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The first point of this note is a simple proof of Theorem 2 which states a
continuity property of linear maps with respect to absolutely convex sets
and is essentially due to D. J. H. Garling [4]. In Theorem 4 the approxima-
tion theorem 16.8 of Kelley-Namioka’s book [7] is sharpened by dropping the
closedness assumption on the absolutely convex set on which the linear forms
are to be approximated. This result is used in Theorem 5 to extend Grothen-
dieck’s well-known discussion of the completion and the completeness of the
dual X of a locally convex space X by admitting on X topologies of
uniform convergence on classes 9 of absolutely convex subsets of X whose
members need not be bounded nor closed. Finally, V. Ptak’s and H. S.
Collin’s characterization of the completeness of (X, :) is carried over to
these (generally not linear) topologies :.
The following theorem can be easily deduced from Theorem 1 of Garling [4].

THEOREM 1. Let X and Y be locally convex 8paces, f a linear mapping from
X into Y, a collection of absolutely convex subsets of X, directed upwards by
inclusion, whose union is absorbent. Let f be continuous on each A e 9. Then
f is also continuous on he closure A of each A e ?.

We wish to give a direct proof for the following special case of Theorem 1
to be applied later.

THEOREM 2. Let X and Y be locally convex spaces, f a linear mapfrom X into
Y, and A an absolutely convex and absorbent subset of X such that f lA is con-
tinuous. Then fl is also continuous.

Proof. According to a lemma of A. Grothendieck [6, p. 98] it suffices to
show that fl is continuous at 0. Let V be a neighbourhood of 0 in Y.
Then there is an open neighbourhood U of 0 in X such that

(1) f(V n A) Y.

The theorem will be proved if we show

(2) f(U n .) c Y + V.

If x e U n . there exists a real number p, 0 < p < 1, such that ox e A. Be-
cause of the continuity of f iA at ox there exists y e U n A so close to x that

(3) f (px f (py e pV.
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(Note U U and pA A ). Therefore, using (1), we obtain

f(x) p-([(px) f(py)) % f(y) V W V

which proves (2).
We mention the following variant of Theorem 2.

THEOREM 3. Let X and Y be linear topological spaces, f a linear map from
X into Y, A X, 0 e A, and for every x e X let there exist a scalar p 0 such
that px pA A. Then, if f lA is continuous at O, f is also continuous
at O.

The proof is similar to that of Theorem 2; replace (3) by f (px py)e pV.
Theorems 2 and 3 have analogues for semi-norms instead of linear maps.
If, in Theorem 2, A is a neighbourhood of 0, then f is continuous on all of

X. If A is not a neighbourhood of 0, it may still be true that continuity of
f]A implies continuity of f without a restriction on Y. Namely, the fol-
lowing example shows that a locally convex space X with the Mackey topology
may contain an absolutely convex, closed, compact subset A which is not a
neighbourhood of 0 and such that any linear map from X into any locally
convex space Y is continuous if it is continuous on A.

Let (X, ll:) be the Mackey dual of a non-reflexive Banach space Z, and let
A be the closed unit ball of X. Then A is absolutely convex, closed, and
weukly compact, but not a neighbourhood of 0. Let now f be a linear map of
X into a locally convex space Y such that f A is continuous. We show that
f is continuous. By Garling [4, p. 2] the continuity of f]A means that f is
continuous for the finest locally convex topology on X which agrees on A
with 2. ( may also be described as the mixed topology ,[9, ] determined
by the strong topology 9 (X, Z) and the Mackey topology --see A.
Wiweger [11, 2.1-2.2].) It is therefore sufficient to show :. The dual
of (X, ) consists of all linear forms on X which are -continuous on A. It
may therefore be identified with the completion of Z with respect to the
topology of uniform convergence on A (by Grothendieck’s completeness
theorem). Z being already complete in this topology, we obtain (X, )’ Z,
i.e., , and therefore which completes the proof of the con-
tinuity of f. --If we take in particular Z , then A, the closed unit bali
of , is not only weakly compact but compact in the Mackey topology (com-
bine KSthe [8, 21, 7.(1)] with 22, 4.(3)) which completes the desired
example.
The next result is an approximation theorem.

