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1. Introduction

The single-valued extension property is a remarkable one for a very large
class of linear operators on a locally convex space. Its first definition is due
to Dunford and is related to spectral operators, which possess this property
[5], [6]. But there exist simple examples of operators which do not have this
property or have it only on a part of their spectrum. So it is very natural to
consider a residual part of the spectrum of an operator and define this property
“outside” this part [11]. Many properties of a spectral operator (and even
for an operator in certain larger classes [7], [4]) can be obtained using only a
natural assumption of decomposability of the space with respect to this
operator [8]. To study simultaneously the class of unbounded operators with a
suitable spectral behaviour and other classes (obtained for example, from
direct sums between ‘‘good” operators and operators which do not even have
the single valued extension property ) it is again necessary to consider a residual
part of their spectrum [11]. The purpose of our paper is to give some new
results related to the single-valued extension property and supplementary
assertion for the residually decomposable operators [11].

Our main result is a theorem of existence and uniqueness, for a large class
of operators, of a minimal closed set outside which such an operator has a
suitable spectral behaviour.

First we need some definition and additional properties. In the sequel ¥ will
be a Fréchet space [3] (although many considerations are true in more general
spaces), B (%) the set of all continuous linear operators on ¥, and C (¥) the set
of all closed linear operators on ¥. For the spectrum ¢ (T') of an operator
T eC(X) we shall use the definition of Waelbroeck [12]. Thus a point
ANeCu(= Cu{x})isin p(T) if there exists a neighbourhood V) & C. of A
such that (uI — T)™ e B(X) for any ue V n C and the set

{(I — T)'z;neVau C}

is bounded in ¥ for any x ¢X. We shall also use the well-known notations:
RO\ T) = (\ — T)™, Dy for the domain of the operator T and ¢ (T) = (o (T)
(all operations with sets are considered in C,).

Let TeC (%) and z ¢ ¥ be fixed. We shall say that \ ¢ 6z () if in a neigh-
bourhood V) of \ there exists an analytic function f, : V) — Dz (not necessarily
unique) such that (u — T)f,(u) = z for ue VA n C. Such an analytic func-
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tion f, (1) is called T-associated with x [11]. We put vz () = (6-(z). We
know that there exists a unique maximal open set 2, & C,, with this property:
if w & Q7 is an open set and fy : w — Dy is an analytic function such that
(I — T)fo(u) = 0 for uew n Cthen fy(u) = 0 for uew, and we denote
Sz = (Q, [11]. We shall also put

or(x) = yr(@)uSr and pr(z) = 8z(z) nQr

for any xz ¢ X [11]. It is easy to see that in pr(z) there exists a unique func-

tion, denoted x(\), which is T-associated with z. Obviously, the sets 6-(z)

and pr(x) are open, hence yr(x) and or(z) are closed in C, for any x e %.
We can introduce the following linear manifolds [11]:

Xr(F) = {ze¥; vr(x) S F}, %, (F) = {zeX; or(x) S F,

where F is a set in C,, .

An operator T ¢ C (¥) has the single-valued extension property if Sr = 8.
In this case or(x) = vr(x), for any z e ¥%.

We shall say that a subspace P & ¥ (i.e. a closed linear manifold) is in-
variant with respect to T if ) C Drand TY S P [11]. Obviously by Banach’s
theorem, T'| 9 ¢ B()).

2. The single-valued extension property

This section has two main results. One of them is a characterization of the
single-valued extension property which could be of interest in case of several
variables, namely, the characterization which is obtained for one operator sug-
gests a definition of the single-valued extension property for finite sets of
operators, by using a suitable locally joint spectrum of an element. The
other result is a theorem which implies that the single-valued extension prop-
erty can be obtained by passing to a suitable quotient space.

ProrosiTioN 2.1. An operator T e C(X) has the single-valued extension
property if and only if Xy (#) = {0}.

