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1. Let G be a p-group which is the semi-direct product of an abelian normal
subgroup A and a complementary subgroup K. It will be shown that if p is
odd then

H2(G, Z) H2(K, Z) (R) Hi(K, A) @ H=(A, Z) (Theorem 2.1).

Moreover, a method is described for systematically expressing H(G, Z) in
terms of generators and relations. (The results of the first part grew largely
out of conversations which the author has had from time to time with Norman
Blackburn, and he is as much responsible for the ideas involved if not the final
form presented here as is the author.
To illustrate the method, the Schur Multipliers of the p-Sylow subgroups

of the general linear groups, the symplectic groups, and the even dimensional
orthogonal groups over finite fields of characteristic p are computed. (The
case p 2, and for the symplectic case p 2, 3 are omitted.) Each of these
groups is a unipotent subgroup of a Chevalley group and is readily expressed
in terms of generators and relations. Presumably this allows a somewhat more
direct method of calculating the Schur Multiplier than is presented here.
In view of this and to avoid tedium, I have omitted most of the details of the
calculation. However, the step of computing H1 (K, A) which is perhaps of
independent interest and in which interesting homological phenomena occur
(Proposition 5.1 is given a more extended treatment.

Notation. All tensor products are over Z.
If G is a group, A a left G-module, we have the group of n-chains

C,(G, A) Z<g, g., ..., g,> @ A.

We denote by B (G, A and Z (G, A the groups of boundaries and cycles
respectively.

If g, h e G, we write [g, h] ghg-lh-1.
IfgeGandaeA, we write [g, a] g(a) a.
Finally, we alternate between additive and multiplicative notation freely

where convenient.

2. Let K be a group, A a K-module. We are interested in H (G, Z) for G
the semidirect product K.A. The spectral sequence argument for the group
extension 1 -- A -- G -- K 1 yields

H(G, Z) H(K, Z) Ks(G, Z),
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where K2 (G, Z) Ker {H. (G, Z) -- H (K, Z)}, and also a natural exact
sequence

d(1) H(K, A) ! H(A, Z) -- K2(G, Z) Hi(K, A) O.

(Z may be replaced by any tribal A-module M if A is replaced in the above
sequence by H (A, M).

THEOREM 2.1. Wih he notation as above, ppose A is a finitely generated
abelian group; hen 2d O. IfA is finite abelian of odd order, $hen the sequence

(2) 0 H (A, Z) K (G, Z) H (K, A 0

is exac and splits.

Proof. The first statement has been proved by Charlap and asquez; we
include it only for completeness, but it is not used in what follows. To prove
the second statement we show that if A is fite abelian of odd order, then

hH(A, Z) K(G, Z)

has a left inverse; it follows immediately that the former arrow h is a mono-
morphism and the sequence (2) splits. In particular, it follows independently
that d

Define e H (A, H(A) by the cocycle formula i (a, b) a b, for a, b e A"
(By "n" we mean the Pontryagin product in the ring H. (A, Z); also, we have
identified A with H (A, Z).) The universal coefficient theorem yields the
natural "evaluation" morphism

a H (A, H (A) ) Hom (H (A), H (A)

and one checks easily that a() 2 id. Namely, since A is finite, H(A, Z)
is generated by all a b, and a n b is represented by the cycle ((a, b) (b, a)) @ 1.
Write M H(A, Z) and let the central extension

(3) 1MEA 1

represent . Then one knows [3, Sections 2, 4] that the cotransgression
H (A, Z) M is a (), that is, 2 id.
Let K act on A and by the induced action on M. Obsee that the cocycle

i defined above is K-invariant. Hence, K acts also on E consistently with its
actions on A and M. Let G be the semidirect product K.A and U the semi-
direct product K.E. If U G is defined by ke ka where e a, then
we may identify Ker with M, and we have the commutative diagram with
exact rows

(4)
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Because of the naturality of cotransgression, (4) yields the commutative di-
gram

(5)

H2(A) M

H2(G) Me
where " is the cotransgression for the lower extension in (4). Since A acts
trivially on M, we have Ma M. Thus (5) induces the commutative di-
agram

(6)

H(G)

Since H (A) M is of odd order, and since 2. id, the desired result fol-
lows. (Remember that H(A) --. K (G) is a factor of H(A) H, (G).)

