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1. Introduction
The single-valued extension property is a remarkable one for a very large

class of linear operators on a locally convex space. Its first definition is due
to Dunford and is related to spectral operators, which possess this property
[5], [6]. But there exist simple examples of operators which do not have this
property or have it only on a part of their spectrum. So it is very natural to
consider a residual part of the spectrum of an operator and define this property
"outside" this part [11]. Many properties of a spectral operator (and even
for an operator in certain larger classes [7], [4]) can be obtained using only a
natural assumption of decomposability of the space with respect to this
operator [8]. To study simultaneously the class of unbounded operatorswith a
suitable spectral behaviour and other classes (obtained for example, from
direct sums between "good" operators and operators which do not even have
the single valued extension property) it is again necessary to consider a residual
part of their spectrum [11]. The purpose of our paper is to give some new
results related to the single-valued extension property and supplementary
assertion for the residually decomposable operators [11].
Our main result is a theorem of existence and uniqueness, for a large class

o,f operators, of a minimal closed set outside which such an operator has a
suitable spectral behaviour.

First we need some definition and additional .properties. In the sequel will
be a Frchet space [3] (although many considerations are true in more general
spaces), B () the set of all continuous linear operators on ., and C() the set
of all closed linear operators on . For the spectrum a(T) of an operator
T e C() we shall use the definition of Waelbroeck [12]. Thus a point

e C (--- C u is in p (T) if there exists a neighbourhood Vx

_
C of h

such that (#I T)-le B (.) for any e Vx n C and the set

(I T)-lx; Vx u C}

is bounded in for any x e . We shall also use the well-known notations:
R (h, T) (I T)-,rfor the domain of the operator T and a(T) p(T)
(all operations with sets are considered in C).
Let T e C () and x e be fixed. We shall say that e ir(x) if in a neigh-

bourhood Vx of there exists an analytic functionf Vx --r (not necessarily
unique) such that (I T)fx () x for e Vx n C. Such an analytic rune-

Received January 8, 1969.

377



378 F.-H. VASILESCU

tion fx() is called T-associated with x [11]. We put ,r(x) r(x). We
know that there exists a unique maximal open set 2r C with this property:
if

_
fr is an open set and f0" o -- )r is an analytic function such that

(I T)fo() =- 0 for e nCthenf0() 0 for e, and we denote
Sr r [11]. We shall also put

at(x) /r(x) o Sr and p(x) r(x) fir
for any x e [11]. It is easy to see that in pr(x) there exists a unique func-
tion, denoted x(,), which is T-associated with x. Obviously, the sets
and pr(x) are open, hence ,r(x) and at(x) are closed in C for any x e
We can introduce the following linear manifolds [11]:

r(F) {xe; "r(x)

_
F}, .r(F) {xe; at(x) F},

where F is a set in C.
An operator T e C () has the single-valued extension property if Sr 0.

In this case ar (x) r (x), for any x e .
We shall say that a subspace )

_
(i.e. a dosed linear manifold) is in-

variant with respect to T if )

_
r and T)

_
) [11]. Obviously by Banach’s

theorem, T 0 e B ()).

2. The single-valued extension property
This section has two main results. One of them is a characterization of the

single-valued extension property which could be of interest in case of several
variables, namely, the characterization which is obtained for one operator sug-
gests a definition of the single-valued extension property for finite sets of
operators, by using a suitable locally joint spectrum of an element. The
other result is a theorem which implies that the single-valued extension prop-
erty can be obtained by passing to a suitable quotient space.

PROPOSITION 2.1. An operator T e C() has the single-valued extension
property if and only if .o (0) {0}.

Proof. First let T e C () with r (0) {0}. Let f" C -, r be an
analytic function satisfying (I T)f(h) 0 for k o n . Then for any
h0( ) we have ,r(f(X0)) 0 (see [11]); thusf(,0) 0 and hencef(X) 0
for e . Conversely, let T e C () have the single-valued extension property
and let x e Er(0), x 0. Since Sr 0, there exists a unique T-associated
function x(,) defined on the whole complex compactified plane. We have
even x () 0. Indeed, if h -- then x, x (h.)/h. converges to zero and
Tx x (,) x/L to x (). Because T is closed, we necessarily have
x() 0. Consequently x (X) is analytic in the whole complex plane and
is zero at . By the Liouville Theorem we have x (),) 0; thus x 0.
This contradiction proves our assertion.

