SOME EXAMPLES OF FREE INVOLUTIONS ON HOMOTOPY $S^{l} \times S^{l}$ 'S

BΥ

Robert Wells¹

1. Introduction

Suppose M is a closed s-parallelizable manifold and G is a finite group acting freely and differentiably on M. A natural question to ask is: What is the (reduced) normal bundle v(M/G) of the quotient M/G?

If $r: G \to GL(n; R)$ is any representation we may form the vector bundle $M \times_r R^n \to M/G$ associated to the principal fibration

$$M \xrightarrow{\pi} M/G.$$

Call the reduced class of this bundle $\xi(r)$. One may then conjecture an answer to the above question, namely

Answer 1. $v(M/G) = \xi(r)$ some r.

However, it is not hard to see that this answer has to be expanded at least to

Answer 2. $v(M/G) = \xi(r) + \eta$ some r and some reduced fiber homotopically trivial η , such that $\pi^*\eta$ is trivial.

That is, one hopes that the normal bundle is 'essentially' $\xi(r)$ for some r. The purpose of this paper is to show that Answer 2 is also wrong, even if $G = Z_2$, the action is orientation preserving and M is highly connected. In fact

If $l \equiv 0$ (8) and $l \geq 8$, then there is a free orientation preserving action of Z_2 on M, a differentiable manifold homotopy equivalent to $S^l \times S^l$ such that $v(M/Z_2) - \xi(r)$ is stably fiber homotopically trivial for no r.

It follows from Wall's classification of (l-1)-connected manifolds [2] that M is s-parallelizable, so that M/Z_2 is a counterexample to Answer 2, and Answer 1 too for that matter. It would be interesting to know just what is the right answer.

2. A map

Suppose we have a free orientation preserving action of Z_2 on M a differentiable manifold homotopy equivalent to $S^l \times S^l$. In [3], it is shown that if l is even then $M/Z_2 = E(\gamma) u_{\psi} E(\gamma)$ where γ is an l-dimensional vector bundle over P_l , with twisted Euler class equal to 1 or 0, and $\psi : S(\gamma) \to S(\gamma)$ is a diffeomorphism.

To distinguish the two terms in expressions like $X u_f X$, recall the definition

Received February 17, 1969.

¹ The author was partially supported by a National Science Foundation grant during the preparation of this paper.

of such a space: It is $X \times 0$ u $X \times 1$ divided by the smallest equivalence relation containing $(f(x), 0) \neq (x, 1)$ for all $x \in \text{dom } f$, and given the quotient topology.

We obtain an embedding $P_l \subset M/Z_2$ by

$$P_{l} \xrightarrow{0 \text{ section}} E(\gamma) \times 0.$$

Let $g: S^{l} \to M$ be the cover of $P_{l} \subset M/Z_{2}$. Then we know from [3] that $g_{*}[S^{l}] = (1, -1)$ or (1, 0) with respect to a symplectic basis of $H_{l}(M) = Z + Z$. Thus in either case an embedding $f: S^{l} \to M$ representing (0, 1) will have algebraic intersection equal to 1 with g. Since

$$f_*[S^l] \cdot f_*[S^l] = f_*[S^l] \cdot \rho_* f_*[S^l] = 0,$$

where $\rho \in \mathbb{Z}_2$ is the non-trivial element, we may assume $\pi \circ f$ is an embedding with trivial normal bundle [3]. We may suppose as well that f is transverse regular along g. Suppose x, y are two intersections of g with f of opposite signs. We may pick an arc α in $g(S^l)$ from x to y which misses the rest of

$$g(S^l) \cap [f(s^l) \cup \rho f(S^l)]$$

and misses $\rho \alpha$ as well. We may pick an arc β in $f(S^l)$ from y to x which misses the rest of $g(S^l) \cap f(S^l)$. Notice that $f(S^l) \cap \rho f(S^l) = \emptyset$. Then we may find $\gamma : D^2 \to M$ with boundary $\alpha + \beta$ such that $\pi \circ \gamma$ is an embedding normal at the boundary to P_l and $f(S^l)$, such that

$$\gamma(D^2) \cap \rho f(S^l) = \emptyset \quad \text{and} \quad \pi \circ \gamma \ (\text{int } D^2) \cap (P_l \cup \pi f(S^l)) = \emptyset.$$