3. Let K be a group, A an abelian group. Put L K A, the free product
of K and A. If K acts on A,

defines an epimorphism K A -, K.A G. Let S be the kernel of this epi-
morphism. One checks easily that S is the subgroup of L generated by all
kak-lk (a)-I where k e K and a e A. (Notice that since ka makes sense in L
and in G, there is a possibility of confusion. Generally, the context will
me clear what is meant.) To see this, the following identities in K A
are useful: Write (k, a) kak-k (a)-; then

h (k, a)h- (hk, a)(h, k (a))- for h e K,
(7)

b (k, a)b- (k, k- (b))- (k, ak- (b)) for b A.

Remark 1. In fact, one can prove that S is free on the generatom (k, a)
thk landa 1.
The fundamental homology sequence for the sequence

ISLGI
yields

(8) H (L ) H (V) S/[L, S] L/L’ GIG’ O.
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We know G/G’ ._ K/K’ @ A/[K, A]. Also, by result of Rinehart and Barr,
[1, Section 4], for i

_
1,

H(K A, Z) H(K, Z) @ H(A, Z),

the isomorphism being induced by the inclusions of K and A in K A.

H,(K) H,.(A) a H2(G) b c, SILL, S] K/K’ A

(9) K/K’ A/[K, A]

0

where the homomorphisms are the obvious ones. In particular, a is induced
by the inclusions of K and A in G, and it may be factored through

a’ H2 (g) @ H, (A)K -- H, (G)

under which the first factor goes isomorphically onto a direct summand and
the second factor goes into K (G, Z).
We wish to compute

Ker S/[L, S] L/L’ - g/g’ A }.

First, we may write (k, a) [k, a]ak (a )-I where [k, a] kak-la-1 is computed
in L. [K, A] is a normal subgroup of L, and it is contained in Ker (L L/L’).
The element

X (kl, al)e’ (k., a)e (/or, ar)r, e 4-1,

in S is congruent modulo [K, A] to the element

b (al kl (al)-1)1 (a, k, (a,)-l)r
in A. On the other hand, since (k, a) ak(a)-1, the element x is in
Ker (S ----> L/L’ ) if and only if b 1 in A. Hence Ker (S L/L’ S n [K, A].

Putting together this information we obtain the exact sequence

a b(10) H(K) H(A) -; H(G) ::; S n [g, A]/[L, S] 0.

Consider next the group S n [K, A]/[L, S]. It is evidently functorial in pairs
(K, A). Blackburn [1, Section 1] shows that it is naturally isomorphic to
H1 (K, A). An outline of his proof is as follows: Define an isomorphism
C, (K, A )/B (K, A S/[L, S] by letting

<k> @ a (k,a).
Then (k) (R) a is a cycle if and only if, in view of the above computation,
(k, a,) (k,., a,.) (k,, a,) is in [K, A].

Thus (8) becomes
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Remark 2. In view of the discussion above one concludes that modulo the
direct summandH (K) the two sequences (1) (or (2)) and (10) are the same.
To prove this one would have to identify K: (G, Z) --* H1 (G, A as the cotrans-
gression b. We see no transparent way of verifying this, so we content our-
selves with the formulation above which is sufficient for what is done here.

The sequence (10) is a useful tool for computingH particularly if it is to be
described in terms of defining relations for the group. Write K FK/R and
A FA/R where F: and FA are free. Let F FK FA if we map F onto
G K.A in the obvious way, then we may write G FIR where R

_
R R.

