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O. Introduction
Let X be a space with metric d, and let h be a homeomorphism of X onto

itself. We say that h is regular at x e X provided that for each e > 0 there
is a t} > 0 such that d(x, y) < implies that d(h(x), h(y)) < e for all
integers n. Two homeomorphisms hi and h2 of X are topologically equivalent
if there exists a homeomorphism k of X such that hl k-lh2/c. B.v. Kerk-
jrt6 [20] introduced the notion of regularity and showed that homeomor-
phisms of the 2-sphere which were regular except at a finite number of points
were topologically equivalent to fractional linear transformations of complex
numbers. S. Kinoshita [22], T. Homma and S. Kinoshita [8], and L. S.
Husch [14], [15], [16], have extended these investigations to higher dimen-
sions.

In Sections 1 and 3 of this paper, we investigate the notions of regularity
and proper discontinuity for actions of infinite groups on metric spaces. In
sections 2 and 4 we consider actions of Z*, the free abelian group on/c genera-
tors with the discrete topology, with the following two questions in mind"
What manifolds M can support (effective) regular, properly discontinuous
Z* actions? When such actions exist, how can one classify them with respect
to topological equivalence? In particular, for k <: n, let the standard Zk-ac
tion on R be the group whose ith generator is the map

(Xl, Xl, "’’, Xn) (Xl, "’’, Xi "J[- 1, Xn).

We show (Theorem 11 that if G is a regular, properly discontinuous Zk-action
on R whose extension to S is irregular at oo, (definitions below), then
k <: n, and if k n > 4, then G is topologically equivalent to the standard Z
action, and we give examples of non-standard Z actions on R for n >_ k -k 3.
We also show that Z is the only group which can have regular properly

discontinuous (effective) actions on an open manifold M with two ends,
(Theorem 8), and make a start on the classification problem for such actions.

1. Some preliminary definitions and results

By a space, we will mean a locally compact, separable metrizable space. Let
X be a space with metric d and let H (X) be the group of homeomorphisms of
X with the compact open topology. If G is a subgroup of H (X) which is a
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topological group, we say that G acts on X and refer to G as an action. If K
is a topological group which is isomorphic to G, we may also refer to G as a
K-action on X. (Thus we consider only effective transformation groups.) If
G1 and G2 are actions on X we say that GI is topologically equivalent to G2 if G
is conjugate to G in H (X). We say that the action G is regular at x e X
provided that, for each > 0, there is > 0 such that for each g
implies that d (g (x), g (y)) < . If G is regular at each x e U

_
X, we say

that G is a regular action on U. G is irregular at x if for each g e G, g identity,
g fails to be regular at x. G is properly discontinuous at x if there is a neigh-
borhood U of x such that gUn U t for each g e G such that g identity.
G satisfies Sperner’s condition on U X if for each compact set C

_
U, the

set g G IgC n C 0} is finite.
Following Freudenthal [7], we define an end of a space X to be a collection
of subsets of X which is maximal with respect to the properties"

(i) each E e 8 is a connected open non-empty set with compact frontier;
(ii) for each pair E, E e 8 there is an Ea in such that Ea

_
E E.

and
(iii) l {C1 (E)IEe} 0.

Given a space with ends {,}, we can define a new space X*, called the
(Freudenthal) end point compactification of X, X* X u/o,} where w, is a
point associated with the end 5,. A topology is defined on X* by letting a
neighborhood basis for x e X be

(i) a neighborhood basis for x in X, if x e X, and
(ii) the collection of sets of the form E u w,, where E

If X is connected, it follows from [17] that X* is a compact metric space.
Henceforth, we shall assume that X has metric induced from a metric on X*.
This choice of metric is important since the regularity of an action on a non
compact space depends on the metric. For example, the dilation x -- 1/2x
generates a Z-action on I which is not regular anywhere with respect to the
usual metric, but which is regular at each point except 0 and oo with respect
to the metric induced from Sn. However, the reader can easily verify the
following.

PROPOSITION 1. Suppose X is connected. If G is an action on X, then G
induces a unique action G* on X*. The regularity of G at x X is independent
of the metric induced from X*. If H and K are topologically equivalent G
actions on X, H ]c-lK], H is regular at x if and only if K is regular at k (x ).

We will also need the following proposition.

