EICHLER COHOMOLOGY AND AUTOMORPHIC FORMS

BY
Sufian Y. Husseini and Marvin I. Knopp
1. Introduction

This paper is devoted, for the most part, to a new proof of a theorem proved by Gunning [3]. In essence the theorem originates with Eichler [2] who first investigated systematically the cohomology of a Riemann surface R obtained from the generalized periods arising from the integrals of automorphic forms. The automorphic forms in question are of degree ≤-2 with respect to discontinuous groups related to R by means of uniformization theory. Our method, totally different from that of Gunning, employs only the classical theory of automorphic forms and a device introduced in [4]. Throughout we ignore the Riemann surface and work only with the discontinuous group.

Before we can state the main results we must introduce some definitions and notation. Let \mathfrak{F} denote the upper half-plane and let Γ be a discontinuous group of linear fractional transformations acting on \mathfrak{H}. For convenience we normalize Γ so that an element of Γ has the form $z \rightarrow(a z+b) /(c z+d)$, with a, b, c, d real and $a d-b c=1$. We also identify the element $V \epsilon \Gamma$ with the matrices

$$
\pm\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

We say that Γ is an H-group if
(i) Γ is finitely generated,
(ii) Γ is discontinuous in \mathfrak{H} but is discontinuous at no point of the real line,
(iii) Γ contains translations.

The automorphic forms to be considered here are of integral degree with multiplier system, are holomorphic in \mathfrak{H}, and are, as usual, restricted to those which are meromorphic (in the appropriate uniformizing variables) at all of the parabolic cusps of a fundamental region of Γ. The characteristic functional equation satisfied by an automorphic form F of degree r, with multiplier system ε, with respect to Γ, is

$$
\begin{equation*}
F(V z)=v(V)(c z+d)^{-r} F(z) \tag{1}
\end{equation*}
$$

for all $V=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \epsilon \Gamma$, where $\psi(V)$ is independent of z and $|v(V)|=1$. From (1) we can immediately derive a consistency condition for ε which reduces in the case when r is an integer to $v\left(V_{1} \cdot V_{2}\right)=v\left(V_{1}\right) \cdot v\left(V_{2}\right)$, for all $V_{1}, V_{2} \in \Gamma$. That is, v is a complex character on Γ thought of as a matrix group. We denote the complex vector space of automorphic forms of degree r, with multiplier system ϑ, with respect to Γ by $\{\Gamma, r, \vartheta\}$.

Received March 27, 1969.

From now on we assume that r is a nonnegative integer and that ε is a multiplier system on Γ with respect to the degree r. (Note that ε is then a multiplier system with respect to the degree $-r-2$ and $\bar{\varepsilon}$ is also a multiplier system with respect to the degrees r and $-r-2$.) A well-known result due to Bol [1] states that

$$
\begin{equation*}
\frac{d^{r+1}}{d z^{r+1}}\left\{(c z+d)^{r} F(V z)\right\}=(c z+d)^{-r-2} F^{(r+1)}(V z) \tag{2}
\end{equation*}
$$

for any $V=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, with $a d-b c=1$. This can be proved either by induction on r or directly by the use of Cauchy's integral formula. It follows immediately from (2) that if $F \in\{\Gamma, r, v\}$, then

$$
\frac{d^{r+1}}{d z^{r+1}} F=F^{(r+1)} \in\{\Gamma,-r-2, v\}
$$

The converse is not quite true. However it is easy to see from (2) that if $f \epsilon\{\Gamma,-r-2, v\}$ and F is any $(r+1)$-fold indefinite integral of f, then F satisfies the following functional equation:

$$
\begin{equation*}
\bar{v}(V)(c z+d)^{r} F(V z)=F(z)+p_{V}(z) \tag{3}
\end{equation*}
$$

for all $V=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma$. Here $p_{V}(z)$ is a polynomial in z of degree $\leq r$ which depends on V. If it should happen that $p_{V}(z) \equiv 0$ for all $V \epsilon \Gamma$, then in fact (3) reduces to (1) and $F \in\{\Gamma, r, \vartheta\}$. In keeping with recent usage, a function satisfying (3), which is meromorphic in $\mathfrak{H C}$ and meromorphic in the appropriate variables at all of the parabolic cusps of a fundamental region of Γ, will be called an automorphic integral of degree r, with multiplier system τ and period polynomials p_{V}, with respect to Γ. The polynomials p_{V} are also called the period polynomials of the automorphic form f.

If we put $(F \mid V)(z)=\bar{v}(V)(c z+d)^{r} F(V z)$, for $V=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \epsilon \Gamma$, then (3) becomes $F \mid V=F+p_{V}$ and we conclude from this that

$$
\begin{equation*}
p_{V_{1} V_{2}}=p_{V_{1}} \mid V_{2}+p_{v_{2}} \tag{4}
\end{equation*}
$$

for $V_{1}, V_{2} \in \Gamma$. For the moment we will concentrate our attention upon (4). Suppose $\left\{p_{V} \mid V \epsilon \Gamma\right\}$ is any collection of polynomials of degree $\leq r$ satisfying (4); then we call $\left\{p_{V} \mid V \in \Gamma\right\}$ a cocycle. A coboundary is a set $\left\{p_{V} \mid V \in \Gamma\right\}$ of polynomials of degree $\leq r$ such that

$$
p_{V}=p \mid V-p \quad \text { for all } V \in \Gamma
$$

with p a fixed polynomial of degree $\leq r$. With these definitions every coboundary is a cocycle. The cohomology group $H_{v}^{1}\left(\Gamma, P_{r}\right)$ is defined as usual to be the vector space obtained by forming the quotient of the cocycles by the coboundaries. Here P_{r} is the vector space of polynomials of degree $\leq r$. It is of interest to note that if we begin with an automorphic form f of degree $-r-2$ and attach to f the cocycle of period polynomials $\left\{p_{v}\right\}$ by means of (3), this cocycle is not uniquely determined by f. For the indefinite integral
F is determined only up to a polynomial p of degree r. Replacing F by $F+p$, we find that $\left\{p_{V}\right\}$ is replaced by $\left\{p_{V}^{*}\right\}$, where $p_{V}^{*}=p_{V}-(p \mid V-p)$. The important feature here is that the cocycle $\left\{p_{V}^{*}\right\}$ is in the same cohomology class as is $\left\{p_{v}\right\}$. Thus f uniquely determines an element of $H_{v}^{1}\left(\Gamma, P_{r}\right)$ by means of (3).