The relationships among the various groups of interest are summarized in the
following diagram with exact rows and columns"

1 1

l 1
R*R =R.R

(11) ;G 711 ;R F

1 1

The cotransgressions

H. (G) SILL, S],

H (g) -- RK/[F, R],

H. (G) R/IF, R],

H. (A ) -- R/[F. R,]

are natural homomorphisms; also, the last three yield isomorphisms
H (G) .. R n F’/[F, R], etc. In particular, the isomorphism

g (A) R F’/[F RA] F/[F, Ra]

is described as follows. Let x and y in F represent a and b in A; then
a n b e H (A) corresponds to the coset of [x, y] on the right. Furthermore,
this isomorphism is a K-isomorphism provided we let K act on the right as
follows. For each ] in K, choose an endomorphism of F covering the auto-
morphism of A produced by letting k act on A. This endomorphism carries
F into itself and induces an automorphism of F’/[F, R] depending only
on k. Adding this information to the sequence (10), we obtain the follow-
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ing diagram with exact rows"

(12)

Notice at’ and btt are induced by the obvious group homomorphisms.
According to Theorem 2.1, if A is of odd order, then a and att are mono-

morphisms onto direct summands. Also, S r [K, A]/[L, S] is isomo.rphic to
H1 (K, A by means of the explicit isomorphism described above. Hence, if
we assume H(K) has already been computed, the computation of H(G)
reduces to the computation of H1 (K, A and H (A)K each of which is readily
expressed in terms of relations.

4. We wish to illustrate the method discussed above by computing the
Schur Multiplier for certain interesting groups which we describe below.

Fix a finite field k, GF (p’). Denote by G. G. (pro) the group of all
upper triangular n n matrices with entries in/ and ones on the diagonal.
G, is the p-Sylow subgroup of the general linear group Gl (n, lc).

Let V, be the ambient vector space for G. realized as the space of column
vectors with n entries in/c. V. may also be realized as the normal subgroup
of G+ consisting of all matrices of the form

(13) E ], v in V.

Ioreover, we may imbed G. in G.+I as all matrices of the form

(14) E 01]’ g in G.

Let g e G. and v e V then gvg-1 computed in G.+I corresponds to gv in V.
Clearly, G intersects V, trivially in G+ so that G+ is the semi-direct product
G,. V,,
Suppose now p is odd. Let A. be the additive group of all skew-symmetric

n X n matrices with entries in ]. We identify A. with the exterior power
/ V. when convenient.
matrices of the form

(15)

Let g* (9-1)’’.

Imbed A. in G as the normal subgroup of all

1.
a in A.

Imbed G in G. as the subgroup of all matrices of the
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coincides with a gagr in As, that is, with v/ w gv/ gw. Clearly, Gs
intersects As trivially in G2s so that we may form the semi-direct product
Hs Gs.As. Hs is the p-Sylow subgroup of the even dimensional orthog-
onal group 0 (2n, k).

Let Ss be the additive group of all n n symmetric matrices with entries
in /c. When convenient we identify Ss with the symmetric power $ Vs.
As above in (15) we imbed Ss in G.s, and we consider the semi-direct product
Js Gs’Ss. (Notice the symmetric product vw should replace the wedge
product v/k w in the formula above.) Then Js is the p-Sylow subgroup of
the Symplectic group Sp (2n, It).

5. In view of the constructions outlined in the previous section, we shall
be interested in computing H1 (G. V, A ) where G Gs, V Vs, and (I)
A Vs+l, (II) A S,+1, or (III) A As+l. I claim that in each case the
sequence

(17) 0 --* [V, A] --, A --, A v --* 0

splits as a G-sequence (but not as a V-sequence.) It follows from this by the
usual edge homomorphism argument that

(18) Hx (a. V, A ) H1 (G, Av) H1 (V, A )o.

To demonstrate the splitting of (17), we exhibit a split sequence,

h
(17’) 0 - [V, A] .) A B 0,

J
in each case. (B =’ A v .)

(I) Put A Vs+, B k; define

Notice Ker h [V, A] V.

