SOME EXAMPLES OF FREE INVOLUTIONS ON HOMOTOPY $S^{l} \times S^{l \prime} S$

BY
Robert Wells ${ }^{1}$
\section*{1. Introduction}

Suppose M is a closed s-parallelizable manifold and G is a finite group acting freely and differentiably on M. A natural question to ask is: What is the (reduced) normal bundle $v(M / G)$ of the quotient M / G ?

If $r: G \rightarrow G L(n ; R)$ is any representation we may form the vector bundle $M \times{ }_{r} R^{n} \rightarrow M / G$ associated to the principal fibration

$$
M \xrightarrow{\pi} M / G .
$$

Call the reduced class of this bundle $\xi(r)$. One may then conjecture an answer to the above question, namely

Answer 1. $\quad v(M / G)=\xi(r)$ some r.
However, it is not hard to see that this answer has to be expanded at least to
Answer 2. $v(M / G)=\xi(r)+\eta$ some r and some reduced fiber homotopically trivial η, such that $\pi^{*} \eta$ is trivial.

That is, one hopes that the normal bundle is 'essentially' $\xi(r)$ for some r. The purpose of this paper is to show that Answer 2 is also wrong, even if $G=Z_{2}$, the action is orientation preserving and M is highly connected. In fact

If $l \equiv 0$ (8) and $l \geq 8$, then there is a free orientation preserving action of Z_{2} on M, a differentiable manifold homotopy equivalent to $S^{l} \times S^{l}$ such that $v\left(M / Z_{2}\right)-\xi(r)$ is stably fiber homotopically trivial for no r.

It follows from Wall's classification of $(l-1)$-connected manifolds [2] that M is s-parallelizable, so that M / Z_{2} is a counterexample to Answer 2, and Answer 1 too for that matter. It would be interesting to know just what is the right answer.

2. A map

Suppose we have a free orientation preserving action of Z_{2} on M a differentiable manifold homotopy equivalent to $S^{l} \times S^{l}$. In [3], it is shown that if l is even then $M / Z_{2}=E(\gamma) \mathbf{u}_{\psi} E(\gamma)$ where γ is an l-dimensional vector bundle over P_{l}, with twisted Euler class equal to 1 or 0 , and $\psi: S(\gamma) \rightarrow S(\gamma)$ is a diffeomorphism.

To distinguish the two terms in expressions like $X \mathbf{u}_{f} X$, recall the definition

[^0]of such a space: It is $X \times 0 \cup X \times 1$ divided by the smallest equivalence relation containing $(f(x), 0) \neq(x, 1)$ for all $x \in \operatorname{dom} f$, and given the quotient topology.

We obtain an embedding $P_{l} \subset M / Z_{2}$ by

$$
P_{l} \xrightarrow{0 \text { section }} E(\gamma) \times 0 .
$$

Let $g: S^{l} \rightarrow M$ be the cover of $P_{l} \subset M / Z_{2}$. Then we know from [3] that $g_{*}\left[S^{l}\right]=(1,-1)$ or $(1,0)$ with respect to a symplectic basis of $H_{l}(M)=Z+Z$. Thus in either case an embedding $f: S^{l} \rightarrow M$ representing (0,1) will have algebraic intersection equal to 1 with g. Since

$$
f_{*}\left[S^{l}\right] \cdot f_{*}\left[S^{l}\right]=f_{*}\left[S^{l}\right] \cdot \rho_{*} f_{*}\left[S^{l}\right]=0
$$

where $\rho \in Z_{2}$ is the non-trivial element, we may assume $\pi \circ f$ is an embedding with trivial normal bundle [3]. We may suppose as well that f is transverse regular along g. Suppose x, y are two intersections of g with f of opposite signs. We may pick an arc α in $g\left(S^{l}\right)$ from x to y which misses the rest of

$$
g\left(S^{l}\right) \cap\left[f\left(s^{l}\right) \cup \rho f\left(S^{l}\right)\right]
$$