PROPOSITION 2. Let X be connected with finitely many ends, and let the
action G be regular at Xo e X with respect to the metric d. Then G is regular at
Xo ,with respect to every metric d* induced from X*.
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Proof. Let ol, ..., o be the end points of X*, and let > 0 be given.
We may assume that is small enough that the sets {N (, o)}=1 are pair-
wise disjoint, where N (a, S) denotes the a neighborhood of the set S with
respect to the metric d*. Let W X* U_ N (/6, cos). Since W is
compact, there is an e > 0 such that if x, y e W1 and d(x, y) < , then
d* (x, y) < . Let W. X* U’=N (/3, cos). There is an > 0 such
that if x e W. and d (x, y) < e, then y e W. Finally, there is an a > 0
such that for each i, if x e N (e/3, cos) and d(x, y) < 8, then y e N (e/2, ).
There is a > 0 such that if d (x0, y) < 1, then

d (g (x0), g (y)) < min e, e, es} for all g e G.

If ti > 0 is chosen so that d* (x0, y) < t implies that d (x0, y) < i, it is easy
to check that d* (x0, y) < implies that d* (g (x0), g (y)) < for all g e G.

If G is an action on X and x e X, the orbit, Gx, of x under G is the set
{g (x)] g e G}. The orbits of G partition X, and the resulting quotient space
X/G is called the orbit space. We will often use the fact that if G is a properly
discontinuous action on a connected space, the natural projection X ---, X/G
is a covering map [32]. In particular, we have the following proposition.

PROPOSITION 3. Let X be connected and locally path connected with a finite
number of ends and let G and H be properly discontinuous actions on X such
that there is a homeomorphism h X/G X/H with the property that

(hp).(r (X) ) p., (rl (X) ),

where p" X ---, X/G and p X ----> X/H are the natural projections.
and H are topologically equivalent.

Then G

Proof. By [32; p. 76] there exists a homeomorphism k X --, X such that
p.tc hp. Let geG and xeX. Since pg(x) p(x),

p lcg (x ) hpl g (x hp (x p. k (x ),

so there exists j e H such that kg (x) jk (x). Let

Y {yeX[g(y) /c-’k(y)};

it is not difficult, using covering space theory, to show that Y X, so that
g e/c-H/. Suppose that g e/c-lH/. For x e X and g /-j/c,

pl t-ljlc (x h-hpl-ljt (x h-p kl-ljtc (x h-pjt (x

h-p lc (x) p (x).
It follows as before that g e G. Hence G =/-H/c.

Remark. If, in the above proposition, X is a smooth manifold and G a
group of diffeomorphisms, we may conclude that / is a diffeomorphism.
Similar remarks hold in the piecewise linear (PL) category.

In the light of Homma and Kinoshita’s work [10], [11] on Z-actions, one
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might suspect that if X is "nice" and G is a discrete action such that G* is
regular on X and irregular on X* X, then G is properly discontinuous.

EXAMPLE 4. There exists an action G on S which is regular on I( irregular
at and G is algebraically isomorphic to Z, but which is not properly discon-
tinuous on R2.

Proof. Let h, k e H (R2) be defined by

h(z, y) (x, y + 1), k(x, y) (x, y + /2).

Then h and k generate an action G which extends to an action G* on S.
Since G is clearly regular with respect to the usual metric on R, it follows from
Proposition 3 that G* is regular on S }. It is easy to check that G*
is irregular at . To see that G is not properly discontinuous on 12, recall
that the set {m + n /2 Im, n e Z} is dense in R. It follows that G is not
properly discontinuous. Note, however, G is not a Z%action since each
g e G is a limit point of G. It is unknown to the authors whether there
exists a Z2-action on S which is regular on 1 and irregular at , but which is
not properly discontinuous on 1".
We conclude this section by stating a theorem of Homma and Kinoshita

and a corollary which will allow us to assume that we are working with
manifolds with at most two ends.

PROPOSITION 5 (Homma and Kinoshita). Let X be a compact metric space
such that X contains no isolated points and X A is connected for each finite
subset A of X. Let G be a Z-action on X which is regular on X except possibly
for a finite number of points. Then the number of points at which G fails to be
regular is at most two [10].

COROLLARY 6. Let X be connected with finitely many ends, and suppose
that no finite set of points in X separates X. Let G act on X such that G is regular
on X but G* is irregular on X* X. Then X has at most two ends.