0

and j(t)= 0

i

Remark. A certain amount of confusion can arise since Vs appearsboth as a
subgroup of Gs+ and a submodule of Vs+. This will be particularly annoying
when we are dealing with explicit cycles. Rather than complicate the nota-
tion even more, we choose to try to keep our wits about us.
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(II) Put A $(V+1), B K. Let el, e, ..., e+l constitute the
standard basis for V+I. Since h h has already been defined, it makes
sense to define h h by h (ab) h (a)h (b), for a, b in V+. Define j jH
byj(t) t(e+). Put T Kerh IV, A].
As an auxilliary device, we consider also the following.
(IIa) PutA T.,B V. Defineh’by

h’ (ab) h(a)b + h(b)a.

Notice that T. is spanned by products ab with a or b in V., and for such
products h’ (ab) is in V.. Of course, the above formula also defines a G+-
homomorphism h’:S,,+ --+ V,,+. Define j by j (a) ae,,+l for a in V..
Notice

Ker h’ [V, T] [V, IV, S+]] S.
(III) Put A /(V.+), B V.. Define h hH by

h(a / b) h(a)b h(b)a,

for a, b in Vnq-1. (The image does in fact lie in V. !) Define j by

j(a) e,+ / a,

for ain V. Notice Kerh [V, A] A..
One checks easily in all cases that h (h’) is a G.+I homomorphism, but j is

only a G.-homomorphism.
We now turn our attention to the computation of H1 (G. V, A ). Proceeding

by induction, we reduce the computation to findings Hi(V, A )a. The short
exact V-sequence (17’) yields the long exact sequence

(19)
A’ H( V, AH.(V, B) HI(V, ----

H V, B) >Ho(V,A

where we abbreviate [V, A] A’.
Consider first . Denote the prime field by F. Since V acts trivially

on B, the universal coefficient theorem (over the ring F) tells us that

H.(V, B) H2(V, F,) (R) B.

(Initially the tensor product is taken over F, but of course this is the same
as the tensor product over Z.) On the other hand, H (V, F) is spanned as a
vector space over F by the Pontryagin products v n w, v, w e H (V, F) V
and by elements (v, p, 1 ), v H (V, Z) V where (v, p, 1 is represented by
the cycle "Z (v, iv) (R) 1 in Z(V, F). (If V is written F,,/R, with Fv
free, then, expressing H. (V, F) in terms of relations as in section 3, we see
that v n w corresponds to [x, y] and (v, p, 1) corresponds to x. Here, as in
Section 3, v and w are represented respectively by x and y.)
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A routine computation shows

(20) lb. (v n w (R) b) is represented by

(v) (R) [w, j (b)] (w) (R) [v, j (b)],
for v, w in V, b in B.

Also,

(21) 2 ((v, p, 1) (R) b) is represented by

(21a) (v) (R) (2V)[v, j (b)] in cases I, IIa, and III,

and by

(21b) (v) (R) ()}[v,j(b)] + (’)[v, [v,j(b)]]} in case II

Thus, . ((v, p, 1) (R) b) is zero in cases I, IIa, and III provided p 2, and
it is zero in case II provided p r 2, 3.

Consider next a. We have H (V, B) V @ B, and a routine calculation
shows

(22) 1 (v (R) b) is represented by -(. (R) [v, j (b)].

PROPOSTIO 5.1. For p 2, and in case II, p 2, 3,

(23) 0 --* Coker 2 -- H1 (V, A -- Ker 1 -- 0

is a split exact G,-sequence. It follows that

(24) H(V, A)a --- (Coker i2)a @ (Ker it)a.

Proof. First consider cases I, IIa, and III. In these cases we have

[V,[V,A]] 0 and H0(V,A’) A’.

For v (R) b e V (R) B, define (v (R) b) e C1 (V, A by

(25) /(V (R) b) (v) (R) j(b) + (p 1/2)(v) (R) [v,j(b)].

