FIRST COHOMOLOGY GROUPS OF SOME LINEAR GROUPS OVER FIELDS OF CHARACTERISTIC TWO

BY
Harriet Pollatsek ${ }^{1}$
Introduction

A derivation (or crossed homomorphism) from a group G to a left (resp. right) G-module V is a map $\delta: G \rightarrow V$ such that $\delta(S T)=S(\delta T)+\delta S$ (resp. $\delta(S T)=(\delta S) T+\delta T)$ for all $S, T \in G$. An inner derivation (or principal crossed homomorphism) from G to a left (resp. right) G-module V is a derivation $\delta: G \rightarrow V$ for which there exists an element $v_{0} \in V$ with $\delta T=T v_{0}-v_{0}$ (resp. $\delta T=v_{0} T-v_{0}$) for all $T \epsilon G$. The derivations from G to a (right or left) G-module V form an abelian group $\operatorname{Der}(G, V)$ under point-wise addition, and the inner derivations form a subgroup, Inn (G, V). If V is a K-space, then $\operatorname{Der}(G, V)$ can be regarded as a K-space in the natural way. Inn (G, V) is then also a K-space, and so

$$
\operatorname{Der}(G, V) / \operatorname{Inn}(G, V) \cong H^{1}(G, V)
$$

the first cohomology group of G with coefficients in V [14, p. 130-131].
In this paper we use the representation of $H^{1}(G, V)$ as $\operatorname{Der}(G, V) / \operatorname{Inn}(G, V)$ to compute the K-dimension of $H^{1}(G, V)$ for certain linear groups G over K and their standard modules V. In particular, we compute $H^{1}(G, V)$ for $G=S p_{2 n}(K)$ with $n \geq 2$ and K either of odd characteristic or perfect of characteristic two, and for $G=O_{2 n}(K)$ with $n \geq 2$ and K perfect of characteristic two. In addition, viewing S_{n} as a linear group on the ($n-1$)- (or ($n-2$)-) dimensional F_{2}-space V for n odd (or even), we compute $H^{1}\left(S_{n}, V\right)$ for $n \geq 5$. Each of these cohomology groups is found to have K-dimension at most one.

1. Preliminaries

In this section we collect some of the basic definitions and results on symplectic and orthogonal groups over perfect fields of characteristic two that will be used throughout this paper.

First a few remarks on notation and language. We will use $G, G(V)$, $G_{n}(K)$ and $G(F)$ interchangeably to name the group G of transformations on the n-dimensional K-space V that preserve the form F on V, or to name the corresponding matrix group. We will also denote linear transformations and their matrix representations (and vectors and their representations as n tuples) by the same symbol. A transvection T is a linear transformation such

[^0]that the image $\operatorname{Im}(T-1)$ of $T-1$ is a line, and the kernel $\operatorname{Ker}(T-1)$ of $T-1$ is a hyperplane. If T is a transvection, we will say that $\operatorname{Im}(T-1)$ is the center of T and $\operatorname{Ker}(T-1)$ is its axis. The symplectic transvections T on V are of the form $T v=v+B(x, v) x$ for all $v \epsilon V$, where $x \epsilon V$ is arbitrary. The orthogonal transvections T are all of the form $T v=v+B(x, v) x$ for all v, where $Q(x)=1$.

Theorem 1.1. The symplectic group $S p(V)$ is generated by the subgroups $\mathfrak{S}_{\langle x\rangle}$ and $\mathfrak{S}_{\langle y\rangle}$, where $x, y \in V$ is a hyperbolic pair and $\mathfrak{S}_{\langle x\rangle}=\{T \epsilon S p(V): T x=x$ and $T \bar{z}=\bar{z}$ for all $\left.\bar{z} \in\langle x\rangle^{\perp} /\langle x\rangle\right\}$.

Proof. Arguing as in [16, Lemma 4, p. 194], we have that $H=\left\langle\mathfrak{S}_{\langle x\rangle}, \mathfrak{S}_{\langle y\rangle}\right\rangle$ is transitive on the lines of V, and hence that $\mathfrak{S}_{\langle v\rangle} \leq H$ for all $v \in V$. Therefore H contains every symplectic transvection and so [2, Theorem 3.25, p. 139] equals $S p(V)$.

Theorem 1.2. Suppose $V=U \oplus W$, where $U, W \leq V$ are totally isotropic. Then $S p(V)=\left\langle S p(V)_{U}, S p(V)_{w}\right\rangle$.

Proof. If the dimension of V is $2, S p(V)=S L(V)$, and the result is clear. Suppose the dimension $2 n$ of V is at least 4, and assume 1.2 is true for spaces of dimension less than $2 n$. Let $H=\left\langle S p(V)_{U}, S p(V)_{w}\right\rangle$. Choose a hyperbolic pair x, y with $x \epsilon U$ and $y \epsilon W$. For $T \epsilon S p(V)_{x}, T=R S$ for suitable $R \epsilon \mathbb{S}_{\langle x)}$ $\leq S p(V)_{U}$ and S fixing $\langle x, y\rangle$ point-wise. By the induction hypothesis, $S \in H$. Hence $S p(V)_{x} \leq H$. Similarly $S p(V)_{y} \leq H$. Therefore, by 1.1, $H=S p(V)$.

The $\operatorname{map} Q: V \rightarrow K$ is a quadratic form on V if

$$
Q(\alpha x+\beta y)=\alpha^{2} Q(x)+\beta^{2} Q(y)+\alpha \beta B(x, y)
$$

for all $x, y \in V, \alpha, \beta \in K$, where B is a bilinear form on V. We will say B is associated with Q, Q is associated with B. If the characteristic of K is 2 , the form B determined by Q is alternate. From this point, we will consider only fields of characteristic 2 , unless we explicitly say otherwise. We will further restrict our attention to those quadratic forms Q for which B is non-degenerate, unless we specify otherwise, so that $O(Q) \leq S p(B)$.

We denote the index of the form Q by $\nu(Q)$ or $\nu(V)$. Since the index of a quadratic form on a $2 n$-dimensional space over a perfect field is n or $n-1$ [4, Theorem 1.3.2, p. 13], for K perfect we write $O(+1, K)$ or $O(+1, V)$ for the group of a form of maximal index, and $O(-1, K)$ or $O(-1, V)$ for the group of a form of non-maximal index.

Theorem 1.3. $O(Q)$ is primitive in its action on the singular lines of V, its standard module.

Proof. The theorem is trivial if the dimension $2 n$ of V is 2 . For $n \geq 2$ we will show that O is of rank 3 in its action on the singular lines of V. Choose
a hyperbolic pair of singular vectors $x, y \in V$. Consider $O_{\langle x\rangle}$ acting on $\Gamma(x)$, the set of singular lines off $\langle x\rangle^{\perp}$. Choose $\langle z\rangle \in \Gamma(x)$ and assume $B(x, z)=1$.

The map $T:\langle x, y\rangle \rightarrow\langle x, z\rangle$ defined by $T x=x$ and $T y=z$ is a Q-isomorphism and, by Witt's theorem [4, Theorem 1.4.1, p. 16], may be extended to an element of $O_{\langle x\rangle}$. Hence $O_{\langle x\rangle}$ is transitive on $\Gamma(x)$.

Let $\Delta(\mathrm{x})$ be the set of singular lines $\neq\langle x\rangle$ on $\langle x\rangle^{\perp}$. By Witt's theorem, for $\langle v\rangle,\langle u\rangle \in \Delta(x)$ such that $\langle v\rangle,\langle u\rangle \leq\langle x, y\rangle^{\perp}$, there exists $T \in O\left(\langle x, y\rangle^{\perp}\right)$ taking v to u. T may be extended to an element of $O_{\langle x\rangle}$ by defining $T x=x, T y=y$. If $\langle\alpha x+u\rangle,\langle v\rangle \in \Delta(x)$, with $u, v \in\langle x, y\rangle^{\perp}$ and $\alpha \neq 0$, then since u is singular, Witt's theorem implies that there is a $T \in O\left(\langle x, y\rangle^{\perp}\right)$ taking v to u. Define $A \in O_{\langle x\rangle}$ by $A x=\alpha x, A s=\alpha B(T s, w) x+T s$ for $s \in\langle x, y\rangle^{\perp}$, and $A y=\alpha Q(w) x+w+(1 / \alpha) y$, where $w \in\langle x, y\rangle^{\perp}$ is such that $B(u, w)=1$. Then $A\langle v\rangle=\langle\alpha x+u\rangle$. Hence $O_{\langle x\rangle}$ is transitive on $\Delta(x)$.

Now suppose a set I of singular lines is a set of imprimitivity for O. Since O is of rank 3 on the singular lines, for every $\langle v\rangle \in I, I \cap \Delta(v)=\emptyset$ or $\Delta(v)$ and $I \cap \Gamma(v)=\emptyset$ or $\Gamma(v)$. Choose $\langle x\rangle \in I$. Suppose $I \cap \Delta(x)=\Delta(x)$ (so $\nu(Q) \geq 2)$. Then for $\langle z\rangle \in \Delta(x), I \cap \Delta(z) \neq \emptyset$, and so $\Delta(z) \subseteq I$. Since $\langle x\rangle \neq\langle z\rangle,\langle x\rangle^{\perp} \neq\langle z\rangle^{\perp}$. Choose $\left\langle y^{\prime}\right\rangle \leq\langle z\rangle^{\perp}, \not \leq\langle x\rangle^{\perp}$. Assume $B\left(x, y^{\prime}\right)=1$, and let $y=y^{\prime}+Q\left(y^{\prime}\right) x$. Then $\langle y\rangle \in I \cap \Gamma(x)$, so $\Gamma(x) \subseteq I$, and I contains all the singular lines of V. Suppose, on the other hand, that $I \cap \Gamma(x)=\Gamma(x)$. Let $\langle z\rangle \in \Gamma(x)$. Then $\Gamma(z) \subseteq I$. If $n=2$ and $\nu(Q)=1$, then $\Delta(x)=\emptyset$, and we are done. Assume $\nu(Q) \geq 2$, and choose a singular $\langle u\rangle \in\langle x, y\rangle^{\perp}$. Then $\langle u+z\rangle \epsilon \Gamma(x) \subseteq I$, and so $\langle u+z\rangle \epsilon I \cap \Delta(z)$. Hence again I contains all singular lines.

We remark that for $x \in V$ singular, $O^{+}(V)_{\langle x\rangle}$ is a maximal parabolic subgroup. Thus $O^{+}(V)$, and so $O(V)$, is primitive on the singular lines of V (see the proof of 1.12).

Theorem 1.4. Let K be perfect. Let x in the K-space V be singular, and let T be the transvection taking $v \in V$ to $v+B(v, x) x$. Then if $O=O(V)$, $O \cap O^{T}=O_{x}$.

Proof. If $S \in O_{x}$, then for $v \in V, T S T v=S v$, and $S \in O \cap O^{T}$; thus $O_{x} \leq$ $O \cap O^{T}$. If $K=\mathrm{F}_{2}$ (the field of two elements), O_{x} is maximal in O by 1.3, and we are done. So assume $K \neq \mathrm{F}_{2}$. Let $S \in O \cap O^{T}$; then

$$
Q(T S T v)=Q(v)+B(S v, x)^{2}+B(v, x)^{2}+B(v, x)^{2} B(S x, x)^{2}=Q(v)
$$

and hence

$$
B(S v, x)^{2}=B(v, x)^{2}\left(1+B(S x, x)^{2}\right)
$$

for all $v \in V$. If $v \in\langle x\rangle^{\perp}$, we see $S v \in\langle x\rangle^{\perp}$. Suppose y is chosen singular with $B(x, y)=1$, and suppose $S x=\alpha x+u$, with $u \in\langle x, y\rangle^{\perp}$. If $w \in\langle x, y\rangle^{\perp}$, $S w=\beta(w) x+T w$ with $\beta(w) \in K$ and $T \in 0\left(\langle x, y\rangle^{\perp}\right)$. Thus $0=B(x, w)=$ $B(S x, S w)=B(T w, u)$ for all $w \epsilon\langle x, y\rangle^{\perp}$; so $u=0, S \in O_{\langle x\rangle}$ and

$$
Q(T S T v)=Q(v)+B(S v, x)^{2}+B(v, x)^{2}
$$

Hence $B\left(v, S^{-1} x+x\right)=0$ for all $v \in V$, and $S \in O_{x}$. Therefore $O \cap O^{T} \leq O_{x}$.
Theorem 1.5. If $\nu(Q) \geq 1, B$ is associated with Q, and K is perfect, then $O(Q)$ is maximal in $S p(B)$.

Proof. First we show that, for $T \epsilon S p(B)$, if $T(x)$ is singular whenever x is singular, then $T \epsilon O(Q)$. Since K is perfect, it suffices to show that $Q(T x)=1$ whenever $Q(x)=1$. Choose $x \epsilon V$ with $Q(x)=1$. The theorem is trivial if $O(Q)=O_{2}\left(+1, F_{2}\right)$, for then $O(Q)$ is of order 2 and $S p(B)$ is of order 6. Excluding this case, $O(Q)$ is irreducible [4, Theorem 1.6.7, p. 33], so there are singular vectors off $\langle x\rangle^{\perp}$. Choose y singular such that $B(x, y)=1$. Then $x+y$ is singular, so $0=Q(T x+T y)=Q(T x)+1$, and $Q(T x)=1$.

