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If H is a bounded aposyndetic plane continuum which does not separate the
plane, then H is locally connected. This follows from a result of Jones’
[3, Th. 10] that if p is a point of a bounded plane continuum H and H is
aposyndetic at p, then the union of H and all but finitely many of its com-
plementary domains is connected im kleinen at p. As a corollary of these
results, each bounded aposyndetic nonseparating plane continuum is arc-wise
connected. Closely related to the notion of an aposyndetic continuum is that
of a semi-aposyndetic continuum, studied in [2]. A continuum M is semi-
aposyndeic if for each pair of distinct points x and y of M, there exists a sub-
continuum F of M such that the sets M F and the interior of F relative to
M each contain a point of {x, y}. Note that a bounded semi-aposyndetic
nonseparating plane continuum may fail to be locally connected. In this
paper it is proved that every bounded semi-aposyndetic nonseparating plane
continuum is arc-wise connected.
Throughout this paper S is the plane and d is the Euclidean metric for S.

DEFINITION. Let E be an arc-segment (open arc) in S with endpoints a and
b, D be a disk in a continuum M in S, and be a positive real number. The
arc-segment E is said to be -spanned by D in M if {a, b} is a subset of D and
for each point x in a bounded complementary domain of D E, either
d(x, E) or x belongs to M.

LEMMA 1. If an arc-segment E in S of diameter less than with endpoints a
and b is -spanned by a disk D in M a subcontinuum of S), then there exists an
arc-segment M(E) in M with endpoints a and b such that for each point x of
M(E), d(x, E) <- 2.

Proof. Let w be a point of the unbounded complementary domain of
D u E. Let B denote an arc in D with endpoints a and b. For each positive
real number r, let C(r) denote the set consisting of all points x of S such that
d(x, C1 E) < r (C1 E is the closure of E). For each positive real number
r, C1 C(r) is a bounded locally connected continuum in S which does not
contain a separating point. By a simple argument, one can show that if
r

_
, C1 C(r) does not separate S. Hence for each real number r _> ,

C1 C(r) is a disk [5, Th. 4, p. 512]. Since B is locally connected, the set Q
consisting of all components of B C1 E which meet Bd C() (the boundary
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A continuum H is aposyndetic at a point p of H if for each point q of H {P I, there

exist acontinuumLandanopensetGinHsuchthatpeGCLcH- {q}. Acon-
tinuum is said to be aposyndetic if it is aposyndetic at each of its points (Jones).
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of C(e)) is finite. Define Q1 to be the set of all elements X of Q such that if
Y is an element of Q {X}, then Y u C1 E does not separate X from w in S.

UTMFor n 2, 3, 4, define Qn to be the set of all elements X of Q -1 u
n--1such that if Y is an element of Q ({X} u U1-_ Q), then Y u C1 E does not

separate X from w in S. Since Q is finite and the sets Q1, Q2, Q, are
mutually exclusive, there exists an integer n such thatQ Q.
For each element X of Q, define the arc-segment M(X) as follows. Let

c and e be the endpoints of X and let I denote the arc in C1 E from c to e.
Let Z be the bounded complementary domain of the simple closed curve
X I. Let m be the integer (1 m n) such that X belongs to Q. If X
is contained in C1 C( /m), define M(X) to be X. Suppose that X is not
contained in C1 C( + /m). Since

IBdC(+ elm) ,
there exists a simple closed curve J containing I in Bd Z u Bd C(e -f- elm)
such that Z n C(e -f- elm) contains a complementary domain V of J [6, Th. 15,
p. 149]. In this case define M(X) to be the arc-segment J I. Let x be a
point of M(X) X. C1 V contains x and is a subset of C1 Z.
Since Bd Z I u X, x is not in Bd Z. Thus x belongs to Z. Hence for each
point x of M(X), either x belongs to D, or d(x, E) > e and x is in Z and there-
fore belongs to a bounded complementary domain of D u E. It follows that
M(X) is contained in M. Note that for each point x of M(X), d(x, E) <= 2e.
]?or each arc-segment X in B belonging to Q,

