence 1+ To0+ To0 0. If Tot aA-tO, wesee
a 1. ThereforeO (To} and Tot [foreveryteA.
Denote by St the left multiplication by e A, so St v tv for v e A. Let

U {St e A, t[ 1}. Then U _< O, and U is isomorphic to a subgroup of
the group of units in A. Identify St U with e A. Then for u e U and To as
above, To uT if, and To normalizes U. If S e O, S (1) u. 1 for some
u e U, and u-S fixes 1. Therefore, S e U(To}; that is, O U(To}.
Now let t e Der (O, A). Then, since U is commutative, (u -4- 1)iv

(v A- 1)iu for all u, v e U. If U is trivial, i U 0. Otherwise, choose
uo I in U. Then for every v e U, iv (v A- 1)iuo (Uo -[- 1 ), and it U is an
inner derivation.

Suppose U 1. If necessary, change i by subtracting off an inner deriva-
tion, and assumei U 0. Tou To, so To To for all u U.
Since there is a u I in U, tTo must be zero. Therefore 0, and the original
it was inner. If U 1, 0 <To). Because To is an involution, To(To)
iiTo. But To(To) T--, so To e K. Suppose To a. With respect to
the basis 1, 0 of V, the matrix of To A- 1 is

(Oo
We thus see that is the inner derivation based on
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Return now to the proof of 3.1. Let e Der (O(V), V). Suppose the
dimension 2n of V is greater than two, and assume the theorem is true for
spaces of dimension less than 2n. Since 2n >_ 4, we may choose u hyperbolic
pair x, y of singular vectors.

First we will show that is homologous to zero on 0<.>. Let U (x, y),
so V (x, y) @ U. S e 0(.) has the form Sw Aw, Su Tu for w e (x, y),
ue UwithAeO((x,y))andTeO(U). Writes S(A,T). Suppose

S (A, 1 a (A) - f(A) with a (A) e (x, y) and f(A) e U.

Then S (A, 1 )S (C, 1 S (AC, 1 implies that

a(AC) Aa(C) --4- a(A) and f(AC) f(A) -4- f(C).

That is, a is a derivation on 0 ((x, y)), and so, by 3.2, a is inner. If necessary,
change 8 by an inner derivation based on a vector in (x, y) and assume a 0.
Similarly, suppose

iS(1, T) b (T) + g(T) withb(T)(x,y)andg(T)e U.

Arguing as above, change , if necessary, by an inner derivation based on a
vector in U, and assume g 0. Now

S(A, 1)S(1, T) S(1, T)S(A, 1)

implies that (A + 1 )b (T) 0 and (T -t- 1 )f (A) 0 for every A e 0 ((x, y)
and every T e O(U). Since K F, by 1.10, A and T can be chosen in
0 ((x, y)) and 0 (U), respectively, with A 1 and T W 1 non-singular.
Therefore, b and f are both identically ero, and 0(,) 0.
Now we will show that 0) 0. Write V (x) U (y). An ele-

ment A e Sp (V)() has the form Ax ax, Au aB (w, Tu)x Tu for all
u e U, and Ay x -t- w -t-- (1/a)y, with a e K*, f e K, w e U, and T e Sp (U).
If A is a Q-isomorphism, then T e O(U) and aQ(w). So A e 0() deter-
mines and is determined by T e O(U) w e U, and a e Write
A A (T, w, a). Since 0(,) 0, A (T, 0, a) 0. Consider the sub-
group of 0() consisting of all A (1, w, 1) S (w). Suppose

S(w) p(w) +h(w) +q(w),

with p (w) e (x), h (w) e U, and q (w) e (y). Since S (w)S (v) S (w - v), it
follows that
(1) p(w "4" v) p(w) .+-p(v) + B(w, h(v))

(2) h(w + v) h(w) + h(v) + wq(v)

(3) q(w "4- v) q(w) -4- q(v)

for all w, v e U.
Since S(0) 1 and (1) 0, p(0) 0, h(0) 0, and q(0) 0.

relation (2) implies vq (v) 0 for all v e U, and so q 0.
Thus
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A routine computation gives A (T, 0, a)S(w) S(aTw)A(T-1, 0, a).
Hence

(4) an (w p (aTw

(5) Th (w h (aTw ).