Since x and y have opposite signs, we may thicken $\gamma(D^2)$ to apply the Whitney procedure. It follows at once that we may thicken $\pi \circ \gamma(D^2)$ to apply the Whitney procedure, to obtain an isotopy from $\pi \circ f$ to $\pi \circ f'$ where f' has two fewer geometric intersections with g than f. Iterating the Whitney procedure as above finally gives us an embedding $f: S^1 \to M$ such that $\pi \circ f$ is an embedding with trivial normal bundle meeting P_i transversally at a single point. By altering the decomposition $M/Z_2 = E(\gamma) \, \mathbf{u}_{\psi} \, E(\gamma)$ so that $E(\gamma) \times \mathbf{0}$ is a suitably small tubular neighborhood of P_i , we may assume that the embedding π where

$$\pi f: D^l$$
 ບ $_1 D^l o M/Z_2$

is just a standard inclusion of a fiber $D^l \times 0 \subset E(\gamma) \times 0$ on $D^l \times 0$, and carries $D^l \times 1$ into $E(\gamma) \times 1$. Since $v(\pi \circ f(S^l) : M/Z_2)$ is trivial, we have two isotopic copies S_1^l and $\pi \circ f(S^l)$ in M/Z_2 . We may assume

$$E(\gamma) \mid P_1 \times 0 \text{ n } S_1^l = \emptyset.$$

Let $\sigma = E(\gamma \mid P_1) \cup E(\gamma \mid P_1)$ where $1 : S(\gamma \mid P_1) \to S(\gamma \mid P_1)$. We wish to find a map

$$j: \sigma \to M/Z_2 - S_1^l$$

(where $S_1^l \subset M/Z_2$ is the other copy of S^l , isotopic to $\pi \circ f(S^l)$) such that, on $E(\gamma \mid P_1) \times 0$ it is the natural embedding

$$E(\gamma \mid P_1) \times 0 \subset E(\gamma) \times 0,$$

and such that it carries $E(\gamma \mid P_1) \times 1$ into $E(\gamma) \times 1$. First, extend the natural inclusion

$$E(\gamma \mid P_0) \times 0 \subset E(\gamma \mid P_1) \times 0 \subset E(\gamma) \times 0$$

to

$$E(\gamma \mid P_0) \ \mathsf{u}_1 \ E(\gamma \mid P_0) o M$$

by

$$E(\gamma \mid P_0) \, \operatorname{U}_1 E(\gamma \mid P_0) \, = \, D_l \, \operatorname{U}_1 D_l \, = \, S^l \xrightarrow{\pi \circ f} M,$$

so that $E(\gamma \mid P_0) \times 1 \to E(\gamma) \times 1$. Now, σ is $S(\xi + \gamma \mid P_1)$ with γ unorientable, so that

$$\sigma = (P_1 \vee S^{\ell}) \cup_{\iota+\tau_{\iota}} D^{\ell+1}$$

up to homotopy, where $\iota : S^l \to P_1 \lor S^l$ is the standard inclusion and τ represents the generator of $\pi_1(P_1 \lor S^l)$. We have also

$$\sigma = (E(\gamma \mid P_1) \mathsf{u}_1 E(\gamma \mid P_0)) \mathsf{u}_h D^{l+1}$$

where $1: S(\gamma | P_0) \to S(\gamma | P_0)$ and $h: S^l \to S(\gamma | P_1) \cup E(\gamma | P_0)$. Then we have the following homotopy commutative diagram

 $S^{l} \xrightarrow{\iota + \tau\iota} P_{1} \lor (S^{l}) \xrightarrow{} M/Z_{2} - S_{1}^{l}$ $= \begin{array}{c} \mathsf{n} \\ \mathbb{E}(\gamma \mid P_{1}) \mathsf{u}_{1} E(\gamma \mid P_{0}) & \mathsf{u} \end{array}$ $= \begin{array}{c} \mathsf{u} \\ \mathsf{s}^{l} \xrightarrow{} h \\ \mathbb{E}(\gamma \mid P_{1}) \mathsf{u}_{1} E(\gamma \mid P_{0}) \xrightarrow{} \psi^{-1}(\pi \circ f) \\ \mathbb{E}(\gamma) \times 1 - S_{1}^{l} \mathsf{n} (E(\gamma) \times 1). \end{array}$

We also have the commutative diagram

so that

$$\pi_l(E(\gamma) \times 1 - \pi \circ f(S^l) \cap (E(\gamma) \times 1) \to \pi_l(M/Z_2 - \pi \circ f(S^l))$$

is a monomorphism. It follows that

$$\pi_l(E(\gamma) \times 1 - S^l \cap (E(\gamma) \times 1)) o \pi_l(M/Z_2 - S_1^l)$$

is a monomorphism.

