AN ARC THEOREM FOR PLANE CONTINUA

BY

CHARLES L. HAGOPIAN

If H is a bounded aposyndetic plane continuum which does not separate the plane, then H is locally connected. This follows from a result of Jones' [3, Th. 10] that if p is a point of a bounded plane continuum H and H is aposyndetic at p, then the union of H and all but finitely many of its complementary domains is connected im kleinen at p.¹ As a corollary of these results, each bounded aposyndetic nonseparating plane continuum is arc-wise connected. Closely related to the notion of an aposyndetic continuum is that of a semi-aposyndetic continuum, studied in [2]. A continuum M is semi-aposyndetic if for each pair of distinct points x and y of M, there exists a subcontinuum F of M such that the sets M - F and the interior of F relative to M each contain a point of $\{x, y\}$. Note that a bounded semi-aposyndetic nonseparating plane continuum may fail to be locally connected. In this paper it is proved that every bounded semi-aposyndetic nonseparating plane continuum is arc-wise continuum is arc-wise continuum is arc-wise continuum is arc-wise continuum for $\{x, y\}$.

Throughout this paper S is the plane and d is the Euclidean metric for S.

DEFINITION. Let *E* be an arc-segment (open arc) in *S* with endpoints *a* and *b*, *D* be a disk in a continuum *M* in *S*, and ε be a positive real number. The arc-segment *E* is said to be ε -spanned by *D* in *M* if $\{a, b\}$ is a subset of *D* and for each point *x* in a bounded complementary domain of *D* \cup *E*, either $d(x, E) < \varepsilon$ or *x* belongs to *M*.

LEMMA 1. If an arc-segment E in S of diameter less than ε with endpoints a and b is ε -spanned by a disk D in M (a subcontinuum of S), then there exists an arc-segment M(E) in M with endpoints a and b such that for each point x of M(E), $d(x, E) \leq 2\varepsilon$.

Proof. Let w be a point of the unbounded complementary domain of $D \cup E$. Let B denote an arc in D with endpoints a and b. For each positive real number r, let C(r) denote the set consisting of all points x of S such that $d(x, \operatorname{Cl} E) < r$ ($\operatorname{Cl} E$ is the closure of E). For each positive real number r, $\operatorname{Cl} C(r)$ is a bounded locally connected continuum in S which does not contain a separating point. By a simple argument, one can show that if $r \geq \varepsilon$, $\operatorname{Cl} C(r)$ does not separate S. Hence for each real number $r \geq \varepsilon$, $\operatorname{Cl} C(r)$ is a disk [5, Th. 4, p. 512]. Since B is locally connected, the set Q consisting of all components of $B - \operatorname{Cl} E$ which meet $Bd C(\varepsilon)$ (the boundary

Received September 25, 1970.

¹ A continuum H is aposyndetic at a point p of H if for each point q of $H - \{p\}$, there exist a continuum L and an open set G in H such that $p \in G \subset L \subset H - \{q\}$. A continuum is said to be *aposyndetic* if it is aposyndetic at each of its points (Jones).

of $C(\varepsilon)$ is finite. Define Q_1 to be the set of all elements X of Q such that if Y is an element of $Q - \{X\}$, then Y \cup Cl E does not separate X from w in S. For $n = 2, 3, 4, \cdots$, define Q_n to be the set of all elements X of $Q - \bigcup_{i=1}^{n-1}Q_i$ such that if Y is an element of $Q - (\{X\} \cup \bigcup_{i=i}^{n-1}Q_i)$, then Y \cup Cl E does not separate X from w in S. Since Q is finite and the sets Q_1, Q_2, Q_3, \cdots are mutually exclusive, there exists an integer n such that $\bigcup_{i=1}^{n}Q_i = Q$.

