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1. Introduction
Let A be a C*-algebra; that is, a Banach algebra with involution satisfying

the C*-condition aa* a ]]2. It is well known that A can be faithfully
represented as an algebra of operators on some Hilbert space. However it is
clear that the rank of the image of a given element may vary in different rep-
resentations. The main purpose of this paper is to give a necessary and suffi-
cient condition for an element to have an operator of rank one as its image
under some faithful representation of A.
We shall call an element s of a C*-algebra A a single element if, whenever

asb 0 for some a, b in A, we have that at least one of as, sb is zero.
It is easy to see that an operator of rank one is a single element of any algebra

of operators that contains it. The condition of being single has been used by
Ringrose [8], [9] as a property of rank one operators in triangular and nest
algebras that is invariant under algebraic isomorphisms. Munn [6] has also
used the condition, imposing it on every element of an algebraic semigroup, but
there does not seem to be any obvious connection between [6] and what follows
here.

It will be shown that there exists a faithful representation of A such that the
image of every non-zero single element of A is an operator of rank one. This is
done in Sections 2 and 3. In Section 4 the theory developed is applied to give
the standard representation of a dual C*-algebra. This section also contains
characterizations of dual C*-algebras and certain W*-algebras, including a
characterisation of the algebra of all bounded linear operators on a Hilbert
space. The final section contains an example showing that the main result
cannot be generalised to all Banach algebras.

In general, the terminology used will be as in Rickart [7] and Dixmier [1],
[2]. At certain points, noted in the text, representations that are not adjoint
preserving will be considered. Otherwise representations will be, by definition
adjoint preserving. All the algebras considered will be over the complex field.

2. Algebraic properties,
The set of single elements of the C -algebra A will be denoted by . Note

that the zero element is a member of .
]EMMA 2 1. If S e then s* e . For any element x of A, xs e and sx e .
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Proof. If as*b 0 then b*sa* 0 and as s is single, either b*s or sa* is zero.
So either s*b or as* is zero and thus s* is single.

If axsb 0 then, as s is single, either axs or sb is zero. So either axs or xsb is
zero and thus xs is single. Similarly sx is single.
An alternative statement of the above lemma is that in the multiplicative

semigroup of A the single elements form a selfad]oint semigroup ideal. If this
ideal contains a non-zero element s then it contains a non-zero selfadoint
element s*s. The next lemma shows that in this case it will contain a non-zero
selfadjoint idempotent.

LEMMA 2.2. If S e r ann s is normal then for some complex number
(i) s ,s,
(ii) s ke where e is a single selfadjoint idempotent.

Proof. If s 0 then we may take k 0 and e 0. Suppose s # 0 and let
C be the commutative C*-algebra generated by s and s*. By the Gelfand rep-
resentation theorem [7, p. 190], C is isometrically *-isomorphic to the algebra
Co(X) of all functions vanishing at infinity on a locally compact Hausdorff
space X. If c e C let be the image of c under the Gelfand representation.
We show that the support of (that is, {x (x) # 0} consists of exactly one
point. As s # 0 we have that # 0 and so the support of must contain at
least one point. However, if the support of contains two distinct points xl
and x2, since a locally compact Hausdorff space is completely regular, there
exist functions f and g in C0(X) with disjoint supports such that f(xl) # 0 and
g(x2) O. We then have fg 0 with f # 0 and g # 0. But as the Gel-
fand representation is onto C0(X), there exist elements a and b in C such that
4 f and 3 g. Then asb 0 but as # 0 and sb # O. This contradicts the
fact that s is single. Hence (x) 0 except at one point x0.

Let k (x0). Clearly ()(x0) k(x0). Also if },-1, (x0) 1 and
(x) 0 when x # x0. Hence $ is a real idempotent function. As the

* ks and that e k-is is aGelfand map is a -isomorphism we have that s

selfad]oint single idempotent.

LEMMA 2.3. For any single element s there exist selfadjoint single idempotents
e and f such that s fse.