and misses $\rho \alpha$ as well. We may pick an $\operatorname{arc} \beta \operatorname{in} f\left(S^{l}\right)$ from y to x which misses the rest of $g\left(S^{l}\right) \cap f\left(S^{l}\right)$. Notice that $f\left(S^{l}\right) \cap \rho f\left(S^{l}\right)=\emptyset$. Then we may find $\gamma: D^{2} \rightarrow M$ with boundary $\alpha+\beta$ such that $\pi \circ \gamma$ is an embedding normal at the boundary to P_{l} and $f\left(S^{l}\right)$, such that

$$
\gamma\left(D^{2}\right) \cap \rho f\left(S^{l}\right)=\emptyset \quad \text { and } \quad \pi \circ \gamma\left(\operatorname{int} D^{2}\right) \cap\left(P_{l} \cup \pi f\left(S^{l}\right)\right)=\emptyset
$$

Since x and y have opposite signs, we may thicken $\gamma\left(D^{2}\right)$ to apply the Whitney procedure. It follows at once that we may thicken $\pi \circ \gamma\left(D^{2}\right)$ to apply the Whitney procedure, to obtain an isotopy from $\pi \circ f$ to $\pi \circ f^{\prime}$ where f^{\prime} has two fewer geometric intersections with g than f. Iterating the Whitney procedure as above finally gives us an embedding $f: S^{l} \rightarrow M$ such that $\pi \circ f$ is an embedding with trivial normal bundle meeting P_{l} transversally at a single point. By altering the decomposition $M / Z_{2}=E(\gamma) \mathrm{u}_{\psi} E(\gamma)$ so that $E(\gamma) \times 0$ is a suitably small tubular neighborhood of P_{l}, we may assume that the embedding π where

$$
\pi f: D^{l} \mathbf{u}_{1} D^{l} \rightarrow M / Z_{2}
$$

is just a standard inclusion of a fiber $D^{l} \times 0 \subset E(\gamma) \times 0$ on $D^{l} \times 0$, and carries $D^{l} \times 1$ into $E(\gamma) \times 1$. Since $v\left(\pi \circ f\left(S^{l}\right): M / Z_{2}\right)$ is trivial, we have two isotopic copies S_{1}^{l} and $\pi \circ f\left(S^{l}\right)$ in M / Z_{2}. We may assume

$$
E(\gamma) \mid P_{1} \times 0 \cap S_{1}^{l}=\emptyset
$$

Let $\sigma=E\left(\gamma \mid P_{1}\right) \mathbf{u}_{1} E\left(\gamma \mid P_{1}\right)$ where $1: S\left(\gamma \mid P_{1}\right) \rightarrow S\left(\gamma \mid P_{1}\right)$. We wish to find a map

$$
j: \sigma \rightarrow M / Z_{2}-S_{1}^{l}
$$

(where $S_{1}^{l} \subset M / Z_{2}$ is the other copy of S^{l}, isotopic to $\pi \circ f\left(S^{l}\right)$) such that, on $E\left(\gamma \mid P_{1}\right) \times 0$ it is the natural embedding

$$
E\left(\gamma \mid P_{1}\right) \times 0 \subset E(\gamma) \times 0,
$$

and such that it carries $E\left(\gamma \mid P_{1}\right) \times 1$ into $E(\gamma) \times 1$. First, extend the natural inclusion

$$
E\left(\gamma \mid P_{0}\right) \times 0 \subset E\left(\gamma \mid P_{1}\right) \times 0 \subset E(\gamma) \times 0
$$

to

$$
E\left(\gamma \mid P_{0}\right) \mathrm{u}_{1} E\left(\gamma \mid P_{0}\right) \rightarrow M
$$

by

$$
E\left(\gamma \mid P_{0}\right) \mathbf{u}_{1} E\left(\gamma \mid P_{0}\right)=D_{l} \mathrm{u}_{1} D_{l}=S^{l} \xrightarrow{\pi \circ f} M
$$