For each element X of Q, define the arc-segment M(X) as follows. Let c and e be the endpoints of X and let I denote the arc in Cl E from c to e. Let Z be the bounded complementary domain of the simple closed curve $X \cup I$. Let m be the integer $(1 \le m \le n)$ such that X belongs to Q_m . If X is contained in Cl $C(\varepsilon + \varepsilon/m)$, define M(X) to be X. Suppose that X is not contained in Cl $C(\varepsilon + \varepsilon/m)$. Since

$$I \cap \operatorname{Bd} C(\varepsilon + \varepsilon/m) = \emptyset,$$

there exists a simple closed curve J containing I in Bd $Z \cup$ Bd $C(\varepsilon + \varepsilon/m)$ such that $Z \cap C(\varepsilon + \varepsilon/m)$ contains a complementary domain V of J [6, Th. 15, p. 149]. In this case define M(X) to be the arc-segment J - I. Let x be a point of M(X) - X. Cl V contains x and is a subset of Cl Z. Since Bd $Z = I \cup X$, x is not in Bd Z. Thus x belongs to Z. Hence for each point x of M(X), either x belongs to D, or $d(x, E) > \varepsilon$ and x is in Z and therefore belongs to a bounded complementary domain of $D \cup E$. It follows that M(X) is contained in M. Note that for each point x of M(X), $d(x, E) \leq 2\varepsilon$. For each arc-segment X in B belonging to Q,

$$M(X) \cap (B - \bigcup_{Y \in Q} Y) = \emptyset;$$

for if there exists a point x in $M(X) \cap (B - \bigcup_{Y \in Q} Y)$, then x would belong to both X (since $B - \bigcup_{\mathbf{r} \in Q} Y \subset C(\varepsilon)$) and B - X. If X and Y are distinct elements of Q, then the corresponding arc-segments M(X) and M(Y) are disjoint. To see this first suppose that X and Y both belong to Q_m for some integer m. Assume there exists a point x in $M(X) \cap M(Y)$. Since B is an arc, $X \cap Y = \emptyset$ and x must belong to either M(X) - X or M(Y) - Y. Suppose that x is in M(X) - X. It follows that x is in the bounded complementary domain of $X \cup Cl E$. If x belongs to Y then $X \cup Cl E$ separates Y from w in S. This contradicts the assumption that X and Y are both elements of Q_m . Hence x belongs to M(Y) - Y and is contained in the bounded complementary domain of $Y \cup Cl E$. It follows that either $X \cup Cl E$ separates Y from w or Y \cup Cl E separates X from w in S. Again this is impossible, since X and Y belong to Q_m . By the same argument, one can show that assuming x is in M(Y) - Y also involves a contradiction. Suppose there exist distinct integers k and m such that X and Y are elements of Q_k and Q_m respectively. Assume without loss of generality that k < m. Since

Bd
$$C(\varepsilon + \varepsilon/k)$$
 n Cl $C(\varepsilon + \varepsilon/m) = \emptyset$,

then

$$M(Y) \cap (M(X) - X) = \emptyset.$$

Furthermore $M(Y) \cap X = \emptyset$; for otherwise, $Y \cup Cl E$ would separate X from w in S which is impossible since X belongs to Q_k , Y belongs to Q_m , and k < m. Hence $M(X) \cap M(Y) = \emptyset$.

The set $M(E) = \bigcup_{x \in Q} M(X) \cup (B - (\{a, b\} \cup \bigcup_{x \in Q} X))$ is an arc-segment in M with endpoints a and b such that for each point x of M(E), $d(x, E) \leq 2\varepsilon$ [1, Th. 20.1.10, p. 157].

LEMMA 2. Suppose that M is a bounded continuum in S, E is an arc-segment in S of diameter less that $\varepsilon/4$, and D is a disk in M which contains the endpoints of E. If E is not ε -spanned by D in M, then there exist points x and y in Bd Dand an arc-segment Y in E - D such that

(1) $d(\{x, y\}, E) \geq \varepsilon/4$,

(2) $\{x, y\}$ is not contained in the closure of a complementary domain of $D \cup Y$, and

(3) if d(x, y) = r, then D contains a circular region U of diameter r/2.

Proof. There exists a point v of S - M such that v is in a bounded complementary domain of $D \cup E$ and $d(v, \operatorname{Cl} E) = s \ge \varepsilon$. Let z be a point of $\operatorname{Cl} E$ such that d(v, z) = s and let T be the straight line segment from v to zin S. Define c to be the point of T such that $d(z, c) = \varepsilon/2$ and let L denote the straight line in S which contains c and is perpendicular to T. Define X to be the component of S - L which contains v. Let w be a point of X which also belongs to the unbounded complementary domain of $M \cup \operatorname{Cl} E$. There exists an arc-segment Y in E - D such that $Y \cup D$ separates v from w in S[6, Th. 27, p. 177]. Let a and b be the endpoints of Y and let A and B be the components of $\operatorname{Bd} D - \{a, b\}$. Let Z denote the θ -curve $A \cup B \cup \operatorname{Cl} Y$. Note that the complementary domain Q of Z whose boundary contains A and B is the interior of D [7, Th. 1.7, p. 105].