/ so defined is additive in b, and a routine but laborious calculation shows that
(v (R) b) A- (v, (R) b) (v -t- v2) (R) b). Hence/ defines a homomorphism
V (R) B CI (V, A )/B (V, A ). Since

d((v (R) b)) -(.) (R) [v,j(b)],

it follows that v (R) b is in the kernel of t" V (R) B --+ A’ if and only if
(v (R) b) is a cycle. Thus, defines a homomorphism

/ Ker ih --* H (V, A

which splits the homomorphism H1 (V, A --* Ker it1 H (V, B).
The argument in case II is very much the same except that we must make

stronger use of the explicit nature of A S.+1. We have [V, [V, [V, A]]] 0
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and B k.

(25’)

Also,

Define as above

b) Iv] (R) j(b) -t- ((p 1)/2)(v) (R) [v,j(b)]

zr (p 1) (p 2)/6@ @ Iv, Iv, j (b ]].

1 V,, (R) A’/[V, A’] T,/S,, =V
is given by (v (R) b) -by. Suppose Y’v @ bisinKer. Then

d((v@b)) --{[v, be+l] + ((p 1)/2)[v, b,e+l]]}-- (2bve,+l W b,v) + ((p 1)/2)(2bv)}
2( bv)e.+

O.

Remark. In the explicit computations which follow the formulas (25)
and (25’) which give the (25’) which give the splitting will be impoant.

6. The groupsG.,n >_ 2, p 2. We have

H(G,,+., Z) H(Gn+, Z) HI(G,+I, V,+) H(V,+I, Z)a.+
Let T be an ordered F-basis for k which contains 1. For s in k, let x(s),
i 1, 2, , n, be the square matrix of degree n + 1 with 1 on the diagonal, s
in the ith row and (i + 1)th column, and 0 elsewhere. Let e(s), i 1, 2,

n + 1, be the column vector of degree n -t- 1 with s in the i position.
The x (t), in T, constitute a set of generators of G,+, and the e (t), in T,
constitute a set of generators of V,+I.

Let Fa be the free group on generators X(t), and let Fv be the free group
on generators E(t). Define the obvious epimorphisms of these groups onto
G,+ and V,+I respectively. Let F Fa. Fv, and define Ro, Rv, and R as
in Section 3. Notice that the elements x(t), i 1, 2, ..., n, in T, e,+x (t),
in T, constitute a minimal generating set for G,+. Let F0 be the subgroup

of F generated by the elements X(t), i 1, 2, n, and E,+ (t) X,+ (t),
in T. We shall find a basis for R n F’/[F, R] represented by elements of

R0 R n F0. Since Fo/Ro is a minimal presentation of G,+, we will get a
more convenient description of H than that obtained by a direct application
of the method of Section 3.

(a) Let n >_ 1. An F-basis for H(V,+t, Z)o..+t is given modulo
[G,+t, H] by the elements

e,+t (t) n e.+ (t’), < in T,
e,(t) n e,+x(1), in T.

In terms of relations, these elements correspond to the elements of R,

[E,+x (t), E,,+ (t’)] and [E, (t), E,+I (1)].
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Since e,, (t) [x,, (1), e,+ (t)], we have

E.(t) - [X,,(1), E.+(t)] mod R
so that

[E (t), X+ (1)] -= [IX. (1), X.+ (t)], X+ (1)] mod IF, R].

This the contribution to an F-basis for H (G+., Z) from
is given in terms of relations by the elements

[X+ (t), X+ (t’)], < t’ in T,
(26)

[X.+ (1), [X. (1), Z+ (t)]], in T.

(b) We have

HI(Gn+I, Vn+) .- HI (Gn ( H (V.

Also, H (G., k) G/G’,, @ k, and an Fv-basis for this group is given by the
representative/c-cycles (x(t)} (8) t’, i 1, 2, n 1, t, t’ in T, which lift to
the V+-cycles (x(t)) (R) e,+ (t’). Let [a, b]’ denote the commutator com-
puted in G+. V.+. Then the latter cycles correspond as in Section 3 to
the elements

[x(t), e.+ (t’)]’[x(t), e,,+ (t’)]-1 [x,(t), en+l (t’)]’.

In R, these correspond to the elements

(27) [X(t), X+(t’)], i 1, 2, .-., n 1, t, t’ in T.