so that $E\left(\gamma \mid P_{0}\right) \times 1 \rightarrow E(\gamma) \times 1$. Now, σ is $S\left(\xi+\gamma \mid P_{1}\right)$ with γ unorientable, so that

$$
\sigma=\left(P_{1} \vee S^{l}\right) \mathbf{u}_{\imath+\tau} D^{l+1}
$$

up to homotopy, where $\iota: S^{l} \rightarrow P_{1} \vee S^{l}$ is the standard inclusion and τ represents the generator of $\pi_{1}\left(P_{1} \vee S^{l}\right)$. We have also

$$
\sigma=\left(E\left(\gamma \mid P_{1}\right) \mathbf{u}_{1} E\left(\gamma \mid P_{0}\right)\right) \mathbf{u}_{h} D^{l+1}
$$

where $1: S\left(\gamma \mid P_{0}\right) \rightarrow S\left(\gamma \mid P_{0}\right)$ and $h: S^{l} \rightarrow S\left(\gamma \mid P_{1}\right) \mathbf{U}_{1} E\left(\gamma \mid P_{0}\right)$. Then we have the following homotopy commutative diagram

$$
\begin{aligned}
& S^{l} \xrightarrow{\iota+\tau \iota} P_{1} \vee\left(S^{l}\right) \longrightarrow M / Z_{2}-S_{1}^{l} \\
& \text { ก } \\
& \| \quad E\left(\gamma \mid P_{1}\right) \mathrm{u}_{1} E\left(\gamma \mid P_{0}\right) \\
& \text { u } \\
& u \\
& S^{l} \xrightarrow{h} S\left(\gamma \mid P_{1}\right) \cup_{1} E\left(\gamma \mid P_{0}\right) \xrightarrow{\psi^{-1}(\pi \circ f)} E(\gamma) \times 1-S_{1}^{l} \cap(E(\gamma) \times 1) .
\end{aligned}
$$

We also have the commutative diagram

$$
\begin{aligned}
& M / Z_{2}-\pi \circ f\left(S^{l}\right) \leftarrow M-f\left(S^{l}\right)-\rho \circ f\left(S^{l}\right)=R \times S^{l-1} \times S^{l} \\
& \uparrow \begin{array}{c}
\mathrm{u}
\end{array} \\
& \begin{aligned}
\mathrm{u} & \\
E(\gamma) \times 1-\pi \circ f\left(S^{l}\right) \cap(E(\gamma) \times 1) \leftarrow S^{l} \times D^{l}-f\left(D^{l}\right) & -\rho \circ f\left(D^{l}\right) \\
& =R \times S^{l-1} \times D^{l}
\end{aligned}
\end{aligned}
$$

so that

$$
\pi_{l}\left(E(\gamma) \times 1-\pi \circ f\left(S^{l}\right) \cap(E(\gamma) \times 1) \rightarrow \pi_{l}\left(M / Z_{2}-\pi \circ f\left(S^{l}\right)\right)\right.
$$

is a monomorphism. It follows that

$$
\pi_{l}\left(E(\gamma) \times 1-S^{l} \cap(E(\gamma) \times 1)\right) \rightarrow \pi_{l}\left(M / Z_{2}-S_{1}^{l}\right)
$$

is a monomorphism.

But $P_{1} \vee S^{l} \rightarrow M-S_{1}^{l}$ carries ι to ι^{\prime} represented by $\pi \circ f$, and it carries $\tau \iota$ onto the element $\pi \circ f \circ(-1)$ where $-1: S^{l} \rightarrow S^{l}$ is a linear map with matrix

$$
\left(\begin{array}{ccc}
-1 & & 0 \\
& 1 & \\
& & \ddots \\
0 & & 1
\end{array}\right)
$$

