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Let G be a doubly transitive permutation group on a set of degree
n 2 mod 4, n > 2. Let a and B be distinguished and distinct points in ,
and let H G,, D G,, and T be a Sylow 2-subgroup of D. We prove
the following two results"

THEOREM 1. G contains a unique minimal normal subgroup M (G ). M (G)
is simple and doubly transitive on , with G <_ Aut M (G).

THEOREM 2. (i) if U is an involution in T such that the fixed point set of
every element of T is contained in that of u, then M (G is A6 L. (q ), or U3 (q
in their natural doubly transitive representations.

(ii) if T is abelian then M[G] is an in (i).

Theorem 1 reduces the problem of determining all groups mentioned in the
title, or any subclass thereof, to the problem of finding all such simple groups.
A natural question that arises is which doubly transitive groups satisfy
theorem 1. The only groups known to the author that do not are those with
regular normal subgroups, and the Ree group, R (3).
To date most characterizations of doubly transitive groups seem to be in

terms of the structure of the stabilizer of two points, and particular its involu-
tions. Theorem 2 is a result of this kind. Lemmas 3 and 4 are useful in general
problems of the sort discussed in this paragraph.

1. Throughout this paper G, H, T, etc. are as above. For X G we
write F (X) for the set of in 2 with x for every x in X. More generally
our permutation group theoretic notation is as in [5].
A, is the alternating group on n letters. L2(q), U3(q), are the simple

normal subgroups of the two, three, dimensional projective special linear,
unitary, group over GF (q), respectively.
We require the following two results, which we quote without proof.

LEMMA 1 (Witt, [6]). Let A be a t-transitive permutation group on
{1, 2, ..., nl and let B be the subgroup of A fixing each i, 1 <_ i <_ t.

Let U B. Then (Na U)" is t-transitive if and only if for a in A, U B
implies there exists b in B with U Ub.
LEMMA 2 (Suzuki, [4]). Let U be a 2-group and u an involution in U such

that Cv (u) is the four group. Then U is dihedral or semidihedral
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We also require the classification theorems for groups with dihedral, semi-
dihedral, and wreathed Sylow 2-subgroups [1], [3].

2. The proof of Theorem 1 depends on the next lemma.

LEMMA 3. Let A be a nontrivial normal subgroup of G, and let R be a Sylow
2-subgroup of B A n D. Then F (R

Proof. SupposeR _< DforsomeginG. ThenR _< BandasaSylow
group of B, R R for some b in B. It follows from Lemma 1 that N No R
is doubly transitive on F (R).

N contains a Sylow 2-subgroup T of D, and T has index two in a Sylow
group of G, so IF(R) f 2 mod 4.

Let E N n A. F) is 3/2-transitive, so
has order two and thus E(R) is solvable. So N) contains a solvable normal
subgroup. Therefore N) has regular normal subgroup, and f is a prime
power. Thus f 2.
We now prove Theorem 1. Let 1 < A G. Claim that A n is doubly

transitive. A is 3/2-transitive, so it suffices to show that H (A H)D.
But as A is 3/2-transitive, a Sylow 2-subgroup R of A D is also Sylow in
A H. Thus H (A H)NR, while by Lemma 3, NnR _< D.
Next if A, B _< G with A ’ and B doubly transitive, then [A, B] 1. For

if not, A acts on F (B) {a/, contradicting the transitivity of A. Finally
we recall that a minimal normal subgroup M is semisimple. Theorem 1
follows from the last three remarks.
Note that we have also shown that F (T)

3. We now prove two lemmas to be used in the proof of Theorem 2.

LEMMA 4. Let U <_ D with F (U) {a, }. Assume there exists a prime p
such that for g in G, if U <_ D then a Sylow p-subgroup ofN (U) fixes exactly
two points. Then (No(U) )r(v) is doubly transitive.

Proof. Let hbeinH with U _< D. Let P be Sylowp-subgroup of
N-, (U). Then by hypothesis ]F(P)I 2. Thus NP _< D-,
soPisSylowinNU. LetQbeSylowgroup of NU. ThenQ P
for somexinNU. Thus {a,} F(Q) F(P)x a, t}h-lx, sothat
h-x d- is in D, and U= U.
Lemma 1 now implies that N U is transitive on F (U) {a}. Similarly

N(V) is transitive on F(V) {t}. Since F(V)[ > 2, the desired result
now follows.