Let $C^{+}(\Gamma,-r-2, \psi)$ denote the subspace of $\{\Gamma,-r-2, \psi\}$ consisting of entire automorphic forms, that is, those which are holomorphic in \mathfrak{H} and holomorphic at all of the parabolic cusps of a fundamental region. Let $C^{0}(\Gamma,-r-2, \vartheta)$ be the subspace of cusp forms, that is, those entire automorphic forms which vanish at all of the parabolic cusps of a fundamental region. We are now in a position to state our main results.

Theorem 1. Let Γ be an H-group, r a positive integer, and y a multiplier system on Γ corresponding to the degree r. Then as vector spaces,

$$
C^{0}(\Gamma,-r-2, \bar{v}) \oplus C^{+}(\Gamma,-r-2, v) \quad \text { and } \quad H_{v}^{1}\left(\Gamma, P_{r}\right)
$$

are isomorphic under a mapping which is "canonical" in the sense that its construction is independent of Γ, r, and v.

Theorem 2. Let Γ, r, and v be as in Theorem 1. Then given a cohomology class in $H_{v}^{1}\left(\Gamma, P_{r}\right)$ there exists an automorphic form h in $\{\Gamma,-r-2, y\}$ whose period polynomials are in the given cohomology class. In fact h can be so chosen that it is holomorphic in $\mathfrak{H C}$ and at all of the parabolic cusps except for the cusp at $i \infty$.

Remarks. 1. Theorem 1 was stated by Gunning [3, Theorem 5] as follows: there exists an exact sequence of spaces and maps of the form

$$
0 \rightarrow C^{+}(\Gamma,-r-2, v) \rightarrow H_{v}^{1}\left(\Gamma_{1}, P_{r}\right) \rightarrow C^{0}(\Gamma,-r-2, \bar{v}) \rightarrow 0
$$

Gunning assumes that the multiplier system ε consists entirely of roots of unity, while here we make no such assumption on ϑ. On the other hand Gunning assumes only that Γ is a finitely generated Fuchsian group of the first kind, not necessarily an H-group.
2. Eichler's version of Theorem 1 [2, p. 283] (the original version) deals not with $H_{v}^{1}\left(\Gamma, P_{r}\right)$ but rather with a modification of $H_{v}^{1}\left(\Gamma, P_{r}\right)$ which we will denote $\widetilde{H}_{v}^{1}\left(\Gamma, P_{r}\right)$. $\quad \widetilde{H}_{v}^{1}$ does not contain all of the elements of H_{v}^{1}, but only those whose cocycles $\left\{p_{V} \mid V \in \Gamma\right\}$ satisfy the following condition:
(5) Let Q_{1}, \cdot, Q_{t} represent all of the parabolic classes in Γ. Then for each h, $1 \leq h \leq t$, there exists a polynomial p_{h} of degree $\leq r$ such that

$$
p_{Q_{h}}=p_{h} \mid Q_{h}-p_{h}
$$

Eichler's theorem can be stated as
Corollary 1. With Γ, r, and v as in Theorem 1,

$$
C^{0}(\Gamma,-r-2, \bar{v}) \oplus C^{0}(\Gamma,-r-2, \psi)
$$

is isomorphic to

$$
\tilde{H}_{v}^{1}\left(\Gamma, P_{r}\right)
$$

3. In [2], Corollary 1 is proved only for r even and $v \equiv 1$. In [3, pp. 61-2] it was proved under the assumption that ℓ consists entirely of roots of unity. In [2], the case $r=0, v \equiv 1$ is included. As we have stated Corollary 1, the case $r=0$ is not included. However in the Appendix we give a proof of Theorem 1 for $r=0$. (The case $r=0$ is treated in an appendix as it requires, at least at present, a proof different from that for $r>0$.) In §6 we present a deduction of Corollary 1 from Theorem 1 that is valid for $r \geq 0$. Thus Corollary 1 for $r=0$ is actually included among our results here.

2. Cusp forms and the supplementary function

The key to our proof of Theorems 1 and 2 is the use of the "supplementary function". This is very nearly the same concept as the "supplementary series" introduced in [4, pp. 183-184].

Let

$$
S=\left(\begin{array}{cc}
1 & \lambda \\
0 & 1
\end{array}\right), \quad \lambda>0
$$

be the minimal positive translation in Γ, let $\vartheta(S)=e^{2 \pi i x}, 0 \leq x<1$, and let ν be an integer and r a positive integer. Consider the Poincaré series

$$
g_{\nu}(z, \bar{v})=\sum_{V} \frac{\exp \{2 \pi i(\nu+x) V z / \lambda\}}{\bar{v}(V)(c z+d)^{r+2}}
$$

where $V=\left(\begin{array}{cc}* & * \\ c & d\end{array}\right)$ runs through a complete set of elements of Γ with distinct lower row. The following facts concerning the Poincaré series are well known [6, 272-289].
(i) $g_{\nu}(z, \bar{v}) \in\{\Gamma,-r-2, \bar{v}\}$.
(ii) $g_{\nu}(z, \bar{\psi})$ vanishes at all cusps of Γ except possibly at $i \infty$. At $i \infty$ it has an expansion of the form

$$
g_{\nu}(z, \bar{v})=2 e^{2 \pi i(\nu+x) z / \lambda}+2 \sum_{m+x>0} a_{m}(\nu, \bar{v}) e^{2 \pi i(m+x) z / \lambda}
$$

Thus if $\nu+x>0, g_{\nu}(z, \bar{v}) \in C^{0}(\Gamma,-r-2, \bar{v})$.
(iii) There exist integers $0 \leq \nu_{1}<\cdots<\nu_{s}$ such that $g_{\nu_{1}}, \cdots, g_{\nu_{s}}$ form a basis for $C^{0}(\Gamma,-r-2, \bar{v})$.