That is, $\tau \iota \rightarrow-\iota^{\prime}$, so $\iota+\tau \iota \rightarrow 0$. Then it follows from the monomorphism above, and the first diagram, that h extends to

$$
D^{l+1} \rightarrow E(\gamma) \times 1-S_{1}^{l} \cap(E(\gamma) \times 1)
$$

so that the map

$$
E\left(\gamma \mid P_{1}\right) \cup_{1} E\left(\gamma \mid P_{0}\right) \xrightarrow{1 \cup \pi \circ f} M / Z_{2}-S_{1}^{l}
$$

extends to a map

$$
\varphi: \sigma=E\left(\gamma \mid P_{1}\right) \mathrm{u}_{1} E\left(\gamma \mid P_{1}\right) \rightarrow M / Z_{2}-S_{1}^{l}
$$

Now, $S_{1}^{l} \subset M$ and $\pi \circ f\left(S^{l}\right) \subset M$ are isotopic, so we may interchange them and finally obtain

$$
\varphi: \sigma \rightarrow M / Z_{2}-\pi \circ f\left(S^{l}\right)
$$

such that
(1) $S^{l} \subset \sigma \xrightarrow{\varphi} M / Z_{2}$ is an embedding isotopic to $\pi \circ f$,
(2) $\varphi \mid E\left(\gamma \mid P_{1}\right) \times 0=\operatorname{incl}\left(E\left(\gamma \mid P_{1}\right) \times 0 \subset E(\gamma) \times 0\right)$,
(3) $\varphi: E\left(\gamma \mid P_{1}\right) \times 1 \rightarrow E(\gamma) \times 1$.

3. The normal bundle

With M a homotopy $S^{l} \times S^{l}$ as above, with involution ρ and l even, we now now seek $v\left(M / Z_{2}\right)$. By collapsing $E(\gamma) \times 1$ to a point, we obtain

$$
M / Z_{2} \xrightarrow{\rho} T(\gamma)
$$

the Thom space of γ. The sequence

$$
P_{l} \xrightarrow{h} M / Z_{2} \xrightarrow{p} T(\gamma)
$$

is a cofibration, where h is the inclusion of P_{l} in $E(\gamma) \times 1$. The composition

$$
P_{l} \xrightarrow{h} M / Z_{2} \rightarrow P
$$

is homotopic to the standard inclusion. Also, $\widetilde{K} O^{-1}(P) \rightarrow \widetilde{K} O^{-1}\left(P_{l}\right) \rightarrow 0$ is an epimorphism, so it follows that

$$
0 \rightarrow \widetilde{K} O(T(\gamma)) \xrightarrow{p^{*}} \widetilde{K} O\left(M / Z_{2}\right) \rightarrow \widetilde{K} O\left(P_{l}\right) \rightarrow 0
$$

is exact. It follows that the reduced stable normal bundle of M / Z_{2} is $k \xi+p^{*}{ }_{\alpha}$ where ξ is the reduced canonical line bundle, α is uniquely determined in $\tilde{K} O(T(\gamma))$. Since ρ preserves orientation, k is even. The bundle γ depends only on k and l, and we have [3], when $l \equiv 0$ (8):

$$
\begin{align*}
\widetilde{K} O(T(\gamma)) & =Z, & & k \equiv 2,6(8) \tag{8}\\
& =Z+Z_{2}, & & k \equiv 0,4 \tag{8}
\end{align*}
$$

Since index $\left(M / Z_{2}\right)=0, \alpha$ cannot have infinite order, so $\alpha=0$ or possibly the element of order 2.

Now we have to investigate α more closely. Recall that

$$
\gamma+\varepsilon^{t}=\left(2^{\varphi(l)}-l-1-k\right) \xi
$$

where $t=2^{\varphi(l)}-2 l-1-k$, so $S^{t} T(\gamma)=P_{t+2 l} / P_{t+l-1}$. Also,

$$
S^{t} T\left(\gamma \mid P_{1}\right)=P_{t+l+1} / P_{t+l-1}
$$

and $S^{t} T\left(\gamma \mid P_{1}\right) \subset S^{t} T(\gamma)$ is the natural inclusion

