ON THE ROGERS-RAMANUJAN IDENTITIES AND PARTIAL
‘ g-DIFFERENCE EQUATIONS

BY
GeorGE E. ANDREWS'

1. Introduction

Perhaps the easiest proof of the Rogers-Ramanujan identities is the one ex-
pounded (in two different forms) by Rogers and Ramanujan [4]. The main
idea is to show that two apparently different g-series both satisfy the g¢-dif-
ference equation

(1.1) fe) — fleq) — 24f (eq") = 0.

It is an easy matter to show that if f(2) is analytic at z = 0 and f(0) = 1,
then f(2) is uniquely determined by (1.1). This implies that the two g-series
in question are actually identical, and the Rogers-Ramanujan identities
follow by specializing 2.

The object of this paper is to give a proof of the Rogers-Ramanujan identities
which hinges almost entirely on showing that two systems of partial ¢-differ-
ence equations are compatible (i.e. any set of solutions for one system is a set
of solutions for the other). In the final section of the paper, we discuss the
extension of this technique to other problems in the theory of partitions and
g-series identities.

2. Compatible ¢-difference equations
DEeriniTiOoN. Consider the systems of r equations

Fi(fl(wy y)’ e 7fn(x’ y))fl(xQ) y)) e ,fn($q, y):fl(x’ yQ)) Ty

fa@, y@), fi(zq, yq), + -+, fa(2g, yg)) = 0,
and

Gj(fl(x; y): e 1fn(x’ y);fl(xq; y): tee ’fn(xq’ y), fl(x, yQ)7 )

fn(x, ?/Q):fl(xq, yQ)’ tee ,fn(xq, yQ)) =0,

where 1 <7< s,1<j <t Thesetwo systems are said to be compatible in
case every solution set {fi(z, ), - - -, fa (&, )} of analytic functions in x and y
for one system is a solution set for the other system.

LeEmMA 1. Consider the partial g-difference equation
@.1) 2 5m0 2kmo @i (@, y)f &g, ya") = b, y),
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where the a; i (x, y) and b (x, y) are polynomials in z, y, and g, | q| < 1. Further-
more
1 ifj=k=0

0 otherwise.

(2.2 ) Qj.k (0, 0)

Then there exists at most one function f(x, y) which is analytic in x and y near
(0, 0) and satisfies f(0,y) = f(z, 0) = 1.

Proof. Welet

(23) ik (@, Y) = Dhmo Dimo @i (hy )2y’
(2.4) bz, y) = Drmo 2umo BE, u)z'y";
(2'5) f(x7 y) = Z:—O Z:—O Am,n xmy”,

where (2.3) and (2.4) are only formally infinite in that the a;:(x, y) and
b(z, y) are polynomials.

Substituting these series into (2.1) and comparing coefficients of z‘y* on both
sides we obtain

(2.6) Do Do Dmbhmtintims Amn @ik (hy 1) = B, u).
By (2.2), we may rewrite (2.6) as
27) At D3m0 Dot Dmbhmtincimu, (h,0560,0) Armin @ 1 (hy 1) = B(t, u).

(2.7) shows that A., is defined in terms of 4.,’s with at least one of m and n
less than ¢ and u respectively. Thus a simple double induction establishes the
uniqueness of the A, given the initial condition

At,u=1 t=u=0
2.8) =0 t=0,u=*0
=0 t#0,u=0.

Lemma 2. Suppose ¢(z, y, ¢) and d (x, y, ¢) are rational functions of x, y, and
q without singularities ot (x,y,q) = (0,0,0) and ¢(0,0,¢) = 1,d(0,0,q) = 0.
Then for | g| < 1, there exists a unique function, f(z, y), analytic in both x and
y around (z,y) = (0, 0) such that f(0,0) = 1, and

(2.9) f@,y) =clx, vy, q) + ¢, vy, 0)f (2, yq).

Furthermore if ¢(x, y, q¢) and d(z, y, ¢) have no singularities in [a:l < W,
|y| < We, then f(z, y) is analytic in x and y in this region.

