ON CERTAIN ELEMENTS OF C*-ALGEBRAS

BY
J. A. Erpos’

1. Introduction

Let A be a C*-algebra; that is, a Banach algebra with involution satisfying
the C™*-condition || aa™ || = || @ ||. It is well known that A can be faithfully
represented as an algebra of operators on some Hilbert space. However it is
clear that the rank of the image of a given element may vary in different rep-
resentations. The main purpose of this paper is to give a necessary and suffi-
cient condition for an element to have an operator of rank one as its image
under some faithful representation of A.

We shall call an element s of a C*-algebra A a single element if, whenever
asb = 0 for some a, bin A, we have that at least one of as, sb is zero.

It is easy to see that an operator of rank one is a single element of any algebra
of operators that contains it. The condition of being single has been used by
Ringrose [8], [9] as a property of rank one operators in triangular and nest
algebras that is invariant under algebraic isomorphisms. Munn [6] has also
used the condition, imposing it on every element of an algebraic semigroup, but
there does not seem to be any obvious connection between [6] and what follows
here.

It will be shown that there exists a faithful representation of A such that the
image of every non-zero single element of A is an operator of rank one. This is
done in Sections 2 and 3. In Section 4 the theory developed is applied to give
the standard representation of a dual C*-algebra. This section also contains
characterizations of dual C*-algebras and certain W*-algebra,s, including a
characterisation of the algebra of all bounded linear operators on a Hilbert
space. The final section contains an example showing that the main result
cannot be generalised to all Banach algebras.

In general, the terminology used will be as in Rickart [7] and Dixmier [1],
[2]. At certain points, noted in the text, representations that are not adjoint
preserving will be considered. Otherwise representations will be, by definition
adjoint preserving. All the algebras considered will be over the complex field.

2. Algebraic properties

The set of single elements of the C*-algebra A will be denoted by . Note
that the zero element is a member of o.

TeMMma 2.1. If seo then s* eo. For any element x of A, xs e o and sT € o.
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Proof. If as*b = 0 then b*sa® = 0 and as s is single, either b*s or sa™ is zero.
So either s*b or as™ is zero and thus s* is single.

If azsb = 0 then, as s is single, either azs or sb is zero. So either axs or zsb is
zero and thus «s is single. Similarly sz is single.

An alternative statement of the above lemma is that in the multiplicative
semigroup of A the single elements form a selfadjoint semigroup ideal. If this
ideal contains a non-zero element s then it contains a non-zero selfadjoint
element s*s. The next lemma shows that in this case it will contain a non-zero
selfadjoint idempotent.

Lemma 2.2. If s € o ana s s normal then for some complex number \,
(i) s = s,
(i1) s = Ne where e 15 a single selfadjoint idempotent.

Proof. If s = 0then we may take A = Oande = 0. Suppose s 5 0 and let
C be the commutative C*-algebra generated by s and s*. By the Gelfand rep-
resentation theorem {7, p. 190], C is isometrically *-isomorphic to the algebra
Co(X) of all functions vanishing at infinity on a locally compact Hausdorff
space X. If c eC let & be the image of ¢ under the Gelfand representation.
We show that the support of § (that is, {z : §(z) # 0}) consists of exactly one
point. As s # 0 we have that § # 0 and so the support of § must contain at
least one point. However, if the support of § contains two distinet points x,
and x, since a locally compact Hausdorff space is completely regular, there
exist funetions f and g in Cy(X) with disjoint supports such that f(x;) £ 0 and
g(zs) £ 0. We then have f§g = 0 with f§ > 0 and 8¢ £ 0. But as the Gel-
fand representation is onto Co(X), there exist elements a and b in C such that
4 =fand b =g. Thenasb = Obutas  0and sb 0. This contradicts the
fact that sis single. Hence §(x) = 0 except at one point x .

Let N = §(wo). Clearly (8)*(2) = M(xo). Alsoif & = \7'8, é(x) = 1and
é(x) = 0 when x # x,. Hence ¢ is a real idempotent function. As the
Gelfand map is a *-isomorphism we have that s* = As and that e = A 'sis a
selfadjoint single idempotent.

LemMA 2.3.  For any single element s there exist selfadjoint single idempotents
e and f such that s = fse.