Remark. If we assume that X is locally connected, we can omit the finite-
ness conditions in Corollary 6 [19].

2. Manifolds with two ends
PROPOSITION 7. Let X be connected with two ends and let G be a regular

action on X such that G* is irregular on X* X. Then the orbit space X/G is
compact.

.Proof. Let 1 and be the two ends of X, let V0 e 1 , and let V be
the closure of V0 in X*. If g e G, there exists an integer n such that
g (V)

_
int V [22], [11]. Let W el (V g" (V)); we claim that

U0g’ (w) v ().

Let v e V (); since lim sup+g’ (V) (), there exists only finitely
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many j’s such that v g"(V). Hence

v e g’(V) g’(+)(V) g’(V gn(V)) gni(W)

for some j. Therefore 0g" (W) V ().
Suppose x e X; since lim+g" (x) () [22], for some i, g’ (x)e V.

It follows that X O_g’(W). Consider the natural projection
p: X X/G. Note that p(W) X/G and since W is compact, X/S is
compact.
The following theorem is a partial generalization of a theorem of Kinoshita

[23].

THEOREM 8. Let X be connected with two ends and let G be a properly dis-
continuous regular action X such that G* is irregular on X* X. Then G
is a Z-action.

Proof. By Theorem 3 of [23], G satisfies Sperner’s condition on X. Since
X/G is compact, by Theorem 12 of [5], G contas an infinite cyclic subgroup
H of finite index, say r. (Althou Theorem 12 of [5] is stated for complexes,
the proof generalizes to the case der consideration.)
SupposeG gHgH gH, whereg identity. Lethbea

--1generator of H; then sce gHg i 1, 2, ..., r, also has index r in G,
some power of h lies gHg. Hence H gHg7 is a nontrivial subgroup
of H. Since the intersection of a finite number of nontrial subgroups of H
is also nontrial,

_
g g is nontrivial. But gHg- gHg7

is therefore a normal infinite cyclic subgroup of G of finite index. Hence
there is no loss of generality in assuming that H is normal in G.

Suppose that there exists g e G such that g does not commute with h, the
generator of H. Since the inner automorphism defined on G by g maps H
onto H, we have gh- hg. Since G/H is finite, there exist integers n and m
such that g" h. Hence g-hg h- and we have

h+ ghg gh-lg- h- h.

It follows that m 0 and G has an element of finite order contradicting [22].
Hence H lies in the center of G; this implies that the center has finite index,
say n, in G. By [4], each commutator in G has order dividing n and hence
must be the identity. Therefore G is abelian and therefore G Z by [23].
THEOREM 9. Let M be an open connected n-manifold with two ends which

has the homotopy type of a finite complex, n 4, 5. If n 3, suppose that M
contains no fake 3-cells;--i.e. if is a locally fiat contractible 2-sphere in M,
then bounds a 3-cell in M and if n > 5, suppose that the Whitehead group of
(M ) is trivial. If G is a regular Z-action on M such that G* is irregular on

M* M, then there exists a closed submanifold N of M and homeomorphisms

:MN and v:NN
such that, if H is the action of N X R generated by (x, t) ( (x), + 1),
then h-Hh is topologically equivalent to G.
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Proof. By Proposition 7 and [21], M/G is a closed connected n-manifold.
By [33], if n 3, and by [30], if n > 5, there exists a closed (n 1) sub-
manifold N of M/G such that M/G fibers over the circle with fiber N. (Al-
though Theorem 4.1 of [30] is stated in the differential category, it is also valid
in the topological category; see [30; p. 2].) Hence there exists a homeomor-
phism " M --, N R such that if p M M/G is the natural projection,
then p- (N) UN X {r}.

Let N, },-(N X {r}) and let g e G such that g(N0) N. Let

be the homeomorphism defined by g- (x, 0) (v (x), 1) and let H be the
action of N R generated by (x, t) --* ( (x), + 1).

Let T be the compact submanifold of M whose boundary is No N and
let q" M --, M/hHh- be the natural projection. Note that

q(T) M/kHk- and p(T) M/G.