By relations (2) and (5), for a 1 in K*, h ((a W 1)w) 0. Therefore,
again by (5),h 0. Relation (1)nowbecomesp(w + v)= p(w) p(v).
Relation (4) implies then, that p((T 1)w) 0 for every T e O(U) and
everyweU. Byl.10, p 0. ThusSS(w) 0foreveryweU.

Let A (T, w, a) be an arbitrary element of O(x). Clearly

A (T, w, a) A (1, O, a)S (w)A (T, O, 1),

so8A(T,w,a) 0andSI0) 0.
Define So by So x y, So y x and So U 1, so So e O(z.) and 8So 0.

O() S0 0() So, so we also have 8 0() 0. By 1.9, 0 (0(z), O(y)), and
therefore 8 0, and the original 8 was inner. Hence the K-dimension of
H (0 (V), V) is zero.

THEOREM 3.3. Let V be a K-space of dimension 2n >_ 2. Then the dimension
of H (Sp (V), V) over K is one.

Proof. Let Q and B be associated forms on V, with (Q) _> 1, and let
O 0 (Q). Choose x e V, singular, and let To be the transvection taking
ve V toy + B(v,x)x. By 1.5, O is maximal inSp (V), so Sp (V) (0, ToOTo).
Suppose 8 e Der (Sp(V), V). 0 and ToOTo are orthogonal groups in

Sp(V), ToOTo being the group of the form QTo. By 3.1, the restrictions
of 8 to 0 and ToOTo respectively are inner derivations. We may assume

810 0. Supposev0eVissuchthatforallAeT00T0,SA (A 1)vo.
By 1.4,01 (ToOT0) Oz. ForAe0,SA (AT 1)v0;thatisAv0=v0
for every A e Oz. However, the fixed points of O are all on (x), so v0 ax
for some a e K.
Hence the action of 8 on 0 and To OTo is determined up to a scalar multiple.

If T Sp (V), 8T is determined by the actioa of 8 on 0 and on To OTo. There-
fore, 8 is a scalar multiple of the derivation 80 which is ero on 0 and is an inner
derivation based on x on To OTo. So we see that the dimension of H (Sp (V),
V) is at most one.

Recall the derivation u of 1.6. By the corollary to 1.10, u is not an inner
derivation, so the dimension of H (Sp (V), V) is exactly one. Moreover, by
1.6, u(T0) xandul O 0, soforSeO, u(ToST0) (ToSTo W 1)x.
Thus we see that in fact u 80.

t. H(V, ) fo G Sp(), 0()
The proofs of 4.1 and 4.2 below require only that the underlying field K be

perfect. By 3.1 and 3.3, only the case where K 1 is actually needed, but
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since it does not significantly alter the arguments, the more general results are
stated and proved. The proofs in Section 3 were also given, however, since
they are much simpler.

THEOREM 4.1. Let K be a perfect field, and let V be a K-space of dimension
2n >- 8. Then the K-dimension of H (Sp (V), V) is one.

Proof. Let e Der (Sp (V), V). V can be written as the sum of two totally
isotropic subspaces, V U W, and bases ul, ..., u and vl, v for U
and W respectively can be chosen such that B (u, vj) [5, Theorem
1.3.2, p. 13]. Then Sp (V)v is generated by the elements T (X) and S (Y) (no-
tation as in the proof of 1.12) with X GL (K) and Y n X n symmetric
over K. Write X-1 X*, and suppose

T(X) k(X) - l(X*), with k(X) e U and l(X*) e W.

Then T (X T (Z T (XZ implies Xk (Z + (X (XZ and

z*(z*) + (z*) (z*z*).
So we see that ]c e Der (GL (U), U) and e Der (GL (W), W). By 2.2, k and
are inner. If necessary, change i by an inner derivation based on a vector in
U and again by an inner derivation based on a vector in W, and assume k and
are zero.
Now let S(Y) r(Y) -t- s(Y), with r(Y) U and s(Y) W. Then

S (Y)S (Y’) S (Y -t- Y’) implies

(1) r(Y) + r(Y’) Ys(Y’) zr r(Y + Y’)

(2) s(Y) -+- s(Y’) s(Y q- Y’).