Proof. The case s = 0 is trivial. Suppose s £ 0. From Lemma 2.2 there
exist single selfadjoint idempotents e and f such that for some non-zero com-

plex numbers A and g, s*s = \e and ss* = uf. We prove that f = fse. Aseis
idempotent,

Ase — s)s¥s = (se — s)e = 0
and so, as s* is single and s*s 5 0, we have

(se — s)s* = 0.
Hence
(se — s)(se — 8)* = (se — s)es* — (se — s)s* = 0,



684 J. A. ERDOS

and the C*-condition implies that se — s = 0. Similarly it can be shown that
fs = s. Therefore as e and f are idempotent,

s = 8¢ = fs = fse.

CoROLLARY 2.4. The principal left ideal As of a non-zero single elements is
equal to the principal left ideal of a single selfadjoint idempotent. Also s € As.
Similar statements hold for principal right ideals.

Proof. 1If e is as in the lemma,
As = Ase © Ae.
But
Ae = As*s C As.

Hence As = Aeand as s = se, s e Ae = As.
We are now in a position to prove the theorem below which contains the
main algebraic fact connecting single elements with operators of rank one.

TaEOREM 2.5. If s and tare single elements then the set
sAt = {sat : a e A}
18 a zero or a one-dimensional linear subspace of A. Also s € sAs.

Proof. It is clear that sA¢? is a linear subspace of A. If sAt = (0) there is
nothing to prove and so we may suppose that sd¢ (0). Let ¢ and f be the
single selfadjoint idempotents such that ss* = uf and t*t = Ne. Then s = fs
and ¢t = te. Therefore

sAt = fsAte C fAe and fAe = ss*At*t C sAt.

Hence sAt = fAe where ¢ and f are single selfadjoint idempotents. If s = ¢
then s = fse and s0 s € sds.

Now let  and y be non-zero elements of sd¢. Then x = fre and y = fye.
Using Corollary 2.4, x e Ae = Ay. So for some ze¢ 4, x = zy. It follows
easily that

(%) T = fafy.

To complete the proof we show that fAf consists of scalar multiples of f. If
a = a” then faf is a selfadjoint single element. By Lemma 2.2,

faf = Ng

where ¢ is a single selfadjoint idempotent. But clearly
g =1I=y9f

and so

(9 — Nfg = gfg — fg = 0.
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As f is single and fg = g # 0, it follows that (g — f)f = 0 which shows that
f=a =9

Hence for any selfadjoint element a of A, faf = N\f. But any element z of A
can be written as z = @ + b where a and b are selfadjoint. Therefore

fof = faf + ifbf = N + duf.
Thus from (*),if k = N 4 u, a8y = fy,

z = kfy = ky.
This completes the proof.

COROLLARY 2.6. If s is a non-zero single element of A then As is a minimal
left ideal and sA is a minimal right ideal.

Proof. 1If L is a left ideal contained in As and [ is a non-zero element of L
then I = as for some a ¢ A and

L D Al = Aas D As*a*as
From Corollary 2.4, s*s € s*As and as s*As is one-dimensional,
s*a*as = ks*s = e.

But Ae = Asandso L C As*a*as = As. Therefore Asis a minimal left ideal
Similarly sA is a minimal right ideal.

4. Representations

The main purpose of this section is to construct an isometric representation
of the C*-algebra A as an algebra of operators on a Hilbert space such that the
image of each non-zero single element is an operator of rank one. The initial
part of this construction is based on Chapter IV, § 10 of [7].

We first prove a result which may be of independent interest showing the
stability of single elements under algebraic homomorphisms.

LeMMma 3.1.  If s is single and ¢ ts any homomorphism (not necessarily adjoint
preserving or continuous) of A into any linear algebra then o(s) s single in o(A).

Proof. Let K be the kernel of ¢. From Corollary 2.6, As is a minimal left
ideal. Hence either AsnK = As or AsnK = (0). If ¢(s) = 0 then it is
single. Ifo(s) # Othenasse As, AsnK = (0).

Now if p(asb) = 0then asb ¢ K and by the above, since sb is single, if asb = 0
then Asb € K. But sb e Asb and so ¢(sb) = 0. If asb = 0 then either as or sb
is zero. So in either case we have ¢(as) = 0 or ¢(sb) = 0 and hence ¢(s) is
single in ¢(4).