Define a" M/H- ---, M/G by a (q (x)) p (x) for each x e T.
seen that a is a homeomorphism such that a (q (N0)) p (N0).
following commutative diagram

It is easily
We have the

rNo q* vq(No) p(No) rNo

i*l J*l k,
rM q* )- a, p,

where i, j, k are inelusion maps. Note that

(aq),(aM) (aqi),(xNo)= (kaq),(,xNo)= k,(p(No))

(kp),(No)= (pi),(No)= p,(M).
Apply Proposition 3.

Remarks. (1) If we assume that G is either a differentiable or pieeewise
lear action, then G is differentiably or pieeewise linearly equivalent to

(2) If we assume that the projective class group of (M), R0(Zt (M)),
is zero instead of the Wtehead group, it is possible to show that M is homeo-
morphie to N X R at least in the pieeewise linear and differential ease (and
probably in the topological case) [29], [6]. If R0(Zt (M)) 0, it may be
possible, to construct a eounterexample (see [29] ).

(3) If M is homeomorpe to N X R but the Whitehead group of t (M)
is not trivial, then G need not be topologically equivalent to a produet action
since there exist nontrivial h-eobordisms whose boundary components are
homeomorpe [26; p. 400].
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3. Some equivalent conditions

The ollowing theorem is known when G Z [22]. The implication
(10.1) (10.3) hs lso been shown in [23] nd [18].

THEOREM 10. Le X be connected wih a finite number of ends, suppose no

finite se of points in X separates X and let G act on X. The following conditions
are equivalent.

(10.1) G is a properly discontinuous regular action on X but G* is irregular
onX* X.

(10.2) G has no elements of finite order and satisfies Terasaka’s condilion
[34]" lim sup,{g (C)} X* Xfor each compact set C X.

(10.3) G has no elements of finite order and satisfies Sperner’s condilion
on X.

Proof. (10.1) (10.2). Suppose y elim sup,{g(C)} for some com-
pact subset C of X. There exist sequences {ci}i=

___
C and {g}=, G

nd c eC such that limi++g(c) y nd lim_+=c c. By Lemm 2.3
X*of [18], limi_,+=g(c) y nd by Theorem 2.2 of [18], y e X. It fol-

lows from [22] that
X* X

_
lim sup{g(C)}.

(10.2) (10.3). It is easily seen that (10.2) implies that for each e > 0,
the set [g e GIg(C) does not lie in the e-neighborhood of X* X} has t
most finitely mny elements. (10.3) follows esily.

(10.3) (10.1). It is esily seen that if G stisfies Sperner’s condition,
then G is properly discontinuous. Let G be n infinite cyclic subgroup of
G; then G lso stisfies Sperner’s condition on X. As remarked above,
Theorem 10 is known in the cse when G Z and hence G is regular on X
nd is irregular on X* X. By Corollary 6, X has t most two ends. If
X hs two ends, then the proof of Theorem 8 shows that G Z and the im-
plication follows from [23].
SupposeXhsoneendndletxeXnde > 0. Let0 d(x,())

nd consider

Go {g eGId(x, y) < oimpliesd(oa(), g(y)) < /2};

we claim that Go is finite. Suppose to the contrary thut there exist sequences

{g}=

___
Go nd {x}=

_
X

such that d(g(x), (8)) _> e/2 and d(x, x) < 0. We may assume that

limit+= xi y nd limi++= gi (xi) w.

Let C /x, y, g(x), w}; note that C is compact subset of X such that
gC C for ech i. This contradicts (10.3); hence Go is finite.

Let Go [g, g,., ..., g,} nd choose > 0 such that d (x, y) < implies
d(g(x), g(y)) < e. Let Minimum {0, ih, ..., ,}; this is the desired
$ to show that G is regular t x.
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4. Manifolds with one end
THEOREM 11. Let U be an open contractible n-dimensional manifold and

let G be a properly discontinuous regular Z action on U such that G* is irregular
on U* U; then ]c

_
n. If l n 4 or if t n 3and U contains no

fake 3-cells, then U is homeomorphic to R and G is topologically equivalent to
the standard Zn-action.

Proof. By [21], the orbit space U/G is an n-dimensional manifold. Note
that U/G is an Eilenberg-MacLane K (Z, 1)-space [32]. Since the product
of k 1-spheres, T, is also a K (Z, 1)-space and both T and U/G have the
homotopy type of a CW-complex, then T and U/G are homotopy equivalent.
Since H (T) 0, k

_
n.