Proof. The case s 0 is trivial. Suppose s # 0. From Lemma 2.2 there
exist single selfadjoint idempotents e and f such that for some non-zero com-
plex numbers k and t,, s*s he and ss* f. We prove that f fse. As e is
idempotent,

k(se s)s*s (se s)e 0

and so, as s* is single and s*s 0, we have

(se s)s* O.
Hence

(se s)(se s)* (se s)es* (se s)s* O,
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and the C*-condition implies that se s O.
fs s. Therefore s e adf re idempotent,

Similarly it cn be shown that

se # fse.
COROLLArY 2.4. The principal left ideal As of a non-zero single elements is

equal to the principal left ideal of a single selfadjoint idempotent. Also s As.
Similar statements hold for principal right ideals.

Proof. If e is as in the lemma,

As Ase

_
Ae.

But

Ae As*s c As.

Hence As Ae and as s se, s Ae As.
We are now in a position to prove the theorem below which contains the

main algebraic fact connecting single elements with operators of rank one.

THEOREM 2.5. If S and are single elements then the set

sAt {sat a eA}
is a zero or a one-dimensional linear subspace of A. Also s sAs.

Proof. It is clear that sAt is a linear subspace of A. If sAt (0) there is
nothing to prove and so we may suppose that sAt (0). Let e and f be the
single selfadjoint idempotents such that as* f and t*t he. Then s fs
and re. Therefore

sAt fsAte

_
fAe and fAe ss*At*t c_ sAt.

Hence sAt fAe where e and f are single selfadjoint idempotents. If s
then s fse and so s sAs.
Now let x and y be non-zero elements of sAt. Then x fxe and y lye.

Using Corollary 2.4, x e Ae Ay. So for some z e A, x zy. It follows
easily that

(*) x fzfy.

To complete the proof we show that fAr consists of scalar multiples of f.
a a* then far is a selfadjoint single element. By Lemma 2.2,

If

faf= g
where g is a single selfadjoint idempotent. But clearly

g =fg =gf

aad so

( f)Ig gfg fg o.
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As f is single and fg g 0, it follows that (g f)] 0 which shows that

f =gf =g.

Hence for any selfadjoint element a of A, far hr. But any element z of A
can be written as z a ib where a and b are selfadjoint. Therefore

fzf faf + ifbf
Thus from (.), if ] X + i, as y fy,

x=kfy=ky,

This completes the proof.

COROLLARY 2.6. If S is a non-zero single element of A then As is a minimal
left ideal and sA is a minimal right ideal.

Proof. If L is a left ideal contained in As and is a non-zero element ofL’
then as for some a e A and

L Al AasAs*a*as
From Corollary 2.4, s*s e s’As and as s’As is one-dimensional,

s a as ks*s

But Ae As and so L As*a’as As. Therefore As is a minimal left ideal
Similarly sA is a minimal right ideal.

The main purpose of this section is to construct an isometric representation
of the C*-algebra A as an algebra of operators on a Hilbert space such that the
image of each non-zero single element is an operator of rank one. The iniigl

part of this construction is based on Chapter IV, 10 of [7].
We first prove a result which may be of independent interest showing the

stability of single elements under algebraic homomorphisms.

LEMMA 3.1. If S is single and is any homomorphism (not necessarily adjoint
preserving or continuous) of A into any linear algebra then (s) is single in(A).

Proof. Let K be the kernel of . From Corollary 2.6, As is a minimal left
ideal. Hence either AsnK As or AsnK (0). If (s) 0 then it is
single. If (s) 0 then as s e As, AsK (0).
Now if (asb) 0 then ash e K and by the above, since sb is single, if ash 0

then Ash

_
K. But sb e Ash and so (sb) O. If asb 0 then either as or sb

is zero. So in either case we have (as) 0 or (sb) 0 and hence (s) is
single in (A).

