# AN ARC THEOREM FOR PLANE CONTINUA 

BY<br>Charles L. Hagopian

If $H$ is a bounded aposyndetic plane continuum which does not separate the plane, then $H$ is locally connected. This follows from a result of Jones' [3, Th. 10] that if $p$ is a point of a bounded plane continuum $H$ and $H$ is aposyndetic at $p$, then the union of $H$ and all but finitely many of its complementary domains is connected im kleinen at $p .^{1}$ As a corollary of these results, each bounded aposyndetic nonseparating plane continuum is arc-wise connected. Closely related to the notion of an aposyndetic continuum is that of a semi-aposyndetic continuum, studied in [2]. A continuum $M$ is semiaposyndetic if for each pair of distinct points $x$ and $y$ of $M$, there exists a subcontinuum $F$ of $M$ such that the sets $M-F$ and the interior of $F$ relative to $M$ each contain a point of $\{x, y\}$. Note that a bounded semi-aposyndetic nonseparating plane continuum may fail to be locally connected. In this paper it is proved that every bounded semi-aposyndetic nonseparating plane continuum is arc-wise connected.

Throughout this paper $S$ is the plane and $d$ is the Euclidean metric for $S$.
Definition. Let $E$ be an arc-segment (open arc) in $S$ with endpoints $a$ and $b, D$ be a disk in a continuum $M$ in $S$, and $\varepsilon$ be a positive real number. The arc-segment $E$ is said to be $\varepsilon$-spanned by $D$ in $M$ if $\{a, b\}$ is a subset of $D$ and for each point $x$ in a bounded complementary domain of $D$ u $E$, either $d(x, E)<\varepsilon$ or $x$ belongs to $M$.

Lemma 1. If an arc-segment $E$ in $S$ of diameter less than $\varepsilon$ with endpoints a and $b$ is $\varepsilon$-spanned by a disk $D$ in $M$ (a subcontinuum of $S$ ), then there exists an arc-segment $M(E)$ in $M$ with endpoints $a$ and $b$ such that for each point $x$ of $M(E), d(x, E) \leqq 2 \varepsilon$.

Proof. Let $w$ be a point of the unbounded complementary domain of $D$ u $E$. Let $B$ denote an arc in $D$ with endpoints $a$ and $b$. For each positive real number $r$, let $C(r)$ denote the set consisting of all points $x$ of $S$ such that $d(x, \mathrm{Cl} E)<r(\mathrm{Cl} E$ is the closure of $E)$. For each positive real number $r, \mathrm{Cl} C(r)$ is a bounded locally connected continuum in $S$ which does not contain a separating point. By a simple argument, one can show that if $r \geq \varepsilon, \mathrm{Cl} C(r)$ does not separate $S$. Hence for each real number $r \geq \varepsilon$, $\mathrm{Cl} C(r)$ is a disk [5, Th. 4, p. 512]. Since $B$ is locally connected, the set $Q$ consisting of all components of $B-\mathrm{Cl} E$ which meet $B d C(\varepsilon)$ (the boundary

[^0]of $C(\varepsilon)$ ) is finite. Define $Q_{1}$ to be the set of all elements $X$ of $Q$ such that if $Y$ is an element of $Q-\{X\}$, then $Y$ u $\mathrm{Cl} E$ does not separate $X$ from $w$ in $S$. For $n=2,3,4, \cdots$, define $Q_{n}$ to be the set of all elements $X$ of $Q-\bigcup_{i=1}^{n-1} Q_{i}$ such that if $Y$ is an element of $Q-\left(\{X\} \cup \bigcup_{1=i}^{n-1} Q_{i}\right)$, then $Y \cup \mathrm{Cl} E$ does not separate $X$ from $w$ in $S$. Since $Q$ is finite and the sets $Q_{1}, Q_{2}, Q_{3}, \cdots$ are mutually exclusive, there exists an integer $n$ such that $\cup_{i=1}^{n} Q_{i}=Q$.