$$
P_{t+l+1} / P_{t+l-1} \subset P_{t+2 l} / P_{t+l-1}
$$

$$
\begin{aligned}
& \text { Assume } l \equiv k \equiv 0(8) . \quad \text { Then } t \equiv-1(8) \text { so that } \\
& \widetilde{K} O(T(\gamma))=\widetilde{K} O^{t}\left(S^{t}(T(\gamma))\right)=\widetilde{K} O^{-1}\left(P_{t+2 l} / P_{t+l-1}\right) \\
& \downarrow \\
& \downarrow \\
& \widetilde{K} O\left(T\left(\gamma \mid P_{1}\right)\right)=\widetilde{K} O^{t}\left(S^{t} T\left(\gamma \mid P_{1}\right)\right)=\widetilde{K} O^{-1}\left(P_{t+l+1} / P_{t+l-1}\right)
\end{aligned}
$$

Now, $\widetilde{K} O^{-2}\left(P_{t+l-1}\right)=Z_{2}+Z_{2}$ and the image of

$$
\widetilde{K} O^{-2}\left(P_{t+2 l}\right) \rightarrow \widetilde{K} O^{-2}\left(P_{t+l-1}\right) \quad \text { and } \widetilde{K} O^{-2}\left(P_{t+l+1}\right) \rightarrow \widetilde{K} O^{-2}\left(P_{t+l-1}\right)
$$

are the same subgroup Z_{2} of $\widetilde{K} O^{-2}\left(P_{t+l-1}\right)$. Let $\beta \in \widetilde{K} O^{-2}\left(P_{t+l-1}\right)$ be an element not in that image. Then if δ is the coboundary

$$
\widetilde{K} O^{-2}\left(P_{t+l-1}\right) \xrightarrow{\delta} K O^{-1}\left(P_{t+2 l} / P_{t+l-1}\right)
$$

it is straightforward to check that $\delta \beta$ is the element of order 2 . But if δ^{\prime} is the coboundary

$$
\widetilde{K} O^{-2}\left(P_{t+l-1}\right) \rightarrow \widetilde{K} O^{-1}\left(P_{t+l+1} / P_{t+l-1}\right)
$$

we must have $\delta^{\prime} \beta \neq 0$. Since

$$
\widetilde{K} O^{-1}\left(P_{t+l+1} / P_{t+l-1}\right)=Z_{2},
$$

it follows that the element of order 2 in $\tilde{K} O^{-1}\left(P_{t+2 l} / P_{t+l-1}\right)$ is carried onto the generator of $\widetilde{K} O^{-1}\left(P_{t+l+1} / P_{t+l-1}\right)$. Thus the element of order 2 in $\widetilde{K} O(T(\gamma))$ is carried onto the generator of $\widetilde{K} O\left(T\left(\gamma \mid P_{1}\right)\right)=Z_{2}$.

Now we can see that the sequence

$$
0 \rightarrow \tilde{K} O(T(\gamma)) \xrightarrow{p^{*}} \tilde{K} O\left(M / Z_{2}\right) \rightarrow \tilde{K} O\left(P_{l}\right) \rightarrow 0
$$

is split exact. For the splitting map $\widetilde{K} O\left(P_{l}\right) \rightarrow \widetilde{K} O\left(M / Z_{2}\right)$ we choose the one that carries the reduced canonical line bundle over P_{l} to ξ, the reduced canonical line bundle over M / Z_{2}. This splitting map will be well defined provided that $2^{\varphi(l)} \xi=0$. Now, $2^{\varphi(l)} \xi=p^{*}(x)$ for x uniquely determined in $\widetilde{K} O(T(\gamma))$, and clearly $x=0$ or $x=\alpha=$ the element of order 2 in $\widetilde{K} O(T(\gamma))$. Using properties (2) and (3) of the map $\varphi: \sigma \rightarrow M / Z_{2}$, we obtain the following commutative diagram

where $P_{1} \rightarrow \sigma \rightarrow T\left(\gamma \mid P_{1}\right)$ is a cofibration. Clearly, $\varphi^{*} p^{*} \alpha$ is the unique nonzero element of $\operatorname{ker}\left(\widetilde{K} O(\sigma) \rightarrow \hat{K} O\left(P_{1}\right)\right)$. But $\varphi^{*} 2 \xi=0$ so $\varphi^{*}\left(2^{\varphi(l)} \xi\right)=0$. Thus $2^{\varphi(l)} \xi=p^{*}(\alpha)$ is impossible and we must have $2^{\varphi(l)} \xi=0$, so the sequence above is split exact (even with respect to Adams operations).