Since r (0) 0, relation (1) implies. Ys (Y) 0 for all symmetric Y. Hence,
if Y is non-singular, s (Y) 0. Relation (1) is symmetric in Y and Y’, so
Ys(Y’) Y’s(Y) for all symmetric Y, Y’. Taking Y’ 1, we obtain
s(Y) 0 for all symmetric Y.
Now relation (1) becomes r(Y - Y’) r(Y) -[-. r(Y’). From

T (X)S (Y) S (XYX)T (X)

it follows that Xr (Y) r (XYX) for all non-singular X and all symmetric Y.
If XYX Y, then (X + 1)r(Y) O. Let

K*Y Yj aE-aE, witha andi j,i,j 1, ...,n.
If we choose i 1 and j 2, then for

1
X= 1

1
0
X

with X’ a non-singular (n 2) X (n 2) matrix, we see that XYI. X Y2.
If n 2 is even, we may apply 1.10 and assume that X’ may be chosen with
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X’ -b 1 non-singular.

If n-- 2_> 5, let

If n 2 is odd, we have two cases.

1 0 1
X’= 1 0 0

0 1 0

with X"

If n-2 3, let

1 0 1
1 0 0
0 1 0

r (Yn) o1 U -[- -[- on Un.

1 0
X= 1 1

X

with X’ a non-singular (n 2) X (n 2) matrix such that X’ -b 1 is non-
singular, then XYn X Yn, and we see from (X -[- 1)r (Yn) 0 that
a2 a, O. So r (Yn) a ul, with a e K. Similarly, r (Y,)
a u, with a e K, i 2, n.
Return now to the relation Xr (Y) r (XYX*). If Y E, and X, with

entries x,m, is chosen such that x is the only non-zero entry in the i-th column
of X, a direct calculation shows XYX xiE, and hence x r(E)
r (x E). That is,

r(aE) %./r(E) fori 1, .:.,nandaeK*
(and trivially for a 0). If X is chosen with entries xm such that xk 1
for some k i and xj 0 for all j ]c, then

XE, X (x,)E** E,,
and

Xr (E, x** u, a, u,

Therefore a uk a, u,, and a a for all i, k 1, n.
Let a a a,. Then, since r is additive, if Y (,) is a sym-

metric n X n matrix, r (Y) a ’-/u. So, up to a scalar multiple, r
is completely determined; that is, for Y (y,), r(Y) aro(Y), where

An arbitrary element A of Sp (V) has the form Au Xu, Aw Yw + X*w
for u e U, w e W, with X GL, (K) and Y n n symmetric over K such that

If

and X" chosen such that X" -t- 1 is non-singular. Thus, in all cases, we may
choose X’ so that X’ -k 1, and so X -t- 1, is non-singular. Hence we have
r (Y2) 0. Similarly r (Y) 0 for all i j. The Yo" generate the al-
ternate matrices additively, so by (1), r (Y) 0 for all alternate Y.

KSNow let Y, aE, i 1, n, with a e Consider Yn and write
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YX XY. Thus A S(YX)T(X), and A aro(YX). Let A0 be
defined byAu= w and Aw u, i 1, n. IfA0 u0-t-w0with
u0 e U, w0 e W, then, since Ao T (X)Ao T (X*), Xuo Wo for all X GL (K).
Therefore u0 w0 0, and iA0 0. Since Ao Sp (V)v Ao Sp (V), is
determined up to the same scalar multiple a on Sp (V). By 1.2,

Sp (V) (Sp (V)v Sp (V)},

so the dimension of H (Sp (V), V) is at most one. However, by the corollary
to 1.10, the derivation u Sp (V) -- V of 1.6 is non-inner, so the dimension
of H (Sp (V), V) is exactly one.

THEOREM 4.2.
over K is zero.

Under the hypothesis of4.1, the dimension ofH (0( 1, V ),V

Proof. Let 0 0 (-t-1, V) and let e Der (0, V). Proceeding as in the
proof of 4.1, we write V U ( W, where U nd W are totally singular sub-
spaces of V, and choose bases {u} and {w} of U and W respectively such that
B (u, w) . As before, we first consider on 0v. Since U and W are
totally singular, T (X) e 0v for every X GL (K), and S (Y) e Ov if and only if
Y is alternate. Arguing as in 4.1, we may assume T (X) 0 for allX GL, (K).
As before, let S(Y) r(Y) s(Y). Then using relation (1) in the proof

of 4.1, Ys (Y) 0 for all alternate Y. If n is even, there exists non-singular,
alternate Y, and we again obtain s 0. If n is odd, choose

0 Y
Y Y’ and Y 2

1 0

with the Y (n 1) (n 1) non-singular alternate matrices. Then
s (Y) a w and s (Y.) w., , e K, by (1). For any lternte Y, we
have Ys(Y) Y s(Y), and we see that again s 0. Now, exactly as in the
preceding argument, we have r (Y) 0 for all alternate Y, and 0v 0.
The element A0 is also in 0, and Ao 0, so A0 0v A0 0implies O 0.