IEMMA 2.1 Let ) be a closed subspace of ., / and (f(),))~’o an
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analytic function (o open set in C). Then for any o o here exists an -valued
function f(; 0), analytic in a nehbourhood oleo, such that f(; o) e ()).

Proof. Let 0( ) be an arbitrary point in . Since (]()) is analytic
in , we can write in a neighbourhood of 0,

(f( )- % (x o
where for all . Then there exists an L > 0 such that for any n e N
there exists an N (n) such that the n-th seminorm satisfies

a ] L or an Y (n).

If n is fixed and N (n) k < N (n W 1 ), we choose an a e such that

a() (L+ 1),
which is possible from the above relation and the definition of the topology on
the quotient space. With no loss of generality the family of seminorms can
be taken non-decreasing, and N (n + 1) N (n) n, for a n. With these
conditions the series

defines an analytic function with values in . Indeed, for ed n we have

=< 7=o -(,+,)(+’+)- (L W 1) %o

and the last expression converges to zero as n when h o[ < 1/L + 1.
Hence the function f() a (X 0) is analytic in a neighbourhood
of o. A similar argument can be used when o e to obtain the same
conclusion.

PROeOSTON 2.2 Let T e B( and be an invariant bspace of T.
is the operator induced by T the space

Proof. Indeed, if (f (X))- is an analytic function on an open set

such that (i )(f(X))- 0- for h e then, by Lemma 2.1, we shall
choose f(; o)e (f())- to be analytic in a neighbourhood of any point
0 e . Thus

(I Ty(; o)

and we obously have

(hi T)[f(; 0) R (h, T 9)g ()] 0
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for ) in a neighbourhood of 0 e St. Therefore

f(); 0) R(),, T

and from this we have (f(X))~ 0-. The point 0 e being arbitrarily
chosen, we have (f(X))- 0-. Hence Se for any

By minimality, we obtain

PnoeOSTO 2.3. Let TeC(), Sr C and let9 ET (M). U g is
closed in and r, then is an invariant subspace of T and

a(T[ O) M n a(T).
Proof. We cn act as in the corresponding proposition of [11]. For any

there exists a neighbourhood
We define the operators

A,y y(z) (ye0, zeVxnC)

and it will follow that A, (zI[ 9 T ]9)-. Now, Vx can be chosen com-
pt in C thus y (Vx) is bounded in for any y e . From this we obtain
X e p (TI 9) and the proof is finished.

TREonE[ 2.1. Let TeB(), Sr M C, and suppose that
9 r(M) is closed. U
then we ve e(M)

Proof. Let e (M) and X0 e M n C. From Proposition 2.2 and 2.3, we
have

By Lemma 2.1, we can take f(X) analytic in a neighbourhood of 0 with values
in , such that f(X), (x (X))-. Since T e B () it fofiows that the function
h () (hi T)f(X) x is analytic in a neighbourhood of 0. Further-
more

(h(X))- ((XI Ty(X))- $ 0,

thus h (X)e 9 for any . Then, from the relation (T) M it follows
that the mapping

is analytic in a neighbourhood of 0. Therefore

x T)J(x)

with f(X) k (X) analytic; since X0 e St, we must have k0 e pr (x). Con-
sequently at(x) M, and hence x e r(M). Therefore 0- and being
arbitrariy chosen in (M) the assertion is proved.
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COROLLARY 1. With the conditions of the previous theorem the operator T
has the single valued extension property.

Indeed, .(t) (S) :(M) {0~} and by Proposition 2.1 our
assertion follows.

This result shows that "regularization in the sense of the single valued
extension property" is achieved by using the induced operator on a suitable
quotient space. We shall finish this section with a special result concerning
the consequences of the compactness of local spectra. Let us remark that for
a closed set F

___
C, the inclusion F

___
C is equivalent with the compactness

of F in C. In what follows it will be convenient to put sup {I )’1; 0} 0.