THEOREM 4. Let (X, ) be a locally convex space, A X absolutely convex,
and v a linear form on X which is continuous on A. Then for every real number
> O, there is an elementu in X’ such that

(4) Iv(x)--u(x) - for allx2: [A]
where [A] denotes the linear span of A.
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Remarks. 1. After Grothendieck [6, p. 99, Exercise 1, (b)] the :-continuity
of viA is equivalent to the weak continuity of viA.

2. In Kelley-Namioka [7, Theorem 16.8] the approximation theorem is
stated under the stronger hypothesis that A be absolutely convex and closed
and (X, X’). The proof given there covers also the case that : is not
equal to (X, X’).

3. Theorem 4 implies immediately a sharpened form of the approxima-
tion theorem 5 of J. I. Nieto [9].

Proof of Theorem 4. After Grothendieck (see Remark 1 above) viA is
weakly continuous. Without loss of generality, A may be assumed absorbent.
Then, by Theorem 2, also viA is weakly continuous so that the theorem is
reduced to the version of Kelley-Namioka.
The following proof is more direct, starting with a variation of Kelley-

Namioka’s proof.
By assumption, for every c 0 there is an absolutely convex open neigh

bourhood U of 0 in X such that vl is less than or equal to c on U n A, i.e.,
--1c v lies in (U n A where the polar, as in the rest of the proof, is to be taken
with respect to the dual pair (X, X*), X* denoting the algebraic dual of X.
As U is open, we have U c U n A, whence

c-lve(UnA) (UnA)c (Un2:).
Since 1/2 U U it follows that

-v (1/2. A)o (2UO Ao)oo 2U

U being a(X*, X)-compact, 2U - A is already closed, and we obtain
v e 2cU -t- cA. As U was a neighbourhood of 0 in X, we have U X’.

X’Hence there is u e such that u e cA which means

(5) Iv(x)-" u(x) -< c for allxeA.

Therefore v is the limit in X* of a Cauchy filter on X with respect to the
uniformity of uniform convergence on A. As each member of consists of
continuous linear forms, is a Cauchy filter even with respect to uniform
convergence on fi. As converges on [A] pointwise to v, it follows that v is
continuous on [A], so that (5) yields the contention (4).
We now turn to an extension of well-known results by A. Grothendieck

[5], V. Ptak [10], and H. S. Collins [3] on the completion and the completeness
of locally convex spaces as presented in G. KSthe [8, 21, 9]. If (X, Y) is a
dual pair and 9 a collection of absolutely convex subsets of X, it is well
known that on Y the topology of -convergence (topology of uniform
convergence on the members of ) is compatible with the group structure of
Y as an additive group, whereas is compatible with the linear-space
structure of Y if and only if the members of 9 are weakly bounded (N.
Bourbaki [2, 3, 1.]) for which reason this condition is customarily imposed
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on 9. We shall see however that an essential part of the results on com-
pleteness referred to above remains true without this condition on .
THEOREM 5. Let X be a locally convex space and a collection of absolutely

convex subsets of X, directed upwards by inclusion. Let Z denote the linear
space of linear forms on X which are continuous1) on each A 9, and let Z
carry the group topology of -convergence. Then

1. Z is complete, and X’ is dense in Z.
2. X is -complete if and only if each v Z is continuous on the linear

space L (J , [A].

Proof. 1. The completeness of Z is obvious. That X’ is dense in Z fol-
lows from Theorem 4, taking into account the directedness of .

2. If X’ is -complete and v e Z there is, by 1, a filter on X’ with
-iimit v. But because of the :-completeness of X’, has also a limit u in
X’. Clearly, u and v agree on L. Hence v is continuous on L. --For the
converse let now each v e Z be continuous on L and let be a -Cauchy filter
on X. By 1, has a limit v in Z. By assumption, v is continuous on L,
and each extension u X’ of v lL is also a -limit of . Therefore X" is
complete.

Remarks. 1. The linear space Z of Theorem 5 is the dual of X for the
finest locally convex topology on X agrees on each A e 9 with the original
topology of X; for this topology is the ’generalized inductive-limit topology’
belonging to the canonical injections of the sets A e into X in the sense of
Garling [4], (cf. in particular p. 2).

