CHERN CHARACTERS REVISITED

BY

J. F. Adams

1. Introduction

The title of this paper refers to an earlier one [1]. Although I still feel that the questions studied in the earlier paper were indeed worth study, I have long felt that when I wrote the earlier paper I did not have a satisfactory way of stating the results. Recently I had occasion to reformulate the results of [1], for some lectures I gave at the University of Chicago. This reformulation is given as Theorem 1 below. I then found that results of a more general nature were contained in some work by Larry Smith [3]. I am grateful to Larry Smith and A. Liulevicius for letting me read a copy of [3] before publication. The object of this note, then, is to answer the question raised in the last sentence of [3], by recording a proof of Larry Smith's theorem which seems more elementary and direct than the one in [3].

2. Statement of results

Let bu be the connective BU-spectrum. Then $\pi_2(bu)$ is isomorphic to Z; let $u \in \pi_2(bu)$ be a generator. The homotopy ring $\pi_*(bu)$ is the polynomial ring Z[u]. We may identify $u \in \pi_2(bu)$ with its image in $H_2(bu; Z)$ or $H_2(bu;$ Q). The homology ring $H_*(bu; Q)$ is the polynomial ring Q[u]. As in [1], let m(r) be the numerical function given by

$$m(r) = \prod_{p} p^{[r/(p-1)]}.$$

THEOREM 1. The image of $H_*(\mathbf{bu}; Z)$ in $H_*(\mathbf{bu}; Q)$ is the Z-submodule generated by the elements

$$u^{r}/m(r), r = 0, 1, 2, 3, \cdots$$

Let H(Q, n) be the Eilenberg-MacLane spectrum for the group Q of rational numbers in dimension n. The r^{th} component of the Chern character defines an element

$$\mathit{ch}_r \, \epsilon \, H^{2r}(\mathtt{bu}\,; Q)$$

or a map of spectra

bu
$$\rightarrow H(Q, 2r)$$
.

This map of spectra induces a homomorphism of homology theories, say

$$ch_r: \mathbf{bu}_n(X) \to H_{n-2r}(X; Q).$$

This homomorphism is defined whether X is a space or a spectrum.

Received May 22, 1971.

THEOREM 2 (L. Smith). The image of

 $m(r)ch_r: \mathbf{bu}_n(X) \to H_{n-2r}(X; Q)$

is integral, that is, it is contained in the image of

 $H_{n-2r}(X;Z) \to H_{n-2r}(X;Q).$

This theorem differs only in minor details from Theorem 3.1 of [3]. That is, I have written m(r) where Smith writes μ_r ; the dimensional indexing is slightly different; n may be odd as well as even; and X may be a spectrum as well as a space. Theorem 2.1 of [3] follows, as is remarked at the end of [3].

3. Proof of Theorem 1

The proof proceeds by separating the primes p. Let Q_p be the localisation of Z at p, that is, the subring of fractions a/b with b prime to p. We wish to prove that the image of $H_*(\mathbf{bu}; Q_p)$ in $H_*(\mathbf{bu}; Q)$ is the Q_p -subalgebra generated by u and u^{p-1}/p . We give the proof for the case p = 2; the case of an odd prime is similar.

The spectrum bu has a (stable) cell decomposition of the form

bu =
$$S^0 \cup_{\eta} e^2 \cup \cdots$$

where η is the generator for the stable 1-stem, and the cells omitted have (stable) dimension ≥ 4 . It follows that the Hurewicz homomorphism

$$Z \cong \pi_2(bu) \to H_2(\mathbf{bu}) \cong Z$$

is multiplication by 2; that is, $H_2(bu)$ is generated by u/2. It follows immediately that the image of

$$H_*(\mathbf{bu}) \to H_*(\mathbf{bu}; Q)$$

contains $(u/2)^r$. We wish to prove a result in the opposite direction.

Recall from [1] that we have

$$H^*(\mathbf{bu}; Z_2) = A/(ASq^1 + ASq^{01}),$$

where A is the mod 2 Steenrod algebra. Equivalently, let HZ, HZ_2 be the Eilenberg-MacLane spectra for the groups Z, Z_2 in dimension 0; then the generator in $H^0(bu; Z_2)$ gives a map of spectra $bu \to HZ_2$, which induces a monomorphism

$$H_*(\mathsf{bu}; Z_2) \to H_*(\mathsf{H}Z_2; Z_2).$$

Here $H_*(\mathbf{HZ}_2; \mathbb{Z}_2)$ is A_* , the dual of the mod 2 Steenrod algebra [2]. We use this monomorphism to identify $H_*(\mathbf{bu}; \mathbb{Z}_2)$ with a subalgebra of A_* ; we write ξ_r for the Milnor generators in $A_*[2]$. Then the image of $u/2 \epsilon H_2(\mathbf{bu}; \mathbb{Z})$ in $H_2(\mathbf{bu}; \mathbb{Z}_2)$ is ξ_1^2 . The \mathbb{E}_2 -term of the Bockstein spectral sequence, namely

$$\operatorname{Ker} Sq^{1}/\operatorname{Im} Sq^{1} = \operatorname{Ker} \beta_{2}/\operatorname{Im} \beta_{2},$$

is the polynomial algebra $Z_2[\xi_1^2]$; this fact is essentially in [1], and is easily proved using A_* . The remainder of the argument is obvious from the Bockstein spectral sequence, but I give it in full.