For each element $X$ of $Q$, define the arc-segment $M(X)$ as follows. Let $c$ and $e$ be the endpoints of $X$ and let $I$ denote the arc in $\mathrm{Cl} E$ from $c$ to $e$. Let $Z$ be the bounded complementary domain of the simple closed curve $X \cup I$. Let $m$ be the integer ( $1 \leqq m \leqq n$ ) such that $X$ belongs to $Q_{m}$. If $X$ is contained in $\mathrm{Cl} C(\varepsilon+\varepsilon / m)$, define $M(X)$ to be $X$. Suppose that $X$ is not contained in $\mathrm{Cl} C(\varepsilon+\varepsilon / m)$. Since

$$
I \cap \operatorname{Bd} C(\varepsilon+\varepsilon / m)=\emptyset
$$

there exists a simple closed curve $J$ containing $I$ in $\operatorname{Bd} Z$ u $\mathrm{Bd} C(\varepsilon+\varepsilon / m)$ such that $Z \cap C(\varepsilon+\varepsilon / m)$ contains a complementary domain $V$ of $J[6, \mathrm{Th} .15$, p. 149]. In this case define $M(X)$ to be the arc-segment $J-I$. Let $x$ be a point of $M(X)-X . \quad \mathrm{Cl} V$ contains $x$ and is a subset of $\mathrm{Cl} Z$. Since $\mathrm{Bd} Z=I \cup X, x$ is not in $\mathrm{Bd} Z$. Thus $x$ belongs to $Z$. Hence for each point $x$ of $M(X)$, either $x$ belongs to $D$, or $d(x, E)>\varepsilon$ and $x$ is in $Z$ and therefore belongs to a bounded complementary domain of $D \mathbf{u} E$. It follows that $M(X)$ is contained in $M$. Note that for each point $x$ of $M(X), d(x, E) \leqq 2 \varepsilon$. For each arc-segment $X$ in $B$ belonging to $Q$,

$$
M(X) \cap\left(B-\cup_{Y \in Q} Y\right)=\emptyset
$$

for if there exists a point $x$ in $M(X) \cap\left(B-\bigcup_{Y \epsilon Q} Y\right)$, then $x$ would belong to both $X$ (since $\left.B-\mathrm{U}_{Y \in Q} Y \subset C(\varepsilon)\right)$ and $B-X$. If $X$ and $Y$ are distinct elements of $Q$, then the corresponding arc-segments $M(X)$ and $M(Y)$ are disjoint. To see this first suppose that $X$ and $Y$ both belong to $Q_{m}$ for some integer $m$. Assume there exists a point $x$ in $M(X) \cap M(Y)$. Since $B$ is an arc, $X \cap Y=\emptyset$ and $x$ must belong to either $M(X)-X$ or $M(Y)-Y$. Suppose that $x$ is in $M(X)-X$. It follows that $x$ is in the bounded complementary domain of $X \cup \mathrm{Cl} E$. If $x$ belongs to $Y$ then $X \cup \mathrm{Cl} E$ separates $Y$ from $w$ in $S$. This contradicts the assumption that $X$ and $Y$ are both elements of $Q_{m}$. Hence $x$ belongs to $M(Y)-Y$ and is contained in the bounded complementary domain of $Y \cup \mathrm{Cl} E$. It follows that either $X \cup \mathrm{Cl} E$ separates $Y$ from $w$ or $Y$ ч Cl $E$ separates $X$ from $w$ in $S$. Again this is impossible, since $X$ and $Y$ belong to $Q_{m}$. By the same argument, one can show that assuming $x$ is in $M(Y)-Y$ also involves a contradiction. Suppose there exist distinct integers $k$ and $m$ such that $X$ and $Y$ are elements of $Q_{k}$ and $Q_{m}$ respectively. Assume without loss of generality that $k<m$. Since

$$
\operatorname{Bd} C(\varepsilon+\varepsilon / k) \cap \mathrm{Cl} C(\varepsilon+\varepsilon / m)=\emptyset
$$

then

$$
M(Y) \cap(M(X)-X)=\emptyset
$$

Furthermore $M(Y) \cap X=\emptyset$; for otherwise, $Y$ u $\mathrm{Cl} E$ would separate $X$ from $w$ in $S$ which is impossible since $X$ belongs to $Q_{k}, Y$ belongs to $Q_{m}$, and $k<m$. Hence $M(X) \cap M(Y)=\emptyset$.