Since Y is in S - D, both $A \cup Cl Y$ and $B \cup Cl Y$ separate v from w in S. Furthermore, since $Cl X \cap Cl Y = \emptyset$ and $\{v, w\}$ is a subset of X, both A and B meet X. There exist a positive real number r and points x and y in $A \cap Cl X$ and $B \cap Cl X$ respectively such that

$$d(A \cap \operatorname{Cl} X, B \cap \operatorname{Cl} X) = d(x, y) = r.$$

Let g be the midpoint of the straight line segment in Cl X from x to y. Let G be the circular region in S which is centered on g such that $\{x, y\}$ is contained in Bd G. Since

$$(G \cap \operatorname{Cl} X) \cap (A \cup B) = \emptyset$$

and Cl $(G \cap X)$ meets both A and B, $G \cap X$ is a subset of Q [6, Th. 116, p. 247]. The set $G \cap X$ contains a circular region U of diameter r/2. Since $G \cap X$ is a subset of D, U is contained in D.

The circular disk J of radius $\varepsilon/4$ centered on z contains E. Note that $d(J, X) = \varepsilon/4$. It follows that $d(\{x, y\}, E) \ge \varepsilon/4$. Since $\{x, y\}$ is contained

in $\operatorname{Cl} Q$ and

$$\{x, y\} \cap \{a, b\} = \emptyset,$$

 $\{x, y\}$ is not contained in the closure of a complementary domain of $D \cup Y$ [6, Th. 116, p. 247].

LEMMA 3. Suppose that E is an arc-segment in S, N is a disk in M (a subcontinuum of S which does not separate S), and N contains the endpoints of E. For each positive integer n, there exists a disk D in M containing N such that if

(1) W is a complementary domain of $D \cup E$,

(2) $x \text{ is a point of } Cl W \cap Bd D, and$

(3) d(x, E) > 1/n,

then there exists a point t of W - M such that d(x, t) < 1/2n.

Proof. There exists a 1-complex K (a finite collection of arcs no two of which interesect in an interior point of either) in Cl (S - N) such that (1) Bd N is contained in K, (2) each vertex of K has order 3 in K, and (3) if L is a component of $S - (K \cup N)$ and Cl $L \cap M \neq \emptyset$ then the diameter of L is less than 1/2n. Define H to be the finite set consisting of all components of S - K which are subsets of M, and let D be the component of $\bigcup_{x \in H} Cl X$ which contains N. Since M does not separate S, D is a disk.

Let W be a complementary domain of $D \cup E$. Suppose there exists a point x of Bd $D \cap$ Cl W such that d(x, E) > 1/n. Note that W is the only complementary domain of $D \cup E$ which has x as a limit point. The point x belongs to K. There exist a component L of $S - (K \cup D)$ and a point t of S - M such that x belongs to Cl L and t belongs to L; for otherwise, x would belong to the interior of D. Since the diameter of L is less than 1/2n, d(x, t) < 1/2n. L is a connected set in $S - (D \cup E)$. It follows that t is a point of W - M.

DEFINITION. A point y of a continuum M cuts x from z in M if x, y and z are distinct points of M and y belongs to each subcontinuum of M which contains $\{x, z\}$.

LEMMA 4. If M is a compact semi-aposyndetic metric continuum and x, y and z are points of M such that y cuts x from z in M, then z does not cut x from y in M.

Proof. Suppose y cuts x from z and z cuts x from y in M. For each positive integer i, let G_i be the set of all points v of M such that $\rho(v, z) < 1/i$ (ρ is a metric for M) and let L_i be the x-component of $M - G_i$. The limit superior L of L_1, L_2, L_3, \cdots is a continuum in M which contains $\{x, z\}$. Since y cuts x from z in M, y is in L. Note that for each positive integer i, y does not belong to L_i .