544

But $P_1 \vee S^l \to M - S_1^l$ carries ι to ι' represented by $\pi \circ f$, and it carries $\tau \iota$ onto the element $\pi \circ f \circ (-1)$ where $-1 : S^l \to S^l$ is a linear map with matrix

That is, $\tau \iota \to -\iota'$, so $\iota + \tau \iota \to 0$. Then it follows from the monomorphism above, and the first diagram, that h extends to

$$D^{l+1} \rightarrow E(\gamma) \times 1 - S_1^l \cap (E(\gamma) \times 1),$$

so that the map

$$E(\gamma \mid P_1) \ \mathbf{u}_1 \ E(\gamma \mid P_0) \xrightarrow{1 \ \mathbf{u} \ \pi \circ f} M/Z_2 - S_1^t$$

extends to a map

 $\varphi : \sigma = E(\gamma \mid P_1) \cup E(\gamma \mid P_1) \rightarrow M/Z_2 - S_1^l.$

Now, $S_1^l \subset M$ and $\pi \circ f(S^l) \subset M$ are isotopic, so we may interchange them and finally obtain

$$\varphi: \sigma \to M/Z_2 - \pi \circ f(S')$$

such that

- (1) $S^{l} \subset \sigma \xrightarrow{\varphi} M/Z_{2}$ is an embedding isotopic to $\pi \circ f$,
- (2) $\varphi \mid E(\gamma \mid P_1) \times 0 = \operatorname{incl} (E(\gamma \mid P_1) \times 0 \subset E(\gamma) \times 0),$
- (3) $\varphi: E(\gamma \mid P_1) \times 1 \to E(\gamma) \times 1.$

3. The normal bundle

With M a homotopy $S^l \times S^l$ as above, with involution ρ and l even, we now now seek $v(M/Z_2)$. By collapsing $E(\gamma) \times 1$ to a point, we obtain

$$M/Z_2 \xrightarrow{\rho} T(\gamma)$$

the Thom space of γ . The sequence

$$P_{l} \xrightarrow{h} M/Z_{2} \xrightarrow{p} T(\gamma)$$

is a cofibration, where h is the inclusion of P_l in $E(\gamma) \times 1$. The composition

$$P_{l} \xrightarrow{h} M/Z_{2} \rightarrow P$$

is homotopic to the standard inclusion. Also, $\tilde{K}O^{-1}(P) \to \tilde{K}O^{-1}(P_i) \to 0$ is an epimorphism, so it follows that

$$0 \to \tilde{K}O(T(\gamma)) \xrightarrow{p^*} \tilde{K}O(M/Z_2) \to \tilde{K}O(P_l) \to 0$$

is exact. It follows that the reduced stable normal bundle of M/Z_2 is $k\xi + p^*\alpha$ where ξ is the reduced canonical line bundle, α is uniquely determined in $\tilde{K}O(T(\gamma))$. Since ρ preserves orientation, k is even. The bundle γ depends only on k and l, and we have [3], when $l \equiv 0$ (8):

$$KO(T(\gamma)) = Z,$$
 $k \equiv 2, 6 (8)$
 $= Z + Z_2, \quad k \equiv 0, 4 (8)$

Since index $(M/Z_2) = 0$, α cannot have infinite order, so $\alpha = 0$ or possibly the element of order 2.

Now we have to investigate α more closely. Recall that

$$\gamma + \varepsilon^{t} = (2^{\varphi(l)} - l - 1 - k)\xi$$

where $t = 2^{\varphi(l)} - 2l - 1 - k$, so $S^{t}T(\gamma) = P_{l+2l}/P_{l+l-1}$. Also,
 $S^{t}T(\gamma \mid P_{1}) = P_{l+l+1}/P_{l+l-1}$

and $S^{t}T(\gamma \mid P_{1}) \subset S^{t}T(\gamma)$ is the natural inclusion

$$P_{t+l+1}/P_{t+l-1} \subset P_{t+2l}/P_{t+l-1}$$
.