Suppose that the C*-algebra A contains a non-zero single element. Then by
Lemma 2.2, A contains a non-zero selfadjoint single idempotent e. We show
that an inner product can be defined on the elements of the ideal Ae. If x and
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yarein Ae,x = zeand y = ye. Therefore by Theorem 2.5 there exists a com-
plex number \(z, y¥) such that
y*x = ey*re = Nz, y)e.
Define
(xﬁ y) = )\(il?, Z/)-
TueoreM 3.2. The ideal Ae, with the C*-algebra norm and the inner product
defined above, s a Hilbert space.

Proof. A routine verification shows that {(x, y) is conjugate linear. If
z e Ae,

(x, x)e = ¥ # 0

and so (z, y) is definite. To show positivity, note first that (¢, ¢) = 1 and that

@, z) = (x, z)so (x, ) is real. If (x, z) takes negative values then there exists
y € Ae such that (y, y) = —1. By multiplying y by a complex number of
modulus one, we may arrange that the real part of (y, e)is zero. Then

W+ey+te=—1+1+2Re(y,e) =0

contradicting that (x, y) is definite.

To identify the inner product norm with the algebra norm we use the C*-
condition. First

lell =1l =le*ll =el
andso || e} = 1. Therefore, since (x,z) > 0,
@) = @) ell = @ael ="zl
and since v = ze,
| a*ze || = || ex’e || = [|ze|® = ||z |I"

Finally, to prove completeness it is now sufficient to prove that Ae is closed in
A. TIf (x;) is a sequence of elements of Ae converging to z,

r — re — lim,, (x; — x¢) = 0.

Therefore x € Ae and so the proof is complete.

We now introduce some notation. From Lemma 2.1 it is clear that the set
of finite sums of single elements of a C*-algebra forms a *-ideal. We shall
denote this ideal by S and its closure by Z. For any non-zero single idem-
potent e we write H, for the ideal Ae considered as a Hilbert space. Let o, be
the set Aed = {aedb : a, b € A}, denote the set of finite sums of elements of o,
by S. and the closure of S, by Z.. Clearly S. and Z, are two-sided * ideals of
A. We define the representation p, of 4 into the algebra of bounded linear
operators on He by

pla)x = ax
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where x e H,. Since H, = Ae is a left ideal, it is easily verified that p. is a
representation. That p, is adjoint preserving follows from y*az = (a*y)*z.
We now prove some further properties of p.. The operator x — (x, p)q will be
denoted by p ® gq.

TaEOREM 3.3. If s is.a single element of A then p.(s) has rank one or zero.
Every rank one operator on H,1s the image under p, of some element of p,. Also
if 8 € gq then

Il oe(s) 1| = [l s 1.

Proof. The range of p.(s) is sde. If sis single then by Theorem 2.5, sde is
zero or one dimensional. Hence p.(s) has rank one or zero. Now let p and ¢
be non-zero vectors of H,. If z ¢ H,, by the definition of the inner product,

p'r = (z, ple
and since ¢ = ge, gp* € o, and we have
pe(gp™)z = g’z = (&, )¢

Hence p.(¢p*) = p ® g and every rank one operator on H, is of this form.

To prove the remaining statement note first that if aeb is a non-zero element
of o, then the fact that e is single implies that aebb*e = 0 and hence that
p.(aeb) = 0. Now for any non-zero element s of o, ,

[ 0s() [I* = 1l pe(8)*p(s) |

I o-(s%s) |

supt | pe(s*)z || 1 e He, [z | < 1)
sup{|| s*sz || : x e de, | x| < 1}.

Lemma 2.2 shows that

s*s = kf
where, as s 3 0, f is a non-zero single selfadjoint idempotent and & is a non-zero
complex number. From the proof of Theorem 3.2, || f|| = 1 and so, taking
norms,
Is*sll = llsl* =1kl
Hence

I pe(s) II* = sup{| k| - [ fz ]| : wede, || x|l <1}

Since f e Ae, there exists y e Ae such that fy = 0. Taking z = || fy || “'fy we
have that

Foe(s) I 2 [ & = || s
But clearly || p.(s) || < || s||andsoforallsea., | pe(s) || = || s |-
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A non-zero representation p of A on a Hilbert space H is defined to be (topo-
logically) 7rreducible if for all non-zero h in H, {p(a)h : a ¢ A} is dense in H.
Since p.(A) contains every operator of rank one on H, we have:

CoOROLLARY 3.4. p, s irreducible.