The set $M(E)=\bigcup_{X \in Q} M(X) \cup\left(B-\left(\{a, b\} \cup \bigcup_{X \in Q} X\right)\right)$ is an arc-segment in $M$ with endpoints $a$ and $b$ such that for each point $x$ of $M(E), d(x, E) \leq 2 \varepsilon$ [1, Th. 20.1.10, p. 157].

Lemma 2. Suppose that $M$ is a bounded continuum in $S, E$ is an arc-segment in $S$ of diameter less that $\varepsilon / 4$, and $D$ is a disk in $M$ which contains the endpoints of $E$. If $E$ is not $\varepsilon$-spanned by $D$ in $M$, then there exist points $x$ and $y$ in $\operatorname{Bd} D$ and an arc-segment $Y$ in $E-D$ such that
(1) $d(\{x, y\}, E) \geq \varepsilon / 4$,
(2) $\{x, y\}$ is not contained in the closure of a complementary domain of $D \cup Y$, and
(3) if $d(x, y)=r$, then $D$ contains a circular region $U$ of diameter $r / 2$.

Proof. There exists a point $v$ of $S-M$ such that $v$ is in a bounded complementary domain of $D \cup E$ and $d(v, \mathrm{Cl} E)=s \geq \varepsilon$. Let $z$ be a point of $\mathrm{Cl} E$ such that $d(v, z)=s$ and let $T$ be the straight line segment from $v$ to $z$ in $S$. Define $c$ to be the point of $T$ such that $d(z, c)=\varepsilon / 2$ and let $L$ denote the straight line in $S$ which contains $c$ and is perpendicular to $T$. Define $X$ to be the component of $S-L$ which contains $v$. Let $w$ be a point of $X$ which also belongs to the unbounded complementary domain of $M \cup \mathrm{Cl} E$. There exists an arc-segment $Y$ in $E-D$ such that $Y$ u $D$ separates $v$ from $w$ in $S$ [6, Th. 27, p. 177]. Let $a$ and $b$ be the endpoints of $Y$ and let $A$ and $B$ be the components of $\operatorname{Bd} D-\{a, b\}$. Let $Z$ denote the $\theta$-curve $A$ u $B$ ㄷl $Y$. Note that the complementary domain $Q$ of $Z$ whose boundary contains $A$ and $B$ is the interior of $D$ [7, Th. 1.7, p. 105].

Since $Y$ is in $S-D$, both $A$ ч $\mathrm{Cl} Y$ and $B$ ч $\mathrm{Cl} Y$ separate $v$ from $w$ in $S$. Furthermore, since $\mathrm{Cl} X \cap \mathrm{Cl} Y=\emptyset$ and $\{v, w\}$ is a subset of $X$, both $A$ and $B$ meet $X$. There exist a positive real number $r$ and points $x$ and $y$ in $A \cap \mathrm{Cl} X$ and $B \cap \mathrm{Cl} X$ respectively such that

$$
d(A \cap \mathrm{Cl} X, B \cap \mathrm{Cl} X)=d(x, y)=r
$$

Let $g$ be the midpoint of the straight line segment in $\mathrm{Cl} X$ from $x$ to $y$. Let $G$ be the circular region in $S$ which is centered on $g$ such that $\{x, y\}$ is contained in Bd $G$. Since

$$
(G \cap \mathrm{Cl} X) \cap(A \cup B)=\emptyset
$$

and $\mathrm{Cl}(G \cap X)$ meets both $A$ and $B, G \cap X$ is a subset of $Q$ [6, Th. 116, p. 247]. The set $G \cap X$ contains a circular region $U$ of diameter $r / 2$. Since $G \cap X$ is a subset of $D, U$ is contained in $D$.

The circular disk $J$ of radius $\varepsilon / 4$ centered on $z$ contains $E$. Note that $d(J, X)=\varepsilon / 4$. It follows that $d(\{x, y\}, E) \geq \varepsilon / 4$. Since $\{x, y\}$ is contained
in $\mathrm{Cl} Q$ and

$$
\{x, y\} \cap\{a, b\}=\emptyset
$$

$\{x, y\}$ is not contained in the closure of a complementary domain of $D \cup Y$ [6, Th. 116, p. 247].