By 1.12, 0+ (Or, 0}, hence 0+ 0. For T e 0 and S e 0+, ST TS’
for some S’ 0+. Then ST T, and T is a fixed point for 0+. But 0+ is
irreducible [4, Theorem 1.6.7, p. 33], so T 0 and 0. Therefore the
dimension of H (0, V) is zero.

CooL.nY 4.3. Under the hypotheses of 4.1, the K-dimension of
H (0+ (- 1, V)V) is zero.

Proof. Arguing as for S (Y), we can show directly that (Ao S (Y)Ao) 0
for every alternate Y, and so 0 0.

THEOREM 4.4. If V is an F.-space of dimension 4, then the F-dimension of
H (Sp (V), V) is one.
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Proof. Since by 2.2, the derivations from GL. (F) to its standard module
are all inner, we can use without change the proof of 4.1.

THEOREM 4.5. If V is a 4-dimensional F-space, the F-dimension of
H (0 (q- 1, V), V)

is zero.

Proof. First we construct a model for 0 (-k 1, V). Let V be the 2 X 2
matrices over F:, and for X e V define Q (X) det X. Then Q is a quadratic
form whose associated bilinear form is non-degenerate. The subspace of all
matrices of the form

0 a

0

is totally singular, so (Q) 2. For A, C SL (F), define a transformation
S(A, C) on VbyS(A, C)X A X C, X e V. ClearlyS(A, C) eO(Q).
Let T be the transformation on V given by TX X; then T is also in 0 (Q).
The group generated by the S (A, C) is isomorphic to SL (F) X SL (Y) and
so has order 36. T is not in this group, so the order of (SL (F) SL (F), T)
is at least 72. The order of 0 (Q) is 72, so

0 (Q) (SL (F.) X SL (F.), T).

Let e Der (0 (Q), V). Since S (A, 1)S (1, C) S (1, C)S (A, 1), we have

(.) (A -t- 1)6S(1, C) itS(A, 1)(C -[- 1).

Choose Co e SL (F) with Co -t- 1 non-singular. Then

S(A, 1) (S(A, 1) W 1)(S(1, Co)/(Co -b 1)),

and is inner on the S (A, 1). Assume S (A, 1) 0 for all A e SL (F).
Then (.) implies S(1, C) is a fixed point for SL(F), and so S(1, C) 0
for all C e SL (F).
Now TS (A, 1)X S (1, A)TX for all X e V, so/iT S (1, A*)T. Thus

(iT) (A -b 1) 0 for all A e SL(F), so iT 0 and 0.

THEOREM 4.6. If K is a perfect field and V is a K-space of dimension at least
10, then the K-dimension of H (0 (-1, V), V) is zero.

Proof. Choosex, yeVwithQ(x) 1, Q(y) 0, andB(x,y) 1,
such that (x, y) contains no singular vectors, and let U (x, y)’. Let
0 0 (- 1, V), and let e Der (0, V). Since the dimension of U is at least 8
and Q U is a form of maximal index, by 4.2 we may use the arguments of 3.1
and assume that O(.) 0.
Now we will show that i O() 0. By 1.7, the elements of 0() are the

A (T, a) for T Sp (U) and a e K a solution of X -k X Q (u (T)). Since

A(T,a)A(1,1) A(T, aq- 1) and A(1,1) 0,
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A (T, a) is independent of a. Let A (T, a) p(T) - h(T) - q(T) with
p(T) (x), h(T) e U, and q(T) {y). A (T, a)A (S, ) A (TS, .) implies

(1) p(TS) p(T) + p(S) + S(u(T), Th(S))

(2) h(TS) Th(S) - h(T) - u(T)q(S)

(3) q(TS) q(T) -q(S).