M(X) n (B Ur. Y) O;

for if there exists a point x in M(X) n (B Ur Y), then x would belong to
both X (since B LJr, Y c C(e)) and B X. If X and Y are distinct
elements of Q, then the corresponding arc-segments M(X) and M(Y) are
disjoint. To see this first suppose that X and Y both belong to Qm for some
integer m. Assume there exists a point x in M(X) n M(Y). Since B is an
arc, X n Y 0 and x must belong to either M(X) X or M(Y) Y. Sup-
pose that x is in M(X) X. It follows that x is in the bounded comple-
mentary domain of X u C1 E. If x belongs to Y then X u C1 E separates
Y from w in S. This contradicts the assumption that X and Y are both ele-
ments of Qm. Hence x belongs to M(Y) Y and is contained in the bounded
complementary domain of Y u C1 E. It follows that either X u C1 E separates
Y from w or Y u C1 E separates X from w in S. Again this is impossible,
since X and Y belong to Q. By the same argument, one can show that
assuming x is in M(Y) Y also involves a contradiction. Suppose there
exist distinct integers k and m such that X and Y are elements of Qk and Q
respectively. Assume without loss of generality that/c < m. Since

Bd C(e + elk,) n C1 C(e + elm) O,
then

M(Y) n (M(X) X) O.
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Furthermore M(Y) n X 0; for otherwise, Y u C1 E would separate X from
w in S which is impossible since X belongs to Q, Y belongs to Qm, and
/c < m. HenceM(X) nM(Y) O.
The set M(E) [Jx, M(X) (B ({a, b} t [Jx, X)) is an arc-segment

in M with endpoints a and b such that for each point x of M(E), d(x, E) <_ 2s
[1, Th. 20.1.10, p. 157].

LEMMA 2. Suppose that M is a bounded continuum in S, E is an arc-segment
in S of diameter less that /4, and D is a disk in M which contains the endpoints
of E. If E is not e-spanned by D in M, then there exist points x and y in Bd D
and an arc-segment Y in E D such that

(1) d( x, y} E) >_ el4,
(2) {x, y} is not contained in the closure of a complementary domain of

D u Y, and
(3) if d(x, y) r, then D contains a circular region U of diameter r/2.

Proof. There exists a point v of S M such that v is in a bounded com-
plementary domain of D o E and d(v, C1 E) s _> e. Let z be a point of
C1 E such that d(v, z) s and let T be the straight line segment from v to z
in S. Define c to be the point of T such that d(z, c) el2 and let L denote
the straight line in S which contains c and is perpendicular to T. Define X to
be the component of S L which contains v. Let w be a point of X which
also belongs to the unbounded complementary domain of M u C1 E. There
exists an arc-segment Y in E D such that Y u D separates v from w in S
[6, Th. 27, p. 177]. Let a and b be the endpoints of Y and let A and B be the
components of Bd D {a, b}. Let Z denote the 0-curve A u B u C1 Y. Note
that the complementary domain Q of Z whose boundary contains A and B is
the interior of D [7, Th. 1.7, p. 105].

Since Y is in S D, both A u C1 Y and B u C1 Y separate v from w in S.
Furthermore, since C1X n C1 Y 0 and {v, w} is a subset of X, both A and
B meet X. There exist positive real number r and points x and y in A n C1X
and B n C1 X respectively such that

d(A n C1X, B n C1X) d(x, y) r.

Let g be the midpoint of the straight line segment in C1 X from x to y. Let
G be the circular region in S which is centered on g such that {x, y} is contained
in Bd G. Since

(GC1X) (AB) 0

and C1 (G X) meets both A and B, G n X is a subset of Q [6, Th. 116, p. 247].
The set G n X contains a circular region U of diameter r/2. Since G n X is a
subset of .D, U is contained in D.
The circular disk J of radius e/4 centered on z contains E. Note that

d(J, X) e/4. It follows that d({x, y}, E) >_ e/4. Since {x, y} is contained
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in C1 Q and
{x, y} n {a, b} 0,

{x, y} is not contained in the closure of a complementary domain of D u Y
[6, Th. 116, p. 247].