Lemma 3. Suppose that $E$ is an arc-segment in $S, N$ is a disk in $M$ (a subcontinuum of $S$ which does not separate $S$ ), and $N$ contains the endpoints of $E$. For each positive integer n, there exists a disk $D$ in $M$ containing $N$ such that if
(1) $W$ is a complementary domain of $D \cup E$,
(2) $x$ is a point of $\mathrm{Cl} W \cap \mathrm{Bd} D$, and
(3) $d(x, E)>1 / n$,
then there exists a point $t$ of $W-M$ such that $d(x, t)<1 / 2 n$.
Proof. There exists a 1-complex $K$ (a finite collection of arcs no two of which interesect in an interior point of either) in $\mathrm{Cl}(S-N)$ such that (1) $\operatorname{Bd} N$ is contained in $K$, (2) each vertex of $K$ has order 3 in $K$, and (3) if $L$ is a component of $S-(K \cup N)$ and $\mathrm{Cl} L \cap M \neq \emptyset$ then the diameter of $L$ is less than $1 / 2 n$. Define $H$ to be the finite set consisting of all components of $S-K$ which are subsets of $M$, and let $D$ be the component of $\bigcup_{X_{\epsilon H}} \mathrm{Cl} X$ which contains $N$. Since $M$ does not separate $S, D$ is a disk.

Let $W$ be a complementary domain of $D$ u $E$. Suppose there exists a point $x$ of $\operatorname{Bd} D \cap \mathrm{Cl} W$ such that $d(x, E)>1 / n$. Note that $W$ is the only complementary domain of $D \cup E$ which has $x$ as a limit point. The point $x$ belongs to $K$. There exist a component $L$ of $S-(K \cup D)$ and a point $t$ of $S-M$ such that $x$ belongs to $\mathrm{Cl} L$ and $t$ belongs to $L$; for otherwise, $x$ would belong to the interior of $D$. Since the diameter of $L$ is less than $1 / 2 n, d(x, t)<1 / 2 n$. $L$ is a connected set in $S-(D \cup E)$. It follows that $t$ is a point of $W-M$.

Definition. A point $y$ of a continuum $M$ cuts $x$ from $z$ in $M$ if $x, y$ and $z$ are distinct points of $M$ and $y$ belongs to each subcontinuum of $M$ which contains $\{x, z\}$.

Lemma 4. If $M$ is a compact semi-aposyndetic metric continuum and $x, y$ and $z$ are points of $M$ such that $y$ cuts $x$ from $z$ in $M$, then $z$ does not cut $x$ from $y$ in $M$.

Proof. Suppose $y$ cuts $x$ from $z$ and $z$ cuts $x$ from $y$ in $M$. For each positive integer $i$, let $G_{i}$ be the set of all points $v$ of $M$ such that $\rho(v, z)<1 / i$ ( $\rho$ is a metric for $M$ ) and let $L_{i}$ be the $x$-component of $M-G_{i}$. The limit superior $L$ of $L_{1}, L_{2}, L_{3}, \cdots$ is a continuum in $M$ which contains $\{x, z\}$. Since $y$ cuts $x$ from $z$ in $M, y$ is in $L$. Note that for each positive integer $i, y$ does not belong to $L_{i}$.
$M$ is not aposyndetic at $y$ with respect to $z$. That is, the point $z$ belongs to each subcontinuum of $M$ which contains $y$ in its interior (relative to $M$ ). To
see this assume there exist a continuum $H$ and open sets $U$ and $V$ in $M$ such that $z \epsilon V$ and $y \in U \subset H \subset M-V$. There exists an integer $i$ such that $G_{i}$ is contained in $V$. Since $y$ does not belong to an element of $L_{1}, L_{2}, L_{3}, \cdots$, for each integer $j(j>i), L_{j} \cap U=\emptyset$. This contradicts the fact that $y$ is in $L$.

By the same argument, $M$ is not aposyndetic at $z$ with respect to $y$. Since $M$ is semi-aposyndetic, this is a contradiction. Hence $z$ does not cut $x$ from $y$ in $M$.

