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Introduction
Let be a complex linear character of a subgroup H of a finite group G.

In [2], C. W. CurAs and "(.he author exhibited a basis and corresponding struc-
ture constants for the endomorphism ring E of a module affording the induced
character a. In this paper we attack the same problem at characteristic p.

Section one establishes a relationship between the endomorphism ring E
with an endomorphism ring at characteristic p related to , while section two
examines the decomposition theory of E relative to that of the group-algebra
of G.
The following notations will be used throughout this paper"

G a finite group of order G
H a subgroup of G of order HI
K a p-adic number field containing the G th roots of 1
R the ring of integers in K
P the maximal ideal of R
F the residue class field RIP

a linear representation of H in K
e the idempotent H 1-1 (h-1)h in KH
M the right KH-module eKH
N the right KG-module eKG
E the endomorphism ring eKGe.

Observe that the KH-module M affords the representation , and
N eKG --- eKH (R) KG M. Finally, E eKGe --- Enda(N), where
we view E as operating on the left of N. For additional notation and terminol-
ogy the reader may consult [2] and [3].
The following is a routine result about orders, modules and endomorphism

rings which sets the stage for our discussion.

(0.1) POPOSTON. Let R be a noetherian domain with quotient field K and
let A be a finite-dimensional K-algebra with R-order A’. Suppose L is a right
A-module and L’ a finitely generated right A’-submodule of L such that L’K L.
Then every A-endomorphism of L’ can be extended uniquely to an A-endo-
morphism of L, and under this embedding End,(L’) is an R-order in End(L).
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We include the following result [2, Theorem 2.2] giving a basis and structure
constants for E eKGe.

(0.2) THEOREM. Assume G,H, b are as above. If {g} is a set of representa-
tives of the distinct (H,H)-double cosets HgH for which b on H(), then the
set of a (ind g)eg e is a basis for E. Moreover if a a ai a then
the constants of structure a are all algebraic integers in K.

Recall that H) g-Hg n H, ind g [H’H()], and h(h) (h) for
hell, g

1. Modular endomorphism ring
Clearly N is n (E,KG)-bimodule. By Theorem 0.2, the set E’ of ll

R-linear combinations of the elements {a} is an R-order in E. Our aim is to
reverse the idea of Proposition 0.1 and identify in N a right RG-module
whose endomorphism ring is E’.

(1.1) LEMMA. Let G [JHx (disjoin), x 1. Then N eKG has a
K-basis 5 {ex}. Let N’ Rex i.e., N’ is all R-linear combinations of
elements of 5. Then restricting the domains of operators on the left and right to
E’ and RG respectively, N’ is an E’, RG)-bimodule.

Proof. Since G (JHx and N eKG, M - N Mx (direct sum).
But M eKH K. e because M is one dimensional. Hence N K.ex
(direct sum) and ( is a K-basis. Now suppose g e G and ex e 5. Write
x g hx for h e H; then

(ex)g e(xg) e(hx) (eh)x b(h).ex e R.ex N’.

Thus N’ is a right RG-module. Finally we compute the action of E on ele-
ments of . Forf E’, if f(e) e N’ then f(ex) f(e)x e N’ since N’ is a right
RG-module. Hence it suffices to check what elements of E’ do to e. Observe
that E eKGe acts on N by left multiplication. Suppose a e E’ is an R-basis
element. Then a (ind g)ege where we write g g to simplify notation.
Considerate (indg)ege a ThenaeeKG N. LetH
(disjoint). Now e H - ,.(h-)h so that

a. (ind g)eg{I H - ,r(h-)h}
IH()l-eg{ (h-)h}
HCe) I-eg{ ,(). b(h- h-)hh}
H(e) I{ (,. b(h[)b(h-)eghh}
H() i-{ .(,, ,,(h-’)f,,(h-)eh-’ gh}

H(.) I-{ .(), ,,(h’[X)f,,(h-)(h-)egh}
(since h- e H)

_.,(h)egh{IH() ]- .() (h-)C(h)}.
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But h on H() so by the usual orthogonality relations,

H() 1-1 ,,(o) (h-)b(h) 1.
Thus

(1.2) aie ai -’ b(h-)egh eN’

since each (h-1) e R and each egh e N’. Now E’ is generated over R by the
set {a}, so (1.2) shows that N is a left E’-module. Clearly then N is an
(E’, RG)-bimodule, as desired.
Observe that N eRG is a subset of eKG, and N’ is independent of the

choice of coset representatives. We will assume that N’ and E (see the
beginning of this section) are fixed in what follows.