Suppose $g \in C^{0}(\Gamma,-r-2, \bar{\psi})$. By (iii), there exist complex numbers b_{1}, \cdots, b_{s} such that $g=\sum_{i=1}^{s} b_{i} g_{\nu_{i}}(z, \bar{v})$. Put $g^{*}=\sum_{i=1}^{s} \bar{b}_{i} g_{\nu_{i}}(z, \vartheta)$, where

$$
\begin{aligned}
\nu^{\prime} & =-\nu & & \text { if } x=0 \\
& =-1-\nu & & \text { if } x>0
\end{aligned}
$$

Note that with $\bar{\psi}(S)=e^{2 \pi i x}, 0 \leq x<1$, we also have $\vartheta(S)=e^{2 \pi i x^{\prime}}, 0 \leq x^{\prime}<1$ where

$$
\begin{aligned}
x^{\prime} & =0 & & \text { if } x=0 \\
& =1-x & & \text { if } x>0
\end{aligned}
$$

Thus we have the expansion at $i \infty$

$$
\begin{aligned}
g_{\nu_{i^{\prime}}}(z, \vartheta) & =2 \exp \left\{2 \pi i\left(\nu_{i}^{\prime}+x^{\prime}\right) z / \lambda\right\}+2 \sum_{m+x^{\prime}>0} a_{m}\left(\nu_{i}^{\prime}, v\right) \exp \left\{2 \pi i\left(m+x^{\prime}\right) z / \lambda\right\} \\
& =2 e^{-2 \pi i\left(\nu_{i}+x\right) z / \lambda}+2 \sum_{m+x^{\prime}>0} a_{m}\left(\nu_{i}^{\prime}, v\right) e^{2 \pi i\left(m+x^{\prime}\right) z / \lambda} .
\end{aligned}
$$

It follows that $g^{*} \epsilon\{\Gamma,-r-2, \psi\}, g^{*}$ has a pole at $i \infty$ with principal part

$$
2 \sum_{i=1}^{s} \bar{b}_{i} \exp \left\{-2 \pi i\left(\nu_{i}+x\right) z / \lambda\right\}
$$

and g^{*} vanishes at all of the other parabolic cusps of Γ. Let G^{*} be the $(r+1)$-fold indefinite integral of g^{*}, so normalized that

$$
G^{*}(z+\lambda)=\psi(S) G^{*}(z)=e^{2 \pi i x^{\prime}} G^{*}(z)
$$

We call $G^{*}(z)$ the function supplementary to g.
In analogy with (3) we have

$$
\begin{equation*}
\bar{v}(V)(c z+d)^{r} G^{*}(V z)=G^{*}(z)+q_{V}^{*}(z) \tag{6}
\end{equation*}
$$

for all $V=\left(\begin{array}{cc}* & * \\ c & d\end{array}\right) \epsilon \Gamma$, where $q_{V}^{*}(z)$ is a polynomial in z of degree $\leq r$. Also if we let G be the $(r+1)$-fold integral of g, so normalized that

$$
G(z+\lambda)=\bar{v}(S) G(z)=e^{2 \pi i x} G(z)
$$

and G has no constant term in its expansion at $i \infty$, then

$$
\begin{equation*}
\vartheta(V)(c z+d)^{r} G(V z)=G(z)+q_{V}(z), \tag{7}
\end{equation*}
$$

for all $V=\left(\begin{array}{cc}* & { }_{c}^{*}\end{array}\right) \epsilon \Gamma$, where $q_{V}(z)$ is a polynomial in z of degree $\leq r$. The fact upon which our entire proof hinges is that with $q_{V}^{*}(z), q_{v}(z)$ as in (6) and (7), respectively, we have

$$
\begin{equation*}
\overline{q_{V}(\bar{z})}=q_{V}^{*}(z) \text { for all } V \in \Gamma . \tag{8}
\end{equation*}
$$

This was proved in [4, §IV] under the assumption $r>0$.
As an immediate consequence of (8) we have the following result which has already appeared, in a slightly different form, as Theorem (4.9) of [4].

Theorem 3. Let r be a positive integer, $g \in C^{0}(\Gamma,-r-2, \bar{v})$, and G^{*} the function supplementary to g. Then $g \equiv 0$ if and only if $G^{*} \epsilon\{\Gamma, r, \psi\}$.

Proof. Suppose $g \equiv 0$. Then G, the $(r+1)$-fold integral of g, is also identically 0 . Then $q_{V}(z) \equiv 0$ for all $V \in \Gamma$, where q_{v} is as in (7). By (8) $q_{V}^{*}(z) \equiv 0$ for all $V \in \Gamma$. Thus by (6), we have

$$
\bar{v}(V)(c z+d)^{r} G^{*}(V z)=G^{*}(z)
$$

for all $V=\left(\begin{array}{ll}* & * \\ c & d\end{array}\right) \in \Gamma$. There remains only the question of the behavior of G^{*} at the parabolic cusps. That G^{*} is meromorphic at the parabolic cusps follows since G^{*} is an $(r+1)$-fold integral of g^{*} and g^{*} as an element of $\{\Gamma,-r-2, v\}$ is meromorphic at the parabolic cusps. Thus $G^{*} \epsilon\{\Gamma, r, v\}$

Conversely, suppose $G^{*} \in\{\Gamma, r, \vartheta\}$. Then $q_{V}^{*}(z) \equiv 0$ for all $V \in \Gamma$. By (8)
$q_{V}(z) \equiv 0$ for all $V \in \Gamma$. It follows as above that $G \in\{\Gamma, r, \bar{v}\}$. But G, the $(r+1)$-fold integral of a cusp form, is regular in $\mathfrak{H C}$ and also at all of the parabolic cusps of Γ. It is well known that under these circumstances $G \equiv 0$, since $r>0[6, \mathrm{p} .301]$. It follows that $g \equiv 0$.