Now consider what happens to $k \xi$ and $k \xi+p^{*} \alpha$ (where α is the element of order 2 in $\widetilde{K} O(T(\gamma))$) under the map

$$
\widetilde{K} O\left(M / Z_{2}\right) \xrightarrow{\varphi^{*}} K O(\sigma) .
$$

Since $\widetilde{K} O^{-1}\left(P_{1}\right)=0$, the following diagram is commutative with exact rows

$$
\begin{aligned}
& 0 \rightarrow \tilde{K} O\left(T\left(\gamma \mid P_{1}\right)\right) \rightarrow \tilde{K} O(\sigma) \rightarrow \tilde{K} O\left(P_{1}\right) \rightarrow 0 \\
& \uparrow \quad \uparrow \varphi^{*} \uparrow \\
& 0 \rightarrow \widetilde{K} O(T(\gamma)) \rightarrow \widetilde{K} O\left(M / Z_{2}\right) \rightarrow \widetilde{K} O\left(P_{l}\right) \rightarrow 0
\end{aligned}
$$

Then $\varphi^{*} \xi$ is the reduced canonical line bundle of σ, and that has order 2 , so $\varphi^{*}(k \xi)=0$ since k is even. But $\varphi^{*}\left(k \xi+p^{*} \alpha\right)=\mu$ is the unique non-zero element of $\operatorname{ker}\left(\tilde{K} O(\sigma) \rightarrow \widetilde{K} O\left(P_{1}\right)\right)$. Thus the two cases of $v\left(M / Z_{2}\right)$ are distinguished by φ^{*}.

Now,

$$
\sigma / S^{l}=\left(S^{l} \times S^{1}\right) /\left(S^{l} \times *\right)=S^{1} \vee S^{l+1}
$$

and the map $\sigma / S^{l} \rightarrow S^{l+1}$ of degree 1 is simply

$$
S^{1} \rightarrow * \text { and } S^{l+1} \xrightarrow{1} S^{l+1}
$$

The map

$$
S^{1}=P_{1} \subset \sigma \rightarrow \sigma / S^{l}=S^{1} \vee S^{l+1}
$$

is simply

$$
S^{1} \xrightarrow{1} S^{1} .
$$

Let $j: S^{l+1} \rightarrow \sigma / S^{l}$ be the natural inclusion of S^{l+1}. Then

$$
S^{l+1} \xrightarrow{j} \sigma / S^{l} \rightarrow S\left(S^{l}\right)
$$

has degree 2 since $H^{l+1}(\sigma)=Z_{2}$, so the collapsing map

$$
S^{1} \vee S^{l+1}=\sigma / S^{l} \rightarrow S^{l+1}
$$

is

$$
S^{1} \rightarrow * \quad \text { and } \quad S^{l+1} \rightarrow S^{l+1}
$$

Since $\widetilde{K} O\left(S^{l+1}\right)=Z_{2}$ it follows that the following sequence is exact, and the attached triangle commutative.

The first 0 follows from $\widetilde{K} O\left(S^{l+1}\right)=Z_{2}$ and the degree 2 map, and the second 0 follows from $\widetilde{K} O\left(S^{l}\right)=Z$ and $\tilde{K} O(\sigma)$ finite. It follows that μ is the pullback of the generator of $\widetilde{K} O\left(S^{l+1}\right)=Z_{2}$ under the degree $1 \mathrm{map} \sigma \rightarrow S^{l+1}$, and in turn restricts to that generator under