Assume $l \equiv k \equiv 0$ (8). Then $t \equiv -1$ (8) so that

$$\begin{split} \tilde{K}O(T(\gamma)) &= \tilde{K}O^{t}(S^{t}(T(\gamma))) = \tilde{K}O^{-1}(P_{t+2l}/P_{t+l-1}) \\ \downarrow & \downarrow & \downarrow \\ \tilde{K}O(T(\gamma \mid P_{1})) &= \tilde{K}O^{t}(S^{t}T(\gamma \mid P_{1})) = \tilde{K}O^{-1}(P_{t+l+1}/P_{t+l-1}) \end{split}$$

Now, $\tilde{K}O^{-2}(P_{t+l-1}) = Z_2 + Z_2$ and the image of

$$\widetilde{KO}^{-2}(P_{t+2l}) \to \widetilde{KO}^{-2}(P_{t+l-1}) \text{ and } \widetilde{KO}^{-2}(P_{t+l+1}) \to \widetilde{KO}^{-2}(P_{t+l-1})$$

are the same subgroup Z_2 of $\tilde{K}O^{-2}(P_{t+l-1})$. Let $\beta \in \tilde{K}O^{-2}(P_{t+l-1})$ be an element not in that image. Then if δ is the coboundary

$$\tilde{K}O^{-2}(P_{t+l-1}) \xrightarrow{\delta} KO^{-1}(P_{t+2l}/P_{t+l-1}),$$

it is straightforward to check that $\delta\beta$ is the element of order 2. But if δ' is the coboundary

$$\tilde{K}O^{-2}(P_{t+l-1}) \to \tilde{K}O^{-1}(P_{t+l+1}/P_{t+l-1})$$

we must have $\delta'\beta \neq 0$. Since

$$\tilde{K}O^{-1}(P_{t+l+1}/P_{t+l-1}) = Z_2,$$

it follows that the element of order 2 in $\tilde{K}O^{-1}(P_{t+2l}/P_{t+l-1})$ is carried onto the generator of $\tilde{K}O^{-1}(P_{t+l+1}/P_{t+l-1})$. Thus the element of order 2 in $\tilde{K}O(T(\gamma))$ is carried onto the generator of $\tilde{K}O(T(\gamma | P_1)) = Z_2$.

Now we can see that the sequence

$$0 \to \tilde{K}O(T(\gamma)) \xrightarrow{p^*} \tilde{K}O(M/Z_2) \to \tilde{K}O(P_l) \to 0$$

546

is split exact. For the splitting map $\tilde{K}O(P_l) \to \tilde{K}O(M/Z_2)$ we choose the one that carries the reduced canonical line bundle over P_l to ξ , the reduced canonical line bundle over M/Z_2 . This splitting map will be well defined provided that $2^{\varphi(l)}\xi = 0$. Now, $2^{\varphi(l)}\xi = p^*(x)$ for x uniquely determined in $\tilde{K}O(T(\gamma))$, and clearly x = 0 or $x = \alpha =$ the element of order 2 in $\tilde{K}O(T(\gamma))$. Using properties (2) and (3) of the map $\varphi : \sigma \to M/Z_2$, we obtain the following commutative diagram

$$\begin{array}{cccc}
\sigma & \xrightarrow{\varphi} & M/Z_2 \\
\downarrow & & \downarrow P \\
T(\gamma \mid P_1) & \subset & T(\gamma)
\end{array}$$

where $P_1 \to \sigma \to T(\gamma \mid P_1)$ is a cofibration. Clearly, $\varphi^* p^* \alpha$ is the unique nonzero element of ker $(\tilde{K}O(\sigma) \to \tilde{K}O(P_1))$. But $\varphi^* 2\xi = 0$ so $\varphi^*(2^{\varphi(l)}\xi) = 0$. Thus $2^{\varphi(l)}\xi = p^*(\alpha)$ is impossible and we must have $2^{\varphi(l)}\xi = 0$, so the sequence above is split exact (even with respect to Adams operations).

Now consider what happens to $k\xi$ and $k\xi + p^*\alpha$ (where α is the element of order 2 in $\tilde{K}O(T(\gamma))$) under the map

$$\widetilde{KO}(M/Z_2) \xrightarrow{\varphi^*} KO(\sigma).$$

Since $\tilde{K}O^{-1}(P_1) = 0$, the following diagram is commutative with exact rows

Then $\varphi^*\xi$ is the reduced canonical line bundle of σ , and that has order 2, so $\varphi^*(k\xi) = 0$ since k is even. But $\varphi^*(k\xi + p^*\alpha) = \mu$ is the unique non-zero element of ker $(\tilde{K}O(\sigma) \rightarrow \tilde{K}O(P_1))$. Thus the two cases of $v(M/Z_2)$ are distinguished by φ^* .

