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1. Introduction and preliminaries
Let H be a complex infinite dimensional Hilbert space, and let 9 and

be the sets of normal operators and compact operators on H, respectively.
By an operator we mean a bounded linear operator on H. It is well known
that the distance between the unilateral shift U and the set 9 W is exactly
1. This is shown in [10] by J. G. Stampfli.

In this paper we introduce a continuous lower estimate p0 (T) for the distance
between an arbitrary operator T and the set 9 - . We prove that for
certain class of operators this lower estimate p0 (T) gives the exact distance.
On the other hand, if TI is a Toeplitz operator, and f in H -t- C, then p0 (Ts)
can be replaced by a more natural and computable lower estimate. Hence our
main result (Theorem 2) is

dist (Ts, 9 - ) _-> maxx,,(r]) dist (h. R (f)) for f e H -{- C,

where C is the space of all continuous complex-valued functions on the unit
circle, R (f) is the essential range of f, and a (T) is the spectrum of T. One
can easily see that Stampfli’s theorem dist (U, 9 + ) 1 follows from our
result (see also Remark 2). The techniques that we use here are based on the
Fredholm Index Theory (cf. [6]).
We recall that an operator T is said to be left-Fredholm if the range R (T)

is closed and the null space N (T) is finite dimensional, or, equivalently, if T is
left-invertible modulo the compact operators [13]. An operator T is right-
Fredholm if its adjoint T* is left-Fredholm, semi-Fredholm if it is either left-
Fredholm or right-Fredholm, and Fredholm if it is both left-Fredholm and
right-Fredholm. The set if8 (ff) of all semi-Fredholm (Fredholm) operators
is open in the algebra 5 (H) of all operators on H. For a semi-Fredholm
operator T, dim N (T) dim N (T*) is called the Fredholm index of T and
is denoted by ind T.

In relation to semi-Fredholm operators, several kinds of essential spectra
of an operator can be introduced in a natural way. For an operator T, the
Fredholm spectrum is the set a(T) {h; T hi is not Fredholm}, the left-
Fredholm spectrum is the set a (T) {h; T hi is not left-Fredholm}
and the right-Fredholm spectrum a (T) is defined similarly. We call the
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set a (T) n (T) the semi-Fredholm spectrum of T and we denote it by , (T).
The Weyl essential spectrum of T is, by definition, the set CIa(T + K)
and it is denoted by (T). All these essential spectra of T are non-empty
compact subsets of the plane and are invariant under compact perturbation
of T. The following inclusions are clear"

a,(T) c a(T) c w(T) c a(T).

It is known that the larger essential spectrum is obtained from the smaller
one by filling in the holes. Moreover, the set valued mapping T --. (T) is
upper semi-continuous. These facts follow easily from the continuity of
the Fredholm index.

2. The general case

In this section we introduce continuous lower estimate for the distance
between an arbitrary operator and all the compact perturbations of normal
operators. We need the following definitions.

DEFINITION 1. For an operator T, we define ,(T), 70(T), p(T) and
p0 (T) as follows:

(i) 7(T) inf{liTxli :xeUandlixl] 1}and
%,0(T) inf{ll T(x)

(ii) p(T) sup {,(T
(iii) po(T) max {p(T), p(T*)}.
Now we are ready to state and prove the main result of this section.

TEORE 1. PO (T) has the following properties:
(1) po(T) Oif andonlyif o(T) ,(T),
(2) po (T) is continuous on (B (H),
(3) dist (T, 9 +

_
po T ).

Proof. (1) If there is some k0 in w (T)\a, (T), then T ,01 is semi-
Fredholm. In case the index of T k01 is negative, it is easy to construct
a finite rank operator K0 such that T 01 K0 is left-invertible. So
,(T k0I + Ko) > 0, hence po(T) >= p(T) > 0 in this case. If the index
of T k01 is positive, by considering the adjoint of T A0I we can con-
clude that , (T* X01 4- K0) > 0 for some finite rank operator K0. So
p0 (T) => p (T*) > 0. Therefore, in either case we have p0 (T) > 0 if , (T)
is a proper subset of (T). Now suppose a, (T) o (T). For every k in
w (T), T ki is not semi-Fredholm, so T hi -5 K is not semi-Fredholm
for any compact K as well. In particular, T hi + K is not left-invertible
for all k in (T) and all compact K. Hence ,(T hi + K) 0. Thus
p(T) 0. Similarly p(T*) 0 if ,(T) o(T). Therefore po(T) 0
when , (T) (T). This completes the proof of (1).

(2) To prove (2), it is enough to prove that p(T) is continuous on (B(H).
We first show the upper semi-continuity. Let To be an operator, and let
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T. -. To in ( (H). For any given e-neighborhood V of w (To), we see that
o (T.) c V for sufficiently large n (by upper semi-continuity). Then for
any h. in (T.), there is ), in (To) such that I. , < e for large n.
For any it vector x in H and any compact operator K, we have

] (T- 1 + K)x

i] (To-- X.I+K)x[[ W 2e for largen.