$$
S^{l+1} \xrightarrow{j} \sigma / S^{l}
$$

4. The example

Suppose $l \equiv 0$ (8) and $l \geq 8$. Let $\eta \rightarrow S^{l+1}$ be an l-plane bundle over S^{l+1} whose reduced stable class is non-zero in $\widetilde{K} O\left(S^{l+1}\right)$. Let $S(\eta)$ be the sphere bundle of η. Define an involution of σ of $S(\eta)$ by $\sigma(x)=-x$. Then

$$
S(\eta) / Z_{2} \xrightarrow{\tilde{\omega}} S^{l+1}
$$

is a P_{l-1}-bundle. Then the reduced tangent bundle of $S(\eta) / Z_{2}$ is $l \xi+\tilde{\omega}^{*} \beta$ where ξ is the reduced canonical line bundle and $\beta \in \widetilde{K} O\left(S^{l+1}\right)$ is the non-zero element. It follows that

$$
v\left(S(\eta) / Z_{2}\right)=\left(2^{K}-l\right) \xi+\tilde{\omega}^{*} \beta
$$

so that $k=2^{K}-l \equiv 0(8)$.
Let $w: S(\eta) / Z_{2} \rightarrow P$ be the classifying map of the cover

$$
S(\eta) \xrightarrow{c} S(\eta) / Z_{2} .
$$

Then the map

$$
S(\eta) / Z_{2} \xrightarrow{w \times \tilde{\omega}} P \times S^{l+1}
$$

pulls back the normal bundle from $k \xi \times \beta$. Let $P_{l-1} \subset S(\eta) / Z_{2}$ be a fiber. The immersions $S^{l+1} \rightarrow P_{l-1}$ has trivial normal bundle. Observe that the canonical line bundle over P_{l-1} is included in $v\left(P_{l-1}: S(\eta) / Z_{2}\right)$. Regarding S^{l+1} as its S^{0}-bundle, we obtain an embedding $S^{l-1} \subset S(\eta) / Z_{2}$ with trivial normal bundle such that either of its covers generates $H_{l-1}(S(\eta))=Z . \quad$ By
surgering $S^{l-1} \subset S(\eta) / Z_{2}$ we obtain a manifold M / Z_{2} together with a map

$$
\zeta: M / Z_{2} \rightarrow P \times S^{l+1}
$$

such that $v\left(M / Z_{2}\right)=\zeta^{*}(k \xi \times \beta)$ and M is a homotopy $S^{l} \times S^{l}$. We obtain $S(\eta) / Z_{2}$ back again by surgering

$$
S^{l} \subset S(\eta) / Z_{2}-S^{l-1} \subset M / Z_{2}
$$

where $S^{l} \subset S(\eta) / Z_{2}$ is a linking sphere of S^{l-1}.
Notice that the embedding $P_{l-1} \subset S(\eta) / Z_{2}-S^{l-1}$ may be extended to an embedding $P_{l} \subset M / Z_{2}$ which meets $S^{l} \subset M / Z_{2}$ transversally, exactly once.

Since $v\left(S^{l}: M / Z_{2}\right)$ is trivial, it follows that $S^{l} \subset M / Z_{2}$ may be the mapping $\pi \circ \circ$ of Section 2.

Remark. Let f be a cover of $S^{l} \subset M / Z_{2}$ above, and $\bar{g}: S^{l} \rightarrow M$ the cover of $P_{l} \subset M / Z_{2}$ above. Then with respect to a symplectic basis of $H_{l}(M)$, we may take $f *\left[S^{l}\right]=(0,1)$. Then according to [3],
$\bar{g} *\left[S^{l}\right]=(1,0)+(2 \mathrm{a}, 2 \mathrm{~b}) \quad$ or $(0,1)+(2 \mathrm{a}, 2 \mathrm{~b}) \quad$ or $(1,-1)+(2 \mathrm{a}, 2 \mathrm{~b})$.
Then the algebraic intersection $f *\left[S^{l}\right] \cdot \bar{g} *\left[S^{l}\right]$ is $1+2$ a or 2 a or $1+2$ a respectively. Since the geometric intersection $=1$, it follows that the middle case is excluded, and $a=0$ in the other two cases. It follows that we may replace $P_{l} \subset M / Z_{2}$ by another $P_{l} \subset M / Z_{2}$ with cover $g: S^{l} \rightarrow M$ such that $g *\left[S^{l}\right]=$ $(1,0)$ or $(1,-1)$ and geometric intersection 1 with $\pi \circ f\left(S^{l}\right)$.