TaEOREM 3.5. If p is a non-zero continuous irreductble representation (not
necessarily adjoint preserving,) of A on a Hilbert space H and for some single
element s, p(s) = 0 then p is similar to p, where e is the single selfadjoint idem-
potent such that s = se. If p is an adjoint preserving representation then p is
unitarily equivalent to p. .

Proof. Since p(s) = p(s)p(e) = 0, p(e) is a non-zero idempotent on H.
Hence there exists a vector h of H such that || || = 1and p(e)h = h. Define
the operator T from H, to H by

Tz = p(z)h

where z e H, . Since p is continuous, there exists a positive constant k such
that || p(a) || < k| a|. Therefore

[Tzl < k||
Also as ¢ = xe, x*x = \e for some constant Aand || z*z || = | \|. Then
1o@™) [ lle@h || = [ pe™e)h || = I Ml = [N = (=]
Henceas || p(2") | <k |« || =Kz,
[Tl = [lp(@)h | 2 k" |||

forxeH,. Nowasforallaed,p(a)h = p(a)p(e)h = p(ae)h, and so as p is
irreducible the set {p(x)h : x ¢ H.} is a dense subset of H. From above, the
operator mapping p(x)h onto z is injective and bounded on this dense subset of
H. Hence it may be extended by continuity to a bounded operator from H to
H ., which is the inverse of 7. Then for all x ¢ H,

T p(a)Tx = T 'p(azx)h = ax = p.(a)z

and so p is similar to p, .

If p is adjoint preserving it is automatically continuous and || p(a) || < || a ||
for all a in A, (see [2, 1.3.7]). Putting k¥ = 1 in the above inequalities shows
that in this case T is isometric and invertible and consequently 7' is unitary.
This proves the theorem.

CoROLLARY 3.6. For any non-zero single element s of A there is one and only
one unitary equivalence class [p] of irreducible (adjoint preserving) representations
such that p(s) = for pelpl. Also if pelp] then p(s) has rank ome and
o) Il = 1ls|.

Proof. Immediate from Theorem 3.3 and Theorem 3.5.
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THEOREM 3.7. There exists an isometric representation of the C*-algebra A
such that the image of each non-zero single element has rank one.

Proof. Let {[p,] : v e T} (T an index set) be the set of all unitary equi-
valence classes of irreducible representations of A. Let {p, : v ¢ '} be a set
consisting of one representative from each equivalence class. Let H., be the

Hilbert space of p,. Define a Hilbert space H and a representation = of A on
H by

I

H=@{H,:vel},
m(a) = @ {py(a) : veT}.

Theorem 2.7.3 of [2] states that there exists a set {p; : 7 ¢ I} of irreducible
representations of A such that

llall = sup{l|pi(a) || : e}
Since || p(@) || depends only on the equivalence class of p, we have
| w(a) || = sup{l| p4(a) || : v €T} = |la|l.

Since the opposite inequality holds for all representations, (1.3.7 of [2]), = is
isometric. If s is any non-zero single element of A, Corollary 3.6 shows that

p4(s) 5% 0 for exactly one vy and for this v, p,(s) has rank one. Hence = (s) has
rank one.

4. Applications

Let A be a C*-algebra, o the set of single elements of A4, S the set of finite
sums of members of ¢, and = the closure of 8. We first identify S as the socle
of A (see[7,p,46]). Inview of Corollary 2.6 it is sufficient to prove the follow-
ing result.

LemMmA 4.1.  If M is a minimal left ideal of A then M = As for some single
element s of A. A similar statement holds for right ideals.

Proof. I£0 = seM, As © M. As s*s 5 0 and M is minimal, As = M.
We prove that s is single. If asb = 0 and as = O then as before das = M.
Hence Mb = Aasb = (0) and so sb = 0. A similar proof holds for right
ideals.

For the definition of a dual algebra we refer to [7, Chapter II § 8].

THEOREM 4.2. The C*-algebra A is dual if and only if = = A.

Proof. This is an immediate consequence of Lemma 4.1 and Theorem 2.1
of [5] which states that a C*-algebra is dual if and only if its socle is dense.