LEMMA 3. Suppose that E is an arc-segment in S, N is a disk in M (a
subcontinuum of S which does not separate S), and N contains the endpoints of
E. For each positive integer n, there exists a dis] D in M containing N such that
f

(1) W is a complementary domain of D t E,
(2) x is a point of C1W n Bd D, and
(3) d(x, E) > 1/n,

then there exists a point of W M such that d(x, t) < 1/2n.

Proof. There exists a 1-complex K (a finite collection of arcs no two of
which interesect in an interior point of either) in C1 (S hr) such that (1)
Bd N is contained in K, (2) each vertex of K has order 3 in K, and (3) if L
is a component of S (K u N) and C1 L n M then the diameter of L is
less than 1/2n. Define H to be the finite set consisting of all components of
S K which are subsets of M, and let D be the component of (Jx,. C1 X
which contains hr. Since M does not separate S, D is a disk.

Let W be a complementary domain of D u E. Suppose there exists a point
x of Bd D o C1 W such that d(x, E) > 1/n. Note that W is the only com-
plementary domain of D E which has x as a limit point. The point x be-
longs to K. There exist a component L of S (K D) and a point of
S M such that x belongs to C1 L and belongs to L; for otherwise, x would
belong to the interior of D. Since the diameter of L is less than
1/2n, d(x, t) < 1/2n. L is a connected set in S (D E). It follows that
is a point of W M.

DEFINITION. /k point y of a continuum M cuts x from z in M if x, y and z
are distinct points of M and y belongs to each subcontinuum of M which con-
tains {x, z}.

LEMMA 4. IfM is a compact semi-aposyndetic metric continuum and x, y and
z are points ofM such that y cuts x from z in M, then z does not cut xfrom y in M.

Proof. Suppose y cuts x from z and z cuts x from y in M. For each positive
integer i, let G be the set of all points v of M such that p(v, z) < 1/i (p is a
metric for M) and let L be the x-component of M G. The limit superior
L of L1, L2, L3, is a continuum in M which contains {x, z}. Since y cuts x
from z in M, y is in L. Note that for each positive integer i, y does not belong
to L.
M is not aposyndetic at y with respect to z. That is, the point z belongs to

each subcontinuum of M which contains y in its interior (relative to M). To
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see this assume there exist a continuum H and open sets U and V in M such
that z e V and y e U H c M V. There exists an integer i such that G
is contained in V. Since y does not belong to an element of L1, L., L3,
for each integer j (j > i), L. n U 0. This contradicts the fact that y is in L.
By the same argument, M is not aposyndetic at z with respect to y. Since

M is semi-aposyndetic, this is a contradiction. Hence z does not cut x from y
in M.
THEOREM. If M is a semi-aposyndetic bounded subcontinuum of the plane S

which does not separate S, then M is arc-wise connected.

Proof. Let p and q be distinct points of M. According to a theorem by
Jones, if no point cuts p from q in M, then p and q belong to a simple closed
curve in M and are therefore the extremities of an arc lying in M [4]. Suppose
that there exists a point which cuts p from q in M. Let K be the closed
subset of M consisting of p, q and all points x such that x cuts p from q in M.
Define the binary relation R on K as follows. For distinct points x and y of
K, xRyifxcutspfromyinMorx p.

If x and y are distinct points of K, either x R y or y R x. To see this first
suppose that Ix, Y/ n/P, q} 0. Either x does not cut y from q or y does not
cut x from q in M (Lemma 4). Assume that x does not cut y from q in M.
There exists a continuum H in M {x} containing/Y, q}. The point x cuts p
from y in M; for otherwise, there would exist a continuum F such
that {p, y} F M {x} and IP, q} would be a subset of the continuum
H u F in M {x} which is impossible since x belongs to K. Hence x R y.
By the same argument, if y does not cut x from q, then y R x. If
{x, y} {p, q} 0, the conclusion follows immediately.
The binary relation R is anti-symmetric. For if x and y belong to K and