Tang the infimum over all the unit vector x on both sides of the above
inequality, we have

(T. x.I + K) (To- X’. I + K) + 2e

_
(T0) + 2.

Therefore p(T) p (To) + 2e for large n. This proves the upper semi-
continuity of p(To) at To. To prove the lower semi-contty at To, we
need only prove this for p (To) > 0. Let T To in (H) and p (To) > 0.
For y > 0 (p(To) > e > 0) there is some o in (To)a,(To) and some
compact operator K0 such that

o < (To) < (To Xo + K0).

Therefore To oI + Ko is left-invertible but not invertible, bause
is in (To). Hence d (To- o I + Ko) < 0. By the Fredholm Index
Theorem, we see that for large n, T, o I + Ko is left-Fredholm and

ind(T,- oI) ind(T,- olT Ko) ind(To- olT Ko) < 0.

Hence o belongs to (T.) for large n. Moreover, if x is any unit vector and
if n is large then

(To- XoI + Ko)

(To) 2.
It follows that

p T, ) T o I + Ko p To ) 2 for large n.

This completes the proof of part (2).
(3) We note that (3) holds trivially if po (T) 0. So we may and do

assume that po(T) > O, say po(T) p(T). For any positive < p(T) there
is a h in (T) and a compact K such that (T I W K,) > > 0.
It follows that T I + K is left-invertible and ind (T I + K) < 0.
This implies that

for any normal operator N and any compact operator K. Indeed, if there were
some normalN and compactK such that ]]T (N + K) [] < (T I + K).
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Since
(T I K) 0(T-- XI + K),

then it would follow from the Fredholm Index Theorem that

0 ind(N- XI) ind(T- I+K+N+K- T)

=ind(T- XIWK) <0,

contradiction. Hence 1[ T- (N - K)i[ > for any < p(T), where N is
normal and K is compact. Consequently, the inequality

dist (T, m -t- ) -> p0 (T)

holds in case po(T) p(T). To complete the proof, we must also consider
the case po(T) p(T*). However, by considering the adjoint, the same
argument will suffice. This concludes the proof of Theorem 1.
For a certain class of operators T, the lower estimate po(T) gives the

exact distance between T and the set 9 - . This is shown in the following
corollary.
We consider a very special class of operators T such that either T*T I

or TT* I is compact. It is observed in [5] that this is equivalent to
T V + K where V is either an isometry or a co-isometry and K is a com-
pact operator. From this we deduce the following.

COROLLRY 1. Let T be an operator such that either T*T I or TT* I
is compact. Then we have the following alternative:
(1) Conditions (i) through (v) are equivalent:

(i) 0 0(T),
(ii) po(T) O,
(iii) dist(T,+ ) 0,
(iv) T V K for some unitary V and compact K,
(v) , (T) (T) the unit circle.

(2) Conditions (i’) through (iv’) are equivalent.
(i’) 0e(T),
(ii’) po(T)= 1,
(iii’) dist (T, 9Z + ) 1,
(iv’) (T) is the closed unit disk, and (T) is the unit circle.

Observe that the above alternative holds for T if and only if it holds for T*.
Therefore we may assume that T V - K where V is an isometry and
K is compact. Moreover, since (T) (V), a,(T) a(V) the unit
circle,

dist (T, 9 + ) dist (V, + ),

and po(T) p0(V), if T V -t- K, we may further assume that T is an isom-
etry V in proving (1) and (2).
To prove (1) we show that (i) (iv) (iii) (ii) (v) (i). The



COMPACT PERTURBATIONS OF NORMAL OPERATORS 341

implications (iv) (iii) and (v) (i) are trivial. The implications (iii)
(ii) (v) follows from Theorem 1. To see (i) (iv) notice that since
0 e (T), V is Fredholm and ind V 0. So V must be unitary.
To prove (2) we show that (i’) (ii’) (iii’) (iv’) (i’). Assuming

(i’), then V is left-Fredholm and ind V < 0 hence 1 -< po(V)

_
il V 1,

and (ii’) follows. Suppose (ii’) holds. Then (iii’) follows from 1
po(V) <= dist(V, -}- 5) =< VII 1. If (iii’)holds, then we must have
(V) a,(V) by (1). Therefore (V) is the union of ,(V) and some "holes"
of a8 (V). It follows that a, (V) the unit circle and 0 (V) the closed unit
disk. Finally, the implication (iv’) (i’) is trivial.