() H(V., V+) Coker Ker i (a G.-direct sum.) H(V, V)
V (8) V., and formula (20) tells us Im is generated by all

v (R) sw-- w (R) sv, v,w, inV,sink. Hence,
Coker . --- $ (V.), and (Coker )a. - k

with F-basis represented by the elements e. (1) (R) e (t), in T. In terms of
cycles, we are led to the elements (x (1)) (R) e (t), or, in terms of relations,
the elements [X(1), E.(t)]. As in (a), modulo IF, R] the latter elements
are congruent to the relations

(28) [X(1), IX.(1), X.+(t)]], tin T.

(d) dt V. (R) ]z - V. is defined by v (R) s - -sv, and one sees easily that

(Ker )a Ker ()a" k (R) k -- k}.

An Fv-basis is given by the elements represented by the cycles

<x.(t)> (R) t’- <x(1)> (R)tt’, t,t’inT, 1.

The splitting map defined by formula (25) yields the V.+-eycles

(x,,(t)) (R) e,+(t’) (x.(1)) @ e,,+l(tt’)

4- ((p 1)/2)((x,(t)} (R) e,,(tt’) (x(1)> (R) e.(tt’)).
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However, the expression in parentheses represents an element of Coker
and, after an appropriate change of bass, we are left wth the first part of
the expression. In Gn/l*Vn/l, this expression corresponds to

Ix. (t), e.+ (t’)l’[x. (t), e+ (t’)]-[x= (1), e+ (tt’)] ([x. (1), e+ (tt’)l’)-[x,(t), e.+(t’)l’ ([x(1), e,,+(tt’)]’)-.
If s ,,r a, r, a, F,

_
write

x,+, (s) II, x,+, (r

Then we are finally led to the relations

(29) [X.(t), X.+(t’)][X,,(1), X,,+(tt’)]-, t. t’ in T, 1.

Induction now yields

PROPOSITION 6. Let n >_ 1, p 2. An F,-basis for H(G,+x, Z) is given
in terms of the generators X(t), i 1, 2, ..., n, by the relations

(i) [z,(t), z,(t’)], i , 2, ..., n, t, t’ in T,

(ii) [X, (t), X (t’)], 1 <_ i < j <_ n, j i q- 1, t, t’ in T,

(ii) [X,(1), [X,(1), X,+x(t)]] and [X,+(1), IX,(1), X+,(t)]],

i 1,2, ...,n- 1, tinT,

(iv) [X,(t), X,+, (t’)l[Z,(1), Z,+, (tt’)]-’,
i 1,2, ...,n--- 1, t,t’inT, t 1.

(Convention. X, (s) IX x, (t)* where s a, t.)

7. The groups J, n _> 2, p 2, 3.

H,.(J,+, Z) H(G,,+, Z) H(G,,+, S+) H(S+I,

Let Fo be as in section 6. The elements e(1)e(t), 1 < i _< j _< n
generate S,+x. Let Fs be thefree group on generators E(t), 1 <_ i <_ j <_ n q- 1,
in T, and map it onto S+ in the obvious way. Otherwise, proceed as in

Section 6. Notice that the elements X(t), i 1, 2, ..., n, in T, X,,+x(t)
E+.,,+ (t), in T, form a minimal generating set for J+.

(a) An F,-basis for H. (S,,+, Z)o+ consists of the elements represented by

e.+l (1)e,+x (t) n e.+ (1)e,,+ (t’), < t’ in T,

e (1)e+ (t) n e+ (1)", in T.

Arguing as in Section 6, we obtain (modulo [F, R]) the relations

(30) [X+ (t), X+ (t’)], < t’ in T,
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and

[E..+I (t), X,+I (1)] 1/2 ([[X (1), X+I (t)], X.+I (1)] [E... (t), X.+ (1)]

-1/2[X,+x (1), [X. (1), X,+, (t)]].

Thus, we may take for the contribution to u basis from the latter terms the
relations

(31) [X,+ (1), IX. (1), X,+ (t)]], in T.