x R y, then by Lemma 4, y R x (y R x does not hold). R is also transitive. To
see this suppose there exist points x, y and z of K such that x R y, y R z and
x z. There exists a continuum H in M {x} containing {p, z}. Since
y R z, y must belong to H. This contradicts the assumption that x R y.
For each point x of K, define P(x) to be the set of all points z of K such that

z R x and define F(x) to be the set of all points z of K such that x R z. Note
that P(p) F(q) 0. Let x be a point of K {p, q} and let z be a point
of F(x). Since R is anti-symmetric, z x. Hence there exists a continuum
Jsuchthat{p,x} J M Iz}. P(x) isasubsetof JandsinceJis
closed in M, z is not in C1 P(x). It follows that for each point x of
K, C1P(x) nF(x) 0. Suppose thatxisapointofK- {p,q} andzisa
point of P(x). Since z R x, x z. Consequently there exists a continuum
P in M {x} containing {p, z}. The point x cuts z from q in M; for otherwise,
there would exist a continuum L such that {z, q} L M {x} and {p, q}
would be a subset of the continuum L u P in M {x} which contradicts the
assumption that x belongs to K. By Lemma 4, the point z does not cut x
from q in M. Therefore there exists a continuum T such that

{x,q} TM- {z}.
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Let y be a point of F(x). If y is not in T, there exists a continuum H such
that {p, q} H c M {y}. This contradicts the assumption that y is in K.
It follows that F(x) is contained in the closed set T and z is not in C1 F(x).
Hence for each point x in K, P(x) n C1 F(x) 0.
The binary relation R is a natural ordering of K [7, p. 41]. Hence there

exists an arc A (not necessarily in S) containing K such that p and q are
endpoints of A and R is the order induced on K from A [7, Th. 6.4, p. 56]. If
a and b are points of K such that a R b and a point x cuts a from b in M, then
x belongs to K, a R x, and x R b. To see this first note that since x cuts a
from b in M and a R b, x is not p (Lemma 4). Since a belongs to every
subcontinuum of M which contains IP, b}, x cuts p from b in M. It follows
that x belongs toK andxR b. Suppose thatx cutsp fromainM. By
Lemma 4, there exists a continuum H such that {p, bl H M {a}. This
contradicts the assumption that a R b. Hence x a and a R x. Let E be a
component of A K with endpoints a and b and assume a R b. Suppose
there exists a point x such that x cuts a from b in M. The point x belongs to
K. Furthermore since a R x and x R b, x must belong to E. This contradicts
the assumption that E is a subset of A K. Hence no point cuts a from b
in M. Let C denote the set of components of A K. It follows from
Jones’ theorem that for each E belonging to C, there exists a simple closed
curve J(E) in M which contains the endpoints of E [4]. Since M does not
separate S, there exists a disk N(E) in M such that the endpoints of E are in
N(E). Note that if C is finite, one can easily define an arc in M with end-
points p and q.
Assume that C is infinite. For each element E of C define E’ to be the

straight line segment in S which has the endpoints of E as endpoints. Sup-
pose that for some positive real number s, there exists an infinite subset I of C
such that for each element of E of I, E is not s-spanned by a disk in M. There
exist a point z in K and a sequence El, E, E3, of elements of I such that
(1) El, E2, E3, converges to z and (2) for each positive integer n, the
diameter of E’ is less than s/4. By Lemma 3, for each positive integer n,
there exists a disk D in M containing N(E) such that if (1) W is a comple-
mentary domain of D u E’, (2) x is a point of C1 W n Bd D, and (3)
d(x, E’,) > 1/n, then there exists a point of W M such that d(x, t) < 1/2n.
According to Lemma 2, for each positive integer n, there exist points x and y
in Bd D, an arc-segment Y in E D, a positive real number r, and a
circular region U in S such that (1) d({x, y}, E’) >_ s/4, (2) {x, y} is not
contained in the closure of a complementary domain of D u Y., (3)
d(x, y) r, and (4) U has diameter r/2 and is contained in D. If i
and j are distinct positive integers, then U U. 0; for otherwise,