Theorem. If $M$ is a semi-aposyndetic bounded subcontinuum of the plane $S$ which does not separate $S$, then $M$ is arc-wise connected.

Proof. Let $p$ and $q$ be distinct points of $M$. According to a theorem by Jones, if no point cuts $p$ from $q$ in $M$, then $p$ and $q$ belong to a simple closed curve in $M$ and are therefore the extremities of an arc lying in $M$ [4]. Suppose that there exists a point which cuts $p$ from $q$ in $M$. Let $K$ be the closed subset of $M$ consisting of $p, q$ and all points $x$ such that $x$ cuts $p$ from $q$ in $M$. Define the binary relation $R$ on $K$ as follows. For distinct points $x$ and $y$ of $K, x R y$ if $x$ cuts $p$ from $y$ in $M$ or $x=p$.

If $x$ and $y$ are distinct points of $K$, either $x R y$ or $y R x$. To see this first suppose that $\{x, y\} \cap\{p, q\}=\emptyset$. Either $x$ does not cut $y$ from $q$ or $y$ does not cut $x$ from $q$ in $M$ (Lemma 4). Assume that $x$ does not cut $y$ from $q$ in $M$. There exists a continuum $H$ in $M-\{x\}$ containing $\{y, q\}$. The point $x$ cuts $p$ from $y$ in $M$; for otherwise, there would exist a continuum $F$ such that $\{p, y\} \subset F \subset M-\{x\}$ and $\{p, q\}$ would be a subset of the continuum $H \cup F$ in $M-\{x\}$ which is impossible since $x$ belongs to $K$. Hence $x R y$. By the same argument, if $y$ does not cut $x$ from $q$, then $y R x$. If $\{x, y\} \cap\{p, q\} \neq \emptyset$, the conclusion follows immediately.

The binary relation $R$ is anti-symmetric. For if $x$ and $y$ belong to $K$ and $x R y$, then by Lemma 4, $y \mathbb{R} x$ ( $y R x$ does not hold). $R$ is also transitive. To see this suppose there exist points $x, y$ and $z$ of $K$ such that $x R y, y R z$ and $x \not R z$. There exists a continuum $H$ in $M-\{x\}$ containing $\{p, z\}$. Since $y R z, y$ must belong to $H$. This contradicts the assumption that $x R y$.

For each point $x$ of $K$, define $P(x)$ to be the set of all points $z$ of $K$ such that $z R x$ and define $F(x)$ to be the set of all points $z$ of $K$ such that $x R z$. Note that $P(p)=F(q)=\emptyset$. Let $x$ be a point of $K-\{p, q\}$ and let $z$ be a point of $F(x)$. Since $R$ is anti-symmetric, $z \not \subset x$. Hence there exists a continuum $J$ such that $\{p, x\} \subset J \subset M-\{z\} . \quad P(x)$ is a subset of $J$ and since $J$ is closed in $M, z$ is not in $\mathrm{Cl} P(x)$. It follows that for each point $x$ of $K, \mathrm{Cl} P(x) \cap F(x)=\emptyset$. Suppose that $x$ is a point of $K-\{p, q\}$ and $z$ is a point of $P(x)$. Since $z R x, x \not R z$. Consequently there exists a continuum $P$ in $M-\{x\}$ containing $\{p, z\}$. The point $x$ cuts $z$ from $q$ in $M$; for otherwise, there would exist a continuum $L$ such that $\{z, q\} \subset L \subset M-\{x\}$ and $\{p, q\}$ would be a subset of the continuum $L \cup P$ in $M-\{x\}$ which contradicts the assumption that $x$ belongs to $K$. By Lemma 4, the point $z$ does not cut $x$ from $q$ in $M$. Therefore there exists a continuum $T$ such that

$$
\{x, q\} \subset T \subset M-\{z\}
$$

Let $y$ be a point of $F(x)$. If $y$ is not in $T$, there exists a continuum $H$ such that $\{p, q\} \subset H \subset M-\{y\}$. This contradicts the assumption that $y$ is in $K$. It follows that $F(x)$ is contained in the closed set $T$ and $z$ is not in $\mathrm{Cl} F(x)$. Hence for each point $x$ in $K, P(x) \cap \mathrm{Cl} F(x)=\emptyset$.