(b) Hx (G+,, S,+) H(G., k) H(V,, S,+)a., and, as in Section 6,
H, (G., k) contributes to an F-basis the relations

(32) [X,(t), X,+(t’)], i 1, 2, ..., n 1, t, t’ in T.

(c) To compute H(V., S.+) we first take a small detour. Consider the
commutative, exact diagram of G.+rmodules

0 0

0 -. V --. V+ h
k-- 0

(33) 0 -- T -- S+ h

0 0.

On the level of homology, (33) induces the following diagram

H,(V, ) V. V. H(V, V.+)

H(V, ) H(V, T) H(V, S.+) V k

VNS VN&
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Diagram chasing shows that

(35) Hx (V, T.) Im ’ + Im i.

Also, our explicit knowledge of and shows us thut Ker t: is the k-subspace
of H. (V, k) spanned by all (v, p, 1), v in V; hence Ker . _ Ker. That
fact and some more diagram chasing shows that Imt n Im i (0). It
follows that the sum in (35) is direct and hence the sequence

(36) 0 --, Im i -- H (V, S+x) -- Ker --+ 0

is exact. However, by Proposition 5.1, we already know that it splits. Thus

(37) H(V, S,+)a, (Ira i)o (Ker x)o.
Returning now to the computation, we note that

Im i Coker (H (V., V.) -- V. (R) S.)

which by formula (20) is isomorphic to $ (V). Also, ($ (V))o, k, and,
in terms of cycles in S., an F-basis is given by the elements

(x(1)) (R) e,(1)e,,(t), tin T.

Arguing as in Section 6c, we are led (modulo IF, R], and except for factor of
2,) to the relations

(38) IX, (1), IX. (1), [X (1), X.+x (t)]]], in T.

(d) One argues as in section 6d. The splitting map t defined by formula
(25) is somewhat more complicated, and the calculation in G+, S+x is
considerably more complicated. Eventually, after an appropriate change of
basis, one obtains as the contribution to an F-basis from (Ker )a. the rela-
tions

[X.(t), X,+(t’)][X,(1), X,+x(tt’)]-[X,,(t), [X(1), X,,+x(tt/2)]]-(39)
.IX,(1), [X(1), X,+x(tt/2)]], t, t’ in T, # 1.

If we combine Proposition 6 with what has been done in this section, we obtain

POPOSlTION 7. Let n >_ 1, p 2, 3. An F-basis for H(J,,+x, Z) is
given in terms of the generators X(t), i 1, 2, n + 1, in T, by the rela-
$ion8

O)

(iii)

and

(iiia)

[x,(t), x,(t’)],

[x,(t),

i=l,2,...,n-- 1, <tinT
1

_
i <j

_
n + 1, j i - 1, t,t’in T,

[Xi(1 ), [X(1 ), X+I (t)]], i 1,2, ...,n-- 1, tinT,

[X+I (1), [X,(1), X+ (t)]], i 1, 2,

IX. (1), [X. (1), [X, (1), X,+, (t)]]],
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(iv)
IX, (t), X+ (t’)][X, (1), X,+ (tt’)]-,

i= 1, 2, n 1, t, t’ in T, 1,

IX, (t), X,+ (t’)][X, (1), X,+ (tt’)]-[X,, (t), IX, (1), X,+ (tt’/2]]-(iw)
IX.(1), IX.(1), x.+(tt’/2)]], t, t’ in T,

8. The groups H,, n >_ 2, p 2.

H(H,,+a, Z) H.(G.+x, Z) H (G,,+x, A.+x) H(A,,+x,

Let Fo be s before. The elements e(1) A e(t), 1 _< i < j _< n -F 1, in T,
generate A+x. Let E($), 1 _< i < j _< n -F 1, in T, be free generators of n
group Fa, nnd mp it onto A.+ in the obvious why. Then X(t),
i 1, 2, .-., n, in T, X.+x(t) E’,,,.+x(t), in T, represent n minimal
generating set for H.+x.