If as = 0 for all s € ¢ implies that a = 0, we shall say that A is separated by
its single elements. Since o is a selfadjoint set an equivalent property is: sa = 0
for all s e ¢ implies that « = 0. We now show that for any C*-algebra the
quotient by some ideal results in an algebra with this property. However if
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o = (0) this quotient is trivial. Let B be the left annihilator of Z, that is,
B =1{b:bx =0forallzeZ}. Since Z is a selfadjoint ideal, it follows easily
that B is also a selfadjoint ideal. We now consider the C*-algebra A/B. The
equivalence class a + B of an element will be denoted by [a].

LemmA 4.3. If s is a single element in A then [s] is a single element in A/B
and A/ B is separated by its single elements.

Proof. That [s] is single follows from Lemma 3.1. If [a][{] = O for all
single elements [t] of A/B then in particular [a][s] = O for all single elements s
of A. Thenas = OforallsesandsoaZ = (0). Thatis,a ¢ Band [a] = 0.

For an algebra that is separated by its single elements a faithful representa-
tion can be found without appealing to general representation theory. We
first prove the following result for all C*-algebras. (Recall that o, = AeA.)

LemMma 4.4. If e and f are single selfadjoint idempotents, either o, = oy or
aeno; = (0). Hence p, and py are unitarily equivalent if and only tf o, = o .

Proof. Suppose ooy % (0). Then for some a,b in A, afbes.. Since
f* = fthis implies that (fa*af)f(fbb*f) is in o, , and the fact that f is single shows
that this element is not zero. Hence by Theorem 2.5, f € 0. and s0 ¢; S o, .
The opposite inclusion is proved in the same way. Therefore o, = oy .

If 6. = o; then Theorem 3.3 and Corollary 3.6 show that p, and p; are uni-
tarily equivalent. Conversely if p. and p; are unitarily equivalent then as
p.(e) # 0 we must have p.(f) # 0. Hence there exists « ¢ Ae such that
pe(f)x = fxr # 0. Then (zf)*(fx) = 2*fx # 0 and since x = ze, by Theo-
rem 2.5, 2*fx = e. Therefore ¢ € o, n o, and thus from above, ¢, = o;.

Let A be a C*-algebra that is separated by its single elements. By Zorn’s
lemma, there exists a set F of non-zero single selfadjoint idempotents that is
maximal subject to the condition that ¢, n o, = (0) when ¢, f ¢ E and e #f.
It follows easily that

o = Ufo, : e ¢ B}.
Let

p = ®{p. : e ¢ E}.

Then, as in the proof of Theorem 3.6, p(s) has rank one for all non-zero single
elements of A. Hence if a € 4 and as ¥ 0 for some single element s of 4,
then p(a)p(s) # 0 and so p(a) 5 0. Therefore the fact that A is separated
by its single elements implies that p is faithful. By 1.8.1 of [2], p is conse-
quently isometric. If this same construction is carried out with an arbi-
trary C*-algebra the resulting representation will have as kernel the annihila-
tor of 2.

If A is a dual C*-algebra, from Theorem 4.2, A = 2 and so clearly 4 is
separated by its single elements. From Theorem 3.3 it follows that the image
of = under p, is the closure of the set of all operators of finite rank on H, .
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It is a well known result that this is the set of all compact operators on H, .
Therefore p is easily seen to be the standard representation of a dual C*-
algebra as the C(») sum of C™*-algebras each of which is the set of all com-
pact operators on some Hilbert space, (see [4, Theorem 8.3, p. 412]).

We now turn to a characterization of certain W*-algebras. The set of
seminorms on a C™-algebra A defined by a — || as || for all single elements s
of A determines a locally convex topology on A. We call this the s-topology.
The s-topology is Hausdorff if and only if the single elements separate A.

TueoreM 4.5. A C™*-algebra is isometrically isomorphic to a direct sum of
type 1 factors if and only if
(1) the s-topology is Hausdorff,
(i1) the unit ball Ay of A is complete in the uniform structure associated
with the s-topology.

Proof. Suppose (i) and (ii) hold. Then the representation p constructed
above is isometric and it follows from Theorem 3.3 that the image under p
of the s-topology coincides with the strong topology on p(A4). Then the unit
ball of p(A) is strongly complete and hence strongly closed. Therefore
p(4) is strongly closed and by Theorem 1 p. 40 of [1] it is weakly closed.