The binary relation $R$ is a natural ordering of $K[7$, p. 41]. Hence there exists an arc $A$ (not necessarily in $S$ ) containing $K$ such that $p$ and $q$ are endpoints of $A$ and $R$ is the order induced on $K$ from $A$ [7, Th. 6.4, p. 56]. If $a$ and $b$ are points of $K$ such that $a R b$ and a point $x$ cuts a from $b$ in $M$, then $x$ belongs to $K, a R x$, and $x R b$. To see this first note that since $x$ cuts $a$ from $b$ in $M$ and $a R b, x$ is not $p$ (Lemma 4). Since $a$ belongs to every subcontinuum of $M$ which contains $\{p, b\}, x$ cuts $p$ from $b$ in $M$. It follows that $x$ belongs to $K$ and $x R b$. Suppose that $x$ cuts $p$ from $a$ in $M$. By Lemma 4, there exists a continuum $H$ such that $\{p, b\} \subset H \subset M-\{a\}$. This contradicts the assumption that $a R b$. Hence $x \not R a$ and $a R x$. Let $E$ be a component of $A-K$ with endpoints $a$ and $b$ and assume $a R b$. Suppose there exists a point $x$ such that $x$ cuts $a$ from $b$ in $M$. The point $x$ belongs to $K$. Furthermore since $a R x$ and $x R b, x$ must belong to $E$. This contradicts the assumption that $E$ is a subset of $A-K$. Hence no point cuts $a$ from $b$ in $M$. Let $C$ denote the set of components of $A-K$. It follows from Jones' theorem that for each $E$ belonging to $C$, there exists a simple closed curve $J(E)$ in $M$ which contains the endpoints of $E[4]$. Since $M$ does not separate $S$, there exists a disk $N(E)$ in $M$ such that the endpoints of $E$ are in $N(E)$. Note that if $C$ is finite, one can easily define an $\operatorname{arc}$ in $M$ with endpoints $p$ and $q$.

Assume that $C$ is infinite. For each element $E$ of $C$ define $E^{\prime}$ to be the straight line segment in $S$ which has the endpoints of $E$ as endpoints. Suppose that for some positive real number $\varepsilon$, there exists an infinite subset $I$ of $C$ such that for each element of $E$ of $I, E^{\prime}$ is not $\varepsilon$-spanned by a disk in $M$. There exist a point $z$ in $K$ and a sequence $E_{1}, E_{2}, E_{3}, \cdots$ of elements of $I$ such that (1) $E_{1}, E_{2}, E_{3}, \cdots$ converges to $z$ and (2) for each positive integer $n$, the diameter of $E_{n}^{\prime}$ is less than $\varepsilon / 4$. By Lemma 3 , for each positive integer $n$, there exists a disk $D_{n}$ in $M$ containing $N\left(E_{n}\right)$ such that if (1) $W$ is a complementary domain of $D_{n} \cup E_{n}^{\prime},(2) x$ is a point of $\mathrm{Cl} W \cap \operatorname{Bd} D_{n}$, and (3) $d\left(x, E_{n}^{\prime}\right)>1 / n$, then there exists a point $t$ of $W-M$ such that $d(x, t)<1 / 2 n$. According to Lemma 2, for each positive integer $n$, there exist points $x_{n}$ and $y_{n}$ in $\mathrm{Bd} D_{n}$, an arc-segment $Y_{n}$ in $E_{n}^{\prime}-D_{n}$, a positive real number $r_{n}$, and a circular region $U_{n}$ in $S$ such that (1) $d\left(\left\{x_{n}, y_{n}\right\}, E_{n}^{\prime}\right) \geq \varepsilon / 4$, (2) $\left\{x_{n}, y_{n}\right\}$ is not contained in the closure of a complementary domain of $D_{n}$ u $Y_{n}$, (3) $d\left(x_{n}, y_{n}\right)=r_{n}$, and (4) $U_{n}$ has diameter $r_{n} / 2$ and is contained in $D_{n}$. If $i$ and $j$ are distinct positive integers, then $U_{i} \cap U_{j}=\emptyset$; for otherwise,