(n) The elements of nn Ffbsis for H(A.+x, Z)o.+, nre represented by

e,,(1)/ e,+x(t) n e,(1)/ e+x(t’), < t’ in T,
e,_(1) A e,,+x(t) n e,,(1) A e,,+x(1), tin T,

which yield, modulo [F, R], in terms of relntions

[X,+ (t), X,+ (t’)], < t’ in T,
(40)

[[X,_(1), X,+(t)], X,,+ (1)], in T.

(b) H (G,,+x, A,,+x) Ha (G,,, V,,) Hx (V,,, A,,+)G,,. H(O,, V,,)
has been computed in Sections 6b, 6e, and 6d. Cycles in V,, representing and
F-basis are

(x(t)) (R) e,,(t’), i 1,2, n 2, t, t’ in T,

(x._(1)) @ e,,_,(t), tin T,
(x_x(t)) @ e,,(t’) (x._(1)) @ e,,(tt’), t, t’ in T, 1.

Lifting to cycles in A.+x yields the elements

(x, (t (R) e.+ ( ) A e. (t’

(x,_(1)) @ e,_(1)/ e,_(t),

(z,_(t)) (R) e,+(1) / e,,(t’) (x,_(1)) (R) e,+(1) /k e,,(tt’),

which modulo [F, R] yields s previously the relations

[X,(t), X,,+ (t’)], i 1, 2, ..., n 2, t, t’ in T,

(41) [X,_(1), [X,_(1), X,+(t)]], tin T,

[X,_ (t), X,+ (t’)][X,_ (1), X,,_ (tt’)]-, t, t’ in T, 1.

(e) Im{6. H. (V,,, V,,) V,, (R) A,,} is the subgroup of V, (R) A, gen-
erated by 11 u @ v/k w v (R) u/ w, u, v, w in V,. (Formul (20).) But,
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modulo this subgroup,
u (R) v / w v @ u /k w -v @ w / u -w (R) v / u

w @ u / v =- u @ w /k v -u (R) v / w.

Hence 2u (R) v/ w 0, and since p 2, Coker/t. (0).
Notice that in this case we can dispense with Proposition 5.1.

(d) According to (c),
H(V, A+) _-- Ker {$" V (R) V --, A V}

where/i (u @ v) --u A v. An F-basis for this kernel consists of the
elements

e(t) @ e(t’) + e(t) (R) e(t’), 1 _< i < j _< n, t, t’in T,
e(t) (R) e(t), i= 1,2, n, t, in T,

e(t) (R) e(t) q- e(1) (R) e(tt’), 1 <_ i < j <_ n, t, t’ in T, 1.

AnF-basis for (Ker)o consists of the elements represented by e (t) (8) e (t’),
t, t’ in T, which yield in terms of cycles the elements, (x (t)) @ e,+ (1)/ e (t’),
or, in terms of relations

(2) IX. (t), x,+,(t’)], t, t’ in T.
The results of this section, together with Proposition 6, yield

PaoPosTmN 8. Let n >_ 2, p 2. An F,-basis for H. (H,,+, Z) is given
in terms of the generators X(t), i 1, 2, ..., n - 1, in T, by the relations

(i) [x,(t), x,(t’)], i , 2, ..., n + 1, < t’ in T,
(ii) [X(t), X(t’)], <_ i < j < n, i + , t, t,’ in T,
(iia) [X (t), X.+, (t’)], i 1, 2, ..., n 2, i n, t, t’ in T,

[X,(1), [X(1), X+ (t)]] and [X-x (1), IX,(1), X,+x (t)]],
(iii)

i 1, 2, ..., n, in T,
IX,_, (1), [X,_x (1), X,+ (t)]] and [X+x (1), [X,_ (1), Xn+ (t)]],

(ilia)
tinT.

Ix, (t), x,, (t’)][x, (), x,, (u’)]-,
(v)

i= 1,2, n t, in T, 1.

(ira) [X_x (t), X+ (t )][X,_ (1), X,,+x (tt’ ]-, t, t’ in T, 1.
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