Since the dimension of U is at least 8, Sp (U) is simple, and so (3) implies
q=O.
Now relation (2) implies that h is a derivation on Sp (U), and 4.1 tells us

that h is homologous to a scalar multiple of the non-inner derivation u. Since
T O(U) implies A (T, a) 0., h O(U) O. Hence, by 1.10, we may
suppose h (T) u (T) for all T Sp (U),), e K.

Relation (1) thus becomes p (TS p (T - p (S - B (u T Tu (S ).
Recall the extension a of the Dickson invariant d given in 1.11" A (T, a) e0
if and only if a a(T), for all T e Sp(U). The invariant a satisfies

a(TS) a(T) - a(S) + B(u(T), Tu (S)),

so if k 0, k p -t- a is a homomorphism on Sp(U). Since Sp(U) is
simple and k O+(U) O, 0 and p ),a. However, P O(U) 0 and
a 0 (V) 0. Hence ), 0, and so p and h are zero. Therefore i 0( 0.

If R is the transformation taking x to (1//)y, y to / x and fixing U
point-wise, R e 0. and RO R 0, so 0 0. By 1.8,

0 (0), 0)),

so 8 0. Therefore the dimension of H (0, V) is zero.

TUEORE 4.7. If V is an F.-space of dimension 6, then the F=-dimension of
H (0 (- 1, V), V) is zero.

Proof. Let 0 0 (-1, V), and let i} Der (0, V). Choose a hyperbolic
pair of non-singular vectors x, y V and let U (x, y)*. By 4.5 we may use
the arguments in the proof of 3.1 in order to assume/} 0(.) 0.

Again, for A (T, a) 0(,), let iA (T, a) p(T) -t- h(T) q- q(T). Rela-
tions (1), (2), (3) of 4.6 hold, so q is a homomorphism from 8p(U) to (y).
If TO(U), A(T,a) 0(.), so0(U) <_ Kerq. Since, by 1.3,0(U) is
maximal in Sp (U), and since 0 (U) is not normal in 8p (U), q 0. From
this point the argument of 4.6 may be used without change.

TEORE 4.8. Let V be an F-space of dimension 6. Then the F.-dimension
o/H (Sp (V), V) is one.

For the moment assume 4.8 is true. Its proof appears after the proof of
4.9.

TEORE 4.9. If V is an F,-space of dimension 8, then the F.-dimension of
H (0 (-- 1, V), V) is zero.
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Proof. Let 0 0 (--1, V) and let e Der (0, V). Choose a hyperbolic
pair of non-singular vectors x, y e V and let U (x, y). Arguing as in 3.1, for
S (A, T) e 0(.), we may assume S (A, T) g (T), g e Der (0 (U), U).
Asusual, forA(T,a) eO(),letA(T,a) p(T) - h(T) -q(T). Then

the relations (1), (2), (3) of 4.6 hold. In particular, q 0. Now (2) implies
h is a derivation on Sp (U). By 4.8, h is homologous to a scalar multiple of
the non-inner derivation u; assume h(T) u(T) for T Sp(U). Hence
relation (1) becomes

p(TS) p(T) -[- p(S) + ),B(u(T), Tu(S)).

Since S (A, T) e U, p 0 0. Now complete the proof as in 4.6.
Now we prove 4.8:
Let e Der (Sp(V), V). Choose a hyperbolic pair x, y e V, and let

U (x, y)’. Sp (V)v consists of the elements S (A, T) with A Sp ((x, y))
and T e Sp (U). By 2.1 and 4.4 we may again use the arguments of 3.1 to as-
sume
With respect to the decomposition V (x) U (y), the elements of

Sp(V) are the A (T, v, a) with T eSp(U), v U, and a eft., where

and

Since

A (T, v, a)u B (v, Tu)x - Tu forueU,

A (T, v, a)y ax -t- v -t- y.

A(T,v,a)A(1,0,) A(T,v,a+) and A(1,0, B) 0,

iA (T, v, a) is independent of a. Let

A (1, v, a) p(v) + h(v) + q(v),

with p (v) e (x), h (v) e U, and q (v) e (y). Since

A (1, w, a)A (1, v, ) A (1, w -}- v, .),

we have the relations (1), (2), (3) of 3.1, and we may conclude that q 0.
Now (2) implies that h U --, U is a homomorphism. Say h (u) Mu,

for M a 4 X 4 matrix over F. Since

A (T, 0, 0)A (1, u, a) A(1, Tu, a)A (T, 0, 0) and A (T, O, O) ku(T),

we have the (new) relations

p (u p Tu W )B (Tu, u T )

(5) TMu MTu,

for all T eSp(U), all ue U. Relation (5) impliesMT TM for all T eSp(U),
soM 0orM lv.