Remark 1. Theorem 1 immediately suggests the following question. Does
the set T a, (T) (T) have a non-empty interior in 6 (H) ? During the
preparation of this paper, Professor J. G. Stampfli communicated to us that
the answer to this question is negative [12]. He also points out to us that
there are operators T such that (T) (T) while dist (T, 9 -[- 5) > 0.

3. Toeplitz Operators in H -I- C
In this section we wish to consider Toeplitz operators T for f in H C.

We aim to replace the lower estimate p0 (Tf) defined in 2 by a more natural
and computable one (see Definition 2 below).

Let L (1 -< p _<_ denote the Lebesgue space for the normalized meas-
ure defined on the unit circle, let H denote the corresponding Hardy space
of functions in L, and let C denote the space of continuous complex-valued
functions on the unit circle. For f in L we define the Toeplitz operator TI
on H by Ts P (f) for in H2, where P is the orthogonal projection
of L onto H. Let H C denote the linear span of H and C. D. Sarason
shows in [9] that H -+- C is a closed subalgebra of L. We need some known
results about Toeplitz operators.

LEMMA A (Coburn [2]). a(Ts) o(T]) for any Toeplitz operator T].

For f in L, let R (f) denote the essential range off. Then R (f) is a compact
set in the plane. Let/ denote the set of complex conjugate of functions in
H. The following lemma is contained implicitly in the work of R. G. Douglas
and D. Sarason [4].

LEMMA B. R (f) a, Tf ) for f in (H - C)u ( -+- C)
It follows from Lemma A and Lemma B that for/in (H + C) u (/ -}- C)

the spectrum of T] is obtained from R (f) by filling in the holes. (See [11] for
a different proof of this fact.) We need the following definition.

DEFINITION 2. For f in L=, we define 5 (f) as

5 (f) sup{ dist (k, R (f))" k e (T])}.

It is immediate from Lemma A and Lemma B and the definition of (f),
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(for f in (H -t- C) tJ (//(R) -t- C) that the sets determining i (f) are the same
as those appearing in the definition of p0 (T/). This makes it possible to
replace po by for the special class of Toeplitz operators T/ with f in
(H** -t- C)u (//** q- C)as shown in the following theorem. We need one
more lemma which is also known (cf. [3] and [11]).

LEMMA C. TgT] Tg is compact for g in L** andf in H** q- C.

We are now ready to prove our principal result.

THEOREM 2. For f in (H** q- C) tJ (1-1.* - C ), (f) has the following prop-
erties

(1) (f) 0 if and only if R (f) T]
(2) $ (.) is continuous on (H** - C) tJ (tt** - C),
(3) po (T) >= (f), and hence dist (T], 9 - :) _>- (f).

Proof. (1) holds trivially for all f in
To prove (2) it is enough to prove that (.) is continuous on H** -b C.

The idea of the proof is the same as that of part (2)of Theorem 1. We first
show that (.) is upper semi-continuous on H** h- C (in fact, on L**). Suppose
f - fo in L**. For any -neighborhood V of a (T/,), we have a (T,) c V and

there s k in (To),]1 f fo [[ < e for large n. Then for any h. in a (Tr.),
such that I hl < provided n is large. Hence

dist(, R(fn)) -< [n- :1 q-dist(:, R(fo))q-llf-f011**_
2e q- dist (k’,, R (f0))

_< 2e + (fo),

for all ),, in a (T],). Consequently,

/} (f.)

_
2e q- t (f0) for large n.

Now we proceed to show the lower semi-continuity of (.) on H** q- C. We
may assume that i (f0) > 0. Let f, --* f0 in H** q- C. Choose some ),0 in
such that

0 < (fo) dist(ko, R(fo)).

Hence (f0 ko)-I is in L. By Lemma C, we see that

T(/o-Xo)- T(/0-Xo) I q- K

for some compact K. Therefore To-X0 is left-Fredholm, and ind (T],-Xo) 0
by Lemma A. It follows from the Fredholm Index Theorem that T.-0 is
left-Fredholm and ind (T._x0) 0 for large n. Consequently ),0 is in a (T.)
for large n. Therefore,

(f,) >- dist(ko, R(f)) dist(k0, R(fo)) -llf -f0[[ _-> 8(f0)

for large n. This concludes the proof of (2).



COMPACT PERTURBATIONS OF NORMAI OPERATORS 343

For the proof of part (3), we first note that po(T?) po(T) po(T.)
and (f) (]). Hence it is enough to prove (3) for f in H -+- C. Observe
that po Tr) 0 if and only if (f) 0. So we may and do assume that
(fo) > 0 for a given fo in H W C. By the continty of po (’) and (.), it is

enough to show that po(To) o) for fctions fo of the form ho, where
ho is H, because fctions of the form ho are dense in H C. Let
fo ho, with ho in H and (fo) > 0. Choose o in (To) such that o)

st(ko, R(fo)). Then To-o is left-Fredholm and ind(To_o) 0 by
Lemma C and Lemma A respectively. Once again by Lemma C,

T/o- o I To_X T.o_X T.o_Xo

% To-Xo
To-Xo"T + Ko for some compact Ko.