M is not aposyndetic at y with respect to z. That is, the point z belongs to each subcontinuum of M which contains y in its interior (relative to M). To

see this assume there exist a continuum H and open sets U and V in M such that $z \in V$ and $y \in U \subset H \subset M - V$. There exists an integer i such that G_i is contained in V. Since y does not belong to an element of L_1, L_2, L_3, \cdots , for each integer $j (j > i), L_j \cap U = \emptyset$. This contradicts the fact that y is in L.

By the same argument, M is not aposyndetic at z with respect to y. Since M is semi-aposyndetic, this is a contradiction. Hence z does not cut x from y in M.

THEOREM. If M is a semi-aposyndetic bounded subcontinuum of the plane S which does not separate S, then M is arc-wise connected.

Proof. Let p and q be distinct points of M. According to a theorem by Jones, if no point cuts p from q in M, then p and q belong to a simple closed curve in M and are therefore the extremities of an arc lying in M [4]. Suppose that there exists a point which cuts p from q in M. Let K be the closed subset of M consisting of p, q and all points x such that x cuts p from q in M. Define the binary relation R on K as follows. For distinct points x and y of K, x R y if x cuts p from y in M or x = p.

If x and y are distinct points of K, either x R y or y R x. To see this first suppose that $\{x, y\} \cap \{p, q\} = \emptyset$. Either x does not cut y from q or y does not cut x from q in M (Lemma 4). Assume that x does not cut y from q in M. There exists a continuum H in $M - \{x\}$ containing $\{y, q\}$. The point x cuts p from y in M; for otherwise, there would exist a continuum F such that $\{p, y\} \subset F \subset M - \{x\}$ and $\{p, q\}$ would be a subset of the continuum $H \cup F$ in $M - \{x\}$ which is impossible since x belongs to K. Hence x R y. By the same argument, if y does not cut x from q, then y R x. If $\{x, y\} \cap \{p, q\} \neq \emptyset$, the conclusion follows immediately.

The binary relation R is anti-symmetric. For if x and y belong to K and x R y, then by Lemma 4, $y \not R x$ (y R x does not hold). R is also transitive. To see this suppose there exist points x, y and z of K such that x R y, y R z and $x \not R z$. There exists a continuum H in $M - \{x\}$ containing $\{p, z\}$. Since y R z, y must belong to H. This contradicts the assumption that x R y.

For each point x of K, define P(x) to be the set of all points z of K such that z R x and define F(x) to be the set of all points z of K such that x R z. Note that $P(p) = F(q) = \emptyset$. Let x be a point of $K - \{p, q\}$ and let z be a point of F(x). Since R is anti-symmetric, z R x. Hence there exists a continuum J such that $\{p, x\} \subset J \subset M - \{z\}$. P(x) is a subset of J and since J is closed in M, z is not in Cl P(x). It follows that for each point x of K, Cl $P(x) \cap F(x) = \emptyset$. Suppose that x is a point of $K - \{p, q\}$ and z is a point of P(x). Since z R x, x R z. Consequently there exists a continuum P in $M - \{x\}$ containing $\{p, z\}$. The point x cuts z from q in M; for otherwise, there would exist a continuum L such that $\{z, q\} \subset L \subset M - \{x\}$ and $\{p, q\}$ would be a subset of the continuum L $\cup P$ in $M - \{x\}$ which contradicts the assumption that x belongs to K. By Lemma 4, the point z does not cut x from q in M. Therefore there exists a continuum T such that

$$\{x, q\} \subset T \subset M - \{z\}.$$

Let y be a point of F(x). If y is not in T, there exists a continuum H such that $\{p, q\} \subset H \subset M - \{y\}$. This contradicts the assumption that y is in K. It follows that F(x) is contained in the closed set T and z is not in $\operatorname{Cl} F(x)$. Hence for each point x in K, $P(x) \cap \operatorname{Cl} F(x) = \emptyset$.