PROPOSiTiON 2.4. If T e C(), then for any x e with r(x) C it follows
that x for all k 1 and

sup {]]; keVr(x)} sup1Tx]
Proof. From the inclusion r (x) C it follows that there exists a T-asso-

ciated function f of x which is analytic at therefore in a neighborhood of
we have

Indeed, in the proof of Proposition 2.1, if X. then y f (h,)/x 0
and Ty, f (), thereforef() 0. Then since T is closed, we muy write

0 limx Tf (X) limx [f () x] x0 x;

therefore x0 x.
Since

limx Xf (X) x and limx XTf (X) limx X[Xf (X) x] x,

we may conclude that x e and Tx x. By recuence we obtain that for
any k 0 we have x er and x+, Tx T+x. Hence our function can
be written as

f=(k) oTx/
in a neighbourhood of and the series is convergent if

From this it is obvious that

Paorosros 2.5. If T C (), then for any x th ar (x) C it follows
that x r for all k 1 and

x I; x, (x)}  up.

Obously, the proof is similar. The last equality is valid because in pr(x)
the T-associated function x () has no singflarities and its Taylor expansion
must exist outside the disk with radius sup
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3. Strongly residually decomposable operators
First of all we must recall the definition of residually decomposable opera-

tors [11].
Let S

___
C be a closed set. A family of open sets {G.}.- {Gs} is an

S-covering for the closed set

_
C if U’.. G" u G

_
u S and (. n S 0

(j= , ...,n).
By r, (F closed in C) we mean the family of all invariant subspaces

of T :ith the property (TI))
_

F.
An operator T e C() is S-residually decomposable [11] if"

(ti) For every closed F C with F n S 0 the family r. has a least upper
bound (with respect to the inclusion relation) denoted by r,y.
(i) For every S-covering of a(T) there exist invariant subspaces {}- of
T such that
() a(T I.)_G. (j 1, ...,n) and
(’) any x e has a decomposition of the form

x=x+... +x+x
wherexe (j 1, ...,n) andar(x,)

_
For such an operator T e C () we know now that Sr

_
S and some results

concerning the relations among the spaces r., r(F) and r(F) [11]. But
it seems that this definition is not sufficient to insure the existence and the
uniqueness of a minimal closed set S with the property that T is Sr-residually
decomposable. Before going on this direction we shall give some additional
information.

POPOSITION 3.1. If T C( is S-residually decomposable and S

_
C then

T B(X).

Proof. Let {G} u Gs/ be an S-covering of (T), with Gs relatively com-
pact in C. From the definition, there exists an invariant subspace
such that any x e E has a decomposition of the form x x W x., with x
and ar (xs) -: G-s. By our choice, the set G-sis compact in C; thus, by Proposi-
tion 2.5, we have xs e r. It follows that )r and by Banach’s theorem,
we obtain T e B (.).

DETON 3.1. We shall say that an operator T e C() which is
S-residually decomposable has a localized spectrum if in the above definition
the condition () is replaced by the stronger condition

(t’)* any x e has a decomposition of the form

x=x+... +x+x,
where x. e .., ’r(x) _ /r(x) (j = 1, n) and a(xs)

(A similar condition was used in [1] to define a strong decomposability for
bounded operators on Banach spaces)
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Let us remark that if r (x) n S 0 for a certain x e then in the decomposi-
tion given by (i’)* we have

x xl+ -t-xn+xs withxser(0).
In particular, if Sr t then xs 0 for such an element.

DEFINITION 3.2. We shall say that an operator T C(X) is strongly
residually decomposable if Sr t and for any closed F1, F2 such that
and r (F2) are in r and are closed, it follows that .r (F1 u F) is in r and
is closed.

In particular any decomposable operator [8] is strongly residually decom-
posable.

PROPOSTIO 3.2. If T e C( is S-residually decomposable with a localized
spectrum and if Sr , then for any closed F

_
C with F r S 0 we have the

equality r,F r(F ).

Proof. If F G (

_
G1 with G, G1 open and (1 n S , then G1}

is an S-covering of a(T), where Gs (. Since the spectrum of T is a
localized one, for any x e r (F) we have ar (x) n S and Sr ; using an
above observation, we obtain Er(F) 1

___
Er,l, where 1 is an invariant

subspace with a(Tl.l G1 corresponding to the chosen covering, and
r,ol exists since (1 n S (see (1)). The family

{ ;
_

F, . }

is directed on the left by the inclusion relation. As in [11], we can prove that
r,F 1ol r,a r(F). On the other hand we have the inclusion

)--1r, r (F) .r (f) (since (I r. T Ir,r is defined in F), and
this finishes, our proof.

THEOREM 3.1. Let T C( be a strongly residually decomposable operator.
Then there exists a unique minimal closed set S C such that T is Sr-residually
decomposable and has a localized spectrum.