Let U T then we have

Tro o I- Ko To_xo,U*.
We recall that o(T) inf{ ]] Tx ] x N (T), x 1} for any operator T.
We shall show that

o(To- XoI- Ko)

It is clear that N (To Xo I Ko) N (U*), so for any in

N (T] XoI
we have

11 (T+o Xo go) [ lI T<o-o:-) V*" !
=> ess inf_ ho (z) o z" ] U* []

ess inf:_, ]’ho (z) o ] +
dist (o, R o) ) [[ +

It follows that (T+o Xo I Ko) (fo). We wish to show that either

(T+o-- oI--KoWKx) (fo) or (To-xoI-KTK,) (fo)

for some finite-rank operator K. (For the definition of (.), see Definition
1 (i).) We have already seen that T+o o I is left-Fredholm and

ind(T+o- o I) 0.

So is T+o ko I Ko as well. If ind (T+o o I Ko) < 0, then one can
easily construct a finite rank operator K such that T+o o I Ko + K is
left-invertible and

s(T+o Xo Ko + K,) o(T+o- Xo - Ko)
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In case ind (T10 0 1 K0) > 0, on taking the adjoint of T10 0 1 K0
we see that

(To Xo I- K’ q- K)

,o(T X0 I Ko*) 5,0(T]o k0 I K0) =>
for a suitable finite-rank operator K1. Note that /0(T*) 0(T) for any
operator T. In conclusion,we have po(To) >= 5(f0) for f0 2nho with ho in H.
Therefore po(Ti) >= 5(f) for all f in (H q- C) u (/ q- C). Hence

dist(T], 9Z -t- ) po(T]) >= (f)

for f in (H - C) u (/ W C). This completes the proof of Theorem 2.

Note. One could prove the inequality dist(Ti, 9 + ,) _-> (f) for f in
H + C without appealing to Theorem 1. However, this inequality does not
hold for all f in L. Any non-constant characteristic function of a measurable
set will provide us with a counterexample.

Let f be a unimodular function in (H -t- C) (/ -t- C). That is Ill 1
a.e. By Lemma C, we see that either TI T I or TT] I is compact.
Therefore Corollary 1 is applicable in view of Lemmas A and B. Hence we
have the following result (see also [11]):

COROLLARY 2. Let f be a unimodular function in (H" + C) t (’ - C).
Then we have the following alternative:
(1) Conditions (i) through (v) are equivalent.

(i) T/ is invertible,
(ii) (f) 0,
(iii) dist (Tf, + ) 0,
(iv) T V -ff K for some unitary V and compact K, and
(v) (Ts) R (f) c the unit circle.

(2) Conditions (i’) through (iv’) are equivalent.
(i’) T] is not invertible,
(ii’) 3(f)= 1,
(iii’) dist(Ty,+ ) 1,
(iv’) (Ts) is the closed unit disk and R (f) is the unit circle.

Remark 2. Theorem 2 gives no information on dist (Ty, 9Z q- ) for f in
the class {f e H q- C" R (f) (Ty) }. In view of Theorem 2, it is clear that
this class is a closed subset of H q- C. It is also not hard to see that there
are non-constant continuous functions in this class. We want to point out
that there even exist functions f in H n C--the dis algebra--such that (Tf)

R (f) the closed unit disk. The construction of such f goes as follows.
Take the Cantor set S with zero measure on the unit circle. Then there is a
continuous function on S whose range is the closed unit disk. For example,
the Lebesgue singular function followed by a Peano curve which maps the unit
interval onto the closed unit disk provide such a function . Since S has



COMPACT PERTURBATIONS OF NORMAL OPERATORS

measure zero, by Rudin’s extension theorem [1, Theorem 2.4.10], there is a
function f in the disk algebra such that the restriction of f to S is and
!1 f II 1. This f is our desired function, because z (Tf) the closed unit disk
R (f). (See [8] for a similar kind of function constructed by a different

method.) Notice that the equalities z(Tr) the closed unit disk R(f)
follow from a result of Hartman and Wintner [7]. We thank our colleagues
Leon Brown, Franz Schnitzer, and Bertram Schreiber for discussions on the
construction of such a function.

Added in proof. Recently L. G. Brown, R. G. Douglas and P. A. Fillmore
(see Notices Amer. Math. Soc., vol. 20 (1973), no. 1, and their preprint Exten-
sions of C*-algebras, operators with compact self-commutators, and K-homology)
have proved that the class 9 T. consists of those operators T whose self-
commutator T*T TT* is compact and whose Fredholm spectrum and Weyl
spectrum are identical, i.e. a(T) 0(T).
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