Proof. TFirst let T e C' (%) with X7 (@) = {0}. Letf:w C C, — Drbean
analytic function satisfying (\] — T)f(A\) = 0 for A\ew n C. Then for any
N (% ) wehave yr(f(\)) = @ (see [11]); thusf(Ng) = 0 and hence f(A\) = 0
for A e w. Conversely, let T e C' (¥) have the single-valued extension property
and let 2 ¢ X7 (@), z £ 0. Since Sy = @, there exists a unique T-associated
function x(\) defined on the whole complex compactified plane. We have
evenz (o) = 0. Indeed,if \, — » thenz, = x(\,)/\: converges to zero and
Tz, = (M) — /M to (). Because T is closed, we necessarily have
z(o) = 0. Consequently z(\) is analytic in the whole complex plane and
is zero at «. By the Liouville Theorem we have x(A\) = 0; thus z = 0.
This contradiction proves our assertion.

Lemma 2.1 Let 9) be a closed subspace of %, % = %/9 and (f(\))~:0 — % an
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analytic function (w open set in C,). Then for any N\ € w there exists an ¥-valued
Sunction f(\; No), analytic in a neighbourhood of No, such that f(\; No) € (f(\))~.

Proof. Let N(# ) be an arbitrary point in w. Since (f(A))~ is analytic
in w, we can write in a neighbourhood of A,

FA))™ = 2mmo@n (A — No)*

where @ ¢ £ for all . Then there exists an L > 0 such that for any n e N
there exists an N (n) such that the n-th seminorm satisfies

|an]|n < L* forallk = N ().
Ifnisfixedand N(n) < k < N (n + 1), we choose an a; € G such that
lak lN(n) < L+ 1),

which is possible from the above relation and the definition of the topology on
the quotient space. With no loss of generality the family of seminorms can
be taken non-decreasing, and N(n + 1) = N(n) = n, for alln. With these
conditions the series

Dm0 @i (A — No)*
defines an analytic function with values in ¥. Indeed, for fixed n we have
| 2Zkenm = M) |n £ Diawew |arln| X — Mo *
= D a0 2amwitin Hanla | X = No[*
S Dm0 2R EEI [y | N = Mo
S D500 205D T @+ DN = Nff = Ziaww @+ DN = No[*

and the last expression converges to zero asn — o when |\ — No| < 1/L + 1.
Hence the function f(\) = X meoax (A — No)* is analytic in a neighbourhood
of Ao. A similar argument can be used when A = ® ew to obtain the same
conclusion.

ProrosITION 2.2 Let T ¢ B(X) and 9 be an invariant subspace of T. If T
is the operator induced by T on the space £ = %/9 then S; < o(T'|9) u Sr.

Proof. Indeed, if (f(A))~ is an analytic function on an open set
©SoT|9)nls:

such that \ — T)(F(\))~ = 0~ for Aew then, by Lemma 2.1, we shall
choose f(\; M) € (f(\))™ to be analytic in a neighbourhood of any point

Mew. Thus
W = T) %) =g\ e
and we obviously have

N = T)f s x) — RO, T[99 =0
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for \ in a neighbourhood of A ¢ {.Sz. Therefore
FOs%) =R, T[D)y(N) €D

and from this we have (f(\))~ = 0~. The point M\ e¢w being arbitrarily
chosen, we have (f(A\))~ = 0~. Hence v C (:S, for any

@ Cpo(T|P)n [
By minimality, we obtain Sz S o(T|9) u Sr.
ProrosiTioN 2.3. Let TeC(X), Sy € Co and let P = XT(M). If Y is

closed in X and 9 S Dy, then 9 is an tnvariant subspace of T and
o'(TI 9) = M n o(T).
Proof. We can act as in the corresponding proposition of [11]. For any
el M no(T)
there exists a neighbourhood V, with Van M n ¢(T) = 0.

We define the operators
Ay = y(u) e, ueVanC)

and it will follow that 4, = (ul | P —-T |@)". Now, V¥, can be chosen com-
pact in C, ; thus y(V)) is bounded in 9) for any y €%. From this we obtain
Aep(T|9) and the proof is finished.

Turorem 2.1. Let TeB(X), St & M = M C C,, and suppose that
9D = X, (M) is closed. If % = %/9) and T is the operator induced by T on %,
then we have ¥4 (M) = {07},

Proof. LetZeX,(M)and )\ e CMnC. From Proposition 2.2 and 2.3, we
have

S; Co(T|P)uSr C M.