Proof. Clearly if f(x, y) does exist, then settingz = y = 0in (2.9), we
obtain
f(0,0) = 1.
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Iterating (2.9) n times we obtain
f,y) = 255 cd, v, 7 [Tz d@d, yd', 9)

(2.10) ,, " n— P
+ ¢"f@q", ya") 1= d(xq’, ya', q)-
This suggests that
(2.11) @, y) = 2imocid, yo', O)d TTim d(=d, yd', ¢).

Indeed if f(z, y) is defined by (2.11) then the ratio test guarantees that f is
analytic in # and y in the neighborhood of (0, 0) for Iql <1 |x[ < W,
lyl < W, and a simple shift of the summation index shows that (2.9) is
satisfied.

Finally if ¢ (z, y ) is also a solution of the prescribed type, then ¢ (x, y ) satisfies
(2.10)

Letting n — « in (2.10), we note that

¢ =0, II'= d@d, yq, ¢) =0, o(2q",yg") — 1,

and consequently ¢ (z, y) satisfies (2.11). Hence the solution is unique.

THEOREM 1. Iflql <1,

(2.12) 9@, y) — yh(z,y) = 1 — y + y2q(1 — 2q)h(xg, y)

(2.13) hz,y) =1—y+yQ1 — zq)g(xg, y)

A)

and

1 — zq)
2.14 x, =1—-x222——:v233(————q— xq,
(2.14)  ~(=z,y) yq y'q (1—yq)7( 0 ¥q)

(B)
1 —_—
(215)  n(z,y) = 1 — ayq — 2y'* Hg—; n(2g, yq)
then (A) and (B) are compatible systems of equations with a unique analytic
solution set. Furthermore the solutions are analytic in x and y for all x and

lyl <ldl™
Proof. First we note from system (B) that

'Y(x’ 0) = 7(0’ y) = 77(«"?, 0) = 77(0; y) = 1.

From system (A) we have clearly g(z, 0) = A(z, 0) = 1. Settingz = 0in
(A), we obtain a system of two equations in the two unknowns g (0, ), 4 (0, y),
and the unique solution setis g (0, ) = A (0, y) = 1 provided y # 1. Thus
if analytic g (x, ¥) and h(x, y) exist, ¢ (0, y) = h(0,y) = 1forally.

Thus by Lemma, 2, system (B) has a unique solution set and the solutions are
analytic for all z and |y| < | ¢|™. Substituting (2.13) into (2.12), we find
by Lemma 1 that at most one g(z, y) exists, and thus by (2.13) at most one
h(z, y) exists. Consequently if we can show that vy (z, y) and (z, y) (the
unique solution set of system (B)) satisfy (2.12) and (2.13)), then Theorem 1
will be proved.
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Let
(2.16) L, y) =~v@y) — yz,y).

If we multiply equation (2.15) by y and subtract from equation (2.14), we
obtain

2 53(1 — zq)
q

(217) L(z,y) =1 —y + ay’q(1 — zg) — a'y’q =) L(zq, yg).

Define H (z, y) by the following equation.
(2.18) L, y) =1 —y+ yzq(l — 29)H (g, ).
Substituting (2.18) into (2.17) we obtain

1 _ 2_236(1—13(12) 2
(2:19) H(xq,y) =1 —ayqg — zyyq T=90 H(zg', yg).

Replacing & by 2¢~" in (2.18), we obtain

1 — 2q)
2.20 H(z,y) =1 — R NG e U )
(2:20) (x, y) W~ TYL T (zg, yq)

Thus H (x, y) satisfies (2.15), and hence H (z, y) = 5(z, y) by Lemma 2.
Consequently

It

v(@,y) —yn(x,y) = Lz, y)
(2.21) =1—y+ y2q(1 — 29)H (g, y)
=1—y+ yzq(l — zq)n(zq, y).

Thus v (z, y) and 9 (z, y) satisfy (2.12).
Define M (z, y) by the following equation.