Case 1. Assume M 0. Then relations (1) and
p(T -t- 1)(u) 0 for all T e O(U), and by 1.10, p 0.

(4) imply
Therefore,
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B (u (T), Tu 0 for all T e Sp (U) and all u e U, so 0, and Sp (V) O.
Let R be the element of Sp (V) interchanging x and y and fixing U point-wise.
ThenRSp(V)R Sp(V)andR 0imply Sp(V) O. By 1.1,
Sp (V) {Sp (V), Sp (V)), so 0 and the original was inner.

Case 2. Assume M le. Then relation (1) implies p + Q L is linear
on U, and (4) implies L(T 1)(u) 0 for all T eO(U) and all u e U. By
1.10, L 0andp Q.

implies
A(1, u, a)A(T, O, O) A(T, u, a)

A T, u, o [B (u T u) + Q (u ]x + u T + u.

If 0, thenA(T,u,a) Q(u)x+u, so

A (T, u, a)A (S, v, ) + A (T, u, a) A (TS, Tv + u, .)

implies B (u, v) B (u, Tv) for all T e Sp (U) and all u, v e U, which is impos-
sible. Hence 1. For R as in case 1, R 0 and RSp (V) R Sp (V),
so is also completely determined on Sp (V). Therefore, is completely de-
termined on Sp (V) (Sp (V) Sp (V)).
So we see that the dimension of H (Sp (V), V) over F is at most one. The

derivation u Sp (V) -- V is non-inner, so the dimension of H (Sp (V), V) is
exactly one.

5. S, as a subgroup of Sp,(F.)
Let V be a K-space of dimension n over K, and let xl, ..., x be a basis for

V. S, the symmetric group on the letters {1, ..., n} can be viewed as a
subgroup of GL(V) by identifying v e S with T0r) e GL(V), where
T() (x)= x(i). Define e V* by

and letH KerT. Letx0 --lx. Then ifnisodd, V H
and if n is even, (x0) _< H. Define a bilinear form B on V by

Then B is alternate, its matrix being 1 + E, where E is the matrix each of whose
entries is one. If n is even, E 0 and B is non-degenerate. If n is odd, E
has rank 1, so B has rank n 1. With respect to B, (x0)-’ is V or H, according
as n is odd or even. Hence B is nondegenerate on H or on H/(xo) according
as n is odd or even.
S is contained in the group of B on V. Furthermore, (x0) and H are stable

under S, so S may be viewed as a subgroup of Sp (H) or Sp (H/(xo)), ac-

cording as n is odd or even. The transposition (ij), i j, in S corresponds
to the transvection with center (xi + x) in SL(V), so S is a subgroup of
Sp, (K) generated by transvections, where m is n 1 or n 2, according as
n is odd or even.
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If Q is defined on V by Q (’ a x) <a a, then Q is quadratic form
on V, Q is ssocited with B, nd S <= 0 (Q). If n is odd, S -< 0 (e, H), the
group of Q H, where e is -{- 1 or 1 ccording s Q H is of mximl index or
not.
To determine e, suppose n 2/c 1 nd choose bsis u, v, u,, v

for H with u lx, x x+. Let P (u, ). Then the P
sre mutusfiy perpendicular with respect to B. Q (v) 1, Q (u) i (2i 1)
nd B (u, v) 1. Therefore

Q (au + v) ai + a + .
Thus Q P is of index i if i is even and of index 0 or 1, according as X + X + 1
is irreducible over K or not, if i is odd. That is, 1 if X X + 1 is re-
ducible over K. Suppose X + X 1 is irreducible over K. Let

Q Q[ (P P).

Then (Q) 0, (Q2) 1, (Qa) 3, (Q) 4. The pattern persists, so
thatifk 0or3modulo4, 1, andifk lor2modulo4, 1.
Equivalently, if n 1 or 7 modulo 8, 1, and if n 3 or 5 modulo 8,

-1. In particular, since the order of 0 (-1, 2) is 120 5 i, we have
S 04 (-- 1, ).
Now suppose n is even. Since the order ofSp (F) is 720 6 !, S Sp4 (Y).