Let B(H,) be the set of all bounded linear operators on H,. Clearly

p(4) S O{B(H.) : e ¢k}

and p(A) contains each operator of finite rank on H, for all e in . Hence
by von Neumann’s double commutant theorem (see [1, Theorem 2, Corollary
1, p. 43]), as p(A) is weakly closed,

p(4)" = p(4) = ®{B(H.) : ¢ ¢ I}

and B(H,) is a type I factor.

Conversely if A is isometrically isomorphic to a direct sum of type I factors
then for a suitable set {H., : v ¢ '} of Hilbert spaces, A is isometrically iso-
morphic to the direct sum @{B(H,) : v eI}, (see [1, p. 121]). As this
algebra has the properties (i) and (ii), the theorem follows.

COROLLARY 4.6. A C*-algebra is isometrically isomorphic to the algebra of all
bounded linear operators on some Hilbert space if and only if, in addition to
(i) and (ii) of Theorem 4.5,

(ili) o, = o, for all non-zero single selfadjoint idempotents e and f of A.

Proof. Lemma 4.4 shows that p = p. for some non-zero single selfadjoint
idempotent e. Hence the direct sum has only one member. The converse
is obvious.

Suppose now that A is any (C*-algebra that can be faithfully represented as a
W*.algebra on some Hilbert space H. Different conditions on A for this to
hold have been given by Kadison [3] and Sakai [10]. By abuse of notation
we suppose that A4 is a W*-algebra of operators on H. We may also suppose
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that {ax : @ € A, x ¢ H} is dense in H. Let o be the set of single elements of
A and let Hy = {sz : seo, z e H}. Using Lemma 1.1 it is easy to see that
H, is invariant under both A and the commutant A’ of A. Thus by the double
commutant theorem the orthogonal projection f on H; is in the centre of A.
Let g =1 — f. Then A can be decomposed into the direct sum

A=A4,@ 4,.

It is easy to see that A corresponds to the part of the factor decomposition of
A that consists of a direct sum of type I factors. Also A, is the annihilator
B of 2 introduced prior to Lemma 4.3. Thus in this case B is a direet sum-
mand. In the next section we show that this is not true in general.

5. Counterexamples

As the definition of a single element is applicable to any algebra, it is nat-
ural to ask whether the foregoing theory can be extended to Banach algebras
in general. We now show that without further conditions such a generalisa-
tion is impossible.

Let A be the algebra of all complex-valued functions continuous on the
closed unit disc and holomorphic inside the unit disc of the complex plane,
(see [7,p.304]). Thisisa Banach algebra with no divisors of zero and hence
every element is trivially single. However this algebra has no one-dimen-
sional character of any kind and it can be observed that all the important
results of Section 2 are false in this case. Note that A even has an involution
defined by

(=) = f(2)

which satisfies the condition that f*f = 0 implies that f = 0.

It may be significant that the single elements of a C*-algebra automatically
satisfy a norm condition that is not satisfied by the elements of the above
algebra. This condition is: for all single elements s,

lash || |s] = [las| [l

The condition is a norm analogue of the definition of a single element. The
proof of it in a C*-algebra is as follows. If s is a non-zero selfadjoint single
idempotent e, then || e| = 1 and by Theorem 2.5, ebb*e = N\e and hence
leb|* = |A|. But then

lacd |* = || abbea™ || = || Naeea™ || = || eb || ae |I".

TFor a general single element s, s = se where e is a selfadjoint single idempotent.
Then from above,

las || = [laseb || = [[as || || |
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and
lsbll =1lsebfl =1sllebl-

Combining these two lines gives the result.

Lemma 4.1 is one result which can be proved for any semisimple Banach
algebra. On this basis it is possible to develop the theory of semisimple
annihilator algebras, (which are rich in minimal ideals), (see [7, Chapter II,
§8]). However this is very similar to the standard treatment.

Finally we show that for a general C™*-algebra the annihilator ideal B of =
is not always a direct summand. Let K be the algebra of all compact oper-
ators on some Hilbert space. Let C be some C*-algebra with no identity
and no non-zero single elements, (for example Co(X) where X is a locally
compact Hausdorff space with no isolated points). Consider the algebra
K & C and adjoin an identity to it. Then £ =K ® 0 and B=0® C.
However any complementary subspace to B must contain the identity and
hence is not an ideal.
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