Now we show that if $T \in S p(B), T \notin O(Q)$, then $\langle O(Q), T\rangle=S p(B)$. Let $G=\langle O(Q), T\rangle$. Since $T \notin O(Q)$, there is a singular x such that $T x$ is nonsingular. $O(Q)$ contains a transvection with center $\langle T x\rangle$, so G contains a transvection with center $\langle x\rangle . \quad O(Q)$ is transitive on the singular vetors, so G contains all symplectic transvections with singular centers. Since G thus contains all the symplectic transvections with center $\langle x\rangle, G$ contains all those with center $\langle T x\rangle . \quad K$ is perfect, so Q takes all values in $K^{*}(=K-\{0\})$ on $\langle T x\rangle$. For each $\alpha \in K, O(Q)$ is transitive on the set of $v \in V$ with $Q(v)=\alpha$. Hence G also contains every symplectic transvection having a non-singular center. Since $S p(B)$ is generated by the symplectic transvections, $G=S p(B)$.

Theorem 1.6. Let K be a perfect field, and let B and Q be associated forms on the K-space V. Define a map $u: S p(B) \rightarrow V$ by

$$
B(u(T), T v)=\sqrt{Q(T v)+Q(v)} \quad \text { for all } v \in V, \text { for } T \in S p(B)
$$

Then (i) u is a derivation; (ii) $u(T)=0$ if and only if $T \epsilon O(Q)$; (iii) for T the transvection taking $v \in V$ to $v+B(x, v) x, u(T)=\sqrt{1+Q(x)} x$; and (iv) $X^{2}+X=Q(u(T))$ has a solution in K for every $T \in S p(B)$.

Proof. (i), (ii) and (iii) are easily verified. By (iii), for a transvection T taking $v \in V$ to $v+B(x, v) x, Q(u(T))=Q(x)^{2}+Q(x)$. Suppose for T, $S \in S p(B), Q(u(T))=\alpha^{2}+\alpha$ and $Q(u(S))=\beta^{2}+\beta$, with $\alpha, \beta \in K$. Then

$$
Q(u(T S))=\gamma^{2}+\gamma \quad \text { for } \gamma=\sqrt{Q(T u(S))+\beta+\alpha^{2}} \epsilon K
$$

Since $S p(B)$ is generated by transvections, we see that $X^{2}+X=Q(u(T))$ has a solution in K for every $T \in S p(B)$.

Theorem 1.7 Let K be a perfect field, and let x, y be a hyperbolic pair of non-singular vectors with $Q(x)=1$. Then a symplectic transformation A is in $O(Q)_{\langle x\rangle}$ if and only if $A x=x, A v=B(T v, u(T)) x+T v$ for all $v \epsilon\langle x, y\rangle^{\perp}$, and $A y=\alpha x+u(T)+y$, where $T \epsilon S p\left(\langle x, y\rangle^{\perp}\right), u$ is defined as in 1.6, and α is a solution in K of $X^{2}+X=Q(u(T))$.

Proof. Clearly $A \in S p(B)_{\langle x\rangle}$ if and only if $A x=\beta x, A v=\beta B(T v, u) x+T v$ for all $v \in\langle x, y\rangle^{\perp}$, and $A y=\alpha x+u+(1 / \beta) y$, with $T \in S p\left(\langle x, y\rangle^{\perp}\right), \alpha \in K$,
$\beta \in K^{*} . \quad A \in S p(B)$ is a Q-isometry if and only if $\beta=1, \alpha^{2}+\alpha=Q(u)$ and $u=u(T)$. For such an $A \epsilon O(Q)_{\langle x\rangle}$, write $A=A(T, \alpha)$.

We remark further that for every $T \epsilon S \mathrm{p}\left(\langle x, y\rangle^{\perp}\right)$, there are two elements, $A(T, \alpha)$ and $A(T, \alpha+1)$ in $O_{\langle x\rangle}$.

Theorem 1.8. Let $n \geq 3$, let K be a perfect field, and let $O=O_{2 n}(K)$. Then for x, y a hyperbolic pair of non-singular vectors $O=\left\langle O_{\langle x\rangle}, O_{\langle y\rangle}\right\rangle$.

Proof. Clearly $O_{\langle x\rangle}$ contains all the orthogonal transvections centered in $\langle x\rangle^{\perp}$. Suppose $\langle u\rangle$ is a non-singular line off both $\langle x\rangle^{\perp}$ and $\langle y\rangle^{\perp}$. Then we may assume $u=x+v+\beta y$, with $v \in\langle x, y\rangle^{\perp}$ and $\beta \in K^{*}$. If $v \neq 0$, then since $O\left(\langle x, y\rangle^{\perp}\right)$ is irreducible, there is a singular vector $w \epsilon\langle x, y\rangle^{\perp}, 屯\langle v\rangle^{\perp}$; say $B(v, w)=1$. Let T be the transvection in $S p\left(\langle x, y\rangle^{\perp}\right)$ taking $s \epsilon\langle x, y\rangle^{\perp}$ to $s+$ $B(s, w) w$. Then $u(T)=w$ by 1.6, and $T v=w+v . \quad$ Let $A=A(T, 0)$. Then

$$
A u=v+(\beta+1) w+y \epsilon\langle y\rangle^{\perp}
$$

If $u=x+\beta y$, choose $T \in S p\left(\langle x, y\rangle^{\perp}\right), T € O\left(\langle x, y\rangle^{\perp}\right)$, and let $A=A(T, \alpha)$. Then

$$
A u=(\alpha \beta+1) x+\beta u(T)+\beta y
$$

If $A u \notin\langle y\rangle^{\perp}$, proceed as above to obtain an $A^{\prime} \in O_{\langle x\rangle}$ such that $A^{\prime} A u \in\langle y\rangle^{\perp}$.
Thus for u non-singular off $\langle x\rangle^{\perp}$ and off $\langle y\rangle^{\perp}$, there is an $A \epsilon O_{\langle x\rangle}$ such that $A u \in\langle y\rangle^{\perp}$. $O_{\langle y\rangle}$ contains the orthogonal transvection with center $\langle A u\rangle$, so $\left\langle O_{\langle x\rangle}, O_{\langle y\rangle}\right\rangle$ contains the orthogonal transvection with center $\langle u\rangle$. Thus $\left\langle O_{\langle x\rangle}\right.$, $\left.O_{\langle y\rangle}\right\rangle$ contains every orthogonal transvection. Since O is generated by the orthogonal transvections [8, Proposition 14, p. 42], $O=\left\langle O_{\langle x\rangle}, O_{\langle y\rangle}\right\rangle$.

Theorem 1.9. Suppose $n \geq 2$. Then $O=O_{2 n}(Q)=\left\langle O_{\langle x\rangle}, O_{\langle y\rangle}\right\rangle$ for x, y a hyperbolic pair of singular vectors.

Proof. By 1.3, $O_{\langle x\rangle}$ and $O_{\langle y\rangle}$ are maximal subgroups of O. Since $n \geq 2$, $O_{\langle x\rangle} \neq O_{\langle y\rangle}$, so $O=\left\langle O_{\langle x\rangle}, O_{\langle y\rangle}\right\rangle$.

Lemma. Let K be an arbitrary field, and let V be a K-space with a bilinear form B. Let x_{1}, \cdots, x_{k} be linearly independent vectors in V, and let T_{i} be defined by

$$
T_{i}(v)=v+B\left(x_{i}, v\right) x_{i} \quad \text { for all } v \in V, i=1, \cdots, k
$$

Then $T_{1} \cdots T_{k} v=v$ if and only if $v \in \bigcap_{i=1}^{k}\left\langle x_{i}\right\rangle^{\perp}$.
Proof. Let $T=T_{1} \cdots T_{k}$. Obviously if $v \in \bigcap_{i=1}^{k}\left\langle x_{i}\right\rangle^{\perp}$, then $T v=v$. We will prove the converse by induction on k. If $k=1$, it is clear. Suppose $k>1$ and assume the lemma is true for fewer than k vectors x_{i}. For $v \in V$,

$$
T_{2} \cdots T_{k} v=v+\sum_{i=2}^{k} \alpha_{i} x_{i} \quad \text { for some } \alpha_{i} \epsilon k
$$

Thus

$$
T v=v+B\left(x_{1}, v\right) x_{1}+\sum_{i=2}^{k} \alpha_{i}\left(x_{i}+B\left(x_{i}, x_{1}\right) x_{1}\right)
$$

If $T v=v$, the linear independence of the x_{i} implies $\alpha_{i}=0$ for $i=2, \cdots, k$.

But then $T_{2} \cdots T_{k} v=v$, and the induction hypothesis implies $v \in \bigcap_{i=2}^{k}\left\langle x_{i}\right\rangle^{\perp}$; so $T_{1} v=v$ and $v \epsilon\left\langle x_{1}\right\rangle^{\perp}$ as well.

Theorem 1.10. Let K be a perfect field (of characteristic two). If $O=O_{2 n}(K) \neq O_{2}\left(+1, \mathrm{~F}_{2}\right)$, then there exists $T \in O$ such that $T+1$ is non-singular.

Proof. O is irreducible, so $\langle x \in V: Q(x)=1\rangle$ must be V. Hence V has a basis $x_{1}, \cdots, x_{2 n}$ with $Q\left(x_{i}\right)=1$ for $i=1, \cdots, 2 n$. Define $T_{i}, i=1, \cdots, 2 n$, as in the lemma, and let $T=T_{1} \cdots T_{2 n}$. Then since $\bigcap_{i=1}^{2 n}\left\langle x_{i}\right\rangle^{\perp}=0, T$ has no non-zero fixed points, and so $T+1$ is non-singular.

Corollary. For K a perfect field, if $\delta: S p(V) \rightarrow V$ is a non-zero derivation such that $\delta \mid O(V)=0, O \neq O_{2}\left(+1, \mathrm{~F}_{2}\right)$, then δ is non-inner. In particular, the derivation u defined in 1.6 is non-inner.

Let $C(Q)$ denote the Clifford algebra of the quadratic form Q, and $C^{+}(Q)$ its even subalgebra. The elements of $O(Q)$ induce automorphisms of $C^{+}(Q)$ and so of its center, Z. For $T \epsilon O(Q)$, write $D(T)$ for the automorphism of Z induced by T. Z has a K-basis consisting of 1 and $z_{ß}$; here $\mathbb{B}=\left\{x_{1}, \cdots, x_{2 n}\right\}$ is a symplectic basis of V with $B\left(x_{i}, x_{j}\right)=\delta_{j, 2 n-i+1}\left(\delta_{r s}=1\right.$ if $r=s$, and $\delta_{r s}=0$ otherwise) and $z_{\Omega}=x_{1} x_{2 n}+\cdots+x_{n} x_{n+1}[4$, Theorem 11.2.3, p. 44$] . z_{\Omega}$ satisfies $z_{\Omega}^{2}+z_{\Omega}=\Delta_{\Omega}(Q)$, where the pseudo-discriminant

$$
\Delta_{\mathbb{B}}(Q)=\sum_{i=1}^{n} Q\left(x_{i}\right) Q\left(x_{2 n-i+1}\right)
$$

Let $x \in V$ be non-singular, and let T be the orthogonal transvection defined by $T v=v+(1 / Q(x)) B(x, v) x$ for all $v \in V$. Complete x to a symplectic basis \circledast as above, with $x=x_{1}$. Then $D(T) z_{\mathbb{B}}=z_{\Omega}+1$, and so D is a homomorphism of $O(Q)$ onto the group of automorphisms of Z over K. Therefore, if z is any generator for Z over K of the form z_{\circledR} for some symplectic basis $ß$, and if T is any element of $O(Q), D(T)(z)=z+d(T)$, where $d(T)=0$ or 1 according as $T \in \operatorname{Ker} D$ or not. The rotation subgroup $O^{+}(Q) \leq O(Q)$ is defined to be $\operatorname{Ker} D$ (or $\operatorname{Ker} d$). The map d is the Dickson Invariant; it is a homomorphism from $O(Q)$ into the additive group of K.

For B associated with Q, the elements of $S p(B)$ not in $O(Q)$ do not induce automorphisms of $C(Q)$. However, for $T \in S p(B)$ and for any symplectic basis $\mathbb{B}, z_{T ®}$ is an element of Z, so $z_{T ®}=\alpha z_{\mathbb{B}}+\beta$ for some $\alpha, \beta \in K$. From the relation $z_{\mathbb{B}}^{2}+z_{\mathbb{B}}=\Delta_{\mathbb{B}}(Q)$ we obtain

$$
\alpha^{2} z_{\mathbb{B}}^{2}+\beta^{2}+\alpha z_{\mathbb{B}}+\beta=\Delta_{T \mathbb{B}}(Q) \epsilon K
$$

hence $\alpha^{2}=\alpha$ and $\alpha=1$. Then $z_{T \Omega}=z_{\Omega}+\beta$. For $T \notin O(Q)$, Dieudonné [9] extends d to $S p(B)$, defining $d(T)=z_{T \mathbb{B}}+z_{\Omega}$. However, this definition depends on the choice of the basis \mathbb{B} as well as on the choice of Q. Writing $d_{\mathbb{B}}$ to denote this dependence, $d_{\mathbb{B}}(S T)=d_{T \mathbb{B}}(S)+d_{\mathbb{B}}(T)$ for $T, S \in S p(B)$. When $S p(B)$ is simple, d cannot be a homomorphism, hence $d_{T \mathbb{C}}(S)$ must be different from $d_{\mathbb{B}}(S)$ for some $T \in S p(B)$. If $S p(B)=S p_{2}\left(\mathbf{F}_{2}\right)$ or $S p_{4}\left(\mathbf{F}_{2}\right)$
and Q has non-maximal index, a direct computation shows that there exists $T \epsilon S p(B)$ such that $d_{\mathbb{B}}(T)$ depends on the choice of $ß$.