The image of

$$H_{2r}(\mathbf{bu}) \to H_{2r}(\mathbf{bu}; Q)$$

is a finitely-generated abelian group, and since it is non-zero, it is isomorphic to Z. Let $h \in H_{2r}(\mathbf{bu})$ map to a generator. Let v = u/2, and let us write \bar{h}, \bar{v} for the images of these elements in $H_*(\mathbf{bu}; Z_2)$. Then we have

therefore

$$\bar{h} = \lambda \xi_1^{2r} + \beta_2 k$$

 $\beta_2 \bar{h} = 0;$

where $\lambda \epsilon Z$ and $k \epsilon H_{2r-1}(\mathbf{bu}; Z_2)$. That is,

$$\bar{h} = \lambda \bar{v}^r + (\delta_2 k)^-,$$

where $\delta_2 : H_{2r-1}(\mathbf{bu}; Z_2) \to H_{2r}(\mathbf{bu}; Z)$ is the integral Bockstein. This gives $h = \lambda v^r + \delta_2 k + 2l.$

where $l \in H_{2r}(\mathbf{bu})$. For the images in $H_{2r}(\mathbf{bu}; Q)$ we have

$$h = \lambda (u/2)^r + 2\mu h$$

where $\mu \epsilon Z$, that is,

$$h=\frac{\lambda}{1-2\mu}\,(u/2)^{r}$$

where $\lambda/(1-2\mu) \epsilon Q_2$. This proves Theorem 1.

4. Proof of Theorem 2

By definition, we have

$$bu_n(X) = \pi_n(bu \wedge X).$$

We have therefore to consider the map of homotopy induced by

bu
$$\wedge X \xrightarrow{ch_r \wedge 1} H(Q, 2r) \wedge X.$$

This map evidently factors through

$$\mathbf{HZ} \wedge \mathbf{bu} \wedge X \xrightarrow{1 \wedge ch_r \wedge 1} \mathbf{HZ} \wedge H(Q, 2r) \wedge X \xrightarrow{\mu \wedge 1} H(Q, 2r) \wedge X,$$

where μ is the obvious pairing of Eilenberg-MacLane spectra. Now

$$\pi_n(\operatorname{HZ} \wedge \operatorname{bu} \wedge X)$$

may be interpreted as $H_n(\mathbf{bu} \wedge X)$ and calculated by the ordinary Künneth

formula. The terms $\operatorname{Tor}_{1}^{\mathbb{Z}}(H_{i}(\mathbf{bu}), H_{j}(X))$ evidently map to zero in

$$\pi_n(H(Q, 2r) \wedge X) = H_{n-2r}(X; Q),$$

since $H_{n-2r}(X; Q)$ is torsion-free. If we consider the term $H_i(\mathbf{bu}) \otimes H_j(X)$, we see that $H_i(\mathbf{bu})$ maps into $\pi_i(H(Q, 2r))$, which is zero unless i = 2r. There remains the term $H_{2r}(\mathbf{bu}) \otimes H_{n-2r}(X)$. Here $H_{n-2r}(X)$ maps to $H_{n-2r}(X;Q)$ by the canonical map, and $u^r \in H_{2r}(\mathbf{bu})$ maps to $1 \in H_{2r}(Q;2r) = Q$ under ch_r . Using Theorem 1, we see that the image of $H_{2r}(\mathbf{bu}) \otimes H_{n-2r}(X)$ in $H_{n-2r}(X;Q)$ is 1/m(r) times the image of $H_{n-2r}(X;Z)$. This proves Theorem 2.

References

- 1. J. F. ADAMS, On Chern characters and the structure of the unitary group, Proc. Camb. Phil. Soc., vol. 57 (1961), pp. 189–199.
- J. W. MILNOR, The Steenrod algebra and its dual, Ann. of Math., vol. 67 (1958), pp. 150-171.
- 3. L. SMITH, The Todd character and the integrality theorem for the Chern character, Illinois J. Math., vol. 17 (1973), pp. 301-310.

CAMBRIDGE UNIVERSITY CAMBRIDGE, ENGLAND THE UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS THE UNIVERSITY OF MANCHESTER MANCHESTER, ENGLAND