Suppose that the C*-algebra A contains a non-zero single element. Then by
Lemma 2.2, A contains a non-zero selfadjoint single idempotent e. We show
that an inner product can be defined on the elements of the ideal Ae. If x and
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y re in Ae, x xe nd y ye. Therefore by Theorem 2.5 there exists com-
plex number (x, y) such that

y x ey xe (x, y)e.
Define

(x, y) h(x, y).

THEOREM 3.2. The ideal Ae, with the C*-algebra norm and the inner product
defined above, is a Hilbert space.

x e Ae,
A routine verification shows that (x, y) is conjugate linear. If

(x, x)e x*x 0

and so (x, y) is definite. To show positivity, note first that (e, e} 1 and that

(x, x} (x, x) so (x, x} is real. If (x, x} takes negative values then there exists
y Ae such that (y, y} -1. By multiplying y by a complex number of
modulus one, we may arrange that the real part of (y, e} is zero. Then

(y A- e, y -4- e} -1-4- 1+2Rely, e} 0

contradicting that (x, y) is definite.
To identify the inner product norm with the algebra norm we use the C*-

condition. First

and so e 1. Therefore, since x, x) > 0,

<x, x> <x, x> e <x, x>e x*xe
and since x xe,

Finally, to prove completeness it is now sufficient to prove that Ae is closed in
A. If (x) is a sequence of elements of Ae converging to x,

x xe lim. (xi xe) O.

Therefore x Ae and so the proof is complete.
We now introduce some notation. From Lemma 2.1 it is clear that the set

of finite sums of single elements of a C*-algebra forms a *-ideal. We shall
denote this ideal by S and its closure by 2. For any non-zero single idem-
potent e we write He for the ideal Ae considered as a Hilbert space. Let ae be
the set AeA {aeb a, b A}, denote the set of finite sums of elements of a,

by Se and the closure of Se by 2. Clearly Se and Ze are two-sided *-ideals of
A. We define the representation p, of A into the algebra of bounded linear
operators on He by

p(a)x ax
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where x e Ho. Since He Ae is a left ideal, it is easily verified that pe is a
representation. That pe is adjoint preserving follows from y*ax (ay)* *x.
We now prove some further properties of pe. The operator x -- (x, p)q will be
denoted by p (R) q.

THEOREM 3.3. If s isa single element of A then pe(s) has rank one or zero.
Every rant: one operator on He is the image under pe of some element ofpe Also
if s r, then

Proof. The range of pe(s) is sAe. If s is single then by Theorem 2.5, sAe is
zero or one dimensional. Hence pe(s) has rank one or zero. Now let p and q
be non-zero vectors of He. If x e He, by the definition of the inner product,

p x (x,

and since q qe, qp* ze and we have

p(qp*)x qp*x (x, p}q.

Hence pe(qp*) p (R) q and every rank one operator on He is of this form.
To prove the remaining statement note first that if aeb is a non-zero element

of ze then the fact that e is single implies that aebb*e 0 and hence that
pe(aeb) O. Now for any non-zero element s of ,,

su;){tl p(s*s)x [l x ell., x 1}

sup{ *x x Ae, x g 1}.

Lemma 2.2 shows that

where, as s 0, f is a non-zero single selfadjoint idempotent and k is a non-zero
complex number. From the proof of Theorem 3.2, f [I 1 and so, taking
norms,

* I Io
Hence

[I pe(s) sup{I kl" fx x e Ae, x <-
Since f Ae, there exists y Ae such that fy O. Taking x fY [I-lfY we
have that

But clearly p<) and so for all s e ze, pe(s) II s I1.
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A non-zero representation p of A on a Hilbert space H is defined to be (topo-
logically) irreducible if for all nomzero h iu H, {p(a)h a A} is dense in H.
Since pe(A) contains every operator of rank one on H, we have:

COnOLLAnY 3.4. Pe is irreducible.