Suppose n 0 modulo 4. Then Q (x0) n (n 1 )/2 0 and (x0} H, so
we can define Q on H/(xo} by Q () Q (v) for v e H and the coset of v in
H/(xo). Thus for n 0 modulo 4, S, 0 (e, H/(Xo}), where e is + 1 or --1
according as the index of Q (H/(xo)) is mximl or not. Again we find that if
X + X + 1 is irreducible over K, e 1 if (n 1) 1 or 7 modulo 8, and
e -1 if (n 1) 3 or 5 modulo 8. In particular, since the order of
o (+ 1, y) is s , s o (+ 1, y).
The preceding discussion is taken from [7].
Suppose now that n is odd and K F. Then S 0_ (F), the group

of Q[H.
THEOgE 5.1. If n 5 is odd, then the dimension of H (S, H) over F is

zero. In particular, if V is the 4-dimensional F-space, the dimension of
H (0 (-1, Y), V) over F is zero.

Pro@ Let e Der (S, H). Write x x, + x, and if is the transposi-
tion (ij) S,, write x x. Let , r be distinct commuting transpositions
inS.. Then (+ 1)r (r+ 1). But

m ( + ) Im (, + ) (x,) (x,)= 0.
Therefore

( + 1), o ( + 1),

andr Ker ( + 1 ) (x}’, e (x,}. Thus if r (ij) andr a, x,,
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we have
B( a x, x "4- x,) a "4" a. 0

for all r, s i, j, and

B( a x, x + x) a + a 0.

Since r e H, we have Sr a (r)x., with a (r) e F, for every transposition

Nowlety x,z x,aandU (y,z)*. ThenH (y,z) U. The
elements of (S.)(,.,) have the form S (A, T), with A , 0 ((y, z)), T 0 (U).
By our flint remarks,

S(A, 1) a(A)(y,z) and S(1, T) g(T),U.

S (A, 1 S. for each A Sa, the symmetric group on 1, 2, 3], so a h a deriva-
tion on Sa SL, (F). By 2.1, a is inner, so changing , if necessa, by an in-
ner derivation based on a vector in (y, z), we may assume a 0.

If, S,_,, the symmetric group on 3, ..., n}, then has the form

foru, U, (z) a()y + u() T z with v(), U*, T(),GL(U) defined as
above, a () Y, and u () U. Suppose

() p() +h() +q() thp

Then q is efly seen to be a homomorphism on S._,. If , S._a, the sym-
metric group on {4, ..., n], then es (y, z), so u() 0 and v() 0.
Thus, since a 0, q S.-a 0. Since n 5, Sa A,_, so q 0. Thus
for , S._,, , (y) (y) U.
U is not stable for S._,. For S._, and u U, write

(u) =/,(u)u + **u, wih *u
It is eily verified that *, GL(U) and f.

Hence ()* ** and f. f * T f.. We have

() p () + h () with p() (y) and h() U,
so by computing () p() + h (p) we obtain

(1) h(,) *h() +
() p() 5(h())u + p() + p().

We know that U is a mode for (S._)* and so is a mode for S_,. If
V’ is an (n 2)-dimensional F,-space and H’ Ker (, W), then H is also
a mode for S_. In order to use an induction argument to complete the
proof of 5.1, we must show that U H’ as S._-modules. That is, we mus
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show that there is an isomorphism q between the (n 3)-dimensional
spaces U and H’ such that r u v if and only if r (q>u) v for r e S_, and
u)e V.

Set z34 y A- x.4, Zk.k+l X..+I for k > 3. The zk.,+l, k 3, n 1,
form a basis for U. We can view x3,, x, x_. as a basis for H’. De-
fine q by qz1.+ x,.k+. Now we see for each of the generating transposi-
tions (i, i A- 1) of S_.,

(i, i +
if and only if

(i, i + 1 )Xk,k4.1 ’jn"--81 Olj,k ;y,j-[-1,

where the a. F.
Now, by (1), h e Der (S_2, U). Since $8 SL(F), the derivations on

Sa are all inner. Therefore, using an appropriate induction hypothesis, assume
h is inner. If necessary, change by an inner derivation based on a vector in
U, and assume h 0. Then, by (2), p is a homomorphism. Like q, p
vanishes on S_8, so p 0. Since a (12) 0, i is zero on

Ifr (13),then6r 0andr(S,)r (S=). Therefore,[ (S) 0.
Clearly S ( (S,), (S)), so 0, and the original 6 was inner.
Now suppose n is even. Again let V be an F2-space with basis x, ..., x,,

let H Ker ,, where,( a x,) a, let z0 z, and ew S, as a
subgroup of Sp (H/(xo) ).