Remarks. 1. Theorem 3 follows directly from Petersson's "Principal Parts Condition" [9].
2. The mapping from g to the cocycle $\left\{q_{V}^{*} \mid V \epsilon \Gamma\right\}$ appears from our construction to depend upon the choice of a basis for $C^{0}(\Gamma,-r-2, \bar{\psi})$ from among the functions $g_{\nu}(z, \bar{v}) ; \nu=1,2, \cdots$. However our mapping is in fact independent of the choice of the basis, The point is that if $g \in C^{0}(\Gamma,-r-2, \bar{v})$ is expressed in any way at all as a finite sum

$$
g=\sum_{v=1}^{N} b_{\nu} g_{v}(z, \bar{v})
$$

then the periods of $g^{*}=\sum_{\nu=1}^{N} \bar{b}_{\nu} g_{\nu^{\prime}}(z, \tau)$ are related to those of g by means of the equation (8). Thus, although g^{*} depends not upon g but upon a particular representation of g in the form $\sum_{\nu=1}^{N} b_{\nu} g_{\nu}(z, \bar{v})$ the corresponding cocycle $\left\{q_{V}^{*} \mid V \in \Gamma\right\}$ depends only upon g. Another way of stating this is that to each cusp form $g \epsilon C^{0}(\Gamma,-r-2, \bar{v})$ there corresponds not a single supplementary function but rather an infinite class of supplementary functions, all with the same cocycle of periods. In this context we may expand Theorem 3 to

Theorem 3^{\prime}. Letr be a positive integer and $g \epsilon C^{0}(\Gamma,-r-2, \bar{v})$. Then $g \equiv 0$ if and only if $G^{*} \epsilon\{\Gamma, r, \vartheta\}$ for every function G^{*} supplementary to g. This in turn holds if and only if $G^{*} \in\{\Gamma, r, \psi\}$ for a single function G^{*} supplementary to g. Furthermore with G^{*} defined as in Theorem 3, with respect to a fixed basis of $C^{0}(\Gamma,-r-2, \bar{v})$, we have $g=0$ if and only if $G^{*}=0$.

The last statement follows immediately, since $\sum_{i=1}^{s} b_{i} g_{\nu_{i}}(z, \bar{\psi})=0$, with $g_{\nu_{i}}, \cdots, g_{\nu_{s}}$ a basis, of course implies $b_{i}=0$ for $1 \leq i \leq s$. Thus $g^{*}=0$ and consequently G^{*} is constant. Since $G^{*} \epsilon\{\Gamma, r, \psi\}$ and $r>0$, it follows that $G^{*}=0$.

3. The mapping into $H_{v}^{1}\left(\Gamma, P_{r}\right)$

We now exhibit explicitly the mapping referred to in Theorem 1. Let $f \in C^{+}(\Gamma,-r-2, v)$. Put $\beta(f)$ equal to the cohomology class of the cocycle $\left\{p_{V} \mid V \epsilon \Gamma\right\}$ of period polynomials of F, an $(r+1)$-fold integral of f (refer to equation (3)). For $g \in C^{0}(\Gamma,-r-2, \bar{v})$ put $\alpha(g)$ equal to the cohomology class of the cocycle $\left\{q_{V}^{*} \mid V \in \Gamma\right\}$ of period polynomials of G^{*}. Here G^{*} is the function supplementary to g, and q_{v}^{*} are the polynomials occurring in (6).

For $(g, f) \epsilon C^{0}(\Gamma,-r-2, \bar{v}) \times C^{+}(\Gamma,-r-2, v)$ put $\mu(g, f)=\alpha(g)+\beta(f)$ Since α and β are linear maps, so is μ. We now show that μ is $1-1$. For this is sufficient to prove that the kernel of μ is $(0,0)$. With this in mind suppose $\mu(g, f)=0$. This implies that there exists a polynomial $p(z)$ of degree $\leq r$ such that $F+G^{*}+p \epsilon\{\Gamma, r, \vartheta\}$. Here F is an $(r+1)$-fold integral of f
and G^{*} is the function supplementary to g. Now $F+G^{*}+p$ is regular in \mathfrak{H} and at all of the cusps of Γ except at the cusp $i \infty$. The principal part of $F+G^{*}+p$ at $i \infty$ agrees with that of G^{*} at $i \infty$. Hence by a well-known formula for the Fourier coefficients of automorphic forms of positive dimension on H-groups, obtained first by Petersson [8] and later by Lehner using the circle method [7], it follows that $F+G^{*}+p=G^{*}$. Hence $F=-p$, so that $f=D^{(r+1)} F=0$. Also $G^{*}=F+G^{*}+p \epsilon\{\Gamma, r, v\}$. Thus by Theorem 3 $g=0$. We have proved that the kernel of μ is $(0,0)$, so that μ is $1-1$.

4. Completion of the proof of Theorem 1

In section 3 we showed how to imbed $C^{0}(\Gamma,-r-2, \bar{v}) \oplus C^{+}(\Gamma,-r-2, \vartheta)$ isomorphically into $H_{v}^{1}\left(\Gamma, P_{r}\right)$ via the linear mapping μ. The proof of Theorem 1 will be complete if we show that μ is onto $H_{v}^{1}\left(\Gamma, P_{r}\right)$. To accomplish this we will prove that

$$
\begin{equation*}
\operatorname{dim} C^{0}(\Gamma,-r-2, \bar{v})+\operatorname{dim} C^{+}(\Gamma,-r-2, v)=\operatorname{dim} H_{v}^{1}\left(\Gamma, P_{r}\right) \tag{9}
\end{equation*}
$$

Put $D_{1}=\operatorname{dim} C^{0}(\Gamma,-r-2, \bar{v})$ and $D_{2}=\operatorname{dim} C^{+}(\Gamma,-r-2, v)$. The equality (9) is correct for $r \geq 0$, not merely for $r>0$, and we prove it under the assumption that $r \geq 0$ and ϑ is a multiplier system on Γ for the degree $-r-2$. The case $r=0, q \equiv 1$ is slightly exceptional.

To calculate the left-hand side of (9) we apply Petersson's generalized Riemann-Roch Theorem [10, Theorem 9]. It is a familiar fact that Γ can be presented in terms of generators and relations as follows:

$$
\begin{gather*}
A_{1}, B_{1}, \cdots, A_{p}, B_{p}, E_{1}, \cdots, E_{s}, Q_{1}, \cdots, Q_{t} \\
E_{j}^{l_{j}}=-I \text { for } 1 \leq j \leq s \tag{10}
\end{gather*}
$$

$$
\gamma_{1} \cdots \gamma_{p} \cdot E_{1} \cdots E_{s} \cdot Q_{1} \cdots Q_{t}=(-I)^{s+t} \quad \text { with } \gamma_{i}=A_{i} B_{i} A_{i}^{-1} B_{i}^{-1}
$$