Let K be perfect, and let B_{1} and Q_{1} be associated forms on the K-space U. Form the K-space $V=U \oplus W$, where W is a 2 -dimensional K-space with associated forms B_{2} and Q_{2}. Then a qudaratic form Q and its associated bilinear form B can be defined on V by $Q\left|U=Q_{1}, Q\right| W=Q_{2}$, and $B(u, w)=0$ for $u \in U, w \in W$. Choose a hyperbolic pair of non-singular vectors $x, y \in W$ and assume $Q(x)=1$. By $1.7, A \in O_{\langle x\rangle}$ has the form $A x=x, A v=$ $B(u(T), T v) x+T v$ for all $v \in U$ and $A y=\alpha x+u(T)+y$, where $T \epsilon S p\left(B_{1}\right)$, $u: S p\left(B_{1}\right) \rightarrow U$ is the derivation defined in 1.6, and $\alpha \in K$ is a solution of $X^{2}+X=Q_{1}(u(T))$. Write $A=A(T, \alpha)$.

Let T_{0} be the transvection taking $v \in V$ to $v+B(x, v) x$. If d is the Dickson Invariant on $O(Q), d\left(T_{0}\right)=1$. Now $T_{0} A(T, \alpha)=A(T, \alpha+1)$, so, since d is a homomorphism, $A(T, \alpha) \in O^{+}(Q)$ if and only if $A(T, \alpha+1) \Leftrightarrow O^{+}(Q)$. That is, the subgroup $O^{+}(Q)_{\langle x\rangle}$ contains exactly one element $A(T, \alpha)$ for each $T \in S p\left(B_{1}\right)$. Thus we have defined a function $a: S p\left(B_{1}\right) \rightarrow K$ by $a(T)=\alpha$ if $A(T, \alpha) \in O^{+}(Q)_{\langle x\rangle}$.

Suppose $T \epsilon O\left(Q_{1}\right)$. Choose a symplectic basis \bigotimes_{1} for U and complete \bigotimes_{1} with x, y to a symplectic basis \mathbb{B} for V. Then

$$
\begin{aligned}
D(A(T, \alpha)) z_{\mathbb{B}} & =x(\alpha x+y)+D(T) z_{\mathbb{B}_{1}}=\alpha+x y+z_{\mathbb{ß}_{1}}+d_{1}(T) \\
& =\alpha+d_{1}(T)+z_{\mathbb{B}}
\end{aligned}
$$

where d_{1} is the Dickson Invariant on $O\left(Q_{1}\right)$. If $A(T, \alpha) \in O^{+}(Q)$, then $A(T, \alpha) \in \operatorname{Ker} D$, and $\alpha=d_{1}(T)$. But for $A(T, \alpha) \in O^{+}(Q), \alpha=a(T)$. Thus for $T \in O\left(Q_{1}\right), a(T)=d_{1}(T)$, and a extends the Dickson Invariant on $O\left(Q_{1}\right)$ to $S p\left(B_{1}\right)$. Although this extension depends on the choice of the quadratic form Q_{1}, it is independent of the choice of the basis B_{1}.

Theorem 1.11. Let Q be a quadratic form on the K-space V for K a perfect field. Let $x, y \in V$ be a hyperbolic pair of non-singular vectors with $Q(x)=1$. Then if V is of dimension at least 4, the linear transformation $A \in O^{+}(Q)_{\langle x\rangle}$ if and only if $A x=x, A v=B(u(T), T v) x+T v$ for all $v \epsilon\langle x, y\rangle^{\perp}$, and $A y=a(T) x+u(T)+y$, where $T \epsilon S p\left(\langle x, y\rangle^{\perp}\right)$, u is defined as in 1.6, and a is defined as above. If $T \in O\left(\langle x, y\rangle^{\perp}\right), a(T)=d(T)$, where d is the Dickson Invariant on $O\left(\langle x, y\rangle^{\perp}\right)$.

Theorem 1.12. Let Q be of maximal index on the \mathbf{F}_{2}-space V of dimension $2 n \geq 4$. Let $V=U \oplus W$ with U, W totally singular. Then

$$
O^{+}(V)=\left\langle O(V)_{U}, O(V)_{W}\right\rangle
$$

Proof. First we will show that $O_{U}, O_{W} \leq O^{+}$. Choose bases u_{1}, \cdots, u_{n} and w_{1}, \cdots, w_{n} of U and W respectively such that $B\left(u_{i}, w_{j}\right)=\delta_{i j}, i, j=$ $1, \cdots, n$. For $X \in \operatorname{Hom}(U, U)$ and $X^{\prime} \in \operatorname{Hom}(W, W)$, define $T\left(X, X^{\prime}\right)$ on V by $T\left(X, X^{\prime}\right) u=X u$ and $T\left(X, X^{\prime}\right) w=X^{\prime} w$ for all $u \in U, w \in W$. Then
$T\left(X, X^{\prime}\right) \epsilon S p(B)$ if and only if $X^{\prime}=X^{-1 t}$ for $X \epsilon G L_{n}\left(\mathrm{~F}_{2}\right)$. Write $T(X)=$ $T\left(X, X^{-1 t}\right)$. For $Y \in \operatorname{Hom}(W, U)$, define $S(Y)$ on V by $S(Y) u=u$ and $S(Y) w=Y w+w$ for all $u \in U, w \in W$. Then $S(Y) \in S p(B)$ if and only if $Y=Y^{t}$. Clearly $T(X) \in O(V)$ for every $X \in G L_{n}\left(\mathrm{~F}_{2}\right)$, and $S(Y) \in O(V)$ if and only if Y is alternate. Thus we see that O_{U} is generated by the elements $T(X)$ and $S(Y)$ for $X \in G L_{n}\left(\mathrm{~F}_{2}\right)$ and Y alternate, $n \times n$.

Let $\mathbb{B}=\left\{u_{1}, \cdots, u_{n}, w_{1}, \cdots, w_{n}\right\}$, and define $z_{\mathbb{\Omega}}$ as above. Let

$$
S_{i j}=S\left(E_{i j}+E_{j i}\right), \quad i \neq j, i, j=1, \cdots, n
$$

where $E_{r s}$ is the $n \times n$ matrix having a 1 in the intersection of the r-th row and the s-th column, and all other entries zero. Then we see that $S_{i j} z_{\mathbb{B}}=z_{\mathbb{}}$, so $S_{i j} \in O^{+}, i \neq j, i, j=1, \cdots, n$. Since $S(Y) S\left(Y^{\prime}\right)=S\left(Y+Y^{\prime}\right)$, and since the $E_{i j}+E_{j i}, i \neq j, i, j=1, \cdots, n$ generate the alternate $n \times n$ matrices additively, $S(Y) \in O^{+}$for every alternate $n \times n Y$.

Let X be a transvection in $G L(U)$ with center $\langle x\rangle$, and choose $\langle y\rangle$ so that $U=\langle y\rangle \oplus \operatorname{Ker}(X-1)$. Complete a basis $x_{1}=x, x_{2}, \cdots, x_{n-1}$ for $\operatorname{Ker}(X-1)$ with $x_{n}=y$ to a basis for U, and choose a basis y_{1}, \cdots, y_{n} for W so that $B\left(x_{i}, y_{j}\right)=\delta_{i, j}, i, j=1, \cdots, n$. Then if

$$
\mathfrak{B}=\left\{x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}\right\}
$$

$T(X) z_{\mathbb{B}}=z_{\mathscr{B}}$, and $T(X) \in O^{+}$. Since $G L(U)=S L(U)$ is generated by transvections, $T(X) \in O^{+}$for all $X \in G L_{n}\left(\mathbf{F}_{2}\right)$. Hence $O_{U} \leq O^{+}$. Similarly $O_{W} \leq O^{+}$.

To show that $\left\langle O_{U}, O_{W}\right\rangle=O^{+}$, we will draw on the Lie Theory. We refer the reader to [15] and [5] or [3] for a discussion of the relevant material. O^{+} is the Chevalley group coming from the Lie algebra of type D_{n}. With respect to the original basis \mathbb{B}, the $2 n \times 2 n$ diagonal elements

$$
h=\sum_{i=1}^{n} \lambda_{i} E_{i i}-\sum_{i=1}^{n} \lambda_{i} E_{n+i, n+i}, \quad \quad \lambda_{i} \in \mathbf{F}_{2}, i=1, \cdots n
$$

of D_{n} yield the positive roots $r=\lambda_{p}-\lambda_{q}, 1 \leq p<q \leq n$, corresponding to the root vectors

$$
X_{r}=\left|\begin{array}{cc}
E_{p q} & 0 \\
0 & E_{q p}
\end{array}\right|
$$

and $r=\lambda_{p}+\lambda_{q}, 1 \leq p<q \leq n$, corresponding to the root vectors

$$
X_{r}=\left|\begin{array}{cc}
0 & E_{p q}-E_{q p} \\
0 & 0
\end{array}\right|
$$

For $r=-\left(\lambda_{p}+\lambda_{q}\right)$, the root vector is

$$
X_{r}=\left|\begin{array}{cc}
0 & 0 \\
E_{p q}-E_{q p} & 0
\end{array}\right|
$$

We have a fundamental set $F=\left\{a_{1}, \cdots, a_{n}\right\}$ of roots with

$$
a_{i}=\lambda_{i}-\lambda_{i+1}, i=1, \cdots, n-1 \text { and } a_{n}=\lambda_{n-1}+\lambda_{n}
$$

$x_{r}(\tau)=1+\tau X_{r}$ for r a root and $\tau \epsilon \mathrm{F}_{2}$, and

$$
O^{+}=\left\langle x_{r}(\tau): \tau \in \mathrm{F}_{2} \quad \text { and } \quad r \text { a root }\right\rangle
$$

O^{+}has $\mathbf{B}-\mathbf{N}$ structure for

$$
\mathbf{B}=\left\langle x_{r}(\boldsymbol{\tau}): \tau \in \mathbf{F}_{2} \text { and } r \text { a positive root }\right\rangle
$$

and

$$
\mathbf{N}=\left\langle\omega_{a_{i}}: i=1, \cdots, n\right\rangle
$$

where

$$
\omega_{a}=\phi_{a}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Since $\phi_{a} \operatorname{maps} S L_{2}\left(\mathbf{F}_{2}\right)$ onto $\left\langle x_{a}(\tau), x_{-a}(\tau)\right\rangle$, with

$$
\phi_{a}\left(\begin{array}{ll}
1 & \tau \\
0 & 1
\end{array}\right)=x_{a}(\tau) \quad \text { and } \quad \phi_{a}\left(\begin{array}{cc}
1 & 0 \\
\tau & 1
\end{array}\right)=x_{-a}(\tau)
$$

we see that $\omega_{a}=x_{a}(1) x_{-a}(1) x_{a}(1)$.
For $S \subseteq F$, we have the parabolic subgroups $G_{S}=\mathbf{B N} \mathbf{N}_{S} \mathbf{B}$, with $\mathbf{N}_{S}=$ $\left\langle\omega_{a}: a \in S\right\rangle$. For S a maximal subset of F, G_{S} is maximal in O^{+}. We will show that O_{U} is a maximal parabolic subgroup. We see immediately that $\mathbf{B} \leq O_{U}$. Since

$$
\begin{gathered}
\left(1+E_{p q}\right)\left(1+E_{q p}\right)\left(1+E_{p q}\right)=R_{p q}=1+E_{p p}+E_{q q}+E_{p q}+E_{q p} \\
\omega_{r}=\left\lvert\, \begin{array}{ll}
R_{p q} & R_{q p}
\end{array} \quad\right. \text { for } r=\lambda_{p}-\lambda_{q}, 1 \leq p<q \leq n
\end{gathered}
$$

For $r=\lambda_{p}+\lambda_{q}$,

$$
\omega_{r}=\left|\begin{array}{cc}
1+E_{p p}+E_{q q} & E_{p q}+E_{q p} \\
E_{p q}+E_{q p} & 1+E_{p p}+E_{q q}
\end{array}\right|
$$

Now it is easily seen that $\omega_{a_{i}} \in O_{U}$ for $i=1, \cdots, n-1$. So $G_{S} \leq O_{U}$ for $S=\left\{a_{1}, \cdots, a_{n-1}\right\}$. Hence $O_{U}=G_{S}, O_{U}$ is maximal in O^{+}, and $O^{+}=\left\langle O_{U}, O_{W}\right\rangle$.

However, we can say more. Let

$$
U_{i}=\left\langle u_{1}, \cdots, u_{i}\right\rangle \quad \text { for } i \leq n-2
$$

and let

$$
U_{n-1}=\left\langle u_{1}, \cdots, u_{n-2}, w_{n}\right\rangle
$$

Then we see that $\mathbf{B} \leq O_{U_{i}}^{+}$. Furthermore, for $j \neq i, \omega_{a_{j}} \in O_{U_{i}}^{+}$, for $i=1, \cdots$, $n-1$. So $G_{s_{i}}=O_{U_{i}}^{+}$for $S_{i}=\left\{a_{j}: j \neq i\right\}$. In particular, $O_{\left\langle u_{1}\right\rangle}^{+}$is a maximal subgroup, so we see again that O^{+}, and hence O, is primitive on the singular lines of V.