$$
(K-\{p, q\}) \cap \mathrm{Cl}\left(E_{i} \cup E_{j}\right)
$$

would contain a point which does not cut $p$ from $q$ in $M$. Since $M$ is bounded and the regions $U_{1}, U_{2}, U_{3}, \cdots$ are mutually exclusive, the sequence $r_{1}, r_{2}, r_{3}, \cdots$ has limit 0 . There exists a point $x$ of $M-\{z\}$ such that $x$ is a
cluster point of $x_{1}, x_{2}, x_{3}, \cdots$. Suppose that there exists a continuum $F$ in $M-\{z\}$ such that $x$ belongs to the interior of $F$ (relative to $M$ ). There exist a region $G$ containing $z$ in $S-F$ and distinct integers $i$ and $j$ such that (1) $D_{i}$ and $D_{j}$ both meet $F$ and (2) $\mathrm{Cl}\left(E_{i}^{\prime} \cup E_{j}^{\prime}\right)$ is a subset of $G$. It follows that $(K-\{p, q\}) \cap \mathrm{Cl}\left(E_{i} \cup E_{j}\right)$ contains a point which does not cut $p$ from $q$ in $M$. This is a contradiction. Hence each subcontinuum of $M$ which contains $x$ in its interior (relative to $M$ ) must also contain $z$ (that is, $M$ is not aposyndetic at $x$ with respect to $z$ ).

Since $M$ is semi-aposyndetic, there exists a continuum $F_{z}$ in $M-\{x\}$ such that $z$ is contained in the interior of $F_{z}$ (relative to $M$ ). There exist mutually exclusive circular regions $U$ and $V$ in $S$ such that (1) $x \epsilon U$ and $z \epsilon V$, (2) Cl $U \cap F_{z}=\emptyset$, and (3) $M \cap V \subset F_{z}$. There exists a positive interger $n$ such that (1) $1 / n<\varepsilon / 4$, (2) the set

$$
\left\{u \in S \mid d\left(u,\left\{x_{n}, y_{n}\right\}\right)<1 / n\right\}
$$

is contained in $U$, and (3) $\mathrm{Cl} E_{n}^{\prime}$ is contained in $V$. Since

$$
d\left(E_{n}^{\prime},\left\{x_{n}, y_{n}\right\}\right)>1 / n
$$

there exist points $t$ and $u$ of $(S-M) \cap U$ such that $\{t, u\}$ is not contained in a complementary domain of $D_{n} \cup Y_{n}$. Let $W$ and $Z$ be the complementary domains of $D_{n} \cup Y_{n}$ (there are only two) which contain $t$ and $u$ respectively. Since $M$ does not separate $S$, there exists an $\operatorname{arc} L$ in $S-M$ from $t$ to $u$. Let $k$ denote the first point of $L \cap \operatorname{Bd} U \cap Z$ and let $h$ be the last point of $L \cap \operatorname{Bd} U$ which precedes $k$ with respect to the order of $L$. Let $H$ denote the subarc of $L$ which has endpoints $h$ and $k$. Note that $h$ belongs to $W$ and $H \cap \mathrm{Cl} U=\{h, k\}$. $\left(D_{n} \cup Y_{n}\right)-U$ separates $h$ from $k$ in $S-U$. There exists a continuum $N$ in $\left(D_{n} \mathbf{u} Y_{n}\right)-U$ which separates $h$ from $k$ in $S-U$ [6, Th. 27, p. 177]. Let $B_{1}$ and $B_{2}$ be the mutually exclusive arc-segments in Bd $U$ which have endpoints $h$ and $k$. For $i=1$ and 2 , there exists a point $c_{i}$ in $B_{i} \cap N$. The points $c_{1}$ and $c_{2}$ are contained in distinct components of $N-Y_{n}$ [6, Th. 28, p. 156]. For $i=1$ and 2, let $d_{i}$ be a point of $\mathrm{Cl} Y_{n} \cap\left(c_{i}\right.$-component of $N-Y_{n}$ ). The set ( $\theta$-curve) $H$ u Bd $U$ separates $d_{1}$ from $d_{2}$ in $S\left[6\right.$, Th. 28, p. 156]. $H$ u $\mathrm{Bd} U$ is contained in $S-F_{z}$ and $\left\{d_{1}, d_{2}\right\}$ is a subset of $F_{z}$. Since $F_{z}$ is connected, this is a contradiction. Hence for each positive real number $\varepsilon$, the set consisting of all elements $E$ of $C$ such that $E^{\prime}$ is not $\varepsilon$-spanned by a disk in $M$ must be finite.