Here $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, the A_{i} and B_{i} are hyperbolic matrices, the E_{j} are elliptic matrices, and the Q_{h} are parabolic matrices. Also every elliptic element in Γ is conjugate to one of the E_{j} and every parabolic element to one of the Q_{h}. Following Petersson [10] we put

$$
v\left(Q_{h}\right)=e^{2 \pi i x_{h}}, \quad 0 \leq x_{h}<1 \quad(1 \leq h \leq t)
$$

and

$$
\vartheta\left(E_{j}\right)=\exp \left\{\pi i\left(r+2+2 a_{j}\right) / l_{j}\right\} \quad(1 \leq j \leq s)
$$

where a_{j} is an integer such that $0 \leq a_{j} \leq l_{j}-1$. Also define

$$
\begin{aligned}
\vartheta_{h} & =1 \\
& \text { if } x_{h}=0 \\
& =0
\end{aligned} \quad \text { if } x_{h}>0, ~ \$
$$

put $q=t+\sum_{j=1}^{s}\left(1-1 / l_{j}\right)$, and let

$$
\begin{aligned}
\delta & =1 & & \text { if } r=0 \text { and } v \equiv 1 \\
& =0 & & \text { otherwise } .
\end{aligned}
$$

Then by [10, Theorem 9] we have
D_{1}

$$
=-\sum_{h=1}^{t} \vartheta_{h}+(r+2)(p-1+q / 2)-\sum_{h=1}^{t} x_{h}-\sum_{j=1}^{s} a_{j} / l_{j}-p+1+\delta
$$

and

$$
D_{2}=(r+2)(p-1+q / 2)-\sum_{h=1}^{t} x_{h}^{\prime}-\sum_{j=1}^{s} a_{j}^{\prime} / l_{j}-p+1
$$

Here x_{h}^{\prime} and a_{j}^{\prime} are defined by means of

$$
\bar{\psi}\left(Q_{h}\right)=\exp \left\{2 \pi i x_{h}^{\prime}\right\}, \quad 0 \leq x_{h}^{\prime}<1 \quad(1 \leq h \leq t)
$$

and

$$
\bar{v}\left(E_{j}\right)=\exp \left\{\pi i\left(r+2+2 a_{j}^{\prime}\right) / l_{j}\right\} \quad(1 \leq j \leq s)
$$

respectively, with a_{j}^{\prime} an integer such that $0 \leq a_{j}^{\prime} \leq l_{j}-1$. It is clear that $x_{h}+x_{h}^{\prime}=1-\vartheta_{h}$. Then we have

$$
\begin{align*}
D_{1}+D_{2}= & 2(r+2)(p-1+q / 2)-\sum_{h=1}^{t}\left(\vartheta_{h}+1-\vartheta_{h}\right) \\
& -2 p+2-\sum_{j=1}^{s}\left(a_{j}+a_{j}^{\prime}\right) / l_{j}+\delta \tag{11}\\
=(r+1)(2 p-2+t)+(r+2) & \sum_{j=1}^{s}\left(1-1 / l_{j}\right) \\
& -\sum_{j=1}^{s}\left(a_{j}+a_{j}^{\prime}\right) / l_{j}+\delta .
\end{align*}
$$

To calculate $\operatorname{dim} H_{v}^{1}\left(\Gamma, P_{r}\right)$ we put D_{3} equal to the dimension of the space of cocycles and D_{4} equal to the dimension of the space of coboundaries. We can take any polynomial $p(z)$ of degree $\leq r$ and form the coboundary $\{(p \mid V-p) \mid V \in \Gamma\}$. For such a coboundary to vanish identically means that $p(z) \in\{\Gamma, r, v\}$. Among other things this implies that $p(z+\lambda)=e^{2 \pi i x} p(z)$ which unless $r=0$ implies that $p(z) \equiv 0$. If $r=0$, but $v \neq 1$ again $p(z) \epsilon\{\Gamma, r, \psi\}$ is impossible unless $p(z) \equiv 0$. Thus except in the case $r=0$ $v \equiv 1$ it turns out that $D_{4}=r+1$. In the exceptional case $p \mid V-p \equiv 0$ always, so that $D_{4}=0$. In general, then, $D_{4}=r+1-\delta$.

In the calculation of D_{3} we first observe that because of the condition (4) satisfied by a cocycle we need only assign polynomials of degree $\leq r$ to the generators of Γ in such a way that the assignment is consistent with the relations given in (10). We now make use of the fact that, since Γ is an H-group, $t \geq 1$. We may arbitrarily assign polynomials to $A_{1}, B_{1}, \cdots, A_{p}, B_{p}$, Q_{1}, \cdots, Q_{t-1}. This contributes to D_{3} the number $(r+1)(2 p+t-1)$. Then once an assignment of polynomials is made to E_{1}, \cdots, E_{s}, the polynomial for Q_{t} will be determined by the relation $\gamma_{1} \cdots \gamma_{p} \cdot E_{1} \cdots E_{s} \cdot Q_{1} \cdots Q_{t}=$ $(-I)^{s+t}$.

It remains only to calculate the contribution made to D_{3} by the polynomials assigned to $E_{j}, 1 \leq j \leq s$. In this calculation we follow Eichler [2, pp. 274276]. Let $p_{E_{j}}$ be the polynomial assigned to E_{j} in an arbitrary cocycle. From (4) and the relation $E_{j}^{l_{j}}=-I$ it follows that there exists a polynomial p_{j} of degree $\leq r$ such that $p_{E_{j}}=p_{j} \mid E_{j}-p_{j}$, for $1 \leq j \leq s$. Hence the number of
linearly independent polynomials we can attach to E_{j} is the dimension of the vector space

$$
V_{j}=\left\{\left(p \mid E_{j}-p\right) \mid p \text { is a polynomial of degree } \leq r\right\}
$$

But $\operatorname{dim} V_{j}$ is the number of linearly independent elements among $z^{m} \mid E_{j}-z^{m}$, $0 \leq m \leq r$. Normalize E_{j} to the form

$$
E_{j}=\left(\begin{array}{cc}
e^{\pi i / l_{j}} & 0 \\
0 & e^{-\pi i / l_{j}}
\end{array}\right)
$$