By Lemma 2.1, we can take f(\) analytic in a neighbourhood of A\, with values
in %, such that f(A) e (x(N\))~. Since T ¢ B(¥X) it follows that the function
h(N) = (M — T)f(\) — z is analytic in a neighbourhood of Ag. Further-
more

M)~ = (N —T)f(N)" —2=0,

thus h(\) €9 for any A\. Then, from the relation ¢(T|9) & M it follows
that the mapping
k() = RO, TRV

is analytic in a neighbourhood of A\,. Therefore
z = (M = DT)f(\) — k)],

with f(\) — k(A) analytic; since e { Sz, we must have N e pr(z). Con-
sequently or(x) © M, and hence x ¢ X7 (M ). Therefore & = 0~ and being
arbitrariy chosen in ¥, (M) the assertion is proved.
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CorOLLARY 1. With the conditions of the previous theorem the operator T
has the single valued extension property.

Indeed, ¥7 (@) = %;(S;) € %;(M) = {0~} and by Proposition 2.1 our
assertion follows.

This result shows that ‘“regularization in the sense of the single valued
extension property’ is achieved by using the induced operator on a suitable
quotient space. We shall finish this section with a special result concerning
the consequences of the compactness of local speetra. Let us remark that for
a closed set F C C,, the inclusion F C C is equivalent with the compactness
of F in C. In what follows it will be convenient to put sup {| A I; Ne@} = 0.

Prorosrrion 2.4. If T e C (%), then for any x ¢ X with vr(x) S C it follows
that x € Or for all k = 1 and

sup {l)\l; Nevr(x)) = supnli_rnnk.mlTkxlyk < 0,

Proof. From the inclusion vr(xz) € C it follows that there exists a T-asso-
ciated function f, of & which is analytic at o ; therefore in a neighborhood of

o we have
folu) = Dimomi/u*H.

Indeed, as in the proof of Proposition 2.1, if N, — o then y, = fo(\)/2» — 0
and Ty, — f,(* ), therefore f,(« ) = 0. Then since T is closed, we may write
0 = limaae o (A) = limpao N (A) — 2] = 20 — @3

therefore zo, = .
Since
limaae Mz(A) = 2 and  limy,o ANTf:(A) = iy MAQN) — 2] = 24,

we may conclude that z ¢ Dr and Tz = 2;. By recurrence we obtain that for
any k = 0 we have z ¢ O and 24y = Ta = Tz, Hence our function can
be written as

Fe Q) = 2o Tha/u*™
in a neighbourhood of « and the series is convergent if
ll/k
n

|| > sups impaw | T2 [}* = 7..

From this it is obvious that
sup {I)\[; Neyr(@)} S 7.
Prorosirion 2.5. If T ¢ C(X), then for any x ¢ X with or(x) & C i follows
that £ € O for all k = 1 and
sup {| A ]; N eor (@)} = sup, imrse | Tz |7* < .

Obviously, the proof is similar. The last equality is valid because in pr(2)
the T-associated function x (u) has no singularities and its Taylor expansion
must exist outside the disk with radius sup {|A]; Neor(z)}.
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3. Strongly residually decomposable operators

First of all we must recall the definition of residually decomposable opera-
tors [11].

Let S € C. be a closed set. A family of open sets {Gj}jm1 U {Gs} is an
S-covering for the closed set A & C, if UjmiGiuGs 2 AuSand G;nS = 0
(G=1--,n).

By gr.r (F closed in C,) we mean the family of all invariant subspaces )
of T with the property ¢ (T'|9) C F.

An operator T ¢ C(X) is S-residually decomposable [11] if:

(81) Forevery closed F C C,, with F n S = § the family Jr,» has a least upper
bound (with respect to the inclusion relation) denoted by Xz,r .
(32) TFor every S-covering of ¢ (T') there exist invariant subspaces {¥;}j=1 of
T such that

(02) o(T|%)S G (j=1,--,n)and

(62) any z e¥ has a decomposition of the form

=o+ o+ 20+ 25
where x;e%; (j = 1, --+, n) and or(x,) S Gs.

For such an operator T ¢ C (¥) we know now that S € S and some results
concerning the relations among the spaces ¥r,r, Xr (F) and ¥,(F) [11]. But
it seems that this definition is not sufficient to insure the existence and the
uniqueness of a minimal closed set S7 with the property that T is S7-residually
decomposable. Before going on this direction we shall give some additional
information.

Prorosition 3.1. If T € C(¥) 4s S-residually decomposable and 8 C C then
TeB(X).

Proof. Let {Gi} u {Gs} be an S-covering of o (T'), with G relatively com-
pact in C. From the definition, there exists an invariant subspace ¥, © %
such that any 2 ¢ X has a decomposition of the form z = x; + x5, with x; €%,
and o7 (zs) = Gs. By our choice, the set G is compact in C; thus, by Proposi-
tion 2.5, we have 25 e Dr. It follows that ©r = ¥ and by Banach’s theorem,
we obtain T e B (%).

DeriniTioN 3.1, We shall say that an operator 7 ¢ C(X¥) which is
S-residually decomposable has a localized spectrum if in the above definition
the condition (33 ) is replaced by the stronger condition

(67)* any xe% has a decomposition of the form

T =x1+ + + &+ zs,
where 2; e X;, yr ;) Cyr(@) =1, -+ ,n) and e (zs) C Gs.

(A similar condition was used in [1] to define a strong decomposability for
bounded operators on Banach spaces)



RESIDUAL PROPERTIES FOR CLOSED OPERATORS 383

Let us remark that if v (z) n .S = @ for a certain z ¢ ¥ then in the decomposi-
tion given by (8 )* we have

z=x1+ - + 2, + 25 withxse%or(ﬁ).
In particular, if Sz = @ then zs = 0 for such an element.

DeriniTioN 3.2. We shall say that an operator 7 eC(X) is strongly
residually decomposable if S7 = @ and for any closed F1, F» such that ¥ (F1)
and ¥ (F3) are in Dr and are closed, it follows that ¥, (F1 u F;) is in Dr and
is closed.

In particular any decomposable operator [8] is strongly residually decom-
posable.

ProrosiTioN 3.2. If T € C(X) ts S-residually decomposable with a localized
spectrum and if Sy = @, then for any closed F & C,, with F n S = @ we have the
equahty %T,F = %T (F).

Proof. IfF C G C G C GywithG,Gyopenand GinS = ¢, then {Gi} u {Gs)
is an S-covering of ¢ (T'), where Gs = [ G. Since the spectrum of T is a
localized one, for any x ¢ ¥»(F) we have o () n S = ¢ and Sr = 0; using an
above observation, we obtain X, (F) € %, € ¥r,5, , where ¥; is an invariant
subspace with o (T | %) € @G, corresponding to the chosen covering, and
X756, exists since Gin S = @ (see (61)). The family

{G-1;G12F,G1ns=ﬂ}

is directed on the left by the inclusion relation. Asin [11], we can prove that
¥rr = Ng,%r6, 2 X7(F). On the other hand we have the inclusion
Xr.rp C X7(F) = %, (F) (since (>\I| Xpp — T |x7',p')~1 is defined in CF), and
this finishes our proof.

TueoreM 3.1. Let T ¢ C(X) be a sirongly residually decomposable operator.
Then there exists a unique minimal closed set 8% < C., such that T is St-residually
decomposable and has a localized spectrum.

Proof. The family of the closed sets {S} with the property that T is
S-residually decomposable and with localized spectrum is non-void sinee it
obviously contains the set ¢ (7). Let {S.! be a totally ordered part of it
and let S = Ny S,. We shall show that T is Sy-residually decomposable and
with localized spectrum. Indeed, if F C C, is a closed set with F n Sy = §,
then there exists an index ap such that Fn S,, = @. Since the operator T is
Sa,-residually decomposable, it follows that the family gr,» has least upper
bound in ¥. If {G;};=1 u {Gs} is an S;-covering of o (T'), then there exists an
index oy such that it is an S,,-covering of ¢(7'). The remaining conditions
that T be Sp-residually decomposable depend now only of the covering and
they are obviously satisfied. By the Zorn lemma, there exists at least one
minimal set; we shall show that there exists only one. For, let S; and S,
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two minimal elements and let S = S; n S.. We shall prove that T is S-resi-
dually decomposable and with localized spectrum which will be a contradiction
if Sy # 8,

Let F C C,, be a closed set with the property F n 8 = §. We shall write
F ags Fyu F, with Fy, F, closed and with the property F;nS; =0 (j = 1, 2).
Let F; C H; € H; C G; with H; and G; open, G;n S; = @, and the S;-covering
{G;,Gs;} with Gs; = GH, (j = 1,2). LetalsozeX,(F) be arbitrary. It has
the decomposition

T =21+ Ty

with respect to the covering {G1, G, } and since the spectrum of T is localized,
we have

ch(xsl) g G-Sl naT(x) g GYS; nF.