LEMMA 5.
for all x in T.

Let G be simple, and u an involution in T such that F (x F (u
Then G is As, L (q), or U (q).



Proof. By double transitivity of G there exists an involution x (a. t)
withxinuandT T. LetC Cr(x). LetI (u n T}. ClearlyI
stisfies the hypothesis of Lemma 1, so (N(I))(’) is doubly transitive. As
T is contained in this normalizer, IF (I)l 2 mod 4. Also F (I) F (u),
so as x is in u, a 2-group acting semiregularly on F (x) has order at most two.

Claim that C acts semiregularly on F (x). Suppose c in C fixes a point of
F (x). Then c fixes at least two points of F (x) and we can assume c is an
involution. But then <x, c} is contained in some conjugate of T, contradicting

E(c).
It follows from Lemma 2, that a Sylow group T* <T, x> of G is dihedral

or semidihedrl. As such groups have been classified, G is a known simple
group. Consideration of possible doubly transitive representations, of the
given sort, of these groups, leads to the desired result.
Note that Lemma 5 classifies all G with T cyclic or generalized quaternion.

4. We now assume Theorem 2 to be false and let G be a counter example of
minimal order. Lemma 5 implies that T is abelian but not cyclic. Theorem 1
implies that G is simple. Lemmas 3 and 4 imply that if U

_
T

with F (U) a, }, then (No U)(v) is doubly transitive. N. U contains T,
so IF(U)] 2 mod 4. Therefore by minimality of e we have one of the
following.

(1) T() is cyclic and (T*) r(v) is dihedral or semidihedral where T* is a
Sylow group of G containing T.

(2) N() A.
(3) T(v) is the direct product of two cyclic groups of order 2 and 2,

i _> 2, nd N()
_

Aut L with IN(v)" L odd, where L is generated by
L (q) and the transformation v" a --* aq on GF (q) u :}, q 1 rood 4.

Let be an involution in T with F(t) maximal. Lemma 5 implies
F (t) {a, f}, so N Co (t) acts as one of the groups discussed above on
F(t). Let B Tt’(t). There exist u and s in T T with u fixing points
of F(B) and s in . Thus (u, B) is abelian, so B is in the center of T*, and
s is in Che center of s, Sylow group S containing B. By maximality of
F(t) I, B S(,) 1, so B is isomorphic to a subgroup of S(’). Since further

F(b) F(t) for b in B, either B is cyclic or Nr(t) A.
Assume first Ny(t) A. Then B is elementary and every coset of T/B

contains an involution so T is elementary. N contains an element x, nor-
malized by s, inducing an automorphism of order three on T. So
T B X [T, x] with (% [T, x]) dihedral of order eight. Therefore a Sylow
2-subgroup of G is the direct product of a dihedral group of order eight with
an elementary group of order two or four. With theorem of Fong [2], this
contradicts the fct that G is simple.
So B is cyclic. Assume next (T*)’() is dihedral or semidihedral. Then

T* <s,y,B’y’ y b, beB}.
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Let 2k be the order of y mod B; then r is 0 or It. As T (y, B) is not cyclic,
we can assume y 1. Let s be conjugate to y or ytin N. As s
Lemma 1 implies that is conjugate to y or yt in N,(T). Thus T* is
wreathed and the classification of groups with wreathed Sylow 2-subgroups
[1] yields a contradiction.
So s is not conjugate to y or yt. Thus N() PGL(q) and s acts fixed

point free on F(t). Thus B C,(s) (t}. As ys is conjugate to y or yt, ys
is an involution and so s inverts y. Thus T* is the product of a nonabelian
dihedral group with cyclic group of order 2. But this is impossible as G is
simple.

Finally assume Nr(t)

_
Aut L. Let v be an element of T acting on F (t)

as the transformation a--, aq. y fixes common points with some element in
T* T so v is in the center of T*. As B is cyclic either B

_
(v} or we can

choose v to be an involution. In the former case a contradiction can be derived
as above; so v is an involution.
N contains subgroup M of index two with v e M N.

R TnM (B,y}.

As G is simple, v is conjugate to an element of R; as above this conjugation
takes place in ND (T). v is not rooted in T so v is not conjugate to the involu-

T*tion in (y) Thus v and again is the direct product of a nonabelin
dihedral group with the four group. So Fong’s result yields a contradiction.
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