Proof. The family of the closed sets {SI with the property that T is
S-residually decomposable and with localized spectrum is non-void since it
obviously contains the set a(T). Let {S,/ be a totally ordered part of it
and let So ,S. We shall show that T is S0-residually decomposable and
with localized spectrum. Indeed, if F C is a closed set with F n So 0,
then there exists an index a0 such that Fn S,o 0. Since the operator T is
S,0-residually decomposable, it follows that the fmily r, has least upper
bound in . If {G.}’--1 u {Gs} is an S0-covering of a(T), then there exists an
index al such that it is an S-covering of a (T). The remaining conditions
that T be S0-residually decomposable depend now only of the covering and
they are obviously satisfied. By the Zorn lemma, there exists at least one
minimal set; we shall show that there exists only one. For, let $1 and
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two minimal elements and let S .$1 n $2. We shall prove that T is S-resi-
dually decomposable and with localized spectrum which will be a contradiction
if S S..

Let F

_
C be a closed set with the property F n S 9. We shall write

F as F1 u F with F1, F closed and with the property Fj n S 0 (j 1, 2).
Let F H G with H and G open, G n S 0, and the S-covering

{G, Gs} with Gs H (j 1, 2). Let also x er (F) be arbitrary. It has
the decomposition

X Xl

with respect to the covering {G, Gs} and since the spectrum of T is localized,
we have

ar(xs) s, at(x) s F.

We can write xs y W ys with respect to the coveting {G: ,Gs}. So using
again the localization of the spectrum of T, we have

By our assumption, we have Sr . Thus, on account of Proposition 2.1,
it follows that ys 0. Consequently, the following inclusion is true"

By Proposition 2.2, we have the equMities

.o () (j l. 2);
thus

m,0 + m,o m(O) + m(O) m(O ).

Since T is strongly residually decomposable, the last linear manifold is closed
and included in r, therefore the family r.,u has a least upper bound [11].
Then we can write

m (F) ..em(G )

and as in Proposition 2.2 (see also [11]), the space r, exists. In this manner
the condition () of our definition is verified.
Now let {G}% u {Gs} be an S-covering of a(T). By completion of

we shall construct two open sets Gs, and Gs such that Gs n (S Gs)
(j k). Then we shall refine the sets G G. such that an open set G
intersects at most one of the sets S and S and if it intersects the set
(respectively S), it is completely contained in Gs (respectively Gs). Now
we can form an S-covering of a (T) using only those open sets G which do not
intersect the set S and Gs (k 1, 2).- u {G} (k 1, 2) be the coveg obtained and let x
Then x has the following decomposition with respect to the first covering"

x x / -t- x, /
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with ar (xsl) sl. The element xs has another decomposition with respect
to the second covering

xs yl -t- -t- ym -with ar(ys) s,.. Since the spectrum of T is a localized one, we have

o’r (ys) o’r (xs) n (s (, n (s Gs
(the last equality can be obtained by a special construction of the sets G
and Gs which is always possible).
Let us denote by {} (j 1, mk ;] 1, 2) the system of invariant

subspaces obtained from both coverings. Since T is Sk-residually decompos-
able (]c 1, 2) we can suppose that . r,rj where F H are closed and
F n St 0 (/c /);therefore by Proposition 3.2, r, r(F.). But T is
strongly residually decomposable, hence the j r(F) are closed in and
includedinr, where F (J_aF (j 1, n). Furthermore, by
Proposition 2.3, we have a(T[ .) G. (j 1, n) and the element
x e now has the decomposition

where the x e are obtained by adding the corresponding elements and where
xs ys Then T is S-residually decomposable and its spectrum is obviously
localized. This is a contradiction if $1 S. Therefore there exists a
unique minimal set Sr such that T is S-residually decomposable and its
spectrum is localized.

DEFINITION 3.3. If T e C () is strongly residually decomposable, the set
Sr will be called the spectral residuum of T.

For a spectral operator T e B () in the sense of Dunford [5] or Tulcea [9],
one obtains easily that Sr 0; if the operator is not bounded [2], then

We note that there exist simple examples for which the spectral residuum
is not trivial one. For instance the (isometrical) "shift" on separable
Hilbert spce is strongly residually decomposable but its spectral residuum
is equal to its spectrum.
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