Now,

$$\sigma/S^l = (S^l \times S^1)/(S^l \times *) = S^1 \vee S^{l+1},$$

and the map $\sigma/S^l \to S^{l+1}$ of degree 1 is simply

$$S^1 \to *$$
 and $S^{l+1} \xrightarrow{1} S^{l+1}$.

The map

$$S^1 = P_1 \subset \sigma \to \sigma/S^l = S^1 \lor S^{l+1}$$

is simply

$$S^1 \xrightarrow{1} S^1.$$

Let $j: S^{l+1} \to \sigma/S^l$ be the natural inclusion of S^{l+1} . Then

$$S^{l+1} \xrightarrow{j} \sigma/S^l \to S(S^l)$$

has degree 2 since $H^{l+1}(\sigma) = Z_2$, so the collapsing map

$$S^1 \lor S^{l+1} = \sigma/S^l \to S^{l+1}$$

is

$$S^1 \to *$$
 and $S^{l+1} \to S^{l+1}$.

Since $\tilde{K}O(S^{l+1}) = Z_2$ it follows that the following sequence is exact, and the attached triangle commutative.

$$\widetilde{K}O(S^{l+1}) \xrightarrow{0} \widetilde{K}O(S^{1} \lor S^{l+1}) \to \widetilde{K}O(\sigma) \xrightarrow{0} \widetilde{K}O(S^{l})$$

$$\widetilde{K}O(S^{1})$$

The first 0 follows from $\tilde{K}O(S^{l+1}) = Z_2$ and the degree 2 map, and the second 0 follows from $\tilde{K}O(S^l) = Z$ and $\tilde{K}O(\sigma)$ finite. It follows that μ is the pullback of the generator of $\tilde{K}O(S^{l+1}) = Z_2$ under the degree 1 map $\sigma \to S^{l+1}$, and in turn restricts to that generator under

$$S^{l+1} \xrightarrow{j} \sigma/S^l.$$

4. The example

Suppose $l \equiv 0$ (8) and $l \geq 8$. Let $\eta \to S^{l+1}$ be an *l*-plane bundle over S^{l+1} whose reduced stable class is non-zero in $\tilde{KO}(S^{l+1})$. Let $S(\eta)$ be the sphere bundle of η . Define an involution of σ of $S(\eta)$ by $\sigma(x) = -x$. Then

$$S(\eta)/Z_2 \xrightarrow{\tilde{\omega}} S^{l+1}$$

is a P_{l-1} -bundle. Then the reduced tangent bundle of $S(\eta)/Z_2$ is $l\xi + \tilde{\omega}^*\beta$ where ξ is the reduced canonical line bundle and $\beta \in \tilde{K}O(S^{l+1})$ is the non-zero element. It follows that

 $v(S(\eta)/Z_2) = (2^{\kappa} - l)\xi + \tilde{\omega}^*\beta$

so that $k = 2^{\kappa} - l \equiv 0$ (8).

Let $w: S(\eta)/Z_2 \rightarrow P$ be the classifying map of the cover

$$S(\eta) \xrightarrow{c} S(\eta)/Z_2$$
.

Then the map

$$S(\eta)/Z_2 \xrightarrow{w \times \tilde{\omega}} P \times S^{l+1}$$

pulls back the normal bundle from $k\xi \times \beta$. Let $P_{l-1} \subset S(\eta)/Z_2$ be a fiber. The immersions $S^{l+1} \to P_{l-1}$ has trivial normal bundle. Observe that the canonical line bundle over P_{l-1} is included in $v(P_{l-1}: S(\eta)/Z_2)$. Regarding S^{l+1} as its S^0 -bundle, we obtain an embedding $S^{l-1} \subset S(\eta)/Z_2$ with trivial normal bundle such that either of its covers generates $H_{l-1}(S(\eta)) = Z$. By

548

surgering $S^{l-1} \subset S(\eta)/Z_2$ we obtain a manifold M/Z_2 together with a map

$$\zeta:M/Z_2 o P imes S^{l+1}$$

such that $v(M/Z_2) = \zeta^*(k\xi \times \beta)$ and M is a homotopy $S^l \times S^l$. We obtain $S(\eta)/Z_2$ back again by surgering

$$S^{l} \subset S(\eta)/Z_{2} - S^{l-1} \subset M/Z_{2}$$

where $S^{l} \subset S(\eta)/\mathbb{Z}_{2}$ is a linking sphere of S^{l-1} .