THEOREM 3.5. [f p is a non-zero continuous irreducible representation (not
necessarily adjoint preserving,) of A on a Hilbert space H and for some single
element s, p(s) 0 then p is similar to p where e is the single selfadjoint idem-
potent such that s se. If p is an adjoint preserving representation then p is
unitarily equivalent to p.

Proof. Since p(s) p(s)p(e) 0, p(e) is a non-zero idempoteat on H.
Hence there exists a vector h of H such that h 1 and p(e)h h. Define
the operator T from He to H by

Tx p(x)h

where x e He. Since p is continuous, there exists a positive constant lc such
that p(a) <- ]c a II. Therefore

Also as x xe, x*x Xe for some constant and x*x I. Then

p(x*) liP(x) h - p(x*z)h 11 11 kh IX x Ii.
for x e He. Now as for all a e A, p(a)h p(a)p(e)h p(ae)h, and so as p is
irreducible the set {p(x)h x e He} is a dense subset of H. From above, the
operator mapping p(x)h onto x is injective and bounded on this dense subset of
H. Hence it may be extended by continuity to a bounded operator from H to
He which is the inverse of T. Then for all x e He

T-p(a)Tx T-Ip(ax)h ax pe(a)x

and so p is similar to pe
If p is adjoiat preserving it is automatically continuous and p(a) II < a

for all a in A, (see [2, 1.3.7]). Putting k 1 in the above inequalities shows
that in this case T is isometric and invertible and consequently T is unitary.
This proves the theorem.

COnOLLAaY 3.6. For any non-zero single element s of A there is one and only
one unitary equivalence class [p] of irreducible (adjoint preserving) representations
such that p(s) for pe[p]. Also if pc[p] then p(s) has rank one and

Proof. Immediate rom Theorem 3.3 and Theorem 3.5.
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THEOREM 3.7. There exists an isometric representation of the C*-algebra A
such that the image of each non-zero single element has rank one.

Proof. Let {[p] /e r} (1 an index set) be the set of all unitary equi-
valence classes of irreducible representations of A. Let {p , e 1} be a set
consisting of one representative from each equivalence class. Let H be the
Hilbert space of p. Define a Hilbert space H and a representation r of A on
H by

H= {H:r},
r(a) {p(a) :TeF}.

Theorem 2.7.3 of [2] states that there exists a set {pC" i e I} of irreducible
representations of A such that

sup{ pi(a) i e II.
Since p(a) ]t depends o.nly on the equivalence class of p, we have

r(a) sup{ p(a)

Since the opposite inequality holds for all representations, (1.3.7 of [2]), is
isometric. If s is any non-zero single element of A, Corollary 3.6 shows that
p(s) 0 for exactly one and forthis,p(s) has rank one. Hence (s) has
rank one.

zt. Applicctions
Let A be a C*.-algebra, a the set of single elements of A, S the set of finite

sums of members of a, and 2; the closure of S. We first identify S as the socle
of A (see [7, p, 46]). In view of Corollary 2.6 it is sufficient to prove the follow-
ing result.

LEMMA 4.1. If M is a minimal left ideal of A then M As for some single
element s of A. A similar statement holds for right ideals.

Proof. If0 s eM, As

_
M. As s*s O and M is minimal, As M.

We prove that s is single. If asb 0 and as 0 then as before Aas M.
Hence Mb Aasb (0) and so sb 0. A similar proof holds for right
ideals.

For the definition of a dual algebra we refer to [7, Chapter II 8].

THEOREM 4.2. The C*-algebra A is dual if and only if A.

Proof. This is an immediate consequence of Lemma 4.1 aad Theorem 2.1
of [5] which states that a C*-algebra is dual if and only if its socle is dense.

If as 0 for all s e a implies that a 0, we shall say that A is separated by
its single elements. Since is a selfadjoint set aa equivalent property is" sa 0
for all s e a implies that a 0. We now show that for any C*-algebra the
quotient by some ideal results in an algebra with this property. However if
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a (0) this quotient is trivial. Let B be the left anrhhilator of 2, that is,
B {b bx 0 for all x e 2}. Since 2; is a selfadjoint ideal, it follows easily
that B is also a selfadjoint ideal. We now consider the C*-algebra A/B. The
equivalence class a -t- B of an element will be denoted by [a].

LEMMA 4.3. If S is a single element in A then [s] is a single element in A/B
and A/B is separated by its single elements.

Proof. That [s] is single follows from Lemma 3.1. If [a][t] 0 for all
single elements [t] of A/B then in particular [a][s] 0 for all single elements s
of A. Then as =Oforallsezandsoa2; (0). That is, aeBand[a] 0.
For an algebra that is separated by its single elements a faithful representa-

tion can be i’ound without appealilg to general representation theory. We
first prove the following result for all C*-algebras. (Recall that ae AeA.)

If e and f are single selfadjoint idempotents, either ae ai or
Hence pe and p] are unitarily equivalent if and only if ae a

Proof. Suppose ana] (0). Then for some a, b in A, afb he. Since
f fthis implies that (fa*af)f(fbb*f) is in ae, and the fact that f is single shows
that this element is not zero. Hence by Theorem 2.5, f e ae and so as
The opposite inclusion is proved in the same way. Therefore a as.

If a a] then Theorem 3.3 and Corollary 3.6 show that pe and Ps are uni-
tartly equivalent. Conversely if p and Ps are unitarily equivalent then as
pe(e) 0 we must have p(f) O. Hence there exists x Ae such that
p(f)x fx O. Then (xf)*(fx) x*fx 0 and since x xe, by Theo-
rem 2.5, x*fx e. Therefore e e a as and thus from above, ae hi.

Let A be a C*-algebra that is separated by its single elements. By Zorn’s
lemma there exists a set E of non-zero single selfadjoint idempotents that is
maximal subject to the condition that a / (0) when e, f e E and e f.
It follows easily that

Let

p= {p:eeE}.

Then, as in the proof of Theorem 3.6, p(s) has rank one for all non-zero single
elements of A. Hence if a A and as 0 for some single element s of A,
then p(a)p(s) 0 and so p(a) O. Therefore the fact that A is separated
by its single elements implies that p is faithful. By 1.8.1 of [2], p is conse-
quently isometric. If this same construction is carried out with an arbi-
trary C*-algebra the resulting representation will have as kernel the annihila-
tor of 2;.

If A is a dual C*-algebra, from Theorem 4.2, A 2 and so clearly A is
separated by its single elements. From Theorem 3.3 it follows that the image
of 2; under pe is the closure of the set of all operators of finite rank on
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It is a well known result that this is the set of all compact operators on H,.
Therefore p is easily seen to be the standard representation of a dual C*-
algebra as the C( sum of C*-algebras each of which is the set of all com-
pact operators on some Hilbert space, (see [4, Theorem 8.3, p. 412]).
We now turn to a characterization of certain W*-algebras. The set of

seminorms on a C*-algebra A defined by a -- as for all single elements s
of A determines a locally convex topology ou A. We call this the s-topology.
The s-topology is Hausdorff if and only if the single elements separate A.

THEOREM 4.5. A C*-algebra is isometrically isomorphic to a direct sum of
type I factors if and only if

(i) the s-topology is Hausdorff,
(ii) the unit ball A1 of A is complete in the uniform structure associated

with the s-topology.

Proof. Suppose (i) and (ii) hold. Then the representation p constructed
above is isometric and it follows from Theorem 3.3 that the image under p
of tile s-topology coincides with the strong topology on p(A). Then the unit
ball of p(A) is strongly complete and hence strongly closed. Therefore
p(A) is strongly closed and by Theorem 1 p. 40 of [1] it is weakly closed.