(1.3) LEMMA. N is a faithful left E’-module.

Proof. Suppose f e E’ c E Endxa(N). If fN’ 0 then 0 K.fN’
f.KN’ fN so f 0 since N is clearly a faithful left E-.module. This proves
the lemma.

Let 0 be any RG-endomorphism of N’. Then by (0.1) there exists a unique
KG-endomorphism 0 of N which extends 0 such that O(kn) O(n) for
eK, n N’.

(1.4) LEMMA. Let 0 e Enda(N’) and write 0 , a e K, where
0 is the extension of 0 to a KG-endomorphism of N. Then each e R so that
0 e E.

Proof. Since 0 extends 0 and e e N’,

.+ ai + ai(e) 0+ (e) e N’.

By (0.2) the support of a lies in the double coset HgH (viewing elements in
KG as functions from G to K). For i j the support of a is disjoint from
the support of a.. Thus in examining , a we need only consider one
(H,H)-double coset at a time. Let j be fixed and write g g. By (1.2),
we have a b(h-[)egh where H (JH<)h (disjoint). For each k
write gh &, x(), d e H, where G (JHx (disioint) as in Lemma 1.1.
(Then we also know that ( {ex} is an R-basis for N.) We then obtain

a b(h-[ )egh b(h[ )b(d)ex()

Now Hx(,) Hx() implies Hgh Hgh, which implies h and h are in the
same right coset of H(), so ] m; k -+ i(k) is therefore one-to-one. Now
since is an R-basis for N and a. e N the above formula implies that
i a N for each j. Clearly

al b(h-)b(d)ex()
so since ( {ex} is an R-basis for N’ and k -+ i(k) is one-to-one,
each b(h-)b(d) eR. But b(h-)(d) is a unit in R for each/c, and so
each/ e R. This shows that ve E, and proves the lemma.
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The preceding lemmas combine to prove the following"

(1.5) THEOREM. E . Enda(N’).

Proof. For f e E’ c E define the restriction fN, of f to N’. By (1.1),
fN, e End.a(N’). Lemma 1.3 implies that f -- f, is a monomorphism. Fi-
nally (1.4) shows that the mapping is onto End,(N’). This proves the
theorem.

For the remainder of the paper we set Ep’ E’/PE’, the P-residue class
algebra of E’, and N’ N’/PN’.

It is obvious that N’ is an (E" ,FG)-bimodule since FG RG/PG. The
follovAng allows us to identify Epp as a subalgebra of EndFo(N’).

(1.6) LEMMA. N is a faithful left E"-module.

Proof. Since R is a principal ideal domain, P wR for some 0 w e R.
Thus E’ E/wE’, N N’/wN’, etc. Suppose 0- wE’ e E’ with
0 e E’ E and assume (0 W wE’)N’ O, i.e., ON’ wN’. Consider w-10 e E.
Then (w-10)N -l(wN’) N’ so by the proof of (1.4), w-10 eE’. But
then 0 w(-O) e wE’ so 0 - wE’ 0 in E". We conclude that N" is faith-
ful.

(1.7) COROLLARY. There is an algebra monomorphism of E into
Endva(N).

We wish to know the structure of EndFa(Np in order to examine the struc-
ture of N’. In particular we would like to know when the monomorphism
of (1.7) is actually an isomorphism. This is just a dimensionality problem
which we proceed to settle.

Since defined on H has values in R we can consider the residue class func-
tion q H -- F* defined by (h) (h) -{- P. (Each (h) is a unit in R so
(h) P for all h e H.) Clearly q is a linear representation of H in F RIP.
Moreover M’ is a right FH-module which affords the representation defined
above, where M’ eRH and M’ M’/PM’.

(1.8) LEMMA. As right FG-modules, (M a .. N,.

Proof. By definition, M" M’ (R) FG. Define

f M’ X FG-. N"
via f(re - PM’,a) (re - PN’)a, r e R, a e FG. (Recall that M’ R.e.)
This is well defined since PM’ PN’. Clearly f is FH-balanced. Thus
there is an FG-homomorphism

] M" (R) FG ---. N.
But N’ is generated over FG by e W PN’ ](e PM’ (R) 1) so ] is an epi-
morphism. Finally since M’ is one dimensional over F, the dimension
((M)a:F) is just [G:H] which in turn is the dimension (N’:F). Thus] is
an isomorphism.
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(1.9) COROLLARY. The F-dimension ofEnda(N") is thenumber of (H,H)-
double cosets HgH in G such that qo on H().

Proof. Since N . (M"a) by (1.8) and M’ has character q we may apply
the Intertwining Number Theorem [3, (44.5)] to obtain the desired result.

(1.10) THEOREM. The following statements are equivalent:
(a) The F-algebras E and Endra(N) are isomorphic.
(b) For each g e G, ifq q on H() then b b on H().
(c) For each g e G, if b b on the p-regular elements of H(), then bg b

on H().

Proof. By (1.7), E’ --- Enda(N’) if and only if the dimensions (E"’F)
and (EndFa(N)’F) are equal. But (E’’F) (E’K) and by (0.2) this is
the number of double cosets HgH for which k b on H(). Clearly 2
on H() implies eg e on H(), so that by Corollary 1.9, E _’-. End,a(N") if
and only if (b) holds.

Let m be the/-part of H I. By assumption, K contains a primitive mth
root of unity (contained also in R) which reduces modulo P to a primitive
mth root of unity in F. Moreover w *- w + P is a group isomorphism of m
roots of unity between K and F.
Assume first that on H(). If h e H() is p-regular then (h) and

(h) are mth roots of units in K such that

(h) -t- P (h) (h) (h) + P.

By the isomorphism w - w -t- P we conclude that b(h) b(h). Therefore
b b on the p-regular elements of H(). On the other hand assume b #
on the p-regular elements of H(). Choose any h H() and write h h h
where h is p-regular and h is p-singular. Since both and are homo-
morphisms ofH() into F and F has characteristic p, both contain the p-singular
elements in their kernels. Therefore

SO

qfl(h) Ca(hi) (h) + P (h) + P (h) (h),

o q on H(").

This proves the equivalence of (b) and (c)

(1.11) CoRollaRY. If p is relatively prime to H then E’ --- Enda(N’).(1.12) COrOLlaRY. If H is a p-group then E" _- Endya(N") if and only
if b b on H() for all g e G.

Examples. Let G be a group and suppose h is an element of G of order p.
Let H be the subgroup of G generated by h and assume Ca(H) No(H)
where Ca(H) and Na(H) are the centralizer and normalier of H, respectively.
Then for each g e G either h h or H() 1}. (Note that Ca(H) No(H)
if G is a p-group.) Thus for any linear KH-character, on H() for
all g e G. Note that the corresponding FH-character e is the 1-character
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since H is a p-group. Thus there may be many KH-characters which
reduce to the same FH-character
Now let G be the dihedral group of order 8, H the cyclic normal subgroup of

order 4. Let x be the irreducible KG-character of degree 2. Then
b -t- b for some linear character of H and g
By Corollary 1.12, E" Enda(N") for p equal to 2, since in this case H is
a 2-group.
We show, as a sort of converse to the preceding development, that if we

start with a linear representation of H in F there is a representuti.on of H
in K such that h reduces modulo P to and which satisfies the compatibility
condition (e) of Theorem 1.10.

(1.13) POOSTON. Let q be a linear FH-character. Then there exists a
linear KH-character such that b(h) P (h) for all heH and which
satisfies condition (c) in (1.10).

Proof. Let H’ be the derived group of H and write H/H’ H1 H. where
H1 is prime to p and H21 is a power of p. Since is a linear character of
H, factors through H/H’. Also q(h) i for all h e H. since H,. is a p-group
and F has characteristic p. The elements of H are all p-regular, so to each
h e H we correspond (h) e K uniquely defined by (hl) + P (hl).
(See the proof of Theorem 1.10.) Since w - w + P is a group-isomorphism
between the H1 h roots of unity in K and F, H1 --, K is a homomorphism.
This pulls back to a homomorphism H -- K in the natural way. Clearly

is determined by what it does to the p’-elements of H, so if g on the
p-regular elements of H(g), then b on H(). Notice that (h) + P
q(h) for all h e H by construction, concluding the proof.

The reduction to the residue class algebras given above enable us to examine
the representation induced from a linear representation of H at characteristic
p by looking at the corresponding situation at characteristic zero" Proposition
1.13 shows how to construct a suitable representation at characteristic zero,
and Theorem 0.2 gives the structure of the endomorphism ring.

2. Modular decomposition theory
Throughout this section we assume the hypotheses and notatioz of Section 1.

(2.1) IEMMA. M"(N’) is isomorphic to a right ideal in FH (respectively
FG)

Proof. Let x h, (h-)h FH. Since q is linear, xFH xF and is
isomorphic to M’. Similar to the proof of (1.8) we have that xFG
--’ (i")

( _’" N"

(2.2) THEOREM. The right FG-module N" is FG-projective if and only if p
is relatively prime to
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Proof. If p is relatively prime to H then e H I-ix is an idempotent in
FH--where x is defined in the proof of (2.1)--and eFH xFH M". But
then N" (Mr’ a eFH which is FG-projective. Conversely suppose Nrr

is FG-projective. Then N" is an FG-direct summand of a finitely generated
free FG-module, say Nrr N1 . FG (direct sum). But (FG) is a free
KH-module so that (Nr’ (NI)

_
FH (direct sum). Thus (hr’ ).

is FH-projective. By [3, (63.6) ], Mrr is an FH-direct summand of (N’) ---((M")a). Hence Mrr is FH-proiective. Now FH is quasi-Frobenius so
Mr’ is FH-injective [3, (58.14)], and since Mr’ is isomorphic to the right ideal
xFH of FH as in the proof of (2.1) we may conclude that xFH xF is a
direct summand of FH. Thus there is a non-zero idempotent in xF such
that eFH xF, say e xa for some a e F. But then

x. e e= . HI.x.
(since x Hi.x) and e 0 so HI 0in F.
to H I. This proves the lemma.

Thus p is relatively prime

We next consider the relationships between the various E-, E-, and Err-
modules. For convenience, define A KG, A RG, Ar’ A/PA " FG.
Recall that, by hypothesis, R is a complete local ring. The point of view here
is influenced by Swan [4], and roughly parallels the theory for group-algebras.

Let B-( and B,( denote the categories of finitely generated projective left
Ep- and E-modules respectively, i) and ,9 the categories of all finitely
generated left E- and Er-modules respectively. Similarly define ,(, etc.
For S any ring and 9 a category of S-modules let 9(9) denote the Grothen-
dieck group of 9, i.e., the abelian group generated by all IT] with T e 9 and
with relations IT] [U] T IV] whenever there is an exact sequence 0
T --, V --, 0 of S-modules in

(2.3) Construction. Consider the (E",Arr)-bimodule N’. Then
Hom.(Nr’,A’r) is an (Arr,Er)-bimodule. Moreover the functors

U" Nr’ (R)__ and Vrr (N")* (R)__

take A’-modules to E-modules and Er-modulus to A’-modules respectively.
Similarly define U N (R)

__
and V N* (R)

__
where N* Hom(hr,A).

Consider the rectangle

9(,). 9(.)
e2

defined as follows:
(a) For Q e .(P define c’([Q]) to be [Q], viewed as an element of 9(,,).



150 T.V. FOSSU]

(b) For Q e ,,( let Q’ be the projective E’-module such that Q’ q- PQ’ .. Q
(see [3, (77.11)]), and define el’([Q]) [Q’].

(c) For Q’ e ,(P define e2’([Q’]) [K (R) Q’], an element of
(d) For L e gE let L’ be any R-free order E’-module contained in L, and

define d’([L]) [L’ -- PL’] in 9(E,,9Z).
The above maps are all well defined and the rectangle commutes. (See

[3, Chapter 12]).
Now consider the rectangle

q(,) 9()
e2

defined analogously.
We attempt to relate the rectangles T and T’ using the functors U",

U, and V. First note that N eA and so N* -- Ae. (Therefore N* is
left A-projective.) Moreover U(L) N (R) L ’-- eA (R) L --" eL as left
E-modules, E eAe. If we define from 9(9Z) to 9(EgZ) via/([L])
[eL] [U(L)] we have an epimorphism [2, Theorem 1.1] of abelian groups.
Moreover 17 from 9(Z) to 9(AgZ) via I?([L]) IV(L)] is a splitting map
for/7; i.e., the composition/ 17 is the identity map of 9(9X).
To relate the rectangles T and T further we desire to factor the map c

in some way through c, using the functors U" and V".
(2.4) LEMMA. The following are equivalent:
(a) The functor W takes projective EP’-modules to projective A"-modules.
(b) The functor Up takes exact sequences of A’-modules to exact sequences

of E’-modules.
c Npp is right AP-projective.
(d) Np is right AP-flat.
e The prime p is relatively prime to H I.

Proof. The equivalence of (c) through (e) follows from Theorem 2.2
and the fact that in Artinian rings fiat is equivalent to projective (see [1,
Theorem 3.3 (c)]). The equivalence of (b) and (d) is by definition. Now
suppose Vp’ takes projective EP’-modules to projective AP-modules. Then
in particular V"(Epp) (N")* (R),, E" (NP’) * is left APP-projective. But
then Np’ -- ((N’)*)* is right A’-projective. Thus (a) implies (c). Con-
versely suppose Nt is right A"-projective. Then by (2.2), p is relatively
prime to H and so e e q- PA is an idempotent in Apt and eA
Thus E" eA" N’ * ’e. eAe and A Let f be an idempotent in E
(by identification). Then

V"(EPPf) (N")* (R),,
_

(R),,E,f Ae (eAe)f --_ Apf,
which is clearly A"-projective. Thus (c) implies (a). This proves the
theorem.



ENDOMORPHISM RINGS 151

(2.5) THEOR,. The maps

" (,,9) --+ (,,) and l?" (,,(P) -- (,,(P)

given by 0"([L]) [U"(L)] and I?"([Q]) [V"(Q)] are well defined if and
only if p is relatively prime to H I, and in this case the following diagram corn-
mutes:

9(,) ()
e2

9(,,) c’

Proof. The first part of the theorem follows immediately from (2.4).
Commutativity is easy to check.

One can interpret Theorem 2.5 as giving some information about the trans-
formations c’ and d in terms of the corresponding transformations c and d.
One can also use the above relationships to obtain information about the
block decomposition of E" in terms of the decomposition in A".

(2.6) COROLLARY. Let M1, Mr and N1, N8 be complete sets of
(non-isomorphic) simple modules in and .9, respectively, arranged so that

U(MI), U(Mr,) and U’(NI), U’(Ns,)

are complete sets of simple modules in 9 and ,,, respectively. Then

[M],...,[Mr] and [N],...,[N,]

are bases for (9) and G(.,,), respectively, and if
d[M] d[N] (1 =< i =< r)

then
d’[U(M)] "’ d[U’(N)] (1

_
i-< r’).

d’ ’d, so that for 1 < i < r’Proof. By (2.5),

d’[U(M)] ’d[U(M,)]
’d[VU(M,)]
’d[M]
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" .- d[N]

:d[U"(N)1.

U"Here one checks that VU(M) M for 1 <= i

_
r, and that (N-) 0

unless 1 < j < s’
(2.7) Conoav. Let N N, be as "in (2.6), and let Q Q

be a complete set of (non-isomorphic) indecomposable modules in .5), arranged
so that Q/JQ --- Nfor I <- i <- s (J J(A") ). Then U" (Q), U’ (Q,)
is a complete set of indecomposable modules in ,,5), and if

c[Qi] - citiNg] (1 =< i =< s)
tgen

c’[U(Q)] : c[U(N)]

Similar to the proof of (2.6).

(1 <=i<=s’).

N1 N.
1 0
0 1
1 0
0 1

1 0
0 1

1 0
0 1

Na N
il
M
M

d M

Example. Let G D, the dihedral group of order 12, generated by
elementsa andb with relationsa b baba 1. LetH {1, b}, a
subgroup of order 2. For K tuke Q(w), w a primitive 12 root of 1, so thut
K is a splitting field for KG. Finally, let p 3. Then H 2, and 2 is
prime to 3 so the theorems of this section apply.

Let b be the 1-character of H; then e 1/2(1 b) is the idempotent in
KH which corresponds to h, and eKGe E is the endomorphism ring of
eKG.
A KG has 6 simple left modules, say M, M, four of dimension

one and two of dimension two. Of these, two one-dimensional modules,
say Mx and M, and both two-dimensional modules, say Ma and M, map
to simple E-modules under U. Now A’ FG has four simple modules, say
N, N, all of which are one dimensional, und all are "reduced" from
the one-dimensional left A-modules M, M., M, M, at characteristic zero.
Of these, two mp to simple E"-modules under U", namely N and hr (those
reduced from Mt and M.). Let Q, Q be the indecomposable projec-
tive left A"-modules, arranged so that Q/JQ --- N for 1 <- i =< 4, where
J J(A").

Matrices for the maps c and d may be given as follows"
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Q1 2 0 1 0
0 2 0 1

1 0
0 1

2 0
0 2

By (2.6) and (2.7), the corresponding matrices for c’ and d’ are merely the
upper left-hand submatrices of the matrices for c and d--we have been
careful to arrange the modules so that they appear in the proper order re-
quired by (2.6) and (2.7).

eN1 eN
eM 1 0

d’ eM. 0 1
eM 1 0
eM4 0 1

eN eN
eQ 2 0

c eQ 0 2

Here eL denotes U(L) or U" (L), whichever is appropriate.
Observe from the matrix for c’, that E" has exactly two blocks. One

checks that (E:K) (E" :F) 4, so each block of E" consists of a single
indecomposable projective, and that each such indecomposable projective
has exactly two one-dimensional composition factors (which are isomorphic).
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