In any case, we have $\sigma \subset M / Z_{2}-\pi \circ f\left(S^{l}\right)$ with $S^{l} \subset \sigma M / Z_{2}$ isotopic to $\pi \circ f\left(S^{l}\right)$. By performing the surgery reverse to the one above, on $\pi \circ f\left(S^{l}\right)$, we get $S(\eta) / Z_{2}$ back again, with

commutative. Then we have

$$
S^{l+1} \xrightarrow{j} \sigma / S^{l} \rightarrow S(\eta) / Z_{2} \xrightarrow{\tilde{\omega}} S^{l+1}
$$

We wish to show that this composition has degree +1 . We may write

$$
\sigma / S^{l}=D^{l+1} \mathbf{u}_{1} S^{1} \vee S^{l} \mathbf{u}_{\iota+\tau} D^{l+1}
$$

as above. If e_{1} is the $(l+1)$ cell represented by the left D^{l+1} and e_{2} is the $(l+1)$ cell represented by the right D^{l+1}, then $\iota *=(\tau \iota) *=1$ so we have that $e_{2}-2 e_{1}$ represents the generator of $H_{l+1}\left(\sigma / S^{l}\right)$. Now let $S^{l-1} \subset S(\eta) / Z_{2}$ be the sphere that was surgered to obtain M / Z_{2}. Then $\sigma \cap S^{l-1}=\emptyset$ and the geometric intersection of e_{1} with S^{l-1} is 1 . Thus the algebraic intersection $\left(e_{2}-2 e_{1}\right) \cdot S^{l-1}$ is -2 . But the homology class represented by S^{l-1} is twice the homology class represented by a fiber P_{l-1}. Thus $\left(e_{2}-2 e_{1}\right) \cdot P_{l-1}=-1$,
so $e_{2}-2 e_{1}$ representes the generator of $H_{l+1}\left(S(\eta) / Z_{2}\right)$ and consequently

$$
\sigma / Z^{l} \rightarrow S(\eta) / Z_{2} \rightarrow S^{l+1}
$$

carries $e_{2}-2 e_{1}$ to a generator of S^{l+1}. It follows that the map above has degree ± 1, and consequently that

$$
v\left(S(\eta) / Z_{2}\right) / \sigma=\mu
$$

But then $v\left(M / Z_{2}\right) / \sigma=v\left(S(\eta) / Z_{2}\right) / \sigma=\mu$, so $v\left(M / Z_{2}\right)=k^{\prime} \xi+\pi^{*} \alpha$ (where $k^{\prime}=k$ or $\left.k+2^{\varphi(l-1)}\right)$.

Finally, $\pi^{*}(\alpha)$ cannot be fiber homotopically trivial because $\pi^{*}(\alpha) \mid \sigma=\mu$, and it is straightforward to see that μ cannot be fiber homotopically trivial since it corresponds to the generator of $\widetilde{K} O\left(S^{l+1}\right)$ under the isomorphism

$$
\widetilde{K} O\left(S^{1} \vee S^{l+1}\right) \cong \widetilde{K} O(\sigma)
$$

Bibliography

1. C. T. C. Wall, Surgery of non-simply connected manifolds, Ann. of Math., vol. 84 (1966), pp. 217-276.
2. -_, Classification of Handlebodies, Topology, vol. 2 (1963), pp. 253-261.
3. R. Wells, Free involutions of homotopy $S^{l} \times S^{l}$'s, Illinois J. Math., vol. 15 (1971), pp. 160-184.

University of Chicago
Chicago, Illinois

[^0]: Received February 17, 1969.
 ${ }^{1}$ The author was partially supported by a National Science Foundation grant during the preparation of this paper.