Notice that the embedding $P_{l-1} \subset S(\eta)/Z_2 - S^{l-1}$ may be extended to an embedding $P_l \subset M/Z_2$ which meets $S^l \subset M/Z_2$ transversally, exactly once. Since $v(S^l: M/Z_2)$ is trivial, it follows that $S^l \subset M/Z_2$ may be the map-

Since $v(S^l: M/Z_2)$ is trivial, it follows that $S^l \subset M/Z_2$ may be the mapping $\pi \circ f$ of Section 2.

Remark. Let f be a cover of $S^{l} \subset M/Z_{2}$ above, and $\bar{g}: S^{l} \to M$ the cover of $P_{l} \subset M/Z_{2}$ above. Then with respect to a symplectic basis of $H_{l}(M)$, we may take $f \ast [S^{l}] = (0, 1)$. Then according to [3],

$$\bar{g}*[S^{l}] = (1,0) + (2a,2b)$$
 or $(0,1) + (2a,2b)$ or $(1,-1) + (2a,2b)$.

Then the algebraic intersection $f*[S^l] \cdot \bar{g}*[S^l]$ is 1 + 2a or 2a or 1 + 2a respectively. Since the geometric intersection = 1, it follows that the middle case is excluded, and a = 0 in the other two cases. It follows that we may replace $P_l \subset M/Z_2$ by another $P_l \subset M/Z_2$ with cover $g: S^l \to M$ such that $g*[S^l] = (1, 0)$ or (1, -1) and geometric intersection 1 with $\pi \circ f(S^l)$.

In any case, we have $\sigma \subset M/Z_2 - \pi \circ f(S^l)$ with $S^l \subset \sigma M/Z_2$ isotopic to $\pi \circ f(S^l)$. By performing the surgery reverse to the one above, on $\pi \circ f(S^l)$, we get $S(\eta)/Z_2$ back again, with

commutative. Then we have

$$S^{l+1} \xrightarrow{j} \sigma/S^l \to S(\eta)/Z_2 \xrightarrow{\tilde{\omega}} S^{l+1}.$$

We wish to show that this composition has degree + 1. We may write

$$\sigma/S^{l} = D^{l+1} \mathbf{U}_{1} S^{1} \bigvee S^{l} \mathbf{U}_{\iota+\tau\iota} D^{l+1}$$

as above. If e_1 is the (l + 1) cell represented by the left D^{l+1} and e_2 is the (l + 1) cell represented by the right D^{l+1} , then $\iota_* = (\tau \iota)_* = 1$ so we have that $e_2 - 2e_1$ represents the generator of $H_{l+1}(\sigma/S^l)$. Now let $S^{l-1} \subset S(\eta)/Z_2$ be the sphere that was surgered to obtain M/Z_2 . Then $\sigma \cap S^{l-1} = \emptyset$ and the geometric intersection of e_1 with S^{l-1} is 1. Thus the algebraic intersection $(e_2 - 2e_1) \cdot S^{l-1}$ is -2. But the homology class represented by S^{l-1} is twice the homology class represented by a fiber P_{l-1} . Thus $(e_2 - 2e_1) \cdot P_{l-1} = -1$,

so $e_2 - 2e_1$ representes the generator of $H_{l+1}(S(\eta)/Z_2)$ and consequently

$$\sigma/Z^l \to S(\eta)/Z_2 \to S^{l+1}$$

carries $e_2 - 2e_1$ to a generator of S^{l+1} . It follows that the map above has degree ± 1 , and consequently that

$$v(S(\eta)/Z_2)/\sigma = \mu.$$

But then $v(M/Z_2)/\sigma = v(S(\eta)/Z_2)/\sigma = \mu$, so $v(M/Z_2) = k'\xi + \pi^* \alpha$ (where k' = k or $k + 2^{\varphi(l-1)}$).

Finally, $\pi^*(\alpha)$ cannot be fiber homotopically trivial because $\pi^*(\alpha) | \sigma = \mu$, and it is straightforward to see that μ cannot be fiber homotopically trivial since it corresponds to the generator of $\tilde{K}O(S^{l+1})$ under the isomorphism

$$\tilde{K}O(S^1 \lor S^{l+1}) \cong \tilde{K}O(\sigma).$$

Bibliography

- 1. C. T. C. WALL, Surgery of non-simply connected manifolds, Ann. of Math., vol. 84 (1966), pp. 217-276.
- 2. ——, Classification of Handlebodies, Topology, vol. 2 (1963), pp. 253-261.
- 3. R. WELLS, Free involutions of homotopy $S^l \times S^{l}$'s, Illinois J. Math., vol. 15 (1971), pp. 160-184.

UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS