
ON INTEGRABILITY AND SUMMABILITY IN VECTOR SPACES

BY
D. R. LEWIS

1. In [10] we have studied the properties of a functionally defined integral
for measures defined on -alebras and having their values in locally convex
spaces. This paper extends those results to measures defined on -rings, but is
more concerned with the problem of determining which scalar valued functions
are interable (Definition 3.1).
The more general setting of t-rings is desirable because of the following con-

siderations. Any sequence (x) E can be considered as an E valued measure
on the -ring of finite subsets of the natural numbers, simply by defining
(A to be,x. Settingf(t) I for each t, it is apparent that the ques-
tions of the summability of (x), and of the existence of solutions to the equa-
tions

’) E’(,)

for all A c N are closely related. The chief topic of this paper is the relation
between the behavior of summable sequences in a given space E, and the exist-
ence of solutions to (.) for arbitrary E-valued measures and scalar-valued
functions.

Sections 2 and 3 contain the basic facts about vector measures and their
integrals needed in the latter sections. In Section 4 the relationship between
integrability with respect to a given measure and its variations is considered,
and it is shown that these two notions coincide in an (F)-space if and only if
the space is nuclear. In Section 5 we show that in a (B)-space E not contain-
ing co, a function is -integrable if it is (, x’)-integrable for each x’ e E’. Inte-
grals for measures into spaces of linear operators are the subject of 6. These
results are applied to show that for a measure into a (B)-space E, a function
is -integrable if its integral in E" is a norm measure. In the last section we
make comparisons with some of the other integrals and related ideas in the
literature.

2. Throughout this paper r is a -ring of subsets of a set S, i.e., is a col-
lection of subsets of S closed under relative complement, finite union and
countable intersection. C (r) is the a-algebra of sets locally in r and E is a
locally convex, Hausdorff linear topological space. The scalar field of E may
be either the real or complex numbers and is denoted by . The term zero
neighborhood in E means a closed, convex and circled set containing zero in its
interior. The gauge of a zero neighborhood U is the function p(x)
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sup,,v 0 (x, x’)]. As much as possible we will use the notation and terminol-
ogy of Schaefer [13].
A collection (x,) c E is summable if the net (,, x), formed by sums

over finite sets of indices and directed by inclusion, is convergent in the given
topology on E. The collection (x) is absolutely summable if it is summable
and pv(x,) < for each zero neighborhood U. Finally, a sequence
(x) is subseries convergent if limn k_<n xa (k)xk exists for each set A of
natural numbers. The basic relations between these three notations may be
found in Day [5].
A measure with values in E is an additive set function defined on r with the

property that (An) is convergent to ([Jn An) for each pairwise disjoint
sequence (An) c with (J A r. Notice that (t (An)) is both summable
and subseries convergent to ([J. A.). For t r --* E a measure, (t, x’) and
x’t are used to denote the composition of t with a continuous linear functional
on E, and in fact this composition is a scalar measure on r. Conversely,
Grothendieck has shown [9, p. 166] that an additive set function r -- E is a
measure if (, x’) is a scalar measure for each x’ E’.

DEFINITION 2.1. Let U be a zero neighborhood in E.
is the set function on C (r) defined by

/v(, A) sup _< pv((A)),

The U-variation of

where the supremum is taken over all finite pairwise disjoint collections
(A)_<n of subsets of A.

The proof given by Dinculeanu [6, p. 35] shows that, for a measure,
/v (, ) is an extended real-valued measure on C (r). In case E is normed
(in particular if E ) only the variation over the closed unit ball is con-
sidered and the subscript is omitted. Measures of finite variation (i.e., those
satisfying /v(, A) < for each zero neighborhood U and A e r) can be
characterized by a strengthening of countable additivity.

THEOREM 2.2. A measure ---) E is of finite variation if and only if
( (A, )n is absolutely summable to ((in An) for each pairwise disjoint sequence
(A,) c with (J, A r.

Proof. The necessity of the last condition is obvious. Conversely, suppose
/v (, A0) for some A0 e and ero neighborhood U. For some partition
( of A0,1 < , pv((A)). Since /v(, is additive, /(, A)
for some A e (. Continuing in this manner there is a decreasing sequence
(An).>_0 in r and sequence ((Pn)n>_ of partitions such that (. is a partition of
A.__, An e (n and

The sequence (Jn((.\{An}) is pairwise disjoint and its union is in , but
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DEFINITION 2.3. Let U be a zero neighborhood in E.
tion of t is the set function on C (r) defined by

The U-semi-varia-

u v (A) supx,,v0 /(x’u, A ).

Only the semi-variation over the closed unit ball is considered when E is
normed. For a measure, each semi-variation assumes finite values on r and
is countably subadditive--further, the following is proved in [10].

THEOREM 2.4. If is a measure and (A,)n>o a sequence in r satisfying
A, c Ao and limn An t, then limn v (An) 0 for each zero neighborhood
U.

3. Throughout this section is a fixed E-valued measure on r. We sup-
pose that the real and imaginary parts of all functions considered below are
measurable with respect to the z-algebra C (r).

DEFINITION 3.1. A function f S--, is t-integrable if (1) f is (, x’}-
integrable for each x’ e E’ and (2) the functional equation

(ff(t)t, (dt), x’ ff(t)(t, (dt), x’)

has a solution for each A e C (r).

The integral defined in equation (2) is clearly linear, gives the correct vector
for r-simple functions and has the property that continuous linear operators
can be brought inside the integral.

THEOREM 3.2. If f is -integrable, then the indefinite "integral

f. f(t)u)(A (dt)

is a measure in C (r) and

II[l(A) sup,0 j
for each zero neighborhood U and A C ().

Proof. This follows immediately from Grothendieck’s result nd the defini-
tion of the semi-variation.

THEOREM 3.3. Let (fn) be a sequence of t-integrable functions which con-
verges pointwise to f, and g be a t-integrable function such that If,,[ <- gl for
each n.

(1) If E is semi-complete, then f is #-integrable.
(2) If f is t-integrable, then

f f(t) (dt) lim f i,,(t) (dt)
aa

uniformly with respect to A C (r).
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To reduce to the case of defined on a a-algebra we need

LEMMA 3.4. If g is -integrable, U is a zero neighborhood in E and > O,
then there is an A e r such that

Proof of lemma. Let h be the indefinite integral of g. If the lemma is
false, there is an increasing sequence (A) and a sequence (x’) U
satisfying

V (Xtn X, A) > e and V (x X, A+) < e/2

for each n. Let A U A. The sequence (AxA) is decreasing in C(r)
and has empty intersection, but

contradicting Theorem 2.4.

Proof of theorem. By the proof of Theorem 2.2 in [10], it is sufficient to show
that the sequence (f, f(t)(dt)) is Cauchy uniformly with respect to
A e C (r). Let U be a zero ndghborhood in E and A be the element of r

guaranteed by Lemma 3.4 with e . Then

p, i(t) (dt) f(t), (dt) <

for allnandBeC(r). DefineV C(r)EbyV(B) (A B). Since
C (r) is a a-algebra, the proof in [10] shows that, for some n0, the inequality

p f.(t) V (dt) f(t) V (dt) <

holds for M1 B e C (r) and n, m Z n0. Combining these two inequalities yields
the Cauehy condition.
The lemma also gives the following approximation condition for integrable

functions.

THEOREM 3.5. If g is t-integrable, U is a zero neighborhood in E and e > O,
then there is a --simple function f satisfying

SUpx,,vo f If(t) g(t) V (x’., dt)< e.

Proof. -Choose A e r to satisfy

sup,,vo f g(t) V (x’t, dt)<
\A

Since gx is C (r )-measurable and concentrated on an element of r, there is a
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r-simple function vnishing off A and satisfying

sup, If(s) g(s) < e/2[l] [Iv(A) + 1]-1.

The function f clearly works.
With the aid of Lemma 3.4 a version of the Orlicz-Pettis Theorem (see [11],

and [9, Corollary 2, p. 141] can be recovered from the integration theory devel-
oped above. Since the general method of proof will be used several times later
we adopt some notation for dealing with discrete E-valued measures. For a
set S, rs is the -ring of all finite subsets of S. Every subset of S is locally in
r. A collection (x,),,s defines a measure t from r into E--specifically, let
t, (0) 0 and (A) a, xa if A 0. We refer to the measure defined in
this way as the measure induced by (x),. The function on S whose only
value is 1 is denoted by 1(. ). N always denotes the set of positive integers.

THEOREM 3.6. If (X,),,,s C E and (x, (a)x,) is summable in a (E, E’) for
each A S, then each subcollection (x (a)x,) is summable in r (E, Er).)

Proof. It is sufficient to show that (x,) is summable. Let be the meas-
ure induced by (x,). For A S and x E’,

xA(a)x, x’} fA l(a)(t, (da),

so 1 (.) is z-integrable in r (E, E’). Let U be a r (E, E’) zero neighborhood.
By Lemma 3.4, there is an Ao e rs such that

f l(a)v(x’, da) < 1.sup,,v0

For A e rs and A =:) A0,

pv ( l()u (d)- ], x) <_ sup,,vo \ l()v(x’, de)< 1.

4. In this section we investigate the relation between -integrability and
integrability with respect to the variations k/e (t*, ). It is not necessary to
assume that is of finite variations.

THEORE. 4.1. If E is quasi-complete and f is / (, )-integrable for each
zero neighborhood U, then f is -integrable.

Proof. Notice first that f must be (, x’)-integrable for each x’ E’, since
{x E" (x, x’} -< 11 is a zero neighborhood. Consider the collection/ of all
zero neighborhoods in E to be directed by inclusion, and for each U e t choose a
r-simple function fv such that Ifv _< 4 Ill and

f lf(t) fv(t)[V(, dr) < 2
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Let A e C (). The net (f, fv (t) (dt)) is bounded because

for each U, g 5. Since we will need similar rgumen ler, we will prove
h he ne (f, I()v (d)) converges o he integral of f over a assuming
only h he ne is bounded nd satisfies

f 1sup,,,: If(t) f(t) V (x., dt) < .
This condition holds for the functions considered above since (x’. g
v(, )forx’
For U, V W,

p. (f. f(t)(dt)) f f(t)(dt))
sup.,.o f]f(t) -f(t)V (x’, dr)

J

-+- sup.,,.o J lye(t) f(t) IV (x’, dt)

_< sup.,.tro f lf,(t) -f(t) V (x’, dt)

+ sup.,.vo f. f. (,) f(,) v x’. dt

<1.

Thus the net is Cauchy in E nd is convergent to some element xa in E.
Let x’ E’, e > 0 and choose U e f so that {., x’}] is at most e on U. Then

--1e x U and

(, ’> f f(t) (u(dt),

(:. -}:<_ e x. f.(t)u(dt), Xx’ -t- e If(t) -f.(t) V (e x, dr)

< 3e/2.
The converse of the preceding theorem need not be true, but we can give

some description of the functions for which it holds.

TH.O 4.2. Let f be a -integrable function with its indefinite integral.
The function is V (, )-integrable for each zero neighborhood U if and only if
is of finite variation, in which case

V (x, A) f if(t) (, dr).
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Proof. For A e C (r) and U any zero neighborhood,

pv(X(A)) <_ f. If(t) V (, dr).

Thus X is of finite variation and

Vv (X, A) _< f If(t) Vv (, dr)

whenever f is Vv () integrable.

Conversely, suppose that X is of finite variation. To show that If] is
V v (, )-integrable it is sufficient to show that

[a[ V(, A) Vv(X. A)

whenever ]ax If], since this inequality implies that

f g(t) (, dr) (,. A)V V

for every measurable set A and r-simple function g dominated by If . This
will also prove the integral representation for the variation of . Let B e r
be any subset of A. By the Hahn-Banach theorem,

pv((B)) ((B), x’)]
Ufor some x e and so

pv((B) a - f, f(t) V (x’, dr)

]a - V (x’X, B) g ]a - Vv (, S),
By the definition of variation, Vv (, A g a ]- Vv (, A and the theorem
is proven.

CoroLlarY 4.3. For a space E the following are equivalent.
(1) Every summable sequence (x) in E is absolutely summable.
(2) If is any E-valued measure defined on a -ring, then is offinite varia-

tion.
(3) If is any E-valued measure defined on a -ring, then a -integrable func-

tion is V v (, )-integrable for every zero neighborhood U.

Proof. The implications (1) implies (2) and (2) implies (3) follow from
Theorems 2.2 and 4.2, respectively. Assume (3), let (x) be summable and
the measure on r induced by the sequence. As in the proof of Theorem 3.6,

the function 1 (.) is -integrable on N and by (3) is V v (, )-integrable for
each zero neighborhood U. Then

pv(x,) f l(n) Vv (, dn) ( ,
N

so (x) is absolutely summable.
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Condition (1) of the preceeding corollary holds in a Banach space if and
only if the space is finite dimensional. Using the Dvoretzky-Rogers Theorem
[7] and the construction given in the proof that (3) implies (1), a counter-
example to the converse of Theorem 4.1 can be constructed in any infinite-
dimensional Banach space--moreover, the measure can be taken to be of
finite variation on its domain. In Frt!chct spaces (1) holds only in nuclear
spaces (see [13, Corollary 2, p. 184]).

5. The integrability of a function f with respect to each of the measures
(, x’}, x E’, is not generally sufficient for the integrability of f. For example,
if (e.) is the sequence of unit vectors in co and the measure on r induced by
the sequence, then 1 (.) is (, x’}-integrable for each x’ but is clearly not
integrable with respect to . In a certain sense c0 is the smallest (B)-space
in which "weak" integrability does not imply integrability. Bessaga and
Pelczynski [3] have shown that, for E a (B)-space, Condition (1) of the next
theorem is equivalent to the assertion that E has no subspace isomorphic to
C0.

THEORE 5.1. The following are equivalent in a quasi-complete spe E.
(1) If (x,) is any sequence in E satisfying

<
for each x’ E’, then (x) is summable

(2) If is any E-valued measure defined on a -ring and f is (, x’}-integrable
for each x’ E’, then f is integrable.

Proof. Assume (2), let (x) be a sequence as in (1) and let be the measure
on r determined by the sequence. Clearly 1 (.) is (, x’}-integrable for each
x’ e E’, so 1 (.) must be -integrable. As we have previously noted, this im-
plies that (x,) is summable.

In order to prove that (1) implies (2) we will first show thatfx is integrable
for each A e r. We may reduce to the case in which f is non-negative. Fix
A e r and for each n let A, be the points in A satisfying g (s)[ n, where
g fx. Since g is C (r )-measurable and concentrated on an element of r,
we may choose inductively a sequence ,) of non-negative r-simple functions
satisfying A vanishes off A, f E g f + 1 on A, and

A g g-- <f AWn- onA. forn > 1.

The sequence (f) converges monotonically to g and for each x’ e E’ and
B C(r),

f.f()(dt), ’} f(t)V (z’, d).

By (1), ghe sequence (. f()(d)) is summable for every B c(r). By
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dominated conveyence,

g(t)(t(dt), x’}

for each
We next claim that for each zero neighborhood U there is a set A e r such

that

(*) sup.,,v0 : f(t) V (x’u, dr) < 1.

If this is not tree for a certain zero neighborhood U, we may choose an in-
creasing sequence (A.) r and a sequence (x.) U so that

If(t) V (x. ., dt) < and If(t) V (x.+., dt) > 1

or

for eeh n nnd henee here
nnd

fn f(t)(u(dt) 1

Let x, be the -integral of fxn. Since (B,) is a pairwise disjoint collection,

for eve x’ E’. By (1), this sequence is summable and so lira pv (x,) O.
This is a contradiction since

for all n.
Finally, let B C (r) and for each A e r let xa be the integral of fxaon

The collection (xa)a,. is directed by inclusion of the indices. The net is
bound (it is obviously weakly bounded) and by (*) is Cuuehy. An easy
calculation shows that the limit xn must satisfy

(x,

In paicular the previous theorem enables us to describe the classical (B)-
spaces in which "weak" integrability always implies integrability. Each re-
flexiv Banach space and each LLspace has this property, since these two classes
of (B)-space are weakly sequentially complete and hence cannot contain c0.

No separable dual (B)-space can have a subspace isomorphic to c0 [3, Corollary
10, p. 161], and neither can a space with a separable bidual. No infinite-
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dimensional C(K)-space (K compact Hausdorff) has this property, since
each such space has a subspace isomorphic to co.
We remark that for (2) of the preceeding theorem to hold it is sufficient that

E" have no subspace isomorphic to co. There appears to be no known example
of a (B)-space not containing co whose bidual does.

6. In this section E and F denote locally convex, Hausdorff spaces and G
is a collection of bounded subsets of E, which covers E and is directed by con-
tainment. The space of continuous linear operators from E to F is denoted by
2 (E, F)--the subcsripts of s, c, b and G refer to 2 (E, F) as a topological vector
space under the topologies of simple, pre-compact, bounded and G convergence,
respectively.
The dual of , (E, F) can be identified (algebraically) with E (R) Ft, where

(u, x (R) y’) (u (x), y’) for each basic tensor x (R) y’ and u (E, F) [13, Corol-
lary 4, p. 139]. Thus a scalar-valued function f is integrable for a measure

r -. 8 (E, F) if and only if

(),(A)x, y’) f. f(t)(u(dt)x,

holds for some measure h from C (r) into 28 (E, F). We will first give an ap-
parently weaker condition which is equivalent to integrability in 2, (E, F),
and next a condition sufficient to push integrability in 2 (E, F) to integrability
in a(E, F).

THEOREM 6.1. Suppose E is barreled and r -- 2 (E, F) is a measure.
A function f is -integrable if and only iff is (.)x-integrable for each x E.

Proof. The necessity of the last condition is obvious. For x E let

X(A) ff(t)(dt)x, A e C(r).

To show that. f is u-integrable we must show that the linear maps x --, h (A)
are continuous. Let U be a ero neighborhood in F and

S {xeE: ]l][v(S)- 1}.

B is circled, convex and radial (since the range of the F-valued measure h is
bounded). To show that B is a barrel we need only show that B is closed.

Let x0 be in the closure of B, y e U and e > 0. There is a pairwise disjoint
collection (A)_<, c r and scalars (a)_< such that

and

If(t) / ((xo (R) y’)#, dr) /2 < a, (#(A,)xo y’
i_n
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Choose a zero neighborhood V in E such that

t(A)[V] c e/2n [max_< a, / 11-U
for each i _< n, and then an element x of B such that x x0 V. Then

Since y’ and # > 0 were arbitrary,

1.

Since E is barreled, zero is interior to B, and for any x B and A C (r)

TEOREM 6.2. Suppose E is barreled, F is quasi-complete and

2o(E, F)

is a measure. A function f S is -integrable in 2 (E, F) if and only if
(1) f is -integrable in 2(E, F) and (2) the indefinite integral off is a measure
in 2a(E, F).

Proof. Again, the necessity of the last two conditions is obvious. Suppose
f satisfies (1) and (2) and let C (r) 2 (E, F) be a measure satisfying

(k(A), x @ y’} ff(t)((dt), x y’}.

We will first show that f is (, }-integrable for each e 2e (E, F)’.
Let

a={f()(d)’g isr-simple

is simply bounded, since

(f g(t).(dt)x.y’) f f(t) V ((x @ y’)..dt) <

for each r-simple function g with g [f, and each x e E, y’e F’. Since E is
barreled, a is equicontinuous and hence bounded in 2a(E, F). Let
e 2a(E, F)’ and M be an upper bound for (.] on a. Let g be a r-simple
function such that]g[ g If]. Then [gx _- for each A e C(r) and

hus i () V (e, d), ghe variation of ghe indefinige ingegral of , is ag mosg
4M. Since was arbigrary, f is {,, )-inegrable.
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Let , be a zero neighborhood in F and let

w F) U}.

For each such ero neighborhood W we will show that there is r-simple
function f stisfying f 4 ]f nd

f 1(*) sup0 f(t) f(t) V (u, dt) <

For each set A locally in ,

E 4 supper0 (x y’)u, A ).

Using this inequality and the fact that h is a measure in 2a(E, F), the proof
of Lemma 3.4 shows that h (SA) < for some A e r. Now choose a set
B e r such that B A, f is bounded on B and (AB) < . Finally, let
f be any r-simple function vanishing off B and satisfying f 4f] and

Let A e C(r). The net (faf(t)u(dt)) is bounded since

for all U and W. The space 2a(E, F) is quasi-complete since E is barreled
and F is quasi-complete. Repeating the arment used in Theorem 4.1, f
must be -integrable in 2q (E, F).

CoaonaY 6.3. Suppose E is barreled, F quasi-complete and r

(E, F) is a measure. A fution f" S is -integrable in (E, F) if and
only if f is )x-integrable for each x E.

Proof. By Theorem 6.1, f is -integrable in , (E, F). We need only show
that its indefinite integral h is a measure in (E, F). If (A) C (r) is a
decreasing sequence with empty intersection, then the sequence (h (A)) con-
verges to zero in (E, F) since it converges pointwise and E is barreled.

Coaonav 6.4. Let E be a barreled spe and E: be a measure. A
function f is -integrable in E’ if and only if f is (x, }-integrable for every x E.
If in addition is a measure in E, then f is integrable in E if and only if the
indefinite integral of f is a measure in E.

Proof. Identity E and E with 9, (S, ) and 2 (E, ), respectively, and
apply Theorems 6.1 and 6.2 in turn.

This corollary and the next point out one distinction between the Pettis
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integral for vector functions and our Pettis type integral for vector measures.
In [12, p. 143], Phillips has given an example of a non-Pettis integrable func-
tion into a (B)-space E whose (Dunford-Gelfand) integral in E’ is a measure
in the norm topology. The corresponding situation cannot happen for vector
measures.

COROLLARr 6.5. Let E be a (B )-space and the natural map of E into E".
A scalar function f is integrable for an E-valued measure if and only if the in,-

definite integral in E: off with respect to q ,, is a measure in norm.

Proof. The necessity of the last condition is obvious. Conversely suppose
that h C () E is a measure (in norm) satisfying

f f(t)(x’, (dt)}.

By Corollary 6.4, f is o -integrable in E. If y E’ vanishes on [E], then

(x(A), u) u) 0

for all A e C (r). This certainly implies that h (A) is always in [E] and

(-k(A), x’} f f(t)((dt),

is clearly satisfied.

7. In this section we will relate the abstract integral defined in Section 1
with some of the others already in the literature. In all the cases considered
below the given measure has values in a (B)-space.

In [6], N. Dinculeanu has developed a bilinear integral for measures of finite
variation which are defined on -rings. For the special case of scalar valved
functions his definition [6, p. 120] of an integrable function forces the function
to be integrable with respect to the variation of the given measure. The re-
sults of 4 indicates that our theory properly contains that of [6] for scalar
functions.

Another bilinear integral is the ,-integral of R. G. Bartle [1]. Here the
measure is defined on a a-field and for scalar functions the theory reduces to
that of Bartle, Dunford and Schwartz (compare Theorem 9 of [1] and Defini-
tion 2.5 of [2]). It can be shown [10, Theorem 2.4] that our integral and that
in the paper of Bartle, Dunford and Schwartz coincide in their setting, i.e. for
Banach-valued measures defined on a-fields.
The countably additive integral of Gould [8] is over a quasi-measure space

(S, 2h, 20, t), where 20, the domain of , is a -ring and 2 :::) is some a-
algebra of sets locally in 20. Additionally, the measure space is assumed to
be semistandard (Definition 5.7 of [8]), a condition we do not require. No
problems arise in 2 above if we consider such a a-algebra 2h instead of C(20),
once we restrict our attention to 2h-measurable functions. Whenever the
concepts of 2h-measurability and total measurability for (S, 2, 2:0, t) coin-
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cide, our integral and his (Definition 6.1 of [8]) agree. This is tree in particu-
lar for complete measures defined on a-algebras.
The paper on Garrett Birkhoff [4] is apparently the first to relate uncondi-

tional convergence and integrability (for vector functions and scalar measures)
in Banach spaces. However, the methods of Birkhoff are not easily adaptable
to our setting. Consider the measure on the Lebesgue sets of [0, 1) which
sends a set to its characteristic function in L[0, 1 ). If the roles of vectors and
scalars are interchanged, the analog of Theorem 11 of [4] fails for the function
f x.m and the partitions {[0, 1/2), [1/2, 1)} and }[0, .), [, 1)} of [0, 1 ), and
Theorem 12 also fails if f is to be integrable. Adapting Theorem 13, p. 367 of
[4] as a definition yields an integral which obviously can be approximated in
norm by an unconditionally convergent series. A much strong series approxi-
mation is obtained by our methods for complete Banach valued measures de-
fined on a-algebras. In this case, recursive applications of Theorem 3.5 above
give the following" a functionf is -integrable if and only if there are sequences
(a)>_ (::: , (A)>_o (::: r such that Ao has -measure zero,

f(8) Zn_l a, X, (s for s A0

and ’>1 Is. /(x’g, A) is uniformly summable for x’ -< 1. The inte-
gral of f over A is then the unconditionally convergent series

>a g (A r A.).
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