(K {p, q}) C1 (E E)

would contain a point which does not cut p from q in M. Since M is bounded
and the regions U1, U2, U3, are mutually exclusive, the sequence
rl, r., r, has limit 0. There exists a point x of M {z} such that x is a
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cluster point of xl, x2, x3, .... Suppose that there exists a continuum F in
M [z} such that x belongs to the interior of F (relative to M). There exist
a region G containing z in S F and distinct integers i and j such that (1)
D and Dr both meet F and (2) C1 (E o Ej) is a subset of G. It follows that
(K {p, q} n C1 (E u E) contains a point which does not cut p from q in M.
This is a contradiction. Hence each subcontinuum of M which contains x in
its interior (relative to M) must also contain z (that is, M is not aposyndetic
at x with respect to z).

Since M is semi-aposyndetic, there exists a continuum Fz in M {x} such
that z is contained in the interior of Fz (relative to M). There exist mutually
exclusive circular regions U and V in S such that (1) x e U and z e V, (2)
C1 U n F, 0, and (3) M n V c F. There exists a positive interger n such
that (1) 1In < e/4, (2) the set

{u e S d(u, {x, y.} < l/n}

is contained in U, and (3) C1 E’n is contained in V. Since

d(EP, {Xn y.}) > 1In,

there exist points and u of (S M) U such that {t, u} is not contained
in a complementary domain of Dn u Yn. Let W and Z be the complementary
domains of D u Y, (there are only two) which contain and u respectively.
Since M does not separate S, there exists an arc L in S M from to u. Let
k denote the first point of L n Bd U Z and let h be the last point of L Bd U
which precedes/c with respect to the order of L. Let H denote the subarc of
L which has endpoints h and /c. Note that h belongs to W and
H nC1 U {h,k}. (D, Y) Useparateshfrom]cinS- U. There
exists a continuum N in (D. Y.) U which separates h from ] in S U
[6, Th. 27, p. 177]. Let B1 and B. be the mutually exclusive arc-segments in
Bd U which have endpoints h and k. For i 1 and 2, there exists a point c
in B N. The points c and c2 are contained in distinct components of
N Y. [6, Th. 28, p. 156]. For i 1 and 2, let d be a point of
C1 Y (ci-component of N Y,). The set (0-curve) H u Bd U separates
d from d. in S [6, Th. 28, p. 156]. H u Bd U is contained in S F and
{d, d.} is a subset of F. Since F is connected, this is a contradiction.
Hence for each positive real number , the set consisting of all elements E of C
such that E is not e-spanned by a disk in M must be finite.
For each positive integer n, let C. be the finite set consisting of all elements

E of C such that either the diameter of E is greater than or equal to 1/2n, or
E’ is not (1/2n)-spanned by a disk in M. Let H C1, and for
n 2, 3, 4,..-,letH. C.- C._. Note that the setsH,H,H,...
are mutually exclusive and C (J:_H,. For each element E of C, define
the arc-segment M(E) as follows. Assume that a and b are the endpoints of
E. There exists an integer n such that E belongs to H.. If n 1, define
M(E) to be an arc-segment in N(E) with endpoints a and b. According to



AN ARC THEOREM FOR PLANE CONTINUA 89

Lemma 1, if n > 1, there exists an arc-segment M(E) in M with endpoints
a and b such that for each point x of M(E), d(x, E’) <_ 1/(n 1). For each
positive real number e, the set consisting of all elements E of C such that the
diameter of M(E) is greater than must be finite. Suppose that for some
element X of C, the arc-segment M(X) meets K t U,e_lx M(E). It follows
that (K {p, } C1 X contains a point which does not cut p from q in M.
This is a contradiction. Hence for each element X of C,

(K u U,c-I:l M(E) n M(X) .
For each element E of C, let f be a homeomorphism from E onto M(E).
Define the function f from A to K u UBc M(E) as follows. For each point
x of K, definer(x) x. If x is a point of A K, definer(x) f(x) (x e E).
The function f is a homeomorphism. Hence K u [JBac M(E) is an arc in M
from p to q. It follows that M is arc-wise connected.
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