THEOREM 5.2. U n 6 is even, the dimension of H (S H/(xo)) over F2 is
e. In particular, the dimension of HI(o(+I, F2), V) is one, for V the 6-
dimensial F-space.

Proof. S Sp(F). By 4.4, the F-dimension of H (S, V) is one, for
V the 4-dimensional F2-space. Assume n 8 and let 6 e Der (S,, H/(xo)).
As in the proof of 5.1, if a and r are two distinct commuting transpositions,

(x,) and r (X,). So for every transposition r S, r a (r)X modulo
(z0), with a (r) e F2.
H has a basis

X12 X28 Xn--2,n--1 0
so H/(xo) has a basis

12 28 2,n--1

Let , a, and U (, >, so H/(xo> (, > $ U. The elements
of (S,)<.) have the form S (A, T) with A Sp ((, )) and T Sp (U). By
the remarks above,

S(A, 1) a(A)e(,) and S(1, T) g(T) e U.
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S (A, 1) e S for each A e $3, so a is a derivation on $3 --- SL2 (’2). By 2.1,
we may assume a 0.

If r e Sn-2, the symmetric group on 3, n}, then on H/(xo), has the
form , v () () + T() for e U, and a () + () + ,
where v() e U*, T() e Sp(U), a() e F and () e U. Suppose ()
p () + h () + q (), with p ()e (}, h ()e U, q ()e (}. Then, as in the
proof of 5.1, we see that q 0. Thus for v e Sn_, (} (} U.
As in the argument for 5.1, write

() =f()+ * foreS_and U.

Then *eGL(U),f e U*, (p)* p** andf f * + f. We also have
the relations (1) and (2) of 5.1. In order to use induction, we must verify
that U H’/(Xo) as S_-modules, where H’ Ker y V’. Choosing bases

+ , ,+ .+, k 3, n 2,
for U and

34 4 n--2,n--1

for H’/<Xo}, and defining U H’/<Xo> by @,+, ,+, we obtain the
module-isomorphism as for 5.1.

Hence, using a suitable induction hypothesis, we may suppose that the F-
dimension of H (S_, U) is one. Define a derivation

o - <>"
by o () ( + 1 )a, and then set o () po () + ho (v) with po () e <y>
and ho () e U. Then we have

(3) ho () *ho( + ho (

(4) po (-) L (ho ()) + po () + po ().

Thus ho may be ewed as an element of Der (Sn_, U). Since o S_ 0,
we have ho S_a 0 and po] S_a 0. Suppose ho is inner; that is, suppose
there exists #o e U such that

( + ) (. + 1)no + po () for all. S_.

Then ( + 1) (a + o) po (), and ( + o) a % o for all e S_a.
Let Uo be a preimage for o, with Uo a , xa + Uo a x. Then
since + o is a fixed point for S_a, B( a x, x x) 0 for i, j 4;
and since o e U,

Thus we see that o 0. But ho 0, so ho must be non-inner.
By (1),heDer (S_, U). We may assume h kho,keF. Then (2)

becomes
p(.) xL(ho()) + p(.) + p().
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Since h0, f and p vanish on S_,

p (pr) p (r) and p (pvp-1) p (r) for p e S_.

Clearly S_ S_ + --4 (3i)S_, and for i > 4, (3i) (4i) (34) (4i).
Thus we see that p is constant on the elements of S_2 not in S_3. Let
r (34), p (345), so rp (35). We check easily that f (h0 (p)) 0 and
p(rp) 0, sop 0.
Thus is determined up to a scalar multiple ) on (S). If r (13), then

r (S) r (S). Therefore, is determined up to the same scalar ) on
(S). Since S ((S), (S)), the dimension of H (S,, H/(xo)) is at
most one.

Define S, --. H/(xo) by ir (r -{- 1). Then is a derivation vanish-
ing on S_, the symmetric group on /2, n}. Arguing as for h0, we see
that must be non-inner. Hence the dimension of H (S, H/(xo)) is exactly
one, for n

_
8, even.
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