The binary relation R is a natural ordering of K [7, p. 41]. Hence there exists an arc A (not necessarily in S) containing K such that p and q are endpoints of A and R is the order induced on K from A [7, Th. 6.4, p. 56]. If a and b are points of K such that a R b and a point x cuts a from b in M, then x belongs to K, a R x, and x R b. To see this first note that since x cuts a from b in M and a R b, x is not p (Lemma 4). Since a belongs to every subcontinuum of M which contains $\{p, b\}$, x cuts p from b in M. It follows that x belongs to K and x R b. Suppose that x cuts p from a in M. By Lemma 4, there exists a continuum H such that $\{p, b\} \subset H \subset M - \{a\}$. This contradicts the assumption that a R b. Hence x R a and a R x. Let E be a component of A - K with endpoints a and b and assume a R b. Suppose there exists a point x such that x cuts a from b in M. The point x belongs to Furthermore since a R x and x R b, x must belong to E. This contradicts K. the assumption that E is a subset of A - K. Hence no point cuts a from b in M. Let C denote the set of components of A - K. It follows from Jones' theorem that for each E belonging to C, there exists a simple closed curve J(E) in M which contains the endpoints of E [4]. Since M does not separate S, there exists a disk N(E) in M such that the endpoints of E are in N(E). Note that if C is finite, one can easily define an arc in M with endpoints p and q.

Assume that C is infinite. For each element E of C define E' to be the straight line segment in S which has the endpoints of E as endpoints. Suppose that for some positive real number ε , there exists an infinite subset I of C such that for each element of E of I, E' is not ε -spanned by a disk in M. There exist a point z in K and a sequence E_1 , E_2 , E_3 , \cdots of elements of I such that (1) E_1 , E_2 , E_3 , \cdots converges to z and (2) for each positive integer n, the diameter of E'_n is less than $\varepsilon/4$. By Lemma 3, for each positive integer n, there exists a disk D_n in M containing $N(E_n)$ such that if (1) W is a complementary domain of $D_n \cup E'_n$, (2) x is a point of Cl $W \cap Bd D_n$, and (3) $d(x, E'_n) > 1/n$, then there exists a point t of W - M such that d(x, t) < 1/2n. According to Lemma 2, for each positive integer n, there exist points x_n and y_n in Bd D_n , an arc-segment Y_n in $E'_n - D_n$, a positive real number r_n , and a circular region U_n in S such that (1) $d(\{x_n, y_n\}, E'_n) \geq \varepsilon/4$, (2) $\{x_n, y_n\}$ is not contained in the closure of a complementary domain of $D_n \cup Y_n$, (3) $d(x_n, y_n) = r_n$, and (4) U_n has diameter $r_n/2$ and is contained in D_n . If iand j are distinct positive integers, then $U_i \cap U_j = \emptyset$; for otherwise,

$$(K - \{p, q\}) \cap \operatorname{Cl} (E_i \cup E_j)$$

would contain a point which does not cut p from q in M. Since M is bounded and the regions U_1 , U_2 , U_3 , \cdots are mutually exclusive, the sequence r_1, r_2, r_3, \cdots has limit 0. There exists a point x of $M - \{z\}$ such that x is a cluster point of x_1, x_2, x_3, \cdots . Suppose that there exists a continuum F in $M - \{z\}$ such that x belongs to the interior of F (relative to M). There exist a region G containing z in S - F and distinct integers i and j such that (1) D_i and D_j both meet F and (2) Cl $(E'_i \cup E'_j)$ is a subset of G. It follows that $(K - \{p, q\}) \cap Cl (E_i \cup E_j)$ contains a point which does not cut p from q in M. This is a contradiction. Hence each subcontinuum of M which contains x in its interior (relative to M) must also contain z (that is, M is not aposyndetic at x with respect to z).

Since M is semi-aposyndetic, there exists a continuum F_z in $M - \{x\}$ such that z is contained in the interior of F_z (relative to M). There exist mutually exclusive circular regions U and V in S such that (1) $x \in U$ and $z \in V$, (2) Cl $U \cap F_z = \emptyset$, and (3) $M \cap V \subset F_z$. There exists a positive interger n such that (1) $1/n < \varepsilon/4$, (2) the set