For each positive integer $n$, let $C_{n}$ be the finite set consisting of all elements $E$ of $C$ such that either the diameter of $E^{\prime}$ is greater than or equal to $1 / 2 n$, or $E^{\prime}$ is not ( $1 / 2 n$ )-spanned by a disk in $M$. Let $H_{1}=C_{1}$, and for $n=2,3,4, \cdots$, let $H_{n}=C_{n}-C_{n-1}$. Note that the sets $H_{1}, H_{2}, H_{3}, \cdots$ are mutually exclusive and $C=\bigcup_{n=1}^{\infty} H_{n}$. For each element $E$ of $C$, define the arc-segment $M(E)$ as follows. Assume that $a$ and $b$ are the endpoints of $E$. There exists an integer $n$ such that $E$ belongs to $H_{n}$. If $n=1$, define $M(E)$ to be an arc-segment in $N(E)$ with endpoints $a$ and $b$. According to

Lemma 1 , if $n>1$, there exists an arc-segment $M(E)$ in $M$ with endpoints $a$ and $b$ such that for each point $x$ of $M(E), d\left(x, E^{\prime}\right) \leq 1 /(n-1)$. For each positive real number $\varepsilon$, the set consisting of all elements $E$ of $C$ such that the diameter of $M(E)$ is greater than $\varepsilon$ must be finite. Suppose that for some element $X$ of $C$, the arc-segment $M(X)$ meets $K \cup \bigcup_{E \in C-\{x\}} M(E)$. It follows that $(K-\{p, q\}) n \mathrm{Cl} X$ contains a point which does not cut $p$ from $q$ in $M$. This is a contradiction. Hence for each element $X$ of $C$,

$$
\left(K \cup \cup_{E \in C-\{x\}} M(E)\right) \cap M(X)=\emptyset
$$

For each element $E$ of $C$, let $f_{E}$ be a homeomorphism from $E$ onto $M(E) \cdot$ Define the function $f$ from $A$ to $K \cup \bigcup_{E \in C} M(E)$ as follows. For each point $x$ of $K$, define $f(x)=x$. If $x$ is a point of $A-K$, define $f(x)=f_{z}(x)(x \in E)$. The function $f$ is a homeomorphism. Hence $K \cup \cup_{E \in C} M(E)$ is an arc in $M$ from $p$ to $q$. It follows that $M$ is arc-wise connected.

## Bibliography

1. E. Cech, Point sets, Academic Press, New York, 1969.
2. C. L. Hagopian, Arcwise connectedness of semiaposyndetic plane continua, Trans. Amer. Math. Soc., vol. 158 (1971), pp. 161-165.
3. F. B. Jones, A posyndetic continua and certain boundary problems, Amer. J. Math., vol. 63 (1941), pp. 545-553.
4. —, The cyclic connectivity of plane continua, Pacific J. Math., vol. 11 (1961), pp. 1013-1016.
5. K. Kuratowski, Topology, vol. 2, Academic Press, New York, 1968.
6. R. L. Moore. Foundations of point set theory, Amer. Math. Soc. Colloquium Publications, vol. 13, Rhode Island, 1962 (Revised edition).
7. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, Rhode Island, 1963.

California State University
Sacramento, California


[^0]:    Received September 25, 1970.
    ${ }^{1}$ A continuum $H$ is aposyndetic at a point $p$ of $H$ if for each point $q$ of $H-\{p\}$, there exist a continuum $L$ and an open set $G$ in $H$ such that $p \in G \subset L \subset H-\{q\}$. A continuum is said to be aposyndetic if it is aposyndetic at each of its points (Jones).