Then

$$
\begin{aligned}
z^{m} \mid E_{j}-z^{m} & =\bar{\psi}\left(E_{j}\right)\left(e^{-\pi i / l_{j}}\right)^{r}\left(e^{2 \pi i / l_{j}} \cdot z\right)^{m}-z^{m} \\
& =z^{m}\left[\bar{\psi}\left(E_{j}\right) \exp \left\{2 \pi i(m-r / 2) / l_{j}\right\}-1\right]
\end{aligned}
$$

so that $\operatorname{dim} V_{j}$ is the number of integers $m, 0 \leq m \leq r$, such that

$$
\exp \left\{2 \pi i(m-r / 2) / l_{j}\right\} \neq \vartheta\left(E_{j}\right)
$$

Since $v\left(E_{j}\right)=\exp \left\{\pi i\left(r+2+2 a_{j}\right) / l_{j}\right\}$, we consider the equation

$$
\begin{equation*}
\exp \left\{2 \pi i(m-r / 2) / l_{j}\right\}=\exp \left\{\pi i\left(r+2+2 a_{j}\right) / l_{j}\right\} \tag{12}
\end{equation*}
$$

Equation (12) is satisfied if and only if

$$
m-r / 2 \equiv(r+2) / 2+a_{j} \quad\left(\bmod l_{j}\right)
$$

and this in turn is equivalent to $m-r \equiv a_{j}+1\left(\bmod l_{j}\right)$. Putting $u=r-m$ we find that the number of solutions of $u \equiv-a_{j}-1\left(\bmod l_{j}\right), 0 \leq m \leq r$, is exactly $\left[\left(r+a_{j}+1\right) / l_{j}\right]$, where as usual $[x]$ denotes the largest integer $\leq x$. Hence

$$
\operatorname{dim} V_{j}=r+1-\left[\left(r+a_{j}+1\right) / l_{j}\right]
$$

We conclude finally that

$$
D_{3}=(r+1)(2 p+t-1)+\sum_{j=1}^{s}\left(r+1-\left[\frac{r+a_{j}+1}{l_{j}}\right]\right)
$$

and thus

$$
\begin{align*}
D_{3}-D_{4}= & (r+1)(2 p+t-1) \\
& +\sum_{j=1}^{s}\left(r+1-\left[\frac{r+a_{j}+1}{l_{j}}\right]\right)-(r+1-\delta) \tag{13}\\
= & (r+1)(2 p+t-2)+s(r+1)-\sum_{j=1}^{s}\left[\frac{r+a_{j}+1}{l_{j}}\right]+\delta
\end{align*}
$$

The proof of (9), and thus of Theorem 1, will be complete if we show that $D_{1}+D_{2}=D_{3}-D_{4}$. A comparison of (11) and (13) shows that it is sufficient to prove

$$
\begin{aligned}
(r+2) \sum_{j=1}^{s}\left(1-1 / l_{j}\right)-\sum_{j=1}^{s}\left(a_{j}\right. & \left.+a_{j}^{\prime}\right) / l_{j} \\
& =s(r+1)-\sum_{j=1}^{s}\left[\left(r+a_{j}+1\right) / l_{j}\right]
\end{aligned}
$$

that is,

$$
\begin{equation*}
s-\sum_{j=1}^{s}\left(a_{j}+a_{j}^{\prime}+r+2\right) / l_{j}=-\sum_{j=1}^{s}\left[\left(r+a_{j}+1\right) / l_{j}\right] \tag{14}
\end{equation*}
$$

Equation (14) is equivalent to

$$
\sum_{j=1}^{s}\left(a_{j}+a_{j}^{\prime}+r+2\right) / l_{j}=\sum_{j=1}^{s}\left\{\left[\frac{r+a_{j}+1}{l_{j}}\right]+1\right\}
$$

which, in turn, will follow from

$$
\begin{equation*}
\left(a_{j}+a_{j}^{\prime}+r+2\right) / l_{j}=\left[\left(r+a_{j}+1\right) / l_{j}\right]+1 \quad \text { for } 1 \leq j \leq s \tag{15}
\end{equation*}
$$

From the definition of a_{j} and a_{j}^{\prime} it follows that

$$
\exp \left\{2 \pi i\left(a_{j}+a_{j}^{\prime}\right) / l_{j}\right\}=\exp \left\{-2 \pi i(r+2) / l_{j}\right\}
$$

or $a_{j}+a_{j}^{\prime}+r+2=z_{j} l_{j}$, with z_{j} an integer. Since $0 \leq a_{j}^{\prime} \leq l_{j}-1$, we conclude that

$$
\left(a_{j}+r+2\right) / l_{j} \leq z_{j} \leq\left(a_{j}+l_{j}+r+1\right) / l_{j}
$$

or

$$
1 / l_{j}+\left(a_{j}+r+1\right) / l_{j} \leq z_{j} \leq 1+\left(a_{j}+r+1\right) / l_{j}
$$

Hence $\left(a_{j}+a_{j}^{\prime}+r+2\right) / l_{j}=z_{j}=\left[\left(r+a_{j}+1\right) / l_{j}\right]+1$, and (15) follows. The proof of Theorem 1 is complete.

5. Proof of Theorem 2

The proof of Theorem 2 is actually contained in the proof of Theorem 1. In Theorem 1 we proved that given a cocycle $\left\{p_{V} \mid V \in \Gamma\right\}$, then there exists

$$
(g, f) \in C^{0}(\Gamma,-r-2, \bar{\psi}) \times C^{+}(\Gamma,-r-2, \vartheta)
$$

such that $\mu(g, f)=\alpha(g)+\beta(f)=$ the cohomology class of $\left\{p_{V} \mid V \in \Gamma\right\}$. Let $\left\{q_{V} \mid V \in \Gamma\right\}$ be the cocycle of period polynomials of f and let $\left\{q_{V}^{*} \mid V \in \Gamma\right\}$ be the cocycle of period polynomials of g^{*}. Then $\mu(g, f)$ is the cohomology class of the cocycle $\left\{q_{V}+q_{V}^{*} \mid V \epsilon \Gamma\right\}$ and $\left\{q_{V}+q_{V}^{*} \mid V \epsilon \Gamma\right\}$ is the set of period polynomials of $f+g^{*} \epsilon\{\Gamma,-r-2, \psi\}$. This completes the proof of Theorem 2.