2. In general, Z with its topology , is no linear topological space.
However, not only the addition (zl, z) --, zl - z is continuous, but also,
for each scalar , the multiplication z -* hz. being directed, the sets of the
form

W. {v Z; Iv(x) - for allx A}

with A e 9 and e > 0 constitute a -neighbourhood base of 0 in Z. These
sets are absolutely convex and a(Z, L)-closed. Also we note

X*(6) (cl {0})z cl {0})(z") {re ;vlL 0}.
3. Because of Theorem 5, part 1, the separated completion of the additive

group X’ with respect to (Bourbaki [1, chap. III, 3, 4.]) may be iden-
tified with Z/L’, L" denoting the set in (6). If L is equal to X (which means
that X is spanned by the union of the members of ) then Z is separated and
Z itself may be considered as the ll:-completion of X’.

4. In the situation of Theorem 5, let 9 be another collection of absolutely
convex subsets of X, directed upwards, and suppose L U, [A] equal to
L. Then the topology IX’ induced by on X’ has a neighbourhood
base of 0 which is a(X’, L)-closed and therefore -closed. Consequently

Cf. Remark 1 to Theorem 4.
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there are similarly related neighbourhood bases of 0 for the associated
separated spaces (quotients rood L n X’). If :1 IX’ is finer than IX’,
the last remark implies certain completeness properties2) of which we men-
tion only that the separated 1-completion of X’ may be imbedded in the ll:-
completion of X’. This can be made more precise as follows. The condition
that 2 IX’ is finer than IX’ implies Z1 c Z, as can easily be seen, and
this implies the relation Z1/L c Z/L between the separated :1-and -completions.

5. On X the topology 2 of 9-convergence is equal to the topology of
-convergence where {2:;A }. Therefore the corresponding sepa-
rated completions of X’ are also the same, so that for their discussion it is no
essential restriction to assume that the sets A e are closed.

From Theorem 5 we obtain the following generalization of results of Ptak
[10] and Collins [3] as presented in KSthe [8, 21, 9].

TEOREM 6. Let (X, be a locally convex space and a collection of ab-
solutely convex subsets of X, directed upwards by inclusion, and such that [J,, A
spans X. Let (respectively ) denote the finest general (respectively the finest
locally convex) topology on X that agrees with on the sets A . Then the
following are true.

1. X’ is complete in the topology of -convergence, if and only if every
-closed linear hyperplane H in X is -closed, i.e.3), if and only if the fact that
that H A is -closed in A for each A implies that H is -closed.

2. A linear hyperplane H in X is -closed if and only if it is -closed.

Proof. By Remark 3 after Theorem 5 we may identify the -completion
of X’ with Z of Theorem 5. Completeness of X’ then means X’ Z. A
hyperplane H v- (0) in X, where v X*, is -closed if and only if v e X.
Furthermore, H is -closed if and only if H A is 2-closed in A for each
A e , i.e. (by Kelley-Namioka [7, Theorem 13.5 (III)]) if and only if v is
:-continuous on each A e , which means v e Z. From this follows conten-
tion 1 of the theorem. Part 2 follows from 1.

If in Theorem 6, 9 is not only directed upwards, but if for every two sets
A, B e 9 there is C e such that A -t- B c C, then Theorem 6 may also be
proved on the lines of KSthe [8, 21, 9. (6)], and "linear hyperplane" may be
replaced by "affine hyperplane" in that theorem. For this, the following
three auxiliary statements have to be proved (in analogy to KSthe [8, 21,
9. (1)]).

1. is invariant under translations and multiplication by nonzero scalars.
2. 9 has a basis of circled absorbing neighbourhoods of 0.

See Bourbaki [1, Chapter III, 3, 5., Proposition 9 and corollaries], as well as Grothen-
dieck [5, Corollary 2] (where the assumption Eo(S) Eo(T) is missing).

Since it can readily be seen that the R-closed sets are exactly the sets whose inter-
sections with the sets A N are T-closed.



316 w. ROELCKE

3. The absolutely convex 9-neighbourhoods of 0 form an -neighbour-
hood base of 0.
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