2. $H^{1}(G, V)$ for $G=S L(V), G L(V), S p(V)$

Now we consider some of the groups $H^{1}(G, V)$ with V a finite-dimensional K-space and $G \leq G L(V)$. Note that $H^{1}(G, V)$ and $H^{1}\left(G, V^{*}\right)$ (V^{*} being the dual space of V) are isomorphic as K-spaces, so throughout this paper, derivations will be from G to V or to V^{*}, whichever is more convenient. Note also the elementary fact that for δ a derivation from a group G to a unitary module for $G, \delta\left(1_{G}\right)=0$.
D. G. Higman implicitly computed the dimension of $H^{1}(G, V)$ when $G=$ $S L(V)$. His results include:

Theorem 2.1. Let V be of dimension n over an arbitrary field K. If $n \geq 4$, the K-dimension of $H^{1}(S L(V), V)$ is zero. If $n=2$ and $K=\mathrm{F}_{2}$, the dimension is again zero. If $n=3$ and $K=\mathrm{F}_{2}$, the dimension is at most one [12, Lemma 4, p. 441].

As a corollary of this we have:
Theorem 2.2. If the dimension n of the K-space V (K arbitrary) is at least 4, then the K-dimension of $H^{1}(G L(V), V)$ is zero. If $n=2$ and $K=\mathrm{F}_{2}$, the dimension of $H^{1}(G L(V), V)$ is again zero.

Proof. In the cases under consideration, the derivations from $S L(V)$ to V are all inner, so for $\delta \epsilon \operatorname{Der}(G L(V), V), \delta \mid S L(V)$ is an inner derivation. If necessary, change δ by subtracting off an inner derivation and assume $\delta \mid S L(V)=0$.

Let $T \in G L(V)$ and $S \in S L(V)$. Since $S L(V) \unlhd G L(V)$, there exists $U \in S L(V)$ with $S T=T U$. Hence $S(\delta T)=\delta T$, and this equality holds for all $S \in S L(V)$. However, $S L(V)$ has no non-zero fixed points, so $\delta T=0$ and $\delta=0$. Thus the original δ was inner.

We also have:
Theorem 2.3. If the characteristic of K is not two, then the K-dimension of $H^{1}(S p(V), V)$ is zero.

Proof. Let $\delta \in \operatorname{Der}(S p(V), V)$ and let $T \in S p(V)$. Then $T\left(-1_{V}\right)=$ $\left(-1_{V}\right) T$ implies

$$
T \delta(-1)+\delta T=(-1)(\delta T)+\delta(-1)
$$

so $\delta T=(T-1)(-1 / 2) \delta(-1)$, and δ is an inner derivation.
For other similar results, see [11, Section 14].

3. $H^{1}(G, V)$ for $G=S p(K)$ or $O(K), K$ a perfect field of characteristic two, $\neq F_{2}$

Throughout this section, K will be a perfect field of characteristic two having more than two elements, unless specified otherwise.

Theorem 3.1. Let V be of dimension $2 n$ over K. Then the K-dimension of $H^{1}(O(V), V)$ is zero.

Proof. The proof will be by induction on the dimension $2 n$ of V.
Lemma 3.2. For V of dimension 2 over K (possibly equal to \mathbf{F}_{2}), the dimension of $H^{1}(O(V), V)$ is zero.

Proof. Choose a hyperbolic pair $x, y \in V$ with $Q(x)=1$ and $Q(y)=\sigma$. If $K \neq \mathrm{F}_{2}$, we can assume $\sigma \neq 0$. Then

$$
Q(\alpha x+\beta y)=\alpha^{2}+\alpha \beta+\beta^{2} \sigma \quad \text { for } \alpha, \beta \in K
$$

Let A be the quotient of the ring of polynomials in the indeterminate θ by the ideal generated by $\theta^{2}+\theta+\sigma$. Then 1 and θ form a K-basis for A. The map sending θ to $\theta+1$ induces an automorphism of A; write \bar{t} for the image of $t \epsilon A$ under this automorphism. If $t=\alpha+\beta \theta, \alpha, \beta \in K$, then

$$
t \bar{t}=\alpha^{2}+\alpha \beta+\beta^{2} \sigma
$$

Hence we have a model for V and Q with $V=A$ and $Q(t)=t \bar{t}$ for $t \in A$. Working within this model, let $O=O(Q)$. Suppose $T_{0} \in O_{1}, T_{0} \neq 1$. Then $T_{0}(1)=1$ and $T_{0}(1+\theta)=1+T_{0} \theta . \quad Q(1+\theta)=Q(\theta)=\sigma$, so

$$
\sigma=Q\left(T_{0}(1+\theta)\right)=1+T_{0} \theta+\overline{T_{0} \theta}+Q\left(T_{0} \theta\right)
$$

Hence $1+T_{0} \theta+\overline{T_{0} \theta}=0$. If $T_{0} \theta=\alpha+\beta \theta$, we see $\beta=1$ and $\alpha^{2}=\alpha$, $\alpha=1$. Therefore $O_{1}=\left\langle T_{0}\right\rangle$ and $T_{0} t=\bar{t}$ for every $t \in A$.

Denote by S_{t} the left multiplication by $t \in A$, so $S_{t} v=t v$ for $v \in A$. Let $U=\left\{S_{t}: t \in A, t \bar{t}=1\right\}$. Then $U \leq 0$, and U is isomorphic to a subgroup of the group of units in A. Identify $S_{t} \in U$ with $t \in A$. Then for $u \in U$ and T_{0} as above, $T_{0} u T_{0}^{-1}=\bar{u}$, and T_{0} normalizes U. If $S \in O, S(1)=u \cdot 1$ for some $u \in U$, and $u^{-1} S$ fixes 1. Therefore, $S \in U\left\langle T_{0}\right\rangle$; that is, $O=U\left\langle T_{0}\right\rangle$.

Now let $\delta \in \operatorname{Der}(O, A)$. Then, since U is commutative, $(u+1) \delta v=$ $(v+1) \delta u$ for all $u, v \in U$. If U is trivial, $\delta \mid U=0$. Otherwise, choose $u_{0} \neq 1$ in U. Then for every $v \epsilon U, \delta v=(v+1) \delta u_{0}\left(u_{0}+1\right)$, and $\delta \mid U$ is an inner derivation.

Suppose $U \neq 1$. If necessary, change δ by subtracting off an inner derivation, and assume $\delta \mid U=0 . \quad T_{0} u=\bar{u} T_{0}$, so $\delta T_{0}=\bar{u} \delta T_{0}$ for all $u \in U$. Since there is a $u \neq 1$ in $U, \delta T_{0}$ must be zero. Therefore $\delta=0$, and the original δ was inner. If $U=1, O=\left\langle T_{0}\right\rangle$. Because T_{0} is an involution, $T_{0}\left(\delta T_{0}\right)=$ δT_{0}. But $T_{0}\left(\delta T_{0}\right)=\overline{\delta T_{0}}$, so $\delta T_{0} \in K$. Suppose $\delta T_{0}=\alpha$. With respect to the basis $1, \theta$ of V, the matrix of $\mathrm{T}_{0}+1$ is

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

We thus see that δ is the inner derivation based on $\alpha \theta$.

Return now to the proof of 3.1. Let $\delta \in \operatorname{Der}(O(V), V)$. Suppose the dimension $2 n$ of V is greater than two, and assume the theorem is true for spaces of dimension less than $2 n$. Since $2 n \geq 4$, we may choose a hyperbolic pair x, y of singular vectors.

First we will show that δ is homologous to zero on $O_{\langle x, y\rangle}$. Let $U=\langle x, y\rangle^{\perp}$, so $V=\langle x, y\rangle \oplus U . \quad S \in O_{\langle x, y\rangle}$ has the form $S w=A w, S u=T u$ for $w \epsilon\langle x, y\rangle$, $u \in U$ with $A \in O(\langle x, y\rangle)$ and $T \in O(U)$. Write $S=S(A, T)$. Suppose

$$
\delta S(A, 1)=a(A)+f(A) \quad \text { with } a(A) \epsilon\langle x, y\rangle \text { and } f(A) \epsilon U
$$

Then $S(A, 1) S(C, 1)=S(A C, 1)$ implies that

$$
a(A C)=A a(C)+a(A) \quad \text { and } \quad f(A C)=f(A)+f(C)
$$

That is, a is a derivation on $O(\langle x, y\rangle)$, and so, by $3.2, a$ is inner. If necessary, change δ by an inner derivation based on a vector in $\langle x, y\rangle$ and assume $a=0$. Similarly, suppose

$$
\delta S(1, T)=b(T)+g(T) \quad \text { with } b(T) \epsilon\langle x, y\rangle \text { and } g(T) \in U
$$

Arguing as above, change δ, if necessary, by an inner derivation based on a vector in U, and assume $g=0$. Now

$$
S(A, 1) S(1, T)=S(1, T) S(A, 1)
$$

implies that $(A+1) b(T)=0$ and $(T+1) f(A)=0$ for every $A \epsilon O(\langle x, y\rangle)$ and every $T \in O(U)$. Since $K \neq F_{2}$, by $1.10, A$ and T can be chosen in $O(\langle x, y\rangle)$ and $O(U)$, respectively, with $A+1$ and $T+1$ non-singular. Therefore, b and f are both identically zero, and $\delta \mid O_{\langle x, y\rangle}=0$.

Now we will show that $\delta \mid O_{\langle x\rangle}=0$. Write $V=\langle x\rangle \oplus U \oplus\langle y\rangle$. An element $A \in S p(V)_{\langle x\rangle}$ has the form $A x=\alpha x, A u=\alpha B(w, T u) x+T u$ for all $u \in U$, and $A y=\beta x+w+(1 / \alpha) y$, with $\alpha \in K^{*}, \beta \in K, w \in U$, and $T \epsilon S p(U)$. If A is a Q-isomorphism, then $T \epsilon O(U)$ and $\beta=\alpha Q(w)$. So $A \in O_{\langle x\rangle}$ determines and is determined by $T \in O(U), w \in U$, and $\alpha \in K^{*}$. Write $A=A(T, w, \alpha)$. Since $\delta \mid O_{\langle x, y\rangle}=0, \delta A(T, 0, \alpha)=0$. Consider the subgroup of $O_{\langle x\rangle}$ consisting of all $A(1, w, 1)=S(w)$. Suppose

$$
\delta S(w)=p(w)+h(w)+q(w)
$$

with $p(w) \epsilon\langle x\rangle, h(w) \epsilon U$, and $q(w) \epsilon\langle y\rangle$. Since $S(w) S(v)=S(w+v)$, it follows that

$$
\begin{equation*}
h(w+v)=h(w)+h(v)+w q(v) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
p(w+v)=p(w)+p(v)+B(w, h(v)) \tag{1}
\end{equation*}
$$

for all $w, v \in U$.
Since $S(0)=1$ and $\delta(1)=0, p(0)=0, h(0)=0$, and $q(0)=0$. Thus relation (2) implies $v q(v)=0$ for all $v \in U$, and so $q=0$.

A routine computation gives $A(T, 0, \alpha) S(w)=S(\alpha T w) A\left(T^{-1}, 0, \alpha\right)$. Hence

$$
\begin{align*}
\alpha p(w) & =p(\alpha T w) \tag{4}\\
T h(w) & =h(\alpha T w) \tag{5}
\end{align*}
$$

By relations (2) and (5), for $\alpha \neq 1$ in $K^{*}, h((\alpha+1) w)=0$. Therefore, again by (5), $h=0$. Relation (1) now becomes $p(w+v)=p(w)+p(v)$. Relation (4) implies then, that $p((T+1) w)=0$ for every $T \in O(U)$ and every $w \in U$. By $1.10, p=0$. Thus $\delta S(w)=0$ for every $w \in U$.

Let $A(T, w, \alpha)$ be an arbitrary element of $O_{\langle x\rangle}$. Clearly

$$
A(T, w, \alpha)=A(1,0, \alpha) S(w) A(T, 0,1)
$$

so $\delta A(T, w, \alpha)=0$ and $\delta \mid O_{\langle x\rangle}=0$.
Define S_{0} by $S_{0} x=y, S_{0} y=x$ and $S_{0} \mid U=1$, so $S_{0} \in O_{\langle x, y\rangle}$ and $\delta S_{0}=0$. $O_{\langle y\rangle}=S_{0} O_{\langle x\rangle} S_{0}$, so we also have $\delta \mid O_{\langle y\rangle}=0$. By 1.9, $O=\left\langle O_{\langle x\rangle}, O_{\langle y\rangle}\right\rangle$, and therefore $\delta=0$, and the original δ was inner. Hence the K-dimension of $H^{1}(O(V), V)$ is zero.

Theorem 3.3. Let V be a K-space of dimension $2 n \geq 2$. Then the dimension of $H^{1}(S p(V), V)$ over K is one.

Proof. Let Q and B be associated forms on V, with $\nu(Q) \geq 1$, and let $O=O(Q)$. Choose $x \in V$, singular, and let T_{0} be the transvection taking $v \in V$ to $v+B(v, x) x$. By $1.5, O$ is maximal in $S p(V)$, so $S p(V)=\left\langle O, T_{0} O T_{0}\right\rangle$.

Suppose $\delta \in \operatorname{Der}(S p(V), V) . O$ and $T_{0} O T_{0}$ are orthogonal groups in $S p(V), T_{0} O T_{0}$ being the group of the form $Q T_{0}$. By 3.1, the restrictions of δ to O and $T_{0} O T_{0}$ respectively are inner derivations. We may assume $\delta \mid O=0$. Suppose $v_{0} \in V$ is such that for all $A \in T_{0} O T_{0}, \delta A=(A+1) v_{0}$. By $1.4, O \cap\left(T_{0} O T_{0}\right)=O_{x}$. For $A \in O_{x}, \delta A=(A+1) v_{0}$; that is $A v_{0}=v_{0}$ for every $A \in O_{x}$. However, the fixed points of O_{x} are all on $\langle x\rangle$, so $v_{0}=\alpha x$ for some $\alpha \in K$.