We can write s, = ¥ + ¥s, With respect to the covering {G.,Gs,}. So using
again the localization of the spectrum of T, we have

UT(ySz) c GSz n O'T(xsl) - G-Sl n és, nF c cHI nCHg nF = 0.

By our assumption, we have Sy = @§. Thus, on account of Proposition 2.1,
it follows that ys, = 0. Consequently, the following inclusion is true:

¥:(F) © %16, + ¥r,6,.
By Proposition 2.2, we have the equalities

xr,é,- = %T(G;) (.7 = 1,2);
thus _ - -
¥r.6, + Xr.6, = X0(Gh) + X2 (G2) € X7 (GLu Gy).

Since T is strongly residually decomposable, the last linear manifold is closed
and included in Dy, therefore the family gr,4,a, has a least upper bound [11].
Then we can write

Xo(F) = nGIUGz or Xr (Gl u (72)

and as in Proposition 2.2 (see also [11]), the space X7,r exists. In this manner
the condition (8;) of our definition is verified.

Now let {G;}j=1 u {Gs} be an S-covering of ¢(T'). By completion of Gs,
we shall construct two open sets Gs, and G, such that Gs; n (S \ Gs) = @
(j % k). Then we shall refine the sets G; = U7, G} such that an open set G
intersects at most one of the sets S; and S, and if it intersects the set S;
(respectively S.), it is completely contained in G, (respectlvely Gs,). Now
we can form an S;-covering of o (T') using only those open sets G% which do not
intersect the set Si and G, (£ = 1, 2).

Let {H%)7% u {Gs,) (B = 1, 2) be the covering obtained and let x e X.
Then z has the following decomposition with respeect to the first covering:

’ ’
=zt A+ Tmy T Ty
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withor(zs,) € Gs,. The element x5, has another decomposition with respect
to the second covering

xs, = y1+ e +ym2 +y82
with or(ys,) & Gs,. Since the spectrum of T is a localized one, we have
‘TT(ySz) c 0'7'(-”81) n G-Sz < G.sx n G32 = Gy

(the last equality can be obtained by a special construction of the sets G,
and G, which is always possible).

Let us denote by {¥5} (j = 1, -+, ms; k = 1, 2) the system of invariant
subspaces obtained from both coverings. Since 7' is Si-residually decompos-
able (k = 1,2) we can suppose that ¥j = Xr,» where F; C Hj are closed and
F5n8; = 0 (k # 1); therefore by Proposition 3.2, ¥7.r; = %z(F;). But T is
strongly residually decomposable, hence the ¥; = Xr(F;) are closed in ¥ and
included in D7, where F; = Up,icq; F. (j = 1, .-+, n). Furthermore, by
Proposition 2.3, we have a(T|%j) C Gy (=1, -+ n) and the element
z ¢ ¥ now has the decomposition

r=o+ o+ Tt s

where the z; € ¥; are obtained by adding the corresponding elements and where
Zs = Ys; - Then T is S-residually decomposable and its spectrum is obviously
localized. This is a contradiction if S; $ S,. Therefore there exists a
unique minimal set S% such that T is S%-residually decomposable and its
spectrum is localized.

DeriNiTioN 3.3. If T € C (%) is strongly residually decomposable, the set
S% will be called the spectral residuum of T.

For a spectral operator T' ¢ B(X) in the sense of Dunford [5] or Tulcea [9],
one obtains easily that S% = @; if the operator is not bounded [2], then
87 = {=}.

We note that there exist simple examples for which the spectral residuum
is not a trivial one. For instance the (isometrical) “shift” on a separable
Hilbert space is strongly residually decomposable but its spectral residuum
is equal to its spectrum.
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