(2.22) M@Eihy) =1—y+yld—2a)v(@,y).
Substituting (2.22) into (2.14), we obtain

2.23 M(zghy) =1 —z — 272 L7 M ).

(2:23) (zq~, y) Y UK (z, yq)

Replacing x by z¢ in (2.23), we find

(2.24) M(z,y) =1 — zyq — 9022/3(14 ((_11 : ZZ))

Thus M (z, y) satisfies (2.15), and hence M (z, y) = n(z, y) by Lemma 2.
Therefore

(2.25) 1—y+yQ —xg)v(g, y) = Mz, y) = n(x, y).

Thus v (z, y) and 5 (x, y) satisfy (2.13), and so (A) and (B) are compatible
systems.

M(zq, yq)-
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COROLLARY (The Rogers-Ramanujan identities).

(2 26) 1 + Z " = IIO (1 _ q5n+1)-—1(1 _ q5n+4)—1;

q
(=g - Q=q)
n2+4n ©
q _ e 3y -1
(2.27) 1+§_,‘1(1_q) v g =II 0 = ¢ = ¢"™)™
Proof. By v(z, y) and n(x, y) we denote the unique solution set for the
compatible systems (A) and (B) of Theorem 1. If weset y = z in (2.14)
we obtain

(2.28) v(z,2) = 1 — &'q" — 2°¢"v(g, xq).
Iteration of this equation yields
220) @) = Tim (—1)g"PE A - o),

Therefore by the Jacobi identity [3, p. 282],
230) v, 1) = Il @ = ) = (A = ¢)
Setting ¥y = 2 in (2.15), we obtain

(2.31) 2@z, z) = 1 — 2"q — &°"n (g, q).
Iteration yields in this case

(2.32) ﬂ(x, x) = Z”_o ( 1) ('n/2)(5n+8) (1 2q2n+1).
Thus by the Jacobi identity [3, p. 282],

(2.33) 1(1,1) = [T5e 1 = &)@ = &) — ¢"™).

If we set y = 1in system (A) and solve for g(z, 1) = v(z, 1), we obtain
234) v(, 1) = (1 — aQ)v(@g, 1) + 2¢(1 — 2q) (1 — 2¢")y(xd’, 1).
Thus if G(z) = y(&, 1) [Jne1 (1 — 2¢")7", then
(2.35) G() = G(xq) + 249G (2¢*).
We now proceed as in [3, p. 293] and obtain

@36 2D IL 0 — o) = 6@ =14 Z ey T

From (2.13), we find
ne+n_n

(237) (=, 1) ﬁ_[l (1 —2¢")" = G(zq) = 1 + i a= q)qu(l -

Thus setting 2z = 1lin (2.36) and combining with (2.30) we obtain

n2

q —_ % P Ay !

= II (1 - q5n+l)—1(1 __ an—H)—-l.

n=0

(2.38)
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Setting 2 = 1in (2.37) and combining with (2.33), we obtain

hed nlin 0
q = — ny—1
1+nz=-:1(1—q)...(l_qn)_'ﬂ(lyl)gl(l q)

(2.39)

oo

= I'I (1 - q5n+2)—1(1 _ q5n+3)—1.

n=0

Hence the corollary is proved.

3. Extended results

The preceding technique can easily be extended to give a full proof of the
Rogers-Ramanujan-Gordon identities utilizing the analytic-combinatorial ap-
proach of [1]. In this case there are two systems of (¢ + 1)-equations.
Namely

(31) Crilz,y) — yCri-a(2, y)
(A" =1—y+ @) (1 — 29)Crp-its(2g; ¥, 12isk
(3.2) Ck,o(w, y) = (.

5 3 - 1 —
(B') (33) Crilz,y) =1 — a'y'q — afy*g " El ;q)) Cr.i(2g; yq),

072k

The technique may also be extended to cover the results considered in [2].
It is to be hoped that general theorems on compatible systems of partial g-
difference equations could be found. Such results would surely have interest-
ing ramifications in the theory of basic hypergeometric series and partitions.
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