Hence the action of δ on O and $T_{0} O T_{0}$ is determined up to a scalar multiple. If $T \epsilon S p(V), \delta T$ is determined by the action of δ on O and on $T_{0} O T_{0}$. Therefore, δ is a scalar multiple of the derivation δ_{0} which is zero on O and is an inner derivation based on x on $T_{0} O T_{0}$. So we see that the dimension of $H^{1}(S p(V)$, V) is at most one.

Recall the derivation u of 1.6 . By the corollary to $1.10, u$ is not an inner derivation, so the dimension of $H^{1}(S p(V), V)$ is exactly one. Moreover, by $1.6, u\left(T_{0}\right)=x$ and $u \mid O=0$, so for $S \in O, u\left(T_{0} S T_{0}\right)=\left(T_{0} S T_{0}+1\right) x$. Thus we see that in fact $u=\delta_{0}$.

$$
\text { 4. } H^{1}(G, V) \text { for } G=S p\left(\mathrm{~F}_{2}\right), O\left(\mathrm{~F}_{2}\right)
$$

The proofs of 4.1 and 4.2 below require only that the underlying field K be perfect. By 3.1 and 3.3 , only the case where $K=F_{2}$ is actually needed, but
since it does not significantly alter the arguments, the more general results are stated and proved. The proofs in Section 3 were also given, however, since they are much simpler.

Theorem 4.1. Let K be a perfect field, and let V be a K-space of dimension $2 n \geqq 8$. Then the K-dimension of $H^{1}(S p(V), V)$ is one.

Proof. Let $\delta \epsilon \operatorname{Der}(S p(V), V) . \quad V$ can be written as the sum of two totally isotropic subspaces, $V=U \oplus W$, and bases u_{1}, \cdots, u_{n} and v_{1}, \cdots, v_{n} for U and W respectively can be chosen such that $B\left(u_{i}, v_{j}\right)=\delta_{i j}$ [5, Theorem 1.3.2, p. 13]. Then $S p(V)_{U}$ is generated by the elements $T(X)$ and $S(Y)$ (notation as in the proof of 1.12) with $X \in G L_{n}(K)$ and $Y n \times n$ symmetric over K. Write $X^{-1 t}=X^{*}$, and suppose

$$
\delta T(X)=k(X)+l\left(X^{*}\right), \quad \text { with } k(X) \epsilon U \text { and } l\left(X^{*}\right) \epsilon W
$$

Then $T(X) T(Z)=T(X Z)$ implies $X k(Z)+k(X)=k(X Z)$, and

$$
X^{*} l\left(Z^{*}\right)+l\left(X^{*}\right)=l\left(X^{*} Z^{*}\right)
$$

So we see that $k \in \operatorname{Der}(G L(U), U)$ and $l \epsilon \operatorname{Der}(G L(W), W) . \quad$ By $2.2, k$ and l are inner. If necessary, change δ by an inner derivation based on a vector in U and again by an inner derivation based on a vector in W, and assume k and l are zero.

Now let $\delta S(Y)=r(Y)+s(Y)$, with $r(Y) \epsilon U$ and $s(Y) \epsilon W$. Then $S(Y) S\left(Y^{\prime}\right)=S\left(Y+Y^{\prime}\right)$ implies

$$
\begin{align*}
r(Y)+r\left(Y^{\prime}\right) & =Y s\left(Y^{\prime}\right)+r\left(Y+Y^{\prime}\right) \tag{1}\\
s(Y)+s\left(Y^{\prime}\right) & =s\left(Y+Y^{\prime}\right) \tag{2}
\end{align*}
$$

Since $r(0)=0$, relation (1) implies $Y s(Y)=0$ for all symmetric Y. Hence, if Y is non-singular, $s(Y)=0$. Relation (1) is symmetric in Y and Y^{\prime}, so $Y s\left(Y^{\prime}\right)=Y^{\prime} s(Y)$ for all symmetric Y, Y^{\prime}. Taking $Y^{\prime}=1$, we obtain $s(Y)=0$ for all symmetric Y.

Now relation (1) becomes $r\left(Y+Y^{\prime}\right)=r(Y)+r\left(Y^{\prime}\right)$. From

$$
T(X) S(Y)=S\left(X Y X^{t}\right) T(X)
$$

it follows that $X r(Y)=r\left(X Y X^{t}\right)$ for all non-singular X and all symmetric Y. If $X Y X^{t}=Y$, then $(X+1) r(Y)=0$. Let

$$
Y=Y_{i j}=\alpha E_{i j}+\alpha E_{j i}, \quad \text { with } \alpha \in K^{*} \text { and } i \neq j, i, j=1, \cdots, n
$$

If we choose $i=1$ and $j=2$, then for

$$
X=\left|\begin{array}{lll}
1 & 1 & \\
1 & 0 & \\
& & X^{\prime}
\end{array}\right|
$$

with X^{\prime} a non-singular $(n-2) \times(n-2)$ matrix, we see that $X Y_{12} X^{t}=Y_{12}$. If $n-2$ is even, we may apply 1.10 and assume that X^{\prime} may be chosen with
$X^{\prime}+1$ non-singular. If $n-2$ is odd, we have two cases. If $n-2=3$, let

$$
X^{\prime}=\left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|
$$

If $n-2 \geq 5$, let

$$
X^{\prime}=\left|\begin{array}{ll}
X^{\prime \prime} & \\
& X^{\prime \prime \prime}
\end{array}\right|, \quad \text { with } \quad X^{\prime \prime}=\left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|
$$

and $X^{\prime \prime \prime}$ chosen such that $X^{\prime \prime \prime}+1$ is non-singular. Thus, in all cases, we may choose X^{\prime} so that $X^{\prime}+1$, and so $X+1$, is non-singular. Hence we have $r\left(Y_{12}\right)=0$. Similarly $r\left(Y_{i j}\right)=0$ for all $i \neq j$. The $Y_{i j}$ generate the alternate matrices additively, so by (1), $r(Y)=0$ for all alternate Y.

Now let $Y_{i i}=\alpha E_{i i}, i=1, \cdots, n$, with $\alpha \in K^{*}$. Consider Y_{11} and write

$$
r\left(Y_{11}\right)=\alpha_{1} u_{1}+\cdots+\alpha_{n} u_{n}
$$

If

$$
X=\left|\begin{array}{cc}
1 & 0 \\
1 & 1 \\
& \\
& X^{\prime}
\end{array}\right|
$$

with X^{\prime} a non-singular $(n-2) \times(n-2)$ matrix such that $X^{\prime}+1$ is nonsingular, then $X Y_{11} X^{t}=Y_{11}$, and we see from $(X+1) r\left(Y_{11}\right)=0$ that $\alpha_{2}=\cdots=\alpha_{n}=0$. So $r\left(Y_{11}\right)=\alpha_{1} u_{1}$, with $\alpha_{1} \in K$. Similarly, $r\left(Y_{i i}\right)=$ $\alpha_{i} u_{i}$, with $\alpha_{i} \in K, i=2, \cdots, n$.

Return now to the relation $X r(Y)=r\left(X Y X^{t}\right)$. If $Y=E_{i i}$ and X, with entries $\chi_{l m}$, is chosen such that $\chi_{i i}$ is the only non-zero entry in the i-th column of X, a direct calculation shows $X Y X^{t}=\chi_{i i}^{2} E_{i i}$, and hence $\chi_{i i} r\left(E_{i i}\right)=$ $r\left(\chi_{i i}{ }^{2} E_{i i}\right)$. That is,

$$
r\left(\alpha E_{i i}\right)=\sqrt{\alpha} r\left(E_{i i}\right) \text { for } i=1, \cdots, n \text { and } \alpha \in K^{*}
$$

(and trivially for $\alpha=0$). If X is chosen with entries $\chi_{l m}$ such that $\chi_{k i}=1$ for some $k \neq i$ and $\chi_{i i}=0$ for all $j \neq k$, then

$$
X E_{i i} X^{t}=\left(\chi_{k i}\right)^{2} E_{k k}=E_{k k}
$$

and

$$
X r\left(E_{i i}\right)=\chi_{k i} \alpha_{i} u_{k}=\alpha_{i} u_{k}
$$

Therefore $\alpha_{i} u_{k}=\alpha_{k} u_{k}$, and $\alpha_{i}=\alpha_{k}$ for all $i, k=1, \cdots, n$.
Let $\alpha=\alpha_{1}=\cdots=\alpha_{n}$. Then, since r is additive, if $Y=\left(\eta_{l m}\right)$ is a symmetric $n \times n$ matrix, $r(Y)=\alpha \sum_{i=1}^{n} \sqrt{\eta_{i i}} u_{i}$. So, up to a scalar multiple, r is completely determined; that is, for $Y=\left(\eta_{l m}\right), r(Y)=\alpha r_{0}(Y)$, where $r_{0}(Y)=\sum_{i=1}^{n} \sqrt{\eta_{i i}} u_{i}$.

An arbitrary element A of $S p(V)_{U}$ has the form $A u=X u, A w=Y w+X^{*} w$ for $u \in U, w \in W$, with $X \in G L_{n}(K)$ and $Y n \times n$ symmetric over K such that
$Y X^{t}=X Y^{t}$. Thus $A=S\left(Y X^{t}\right) T(X)$, and $\delta A=\alpha r_{0}\left(Y X^{t}\right)$. Let A_{0} be defined by $A u_{i}=w_{i}$ and $A w_{i}=u_{i}, i=1, \cdots, n$. If $\delta A_{0}=u_{0}+w_{0}$ with $u_{0} \in U, w_{0} \in W$, then, since $A_{0} T(X) A_{0}=T\left(X^{*}\right), X u_{0}=w_{0}$ for all $X \in G L_{n}(K)$. Therefore $u_{0}=w_{0}=0$, and $\delta A_{0}=0$. Since $A_{0} S p(V)_{U} A_{0}=S p(V)_{W}, \delta$ is determined up to the same scalar multiple α on $S p(\mathrm{~V})_{w}$. By 1.2,

$$
S p(V)=\left\langle S p(V)_{U}, S p(\mathrm{~V})_{W}\right\rangle
$$

so the dimension of $H^{1}(S p(V), V)$ is at most one. However, by the corollary to 1.10 , the derivation $u: S p(V) \rightarrow V$ of 1.6 is non-inner, so the dimension of $H^{1}(S p(V), V)$ is exactly one.

Theorem 4.2. Under the hypothesis of 4.1, the dimension of $H^{1}(O(+1, V), V)$ over K is zero.

Proof. Let $O=O(+1, V)$ and let $\delta \epsilon \operatorname{Der}(O, V)$. Proceeding as in the proof of 4.1, we write $V=U \oplus W$, where U and W are totally singular subspaces of V, and choose bases $\left\{u_{i}\right\}$ and $\left\{w_{i}\right\}$ of U and W respectively such that $B\left(u_{i}, w_{j}\right)=\delta_{i j}$. As before, we first consider δ on O_{U}. Since U and W are totally singular, $T(X) \in O_{U}$ for every $X \in G L_{n}(K)$, and $S(Y) \in O_{U}$ if and only if Y is alternate. Arguing as in 4.1, we may assume $T(X)=0$ for all $X \epsilon G L_{n}(K)$.

As before, let $\delta S(Y)=r(Y)+s(Y)$. Then using relation (1) in the proof of 4.1, $Y s(Y)=0$ for all alternate Y. If n is even, there exists non-singular, alternate Y, and we again obtain $s=0$. If n is odd, choose

$$
Y_{1}=\left|\begin{array}{lll}
0 & & \\
& Y^{\prime} & \\
& & 1
\end{array}\right| \quad \text { and } \quad Y_{2}=\left|\begin{array}{lll}
Y^{\prime} & & \\
& 2 & \\
& & 0
\end{array}\right|
$$

with the $Y_{i}^{\prime}(n-1) \times(n-1)$ non-singular alternate matrices. Then $s\left(Y_{1}\right)=\sigma_{1} w_{1}$ and $s\left(Y_{2}\right)=\sigma_{2} w_{n}, \sigma_{1}, \sigma_{2} \in K$, by (1). For any alternate Y, we have $Y s\left(Y_{i}\right)=Y_{i} s(Y)$, and we see that again $s=0$. Now, exactly as in the preceding argument, we have $r(Y)=0$ for all alternate Y, and $\delta \mid O_{v}=0$.

The element A_{0} is also in O, and $\delta A_{0}=0$, so $A_{0} O_{U} A_{0}=O_{W}$ implies $\delta \mid O_{W}=0$. By 1.12, $O^{+}=\left\langle O_{U}, O_{W}\right\rangle$, hence $\delta \mid O^{+}=0$. For $T \in O$ and $S \in O^{+}, S T=T S^{\prime}$ for some $S^{\prime} \in O^{+}$. Then $S \delta T=\delta T$, and δT is a fixed point for O^{+}. But O^{+}is irreducible [4, Theorem 1.6.7, p. 33], so $\delta T=0$ and $\delta=0$. Therefore the dimension of $H^{1}(O, V)$ is zero.

Corollary 4.3. Under the hypotheses of 4.1, the K-dimension of $H^{1}\left(O^{+}(+1, V) V\right)$ is zero.

Proof. Arguing as for $S(Y)$, we can show directly that $\left(A_{0} S(Y) A_{0}\right)=0$ for every alternate Y, and so $\delta \mid O_{W}=0$.

Theorem 4.4. If V is an \mathbf{F}_{2}-space of dimension 4, then the \mathbf{F}_{2}-dimension of $H^{1}(S p(\mathrm{~V}), V)$ is one.

Proof. Since by 2.2, the derivations from $G L_{2}\left(\mathbf{F}_{2}\right)$ to its standard module are all inner, we can use without change the proof of 4.1.