Let !(He) be the set of all bounded linear operators on He. Clearly

p(A) {!(He) :e e El
and p(A) contains each operator of finite rank on He for all e in E. Hence
by yon Neumann’s double commutant theorem (see [1, Theorem 2, Corollary
1, p. 43]), as p(A) is weakly closed,

p(A)" p(A) @{!(Ue) :e e E

and (H) is a type I factor.
Conversely if A is isometrically isomorphic to a direct sum of type I factors

then for a suitable set {H , 1} of Itilbert spaces, A is isometrically iso-
morphic to the direct sum {(H) :, e 1}, (see [1, p. 121]). As this
algebra has the properties (i) and (ii), the theorem follows.

COROLLARY 4.6. A C*-algebra is isometrically isomorphic to the algebra of all
bounded linear operators on some Hilbert space if and only if, in addition to
(i) and (ii) of Theorem 4.5,

(iii) ae for all non-zero single selfadjoint idempotents e and f of A.

Proof. Lemma 4.4 shows that p pe for some non-zero single selfadjoiat
idempotent e. Hence the direct sum has only one member. The converse
is obvious.
Suppose now that A is any C*-algebr that can be faithfully represented as a

W*-algebra on some Hilbert space H. Different conditions on A for this to
hold have been givea by Kadiso [3] and Sakai [10]. By abuse of notation
we suppose that A is a W*-algebra of operators on H. We may also suppose
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that {ax a e A, x e H} is dense in H. Let be the set of single elements of
A and let H1 sx s r, x H}. Using Lemma 1.1 it is easy to see that
H1 is invariant under both A and the commutant A’ of A. Thus by the double
commutant theorem the orthogonal projection f on H is in the centre of A.
Let g I --f. Then A can be decomposed into the direct sum

A A (3 Ao.
It is easy to see that A corresponds to the part of the factor decomposition of
A that consists of a direct sum of type I factors. Also Ao is the annihilator
B of 2; introduced prior to Lemma 4.3. Thus in this case B is a direct sum-
mand. In the next section we show that this is not true in general.

5. Counterexamples

As the definition of a single element is applicable to any lgehra, it is nt-
ural to ask whether the foregoing theory can be extended to Banach algebras
in general. We now show that without further conditions such a generalisa-
tion is impossible.

Let A be the algebra of all complex-valued functions continuous on the
closed unit disc and holomorphic inside the unit disc of the complex plane,
(see [7, p. 304]). This is a Banach algebra with no divisors of zero and hence
every element is trivially single. However this algebra has no one-dimen-
sional character of any kind and it can be observed that all the important
results of Section 2 are false in this case. Note that A even has an irtvolution
defined by

f*(z)
which satisfies the condition that f*f 0 implies that f 0.

It may be significant that the single elements of a C*-algebra automatically
satisfy a norm condition that is not satisfied by the elements of the above
algebra. This condition is: for all single elements s,

The condition is a norm analogue of the definition of a single element. The
proof of it in a C*-algebra is as follows. If s is a non-zero selfadjoint single
idempotent e, then ]] e I] 1 and by Theorem 2.5, ebb*e Xe and hence

llebli Xi. But then

II aeb ]l aebb*ea* II ,aeea* li ll aeil ’.

For a general single element s, s se where e is a selfadjoint single idempotent.
Then from above,
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and

Combining these two lines gives the result.
Lemma 4.1 is one result which can be proved for any semisimple Banach

algebra. On this basis it is possible to develop the theory of semisimple
annihilator algebras, (which are rich ia minimal idesls), (see [7, Chapter II,
8]). However this is very similar to the stsadsrd treatment.

Finally we show that for geaersl C*-81gebr the aailtor ideal B of Z
is not lwys a direct summad. Let K be the lgebr8 of 11 compact oper-
ators on some Hilbert spce. Let C be some C*-lgebr8 with ao identity
nd no non-zero single elements, (for example Co(X) where X is locslly
compact Husdo spce with no isolated points). Consider the 81gebra
K C and adjoin anidentity to it. Then K 0 and B 0 C.
However any complementary subspace to B must contain the identity and
hence is not an ideal.
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