6. Proof that Theorem 1 implies Corollary 1

In view of Theorem 1 it suffices to prove that, with

$$
(g, f) \in C^{0}(\Gamma,-r-2, \bar{v}) \times C^{+}(\Gamma,-r-2, \vartheta), \quad \mu(g, f)=\alpha(g)+\beta(f)
$$

satisfies condition (5) if and only if $f \in C^{0}(\Gamma,-r-2, v)$. Let $x_{1}^{\prime}, \cdots, x_{t}^{\prime}$ be defined as in $\S 4$; suppose $S=Q_{t}$ so that $x_{t}^{\prime}=x^{\prime}$, with x^{\prime} as in $\S 2$. Further, let $q_{h}, 1 \leq h \leq t$, be the parabolic cusp of Γ left fixed by Q_{h}. Then $q_{t}=i \infty$. With these definitions it is known [6, pp. 272-3] that $f \in\{\Gamma,-r-2, \bar{\psi}\}$ has expansions at the parabolic cusps q_{h} of the form

$$
\begin{array}{r}
f(z)=\left(z-q_{h}\right)^{-r-2} \sum_{m \geq-m_{h}} b_{m}(h) \exp \left\{-2 \pi i\left(m+x_{h}^{\prime}\right)\left(z-q_{h}\right)^{-1} / \lambda_{h}\right\} \\
1 \leq h \leq t-1 \tag{16}\\
f(z)=\sum_{m \geq-m_{t}} b_{m}(t) \exp \left\{2 \pi i\left(m+x_{t}^{\prime}\right) z / \lambda_{t}\right\}, \quad h=t
\end{array}
$$

In (16) $\lambda_{n}, 1 \leq h \leq t$ are certain positive numbers depending on the structure of Γ, and $m_{h}, 1 \leq h \leq t$ are integers. (Note that $\lambda_{t}=\lambda$.)

Suppose $F(z)$ is an $(r+1)$-fold integral of $f(z)$. If $1 \leq h \leq t-1$, then applying (2), we find that $F(z)$ has an expansion at q_{h} of the form

$$
\begin{aligned}
& F(z)=\left(z-q_{h}\right)^{r}\left(2 \pi i / \lambda_{h}\right)^{-r-1} \\
& \cdot \sum_{m \geq-m_{h}} b_{m}(h)\left(m+x_{h}^{\prime}\right)^{-r-1} \exp \left\{-2 \pi i\left(m+x_{h}^{\prime}\right)\left(z-q_{h}\right)^{-1} / \lambda_{h}\right\} \\
&+\delta_{h} \cdot \frac{(-1)^{r+1}}{(r+1)!}\left(z-q_{h}\right)^{-1}+p_{h}(z)
\end{aligned}
$$

where $p_{h}(z)$ is a polynomial of degree $\leq r$ and $\delta_{h}=b_{0}(h)$ or 0 according as the expansion (16) has a term with $m+x_{h}^{\prime}=0$ (i.e. $m=x_{h}^{\prime}=0$) or not. At $q_{t}=i \infty, F(t)$ has the expansion

$$
\begin{aligned}
F(z)=\left(2 \pi i / \lambda_{t}\right)^{-r-1} \sum_{m \geq-m_{t}} b_{m}(t)\left(m+x_{t}^{\prime}\right)^{-r-1} & \exp \left\{2 \pi i\left(m+x_{t}^{\prime}\right) z / \lambda_{t}\right\} \\
& +\delta_{t} z^{r+1} /(r+1)!+p_{t}(z)
\end{aligned}
$$

here δ_{t} has the same meaning as before and $p_{t}(z)$ is a polynomial of degree $\leq r$. It follows from these expansions of $F(z)$ that the cocycle of periods of f satisfies (5) if and only if $\delta_{h}=0$, for $1 \leq h \leq t$. Thus the cocycle of periods satisfies (5) if and only if none of the expansions (16) of $f(z)$ has a term with $m=x_{h}^{\prime}=0$.

With $f \in C^{+}(\Gamma,-r-2, \vartheta)$ it follows that $\beta(f)$ satisfies (5) if and only if $f \in C^{0}(\Gamma,-r-2, v)$. On the other hand, for

$$
g \in C^{0}(\Gamma,-r-2, \bar{\psi}), g^{*} \in\{\Gamma,-r-2, \vartheta\}
$$

and g^{*} has no term with $m+x_{h}^{\prime}=0$, for $1 \leq h \leq t$. Thus $\alpha(g)$ always satisfied (5), so that $\mu(g, f)=\alpha(g)+\beta(f)$ satisfies (5) if and only if $f \in C^{0}(\Gamma$, $-r-2, v)$. The proof is complete.

Appendix. A proof of Theorem 1 for $r=0$

In this appendix we give a proof of Theorem 1 for $r=0$. Since equation (8), a key feature of our proof of Theorem 1, depends upon the assumption $r>0$, we give a different proof for $r=0$, based upon results of Petersson. Then Theorem 2 and Corollary 1 also follow for $r=0$.

Since equation (9) is value for $r=0$, it is sufficient to display a mapping which imbeds $C^{0}(\Gamma,-2, \bar{v}) \oplus C^{+}(\Gamma,-2, \vartheta)$ isomorphically into $H_{v}^{1}\left(\Gamma, P_{0}\right)$, $P_{0}=$ complex numbers. In [12], [13], Petersson has carried out a construction of automorphic forms of degree -2 with arbitrary multiplier system ε on $H-$ groups. He obtains these automorphic forms from the usual Poincare series of degree $-r-2, r>0$, by a passage to the limit as $r \rightarrow 0+$. In this way he produces functions $g_{\nu}(z, \bar{v})$, with ν an arbitrary integer, satisfying conditions (i), (ii), (iii) of §2, but now with $r=0$.

In [11], Peterson establishes two further results which are essential in our proof. The first of these is the existence of a "gap sequence" in a setting more general than that of the classical gap sequence of Weierstrass [11, p. 207].