Theorem 4.5. If V is a 4-dimensional \mathbf{F}_{2}-space, the \mathbf{F}_{2}-dimension of

$$
H^{1}(O(+1, V), V)
$$

is zero.
Proof. First we construct a model for $O(+1, V)$. Let V be the 2×2 matrices over F_{2}, and for $X \in V$ define $Q(X)=\operatorname{det} X$. Then Q is a quadratic form whose associated bilinear form is non-degenerate. The subspace of all matrices of the form

$$
\left|\begin{array}{ll}
0 & \alpha \\
0 & \beta
\end{array}\right|
$$

is totally singular, so $\nu(Q)=2$. For $A, C \in S L_{2}\left(\mathbf{F}_{2}\right)$, define a transformation $S(A, C)$ on V by $S(A, C) X=A X C, X \in V$. Clearly $S(A, C) \in O(Q)$. Let T be the transformation on V given by $T X=X^{t}$; then T is also in $O(Q)$. The group generated by the $S(A, C)$ is isomorphic to $S L_{2}\left(F_{2}\right) \times S L_{2}\left(F_{2}\right)$ and so has order 36. T is not in this group, so the order of $\left\langle S L_{2}\left(\mathbf{F}_{2}\right) \times S L_{2}\left(\mathbf{F}_{2}\right), T\right\rangle$ is at least 72. The order of $O(Q)$ is 72 , so

$$
O(Q) \simeq\left\langle S L_{2}\left(\mathbf{F}_{2}\right) \times S L_{2}\left(\mathbf{F}_{2}\right), T\right\rangle
$$

Let $\delta \in \operatorname{Der}(O(Q), V)$. Since $S(A, 1) S(1, C)=S(1, C) S(A, 1)$, we have

$$
\begin{equation*}
(A+1) \delta S(1, C)=\delta S(A, 1)(C+1) \tag{*}
\end{equation*}
$$

Choose $C_{0} \in S L_{2}\left(F_{2}\right)$ with $C_{0}+1$ non-singular. Then

$$
\delta S(A, 1)=(S(A, 1)+1)\left(\delta S\left(1, C_{0}\right) /\left(C_{0}+1\right)\right)
$$

and δ is inner on the $S(A, 1)$. Assume $\delta S(A, 1)=0$ for all $A \in S L_{2}\left(\mathbf{F}_{2}\right)$. Then (*) implies $\delta S(1, C)$ is a fixed point for $S L_{2}\left(\mathbf{F}_{2}\right)$, and so $\delta S(1, C)=0$ for all $C \in S L_{2}\left(\mathrm{~F}_{2}\right)$.

Now $T S(A, 1) X=S\left(1, A^{t}\right) T X$ for all $X \in V$, so $\delta T=S\left(1, A^{t}\right) \delta T$. Thus $(\delta T)\left(A^{t}+1\right)=0$ for all $A \epsilon S L_{2}\left(\mathbf{F}_{2}\right)$, so $\delta T=0$ and $\delta=0$.

Theorem 4.6. If K is a perfect field and V is a K-space of dimension at least 10 , then the K-dimension of $H^{1}(O(-1, V), V)$ is zero.

Proof. Choose $x, y \in V$ with $Q(x)=1, Q(y)=\sigma \neq 0$, and $B(x, y)=1$, such that $\langle x, y\rangle$ contains no singular vectors, and let $U=\langle x, y\rangle^{+}$. Let $O=O(-1, V)$, and let $\delta \epsilon \operatorname{Der}(O, V)$. Since the dimension of U is at least 8 and $Q \mid U$ is a form of maximal index, by 4.2 we may use the arguments of 3.1 and assume that $\delta \mid O_{\langle x, y\rangle}=0$.

Now we will show that $\delta \mid O_{\langle x\rangle}=0$. By 1.7, the elements of $O_{\langle x\rangle}$ are the $A(T, \alpha)$ for $T \epsilon S p(U)$ and $\alpha \epsilon K$ a solution of $X^{2}+X=Q(u(T))$. Since

$$
A(T, \alpha) A(1,1)=A(T, \alpha+1) \quad \text { and } \quad \delta A(1,1)=0
$$

$\delta A(T, \alpha)$ is independent of α. Let $\delta A(T, \alpha)=p(T)+h(T)+q(T)$ with $p(T) \epsilon\langle x\rangle, h(T) \epsilon U$, and $q(T) \in\langle y\rangle . \quad A(T, \alpha) A(S, \beta)=A(T S, *)$ implies

$$
\begin{align*}
& p(T S)=p(T)+p(S)+B(u(T), T h(S)) \tag{1}\\
& h(T S)=T h(S)+h(T)+u(T) q(S) \tag{2}\\
& q(T S)=q(T)+q(S) \tag{3}
\end{align*}
$$

Since the dimension of U is at least $8, S p(U)$ is simple, and so (3) implies $q=0$.

Now relation (2) implies that h is a derivation on $S p(U)$, and 4.1 tells us that h is homologous to a scalar multiple of the non-inner derivation u. Since $T \in O(U)$ implies $A(T, \alpha) \in O_{\langle x, y\rangle}, h \mid O(U)=0$. Hence, by 1.10, we may suppose $h(T)=\lambda u(T)$ for all $T \epsilon S p(U), \lambda \in K$.

Relation (1) thus becomes $p(T S)=p(T)+p(S)+\lambda B(u(T), T u(S))$. Recall the extension a of the Dickson invariant d given in 1.11: $A(T, \alpha) \epsilon O_{\langle x\rangle}^{+}$ if and only if $\alpha=a(T)$, for all $T \in S p(U)$. The invariant a satisfies

$$
a(T S)=a(T)+a(S)+B(u(T), T u(S))
$$

so if $\lambda \neq 0, k=p+\lambda a$ is a homomorphism on $S p(U)$. Since $S p(U)$ is simple and $k \mid O^{+}(U)=0, k=0$ and $p=\lambda a$. However, $p \mid O(U)=0$ and $a \mid O(U) \neq 0$. Hence $\lambda=0$, and so p and h are zero. Therefore $\delta \mid O_{\langle x\rangle}=0$.

If R is the transformation taking x to $(1 / \sqrt{ } \sigma) y, y$ to $\sqrt{ } \sigma x$ and fixing U point-wise, $R \in O_{\langle x, y\rangle}$ and $R O_{\langle x\rangle} R=O_{\langle y\rangle}$, so $\delta \mid O_{\langle y\rangle}=0$. By 1.8,

$$
O=\left\langle O_{\langle x\rangle}, O_{\langle\nu\rangle}\right\rangle
$$

so $\delta=0$. Therefore the dimension of $H^{1}(O, V)$ is zero.
Theorem 4.7. If V is an \mathbf{F}_{2}-space of dimension 6, then the \mathbf{F}_{2}-dimension of $H^{1}(O(-1, V), V)$ is zero.

Proof. Let $O=O(-1, V)$, and let $\delta \in \operatorname{Der}(0, V)$. Choose a hyperbolic pair of non-singular vectors $x, y \in V$ and let $U=\langle x, y\rangle^{\perp}$. By 4.5 we may use the arguments in the proof of 3.1 in order to assume $\delta \mid O_{\langle x, y\rangle}=0$.

Again, for $A(T, \alpha) \in O_{\langle x\rangle}$, let $\delta A(T, \alpha)=p(T)+h(T)+q(T)$. Relations (1), (2), (3) of 4.6 hold, so q is a homomorphism from $S p(U)$ to $\langle y\rangle$. If $T \in O(U), A(T, \alpha) \in O_{\langle x, y\rangle}$, so $O(U) \leq$ Ker q. Since, by $1.3, O(U)$ is maximal in $S p(U)$, and since $O(U)$ is not normal in $S p(U), q=0$. From this point the argument of 4.6 may be used without change.

Theorem 4.8. Let V be an F_{2}-space of dimension 6. Then the \mathbf{F}_{2}-dimension of $H^{1}(S p(V), V)$ is one.

For the moment assume 4.8 is true. Its proof appears after the proof of 4.9.

Theorem 4.9. If V is an \mathbf{F}_{2}-space of dimension 8, then the \mathbf{F}_{2}-dimension of $H^{1}(O(-1, V), V)$ is zero.

Proof. Let $O=O(-1, V)$ and let $\delta \in \operatorname{Der}(O, V)$. Choose a hyperbolic pair of non-singular vectors $x, y \in V$ and let $U=\langle x, y\rangle^{\perp}$. Arguing as in 3.1, for $S(A, T) \in O_{\langle x, y\rangle}$, we may assume $\delta S(A, T)=g(T), g \in \operatorname{Der}(O(U), U)$.

As usual, for $A(T, \alpha) \in O_{\langle x\rangle}$, let $\delta A(T, \alpha)=p(T)+h(T)+q(T)$. Then the relations (1), (2), (3) of 4.6 hold. In particular, $q=0$. Now (2) implies h is a derivation on $S p(U)$. By $4.8, h$ is homologous to a scalar multiple of the non-inner derivation u; assume $h(T)=\lambda u(T)$ for $T \epsilon S p(U)$. Hence relation (1) becomes

$$
p(T S)=p(T)+p(S)+\lambda B(u(T), T u(S))
$$

Since $\delta S(A, T) \in U, p \mid O=0$. Now complete the proof as in 4.6.
Now we prove 4.8:
Let $\delta \in \operatorname{Der}(S p(V), V)$. Choose a hyperbolic pair $x, y \in V$, and let $U=\langle x, y\rangle^{\perp} . S p(V)_{U}$ consists of the elements $S(A, T)$ with $A \epsilon S p(\langle x, y\rangle)$ and $T \in S p(U)$. By 2.1 and 4.4 we may again use the arguments of 3.1 to assume $\delta S(A, T)=\lambda u(T), \lambda \in \mathrm{F}_{2}$.

With respect to the decomposition $V=\langle x\rangle \oplus U \oplus\langle y\rangle$, the elements of $S p(V)_{x}$ are the $A(T, v, \alpha)$ with $T \in S p(U), v \in U$, and $\alpha \in \mathrm{F}_{2}$, where

$$
A(T, v, \alpha) u=B(v, T u) x+T u \quad \text { for } u \in U
$$

and

$$
A(T, v, \alpha) y=\alpha x+v+y
$$

Since

$$
A(T, v, \alpha) A(1,0, \beta)=A(T, v, \alpha+\beta) \quad \text { and } \quad \delta A(1,0, \beta)=0
$$

$\delta A(T, v, \alpha)$ is independent of α. Let

$$
\delta A(1, v, \alpha)=p(v)+h(v)+q(v)
$$

with $p(v) \epsilon\langle x\rangle, h(v) \in U$, and $q(v) \epsilon\langle y\rangle$. Since

$$
A(1, w, \alpha) A(1, v, \beta)=A(1, w+v, *)
$$

we have the relations (1), (2), (3) of 3.1 , and we may conclude that $q=0$.
Now (2) implies that $h: U \rightarrow U$ is a homomorphism. Say $h(u)=M u$, for M a 4×4 matrix over F_{2}. Since
$A(T, 0,0) A(1, u, \alpha)=\mathrm{A}(1, T u, \alpha) A(T, 0,0) \quad$ and $\delta A(T, 0,0)=\lambda u(T)$, we have the (new) relations

$$
\begin{equation*}
p(u)=p(T u)+\lambda B(T u, u(T)) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
T M u=M T u \tag{5}
\end{equation*}
$$

for all $T \epsilon S p(U)$, all $u \epsilon U$. Relation (5) implies $M T=T M$ for all $T \epsilon S p(U)$, so $M=0$ or $M=1_{U}$.

Case 1. Assume $M=0$. Then relations (1) and (4) imply $p(T+1)(u)=0$ for all $T \in O(U)$, and by $1.10, p=0$. Therefore,
$\lambda B(u(T), T u)=0$ for all $T \epsilon S p(U)$ and all $u \epsilon U$, so $\lambda=0$, and $\delta \mid S p(V)_{x}=0$. Let R be the element of $S p(V)$ interchanging x and y and fixing U point-wise. Then $R S \mathrm{p}(V)_{x} R=S p(V)_{y}$ and $\delta R=0$ imply $\delta \mid S p(V)_{y}=0$. By 1.1, $S p(V)=\left\langle S p(V)_{x}, S p(V)_{y}\right\rangle$, so $\delta=0$ and the original δ was inner.

Case 2. Assume $M=1_{U}$. Then relation (1) implies $p+Q=L$ is linear on U, and (4) implies $L(T+1)(u)=0$ for all $T \epsilon O(U)$ and all $u \epsilon U$. By $1.10, L=0$ and $p=Q$.

$$
A(1, u, \alpha) A(T, 0,0)=A(T, u, \alpha)
$$

implies

$$
\delta A(T, u, \alpha)=[\lambda B(u(T), u)+Q(u)] x+\lambda u(T)+u
$$

If $\lambda=0$, then $\delta A(T, u, \alpha)=Q(u) x+u$, so

$$
A(T, u, \alpha) \delta A(S, v, \beta)+\delta A(T, u, \alpha)=\delta A(T S, T v+u, *)
$$

implies $B(u, v)=B(u, T v)$ for all $T \in S p(U)$ and all $u, v \in U$, which is impossible. Hence $\lambda=1$. For R as in case $1, \delta R=0$ and $R S p(V)_{x} R=S p(V)_{\nu}$, so δ is also completely determined on $S p(V)_{y}$. Therefore, δ is completely determined on $S p(V)=\left\langle S p(V)_{x}, S p(V)_{y}\right\rangle$.