$$\{u \in S \mid d(u, \{x_n, y_n\}) < 1/n\}$$

is contained in U, and (3) Cl E'_n is contained in V. Since

$$d(E'_n, \{x_n, y_n\}) > 1/n,$$

there exist points t and u of $(S - M) \cap U$ such that $\{t, u\}$ is not contained in a complementary domain of $D_n \cup Y_n$. Let W and Z be the complementary domains of $D_n \cup Y_n$ (there are only two) which contain t and u respectively. Since M does not separate S, there exists an arc L in S - M from t to u. Let k denote the first point of $L \cap Bd$ $U \cap Z$ and let h be the last point of $L \cap Bd$ U which precedes k with respect to the order of L. Let H denote the subarc of L which has endpoints h and k. Note that h belongs to W and $H \cap Cl U = \{h, k\}$. $(D_n \cup Y_n) - U$ separates h from k in S - U. There exists a continuum N in $(D_n \cup Y_n) - U$ which separates h from k in S - U[6, Th. 27, p. 177]. Let B_1 and B_2 be the mutually exclusive arc-segments in Bd U which have endpoints h and k. For i = 1 and 2, there exists a point c_i in $B_i \cap N$. The points c_1 and c_2 are contained in distinct components of $N - Y_n$ [6, Th. 28, p. 156]. For i = 1 and 2, let d_i be a point of Cl $Y_n \cap (c_i$ -component of $N - Y_n$). The set (θ -curve) $H \cup Bd$ U separates d_1 from d_2 in S [6, Th. 28, p. 156]. H U Bd U is contained in $S - F_z$ and $\{d_1, d_2\}$ is a subset of F_z . Since F_z is connected, this is a contradiction. Hence for each positive real number ε , the set consisting of all elements E of C such that E' is not ε -spanned by a disk in M must be finite.

For each positive integer n, let C_n be the finite set consisting of all elements E of C such that either the diameter of E' is greater than or equal to 1/2n, or E' is not (1/2n)-spanned by a disk in M. Let $H_1 = C_1$, and for $n = 2, 3, 4, \cdots$, let $H_n = C_n - C_{n-1}$. Note that the sets H_1, H_2, H_3, \cdots are mutually exclusive and $C = \bigcup_{n=1}^{\infty} H_n$. For each element E of C, define the arc-segment M(E) as follows. Assume that a and b are the endpoints of E. There exists an integer n such that E belongs to H_n . If n = 1, define M(E) to be an arc-segment in N(E) with endpoints a and b. According to

Lemma 1, if n > 1, there exists an arc-segment M(E) in M with endpoints a and b such that for each point x of M(E), $d(x, E') \leq 1/(n-1)$. For each positive real number ε , the set consisting of all elements E of C such that the diameter of M(E) is greater than ε must be finite. Suppose that for some element X of C, the arc-segment M(X) meets $K \cup \bigcup_{E \in C - \{X\}} M(E)$. It follows that $(K - \{p, q\}) \cap Cl X$ contains a point which does not cut p from q in M. This is a contradiction. Hence for each element X of C,

$$(K \cup \bigcup_{E \in C - \{x\}} M(E)) \cap M(X) = \emptyset.$$

For each element E of C, let f_E be a homeomorphism from E onto M(E). Define the function f from A to $K \cup \bigcup_{E \in C} M(E)$ as follows. For each point x of K, define f(x) = x. If x is a point of A - K, define $f(x) = f_E(x)$ ($x \in E$). The function f is a homeomorphism. Hence $K \cup \bigcup_{E \in C} M(E)$ is an arc in M from p to q. It follows that M is arc-wise connected.

BIBLIOGRAPHY

- 1. E. CECH, Point sets, Academic Press, New York, 1969.
- 2. C. L. HAGOPIAN, Arcwise connectedness of semiaposyndetic plane continua, Trans. Amer. Math. Soc., vol. 158 (1971), pp. 161–165.
- F. B. JONES, A posyndetic continua and certain boundary problems, Amer. J. Math., vol. 63 (1941), pp. 545-553.
- 4. ——, The cyclic connectivity of plane continua, Pacific J. Math., vol. 11 (1961), pp. 1013–1016.
- 5. K. KURATOWSKI, Topology, vol. 2, Academic Press, New York, 1968.
- R. L. MOORE. Foundations of point set theory, Amer. Math. Soc. Colloquium Publications, vol. 13, Rhode Island, 1962 (Revised edition).
- G. T. WHYBURN, Analytic topology, Amer. Math. Soc. Colloquium Publications, vol. 28, Rhode Island, 1963.

CALIFORNIA STATE UNIVERSITY SACRAMENTO, CALIFORNIA