We apply only a very special case of this Petersson gap sequence. The second result connects this gap sequence with a basis for cusp forms [11, p. 211, Theorem $9 \alpha]$. We state both results together under the single title of

Petersson Gap Theorem. Let s be the dimension over the complex field of the vector space $C^{0}(\Gamma,-2, \bar{\psi})$. Then there exist exactly s integers $w_{i}, 0<w_{1}<$ $\cdots<w_{s}$, such that there does not exist an element of $\{\Gamma, 0, \vartheta\}$ having as its only singularity in a fundamental region of Γ a pole at $i \infty$ of order $w_{i}-x^{\prime}, 1 \leq i \leq s$. Furthermore

$$
\begin{gather*}
g_{w_{1}}, \cdots, g_{w_{s}} \text { form a basis for } C^{0}(\Gamma,-2, \bar{v}) \text { if } x=0, \\
g_{w_{1}-1}, \cdots, g_{w_{s}-1} \text { form a basis for } C^{0}(\Gamma,-2, \bar{v}) \text { if } x \neq 0 . \tag{17}
\end{gather*}
$$

We are now in a position to describe the mapping into $H_{v}^{1}\left(\Gamma_{1} P_{0}\right)$. For $f \in C^{+}(\Gamma,-2, \vartheta), \beta(f)$ is as described in $\S 3$; that is, $\beta(f)$ is the cohomology class of the cocycle of periods of F, an indefinite integral of f. Suppose $g \epsilon C^{0}(\Gamma$, $-2, \bar{v})$. From (17) and the definition of ν^{\prime} given in $\S 2$ it follows that the functions $g_{\left(-w_{i}\right)^{\prime}}, 1 \leq i \leq s$, form a basis for $C^{0}(\Gamma,-2, \bar{v})$ whether $x=0$ or $x>0$. Thus there exist complex numbers b_{1}, \cdots, b_{s} such that $g=\sum_{i=1}^{s} b_{i} g_{\left(-w_{i}\right)^{\prime}}(z, \bar{v})$. Put

$$
g^{*}=\sum_{i=1}^{s} \bar{b}_{i} g_{\left(-w_{i}\right)}(z, v) \in\{\Gamma,-2, v\}
$$

and let $\alpha(g)$ be the cohomology class of the cocycle of periods of G^{*}, an indefinite integral of g^{*} so normalized that $G^{*}(z+\lambda)=e^{2 \pi i x^{\prime}} G^{*}(z)$. Note that the principal part of g^{*} at $i \infty$ is

$$
2 \sum_{i=1}^{s} \bar{b}_{i} \exp \left\{+2 \pi i\left(-w_{i}+x^{\prime}\right) z / \lambda\right\}
$$

so that the principal part of G^{*} at $i \infty$ is

$$
2 \sum_{i=1}^{s} \bar{b}_{i}\left\{2 \pi i\left(x^{\prime}-w_{i}\right) / \lambda\right\}^{-1} \exp \left\{2 \pi i\left(-w_{i}+x^{\prime}\right) z / \lambda\right\}
$$

Since g^{*} is regular at all points of a fundamental region other than the point at $i \infty$, the same is true of G^{*}, so that if G^{*} were in $\{\Gamma, 0, \vartheta\}$ it would contradict the Petersson Gap Theorem, unless $b_{i}=0$ for $1 \leq i \leq s$. Thus $G^{*} \epsilon\{\Gamma, 0, v\}$ if and only if $g \equiv 0$. This is Theorem 3 for the case $r=0$.

For $(g, f) \in C^{0}(\Gamma,-2, \bar{v}) \times C^{+}(\Gamma,-2, \vartheta)$ put $\mu(g, f)=\alpha(g)+\beta(f)$. Then μ is a linear map and we want to show that μ is 1-1. Suppose $\mu(g, f)=0$. Then there exists a complex number c such that $F+G^{*}+c \epsilon\{\Gamma, 0, \vartheta\}$. Now $F+G^{*}+c$ is regular in \mathcal{F} and at all of the cusps of Γ except at the cusp $i \infty ;$ at $i \infty$ the principal part of $F+G^{*}+c$ agrees with that of G^{*}. Thus $F+G^{*}+c$ is an element of $\{\Gamma, 0, \vartheta\}$, with a singularity of the type excluded by the Petersson Gap Theorem, unless $b_{i}=0$ for $1 \leq i \leq s$. Since all $b_{i}=0$, it follows that $g \equiv 0$ and G^{*} is a constant. Thus $F+G^{*}+c$ is an everywhere regular element of $\{\Gamma, 0, \vartheta\}$. By the result of [5], $F+G^{*}+c$ is constant. Thus F is constant and $f=F^{\prime}=0$. Therefore the kernel of μ is $(0,0), \mu$ is $1-1$, and Theorem 1 is proved for the case $r=0$.

References

1. G. Bol, Invarianten linearer differentialgleichungen, Abh. Math. Sem. Univ. Hamburg, vol. 16 (1949), pp. 1-28.
2. M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Zeitschrift, vol. 67 (1957), pp. 267-298.
3. R. C. Gunning, The Eichler cohomology groups and automorphic forms, Trans. Amer. Math. Soc., vol. 100 (1961), pp. 44-62.
4. M. I. Knopp, Construction of automorphic forms on H-groups and supplementary Fourier series, Trans. Amer. Math. Soc., vol. 103 (1962), pp. 168-188.
5. M. I. Knopp, J. Lehner, and M. Newman, A bounded automorphic form of dimension zero is constant, Duke Math. J., vol. 32 (1965), pp. 457-460.
6. J. Lehner, Discontinuous groups and automorphic functions, Math. Surveys, no. 8, American Math. Soc., Providence, R. I., 1964.
7. ——, The Fourier coefficients of automorphic forms on horocyclic groups, II, Michigan Math. J., vol. 6 (1959), pp. 173-193.
8. H. Petersson, Konstruktion der Modulformen und zu gewissen Grenzkreisgruppen gehörigen automorphen Formen von positive reeller Dimension und die vollständige Bestimmung ihrer Fourierkoeffizienden, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl., 1950, pp. 417-494.
9. ——Ü̈ber automorphe Formen mit Singuläritaten im Diskontinuitätsgebeit, Math. Ann., vol. 129 (1955), pp. 370-390.
10. —, Zur analytischen Theorie der Grenzkreisgruppen II, Math. Ann., vol. 115 (1937-38), pp. 175-204.
11. -, Automorphe Formen als metrische Invarianten, I, Math. Nachr., vol. 1 (1948), pp. 158-212.
12. —, Automorphe Formen als metrische Invarianten, II, Math. Nachr., vol. 1 (1948), pp. 218-257.
13. —, Explizite Konstruktion der automorphen Orthogonalfunktionen in den multiplikativen Differentialklassen, Math. Nachr., vol. 16 (1957), pp. 343-368.

University of Wisconsin
Madison, Wisconsin