So we see that the dimension of $H^{1}(S p(V), V)$ over F_{2} is at most one. The derivation $u: S p(V) \rightarrow V$ is non-inner, so the dimension of $H^{1}(S p(V), V)$ is exactly one.

5. S_{n} as a subgroup of $S p_{m}\left(F_{2}\right)$

Let V be a K-space of dimension n over K, and let x_{1}, \cdots, x_{n} be a basis for V. S_{n}, the symmetric group on the letters $\{1, \cdots, n\}$ can be viewed as a subgroup of $G L(V)$ by identifying $\pi \in S_{n}$ with $T(\pi) \in G L(V)$, where $T(\boldsymbol{\pi})\left(x_{i}\right)=x_{\pi(i)}$. Define $\eta \in V^{*}$ by

$$
\eta\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)=\sum_{i=1}^{n} \alpha_{i},
$$

and let $H=\operatorname{Ker} \eta$. Let $x_{0}=\sum_{i=1}^{n} x_{i}$. Then if n is odd, $V=H \oplus\left\langle x_{0}\right\rangle$, and if n is even, $\left\langle x_{0}\right\rangle \leq H$. Define a bilinear form B on V by

$$
B\left(\sum \alpha_{i} x_{i}, \sum \beta_{i} x_{i}\right)=\sum_{i \neq j} \alpha_{i} \beta_{j} .
$$

Then B is alternate, its matrix being $1+E$, where E is the matrix each of whose entries is one. If n is even, $E^{2}=0$ and B is non-degenerate. If n is odd, E has rank 1, so B has rank $n-1$. With respect to $B,\left\langle x_{0}\right\rangle^{\dagger}$ is V or H, according as n is odd or even. Hence B is nondegenerate on H or on $H /\left\langle x_{0}\right\rangle$ according as n is odd or even.
S_{n} is contained in the group of B on V. Furthermore, $\left\langle x_{0}\right\rangle$ and H are stable under S_{n}, so S_{n} may be viewed as a subgroup of $S p(H)$ or $S p\left(H /\left\langle x_{0}\right\rangle\right)$, according as n is odd or even. The transposition (ij), $i \neq j$, in S_{n} corresponds to the transvection with center $\left\langle x_{i}+x_{j}\right\rangle$ in $S L(V)$, so S_{n} is a subgroup of $S p_{m}(K)$ generated by transvections, where m is $n-1$ or $n-2$, according as n is odd or even.

If Q is defined on V by $Q\left(\sum \alpha_{i} x_{i}\right)=\sum_{i<j} \alpha_{i} \alpha_{j}$, then Q is quadratic form on V, Q is associated with B, and $S_{n} \leqq O(Q)$. If n is odd, $S_{n} \leqq O(\varepsilon, H)$, the group of $Q \mid H$, where ε is +1 or -1 according as $Q \mid H$ is of maximal index or not.

To determine ε, suppose $n=2 k+1$ and choose a basis $u_{1}, v_{1}, \cdots, u_{m}, v_{m}$ for H with $u_{i}=\sum_{j=1}^{2 i} x_{j}, v_{i}=x_{2 i}+x_{2 i+1}$. Let $P_{i}=\left\langle u_{i}, v_{i}\right\rangle$. Then the P_{i} are mutually perpendicular with respect to $B . \quad Q\left(v_{i}\right)=1, Q\left(u_{i}\right)=i(2 i-1)$ and $B\left(u_{i}, v_{i}\right)=1$. Therefore

$$
Q\left(\alpha u_{i}+\beta v_{i}\right)=\alpha^{2} i+\alpha \beta+\beta^{2} .
$$

Thus $Q \mid P_{i}$ is of index 1 if i is even and of index 0 or 1 , according as $X^{2}+X+1$ is irreducible over K or not, if i is odd. That is, $\varepsilon=1$ if $X^{2}+X+1$ is reducible over K. Suppose $X^{2}+X+1$ is irreducible over K. Let

$$
Q_{i}=Q \mid\left(P_{1} \oplus \cdots \oplus P_{i}\right)
$$

Then $\nu\left(Q_{1}\right)=0, \nu\left(Q_{2}\right)=1, \nu\left(Q_{3}\right)=3, \nu\left(Q_{4}\right)=4$. The pattern persists, so that if $k \equiv 0$ or 3 modulo $4, \varepsilon=1$, and if $k \equiv 1$ or 2 modulo $4, \varepsilon=-1$. Equivalently, if $n \equiv 1$ or 7 modulo $8, \varepsilon=1$, and if $n \equiv 3$ or 5 modulo 8 , $\varepsilon=-1$. In particular, since the order of $O_{4}\left(-1, \mathrm{~F}_{2}\right)$ is $120=5!$, we have $S_{5} \simeq O_{4}\left(-1, \mathrm{~F}_{2}\right)$.

Now suppose n is even. Since the order of $S p_{4}\left(\mathbf{F}_{2}\right)$ is $720=6!, S_{6} \simeq S p_{4}\left(\mathbf{F}_{2}\right)$. Suppose $n \equiv 0$ modulo 4. Then $Q\left(x_{0}\right)=n(n-1) / 2=0$ and $\left\langle x_{0}\right\rangle^{\wedge}=H$, so we can define Q on $H /\left\langle x_{0}\right\rangle$ by $Q(\bar{v})=Q(v)$ for $v \in H$ and \bar{v} the coset of v in $H /\left\langle x_{0}\right\rangle$. Thus for $n \equiv 0$ modulo $4, S_{n} \leq O\left(\varepsilon, H /\left\langle x_{0}\right\rangle\right)$, where ε is +1 or -1 according as the index of $Q \mid\left(H /\left\langle x_{0}\right\rangle\right)$ is maximal or not. Again we find that if $X^{2}+X+1$ is irreducible over $K, \varepsilon=1$ if $(n-1) \equiv 1$ or 7 modulo 8 , and $\varepsilon=-1$ if $(n-1) \equiv 3$ or 5 modulo 8 . In particular, since the order of $O_{6}\left(+1, F_{2}\right)$ is $8!, S_{8} \simeq O_{6}\left(+1, \mathrm{~F}_{2}\right)$.

The preceding discussion is taken from [7].
Suppose now that n is odd and $K=\mathbf{F}_{2}$. Then $S_{n} \leq O_{n-1}\left(\mathbf{F}_{2}\right)$, the group of $Q \mid H$.

Theorem 5.1. If $n \geq 5$ is odd, then the dimension of $H^{1}\left(S_{n}, H\right)$ over \mathbf{F}_{2} is zero. In particular, if V is the 4 -dimensional \mathbf{F}_{2}-space, the dimension of $H^{1}\left(O_{4}\left(-1, F_{2}\right), V\right)$ over \mathbf{F}_{2} is zero.

Proof. Let $\delta \epsilon \operatorname{Der}\left(S_{n}, H\right)$. Write $x_{i j}=x_{i}+x_{j}$, and if σ is the transposition $(i j) \in S_{n}$, write $x_{i j}=x_{\sigma}$. Let σ, τ be distinct commuting transpositions in S_{n}. Then $(\sigma+1) \delta \tau=(\tau+1) \delta \sigma$. But

$$
\operatorname{Im}(\sigma+1) \cap \operatorname{Im}(\tau+1)=\left\langle x_{\sigma}\right\rangle \cap\left\langle x_{\tau}\right\rangle=0
$$

Therefore

$$
(\sigma+1) \delta \tau=0=(\tau+1) \delta \sigma
$$

and $\delta \tau \epsilon \operatorname{Ker}(\sigma+1)=\left\langle x_{\sigma}\right\rangle^{\perp}, \quad \delta \sigma \epsilon\left\langle x_{\tau}\right\rangle^{\perp} . \quad$ Thusif $\tau=(i j)$ and $\delta \tau=\sum \alpha_{k} x_{k}$,
we have

$$
B\left(\sum \alpha_{k} x_{k}, x_{r}+x_{s}\right)=\alpha_{r}+\alpha_{s}=0
$$

for all $r, s \neq i, j$, and

$$
B\left(\sum \alpha_{k} x_{k}, x_{i}+x_{j}\right)=\alpha_{i}+\alpha_{j}=0
$$

Since $\delta \tau \in H$, we have $\delta \tau=\alpha(\tau) x_{\tau}$, with $\alpha(\tau) \in \mathbf{F}_{2}$, for every transposition $\tau \in S_{n}$.

Now let $y=x_{12}, z=x_{28}$ and $U=\langle y, z\rangle^{\perp}$. Then $H=\langle y, z\rangle \oplus U$. The elements of $\left(S_{n}\right)_{\langle\nu, z\rangle}$ have the form $S(A, T)$, with $A \in O(\langle y, z\rangle), T \in O(U)$. By our first remarks,

$$
\delta S(A, 1)=a(A) \epsilon\langle y, z\rangle \quad \text { and } \quad \delta S(1, T)=g(T) \epsilon U
$$

$S(A, 1) \epsilon S_{n}$ for each $A \epsilon S_{3}$, the symmetric group on $\{1,2,3\}$, so a is a derivation on $S_{3} \simeq S L_{2}\left(\mathrm{~F}_{2}\right)$. By 2.1, a is inner, so changing δ, if necessary, by an inner derivation based on a vector in $\langle y, z\rangle$, we may assume $a=0$.

If $\pi \in S_{n-2}$, the symmetric group on $\{3, \cdots, n\}$, then π has the form

$$
\pi(y)=y, \pi(u)=v(\pi)(u) y+T(\pi)(u)
$$

for $u \in U, \pi(z)=\alpha(\pi) y+u(\pi)+z$ with $v(\pi) \in U^{*}, T(\pi) \epsilon G L(U)$ defined as above, $\alpha(\pi) \in \mathrm{F}_{2}$ and $u(\pi) \in U$. Suppose

$$
\delta(\pi)=p(\pi)+h(\pi)+q(\pi) \quad \text { with } p(\pi) \epsilon\langle y\rangle, h(\pi) \in U, q(\pi) \epsilon\langle z\rangle .
$$

Then q is easily seen to be a homomorphism on S_{n-2}. If $\pi \in S_{n-3}$, the symmetric group on $\{4, \cdots, n\}$, then π fixes $\langle y, z\rangle$, so $u(\pi)=0$ and $v(\pi)=0$. Thus, since $a=0, q \mid S_{n-3}=0$. Since $n \geq 5, S_{n-3} \nless A_{n-2}$, so $q=0$. Thus for $\pi \epsilon S_{n-2}, \delta \pi \epsilon\langle y\rangle^{\perp}=\langle y\rangle \oplus U$.
U is not stable for S_{n-2}. For $\pi \in S_{n-2}$ and $u \in U$, write

$$
\pi(u)=f_{\pi}(u) y+\pi^{*} u, \quad \text { with } \pi^{*} u \in U
$$

It is easily verified that $\pi^{*} \in G L(U)$ and $f_{\pi} \in U^{*}$. If $\rho, \pi \in S_{n-2}$,

$$
(\rho \pi)(u)=f \pi(u) y+f_{\rho}\left(\pi^{*} u\right) y+\rho^{*} \pi^{*} u
$$

Hence $(\rho \pi)^{*}=\rho^{*} \pi^{*}$ and $f_{\rho \pi}=f_{\rho} \pi^{*}+f_{\pi}$. We have

$$
\delta(\boldsymbol{\pi})=p(\boldsymbol{\pi})+h(\boldsymbol{\pi}) \quad \text { with } p(\boldsymbol{\pi}) \epsilon\langle y\rangle \text { and } h(\boldsymbol{\pi}) \epsilon U
$$

so by computing $\delta(\rho \pi)=p(\rho \pi)+h(\rho \pi)$ we obtain

$$
\begin{align*}
& h(\rho \pi)=\rho^{*} h(\pi)+h(\rho) \tag{1}\\
& p(\rho \pi)=f_{\rho}(h(\pi)) y+p(\pi)+p(\rho) \tag{2}
\end{align*}
$$

We know that U is a module for $\left(S_{n-2}\right)^{*}$ and so is a module for S_{n-2}. If V^{\prime} is an $(n-2)$-dimensional \mathbf{F}_{2}-space and $H^{\prime}=\operatorname{Ker}\left(\eta \mid V^{\prime}\right)$, then H^{\prime} is also a module for S_{n-2}. In order to use an induction argument to complete the proof of 5.1 , we must show that $U \simeq H^{\prime}$ as S_{n-2}-modules. That is, we must
show that there is an isomorphism Φ between the $(n-3)$-dimensional $\mathbf{F}_{2^{-}}$ spaces U and H^{\prime} such that $\pi^{*} u=v$ if and only if $\pi(\Phi u)=\Phi v$ for $\pi \epsilon S_{n-2}$ and $u, v \in U$.

Set $z_{34}=y+x_{34}, z_{k, k+1}=x_{k, k+1}$ for $k>3$. The $z_{k, k+1}, k=3, \cdots, n-1$, form a basis for U. We can view $x_{34}, x_{45}, \cdots, x_{n-1, n}$ as a basis for H^{\prime}. Define Φ by $\Phi z_{k, k+1}=x_{k, k+1}$. Now we see for each of the generating transpositions $(i, i+1)$ of S_{n-2},

$$
(i, i+1)^{*} z_{k, k+1}=\sum_{j=3}^{n-1} \alpha_{j, k} z_{j, j+1}
$$

if and only if

$$
(i, i+1) x_{k, k+1}=\sum_{j=3}^{n-1} \alpha_{j, k} x_{j, j+1}
$$

where the $\alpha_{j, k} \in \mathbf{F}_{2}$.
Now, by (1), $h \in \operatorname{Der}\left(S_{n-2}, U\right)$. Since $S_{3} \simeq S L_{2}\left(F_{2}\right)$, the derivations on S_{3} are all inner. Therefore, using an appropriate induction hypothesis, assume h is inner. If necessary, change δ by an inner derivation based on a vector in U, and assume $h=0$. Then, by (2), p is a homomorphism. Like q, p vanishes on S_{n-3}, so $p=0$. Since $\delta(12)=0, \delta$ is zero on

$$
\left(S_{n}\right)_{y}=\left(S_{n}\right)_{1,2}=S_{n-2} x\langle(12)\rangle
$$

If $\tau=(13)$, then $\delta \tau=0$ and $\tau\left(S_{n}\right)_{y} \tau=\left(S_{n}\right)_{z}$. Therefore, $\delta \mid\left(S_{n}\right)_{z}=0$. Clearly $S_{n}=\left\langle\left(S_{n}\right)_{y},\left(S_{n}\right)_{z}\right\rangle$, so $\delta=0$, and the original δ was inner.

Now suppose n is even. Again let V be an F_{2}-space with basis x_{1}, \cdots, x_{n}, let $H=\operatorname{Ker} \eta$, where $\eta\left(\sum \alpha_{i} x_{i}\right)=\sum \alpha_{i}$, let $x_{0}=\sum x_{i}$, and view S_{n} as a subgroup of $S p\left(H /\left\langle x_{0}\right\rangle\right)$.

Theorem 5.2. If $n \geq 6$ is even, the dimension of $H^{1}\left(S_{n}, H /\left\langle x_{0}\right\rangle\right)$ over \mathbf{F}_{2} is one. In particular, the dimension of $H^{1}\left(O_{6}\left(+1, F_{2}\right), V\right)$ is one, for V the 6dimensional \mathbf{F}_{2}-space.

Proof. $\quad S_{6} \simeq S p_{4}\left(\mathbf{F}_{2}\right) . \quad$ By 4.4, the F_{2}-dimension of $H^{1}\left(S_{6}, V\right)$ is one, for V the 4 -dimensional \mathbf{F}_{2}-space. Assume $n \geq 8$ and let $\delta \in \operatorname{Der}\left(S_{n}, H /\left\langle x_{0}\right\rangle\right)$. As in the proof of 5.1 , if σ and τ are two distinct commuting transpositions, $\delta \sigma \epsilon\left\langle x_{\tau}\right\rangle^{\perp}$ and $\delta \tau \epsilon\left\langle x_{\sigma}\right\rangle^{\perp}$. So for every transposition $\tau \epsilon S_{n}, \delta \tau \equiv \alpha(\tau) x_{\tau}$ modulo $\left\langle x_{0}\right\rangle$, with $\alpha(\tau) \in \mathbf{F}_{2}$.
H has a basis

$$
x_{12}, x_{23}, \cdots, x_{n-2, n-1}, x_{0}
$$

so $H /\left\langle x_{0}\right\rangle$ has a basis

$$
\bar{x}_{12}, \bar{x}_{23}, \cdots, \bar{x}_{n-2, n-1}
$$

Let $\bar{y}=\bar{x}_{12}, \bar{z}=\bar{x}_{23}$, and $U=\langle\bar{y}, \bar{z}\rangle^{\perp}$, so $H /\left\langle x_{0}\right\rangle=\langle\bar{y}, \bar{z}\rangle \oplus U$. The elements of $\left(S_{n}\right)_{\langle\bar{y}, \bar{z}\rangle}$ have the form $S(A, T)$ with $A \in S p(\langle\bar{y}, \bar{z}\rangle)$ and $T \in S p(U)$. By the remarks above,

$$
\delta S(A, 1)=a(A) \epsilon\langle\bar{y}, \bar{z}\rangle \quad \text { and } \quad \delta S(1, T)=g(T) \in U
$$

$S(A, 1) \epsilon S_{n}$ for each $A \in S_{3}$, so a is a derivation on $S_{3} \simeq S L_{2}\left(\mathbf{F}_{2}\right) . \quad$ By 2.1, we may assume $a=0$.

If $\pi \in S_{n-2}$, the symmetric group on $\{3, \cdots, n\}$, then on $H /\left\langle x_{0}\right\rangle, \pi$ has the form $\pi \bar{y}=\bar{y}, \pi \bar{u}=v(\pi)(\bar{u}) \bar{y}+T(\pi) \bar{u}$ for $\bar{u} \in U$, and $\pi \bar{z}=\alpha(\pi) \bar{y}+\bar{u}(\pi)+\bar{z}$, where $v(\pi) \in U^{*}, T(\pi) \in S p(U), \alpha(\pi) \in \mathbf{F}_{2}$ and $\bar{u}(\pi) \in U$. Suppose $\delta(\pi)=$ $p(\pi)+h(\pi)+q(\pi)$, with $p(\pi) \epsilon\langle\bar{y}\rangle, h(\pi) \epsilon U, q(\pi) \in\langle\bar{z}\rangle$. Then, as in the proof of 5.1, we see that $q=0$. Thus for $\pi \epsilon S_{n-2}, \delta \pi \epsilon\langle\bar{y}\rangle^{\perp}=\langle\bar{y}\rangle \oplus U$.

As in the argument for 5.1, write

$$
\pi(\bar{u})=f_{\pi}(\bar{u}) \bar{y}+\pi^{*} \bar{u} \quad \text { for } \pi \epsilon S_{n-2} \text { and } \bar{u} \in U
$$

Then $\pi^{*} \epsilon G L(U), f_{\pi} \in U^{*},(\rho \pi)^{*}=\rho^{*} \pi^{*}$ and $f_{\rho \pi}=f_{\rho} \pi^{*}+f_{\pi}$. We also have the relations (1) and (2) of 5.1. In order to use induction, we must verify that $U \simeq H^{\prime} /\left\langle x_{0}\right\rangle$ as S_{n-2}-modules, where $H^{\prime}=\operatorname{Ker} \eta \mid V^{\prime}$. Choosing bases

$$
\bar{z}_{34}=\bar{y}+\bar{x}_{34}, \bar{z}_{k, k+1}=\bar{y}_{k, k+1}, \quad k=3, \cdots, n-2
$$

for U and

$$
\bar{x}_{34}, \bar{x}_{45}, \cdots, \bar{x}_{n-2, n-1}
$$

for $H^{\prime} /\left\langle x_{0}\right\rangle$, and defining $\Phi: U \rightarrow H^{\prime} /\left\langle x_{0}\right\rangle$ by $\Phi \bar{z}_{k, k+1}=\bar{x}_{k, k+1}$, we obtain the module-isomorphism as for 5.1.

Hence, using a suitable induction hypothesis, we may suppose that the $\mathbf{F}_{2^{-}}$ dimension of $H^{1}\left(S_{n-2}, U\right)$ is one. Define a derivation

$$
\delta_{0}: S_{n-2} \rightarrow\langle\bar{y}\rangle^{\perp}
$$

by $\delta_{0}(\pi)=(\pi+1) \bar{x}_{3}$, and then set $\delta_{0}(\pi)=p_{0}(\pi)+h_{0}(\pi)$ with $p_{0}(\pi) \epsilon\langle y\rangle$ and $h_{0}(\pi) \in U$. Then we have

$$
\begin{align*}
& h_{0}(\rho \pi)=\rho^{*} h_{0}(\pi)+h_{0}(\rho) \tag{3}\\
& p_{0}(\rho \pi)=f_{\rho}\left(h_{0}(\pi)\right) \bar{y}+p_{0}(\pi)+p_{0}(\rho) \tag{4}
\end{align*}
$$

Thus h_{0} may be viewed as an element of $\operatorname{Der}\left(S_{n-2}, U\right)$. Since $\delta_{0} \mid S_{n-3}=0$, we have $h_{0} \mid S_{n-3}=0$ and $p_{0} \mid S_{n-3}=0$. Suppose h_{0} is inner; that is, suppose there exists $\bar{u}_{0} \in U$ such that

$$
(\pi+1) \bar{x}_{3}=(\pi+1) u_{0}+p_{0}(\pi) \text { for all } \pi \in S_{n-2} .
$$

Then $(\pi+1)\left(\bar{x}_{3}+\bar{u}_{0}\right)=p_{0}(\pi)$, and $\pi\left(\bar{x}_{3}+\bar{u}_{0}\right)=\bar{x}_{3}+\bar{u}_{0}$ for all $\pi \epsilon S_{n-3}$. Let u_{0} be a preimage for \bar{u}_{0}, with $u_{0}=\sum \alpha_{k} x_{k}, x_{3}+u_{0}=\sum \alpha_{k}^{\prime} x_{k}$. Then since $\bar{x}_{3}+\bar{u}_{0}$ is a fixed point for $S_{n-3}, B\left(\sum \alpha_{k}^{\prime} x_{k}, x_{i}+x_{j}\right)=0$ for $i, j \geq 4$; and since $\bar{u}_{0} \in U$,

$$
B\left(\sum \alpha_{k} x_{k}, x_{1}+x_{2}\right)=\alpha_{2}+\alpha_{3}=0
$$

Thus we see that $\bar{u}_{0}=0$. But $h_{0} \neq 0$, so h_{0} must be non-inner.
By (1), $h \in \operatorname{Der}\left(S_{n-2}, U\right)$. We may assume $h=\lambda h_{0}, \lambda \in \mathbf{F}_{2}$. Then (2) becomes

$$
p(\rho \pi)=\lambda f_{\rho}\left(h_{0}(\pi)\right) \bar{y}+p(\pi)+p(\rho)
$$

Since h_{0}, f and p vanish on S_{n-3},

$$
p(\rho \pi)=p(\pi) \text { and } p\left(\rho \pi \rho^{-1}\right)=p(\pi) \quad \text { for } \rho \in S_{n-3}
$$

Clearly $S_{n-2}=S_{n-3}+\sum_{i=4}^{n}(3 i) S_{n-3}$, and for $i>4$, (3i) $=(4 i)(34)(4 i)$. Thus we see that p is constant on the elements of S_{n-2} not in S_{n-3}. Let $\pi=$ (34), $\rho=$ (345), so $\pi \rho=$ (35). We check easily that $f_{\pi}\left(h_{0}(\rho)\right)=0$ and $p(\pi \rho)=0$, so $p=0$.

Thus δ is determined up to a scalar multiple λ on $\left(S_{n}\right)_{\hat{y}}$. If $\tau=(13)$, then $\tau\left(S_{n}\right)_{\bar{y}} \tau=\left(S_{n}\right)_{\bar{z}}$. Therefore, δ is determined up to the same scalar λ on $\left(S_{n}\right)_{\bar{z}}$. Since $S_{n}=\left\langle\left(S_{n}\right)_{\bar{y}},\left(S_{n}\right)_{\bar{z}}\right\rangle$, the dimension of $H^{1}\left(S_{n}, H /\left\langle x_{0}\right\rangle\right)$ is at most one.

Define $\delta: S_{n} \rightarrow H /\left\langle x_{0}\right\rangle$ by $\delta \pi=(\pi+1) \bar{x}_{1}$. Then δ is a derivation vanishing on S_{n-1}, the symmetric group on $\{2, \cdots, n\}$. Arguing as for h_{0}, we see that δ must be non-inner. Hence the dimension of $H^{1}\left(S_{n}, H /\left\langle x_{0}\right\rangle\right)$ is exactly one, for $n \geq 8$, even.

References

1. E. Artin, The orders of the linear groups, Comm. Pure Appl. Math., vol. 8, (1955), pp. 355-365.
2. --, Geometric algebra, Interscience, New York, 1964.
3. R. W. Carter, Simple groups and simple Lie Algebras, J. London Math. Soc., vol. 40 (1965), pp. 193-240.
4. C. Chevalley, The algebraic theory of spinors, Columbia Univ. Press, New York, 1954.
5. ——, Sur certains groupes simples, Tôhoku Math. J., vol. 7 (1955), pp. 14-66.
6. L. E. Dickson, Linear groups, Leipzig, 1901, reprinted by Dover, New York, 1958.
7. -, Representation of the general symmetric group as linear groups in finite and infinite fields, Trans. Amer. Math. Soc., vol. 9 (1908), pp. 121-148.
8. J. Dieudonnt, Sur les groupes classiques, Actualites Sci. Indust., no. 1040, Hermann, Paris, 1948.
9. --, Pseudo-discriminant and Dickson invariant, Pacific J. Math., vol. 5, (1955), pp. 907-910.
10. -_, La Geométrie des Groupes Classiques, Erg. Mat., second edition, Springer'Verlag, Berlin, 1963.
11. D. A. Foulser, The fag-transitive collineation groups of the finite Desarguesian affine planes, Canad. J. Math., vol. 16 (1964), pp. 443-472.
12. D. G. Higman, Flag-transitive collineation groups of finite projective spaces, Illinois J. Math., vol. 6 (1962), pp. 434-446.
13. N. Jacobson, Lie algebras, Interscience, New York, 1962.
14. A. G. Kurosh, The theory of groups II, second English edition, Chelsea, New York, 1960.
15. R. Ree, On some simple groups defined by C. Chevalley, Trans. Amer. Math. Soc., vol. 84 (1957), pp. 392-400.
16. T. Tamagawa, On the structure of orthogonal groups, Amer. J. Math., vol. 80 (1958), pp. 191-197.

University of Toledo
Toledo, Ohio
Mount Holyoke College
South Hadley, Massachusetts

[^0]: Received January 14, 1969.
 ${ }^{1}$ This material appears in the author's Ph.D. thesis at the University of Michigan. The thesis was supervised by Professor J. E. McLaughlin and was supported, in part, by the National Science Foundation, through the University of Michigan.