Suppose k n; since Hk(T) O, U/G is compact. By [12], U/G is
homeomorphic to T if n > 4. If n 3, U/G contains no fake 3-cells [1] and
is homeomorphic to T by [35]. By uniqueness of universal covering spaces,
U is homeomorphic to R" and by Proposition 3, G is equivalent to the stan-
dard Z-action.

EXAMPLE 12. For each t > 0 and n >_ 4, there exists an n-manifold M
and a regular properly discontinuous Z-action on M whose extension to M* is
irregular on M* M.

Proof. Let K be a finite 2-complex such that 1 (K) Z and let N be a
regular neighborhood of some piecewise linear embedding of K in the (n -t- 1 )-
sphere [13]. Note that rl(bdry N) Z. Let M be the universal covering
space of bdry N and let G be the covering transformation group. By [21], G
satisfies Sperner’s condition and the conclusion follows from Theroem 10.

If K is formed by using the stanadard presentation for Z,/c >_ 2, it is not
difficult to see that M does not have the homotopy type of a finite complex.

CONJECTURE. If U is an open connected n-manifold with the homotopy type
of a finite complex and if G is a regular properly discontinuous Z-action on U
such that G* is irregular on U* U, then tc

_
n.

THEOREM 13. Let U be an open simply connected n-manifold with the homot-
opy type of a finite complex and let G be a regular properly discontinuous Z-ac
tion on U such that G* is irregular on U* U and U/G is compact. Then U
is homeomorphic to V X R, provided n- k _> 6.

Proof. Let G G G_ G be a sequence of subgroups such
that G and G+I/G are isomorphic to Z and Z respectively. Let U U/G_
and note that we get a sequence of covering maps

UU P "U- P U/G.
Since U is the universal covering space of each U, U has the homotopy type
of a finite complex, and/0 (Z) O, it follows from [37] that each U has the
homotopy type of a finite complex.

Consider p, Uk_I ---, U/G which induces a map f," U/G ----) S such that
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(fk). is an epimorphism on the fundamental groups. Since the Whitehead
group of rl (U/G) Z is zero, by [30] U/G fibers over the circle and Uk_l
is homeomorphic to N1 X R for some closed (n 1)-manifold. Suppose
Uk_ N1 R and N N {0}.
Hence U_ is homeomorphic to p-- (N) R. In particular, p_ (N1)

has the homotopy type of a finite complex. We proceed as before to show
that p-_ (N) is homeomorphic to N R for some closed (n 2)-manifold
and hence U0_ is homeomorphic to N R. The proof is completed by
induction.

THEOREM 14. Let M be homeomorphic to the interior of a compact connected
manifold N with connected boundary and let G be a regular action on M such that
G* is irregular on M* M; then (N, bdry N) is trivial.

Proof. Note that M* is semilocally 1-connected at each point [32], let
p M’ -- M* be the universal covering of M*. Since G* has a fixed point,
G* can be lifted to an action G’ of M’ [2; p. 231] ;--i.e. G* and G are alge-
braically isomorphic and pG G*p.

Let x M* M and x p-l(x). There exists a compact neighborhood
U of x in M’ such that P U is a homeomorphism. Let g e G, g identity
and let h G such that ph gp. There exists an integer n such that

g" (C1 (M pU) int pU.

Let V p--lgn (C1 (M U) n U; note that p h-’V t U is a homeomorphism
of h-’V t U onto M* and hence M M*. Therefore r (N, bdry N)
"I(M* X) is trivial.

COROLLARY 15. If dimension M 2, M R.
COROLLARY 16. If dimension M 3, then N is either a 3-cell or a solid

torus (--i.e. N is homeomorphic to a regular neighborhood of a tamely embedded
wedge of 1-spheres).

Proof. Note that if 2 is a locally flat 2-sphere in M which bounds a con-
tractible manifold and g e G, g identity, then for some n, g (2) lies in a
collar of bdry N in N. Hence 2 bounds a 3-cell in M. We now apply [27].

EXMeLE 17. For each n >_ 4 and r

_
n 3, there exists a regular and

properly discontinuous Zr-action on R whose extension to S is irregular at
but which is not topologically equivalent to the standard Zr-action.

Proof. This is a generalization of results from [15]. Since the techniques
of proof are similar in the light of the results of this paper, we sketch a proof.

If r n 3, let X be Whitehead’s example of a contractible 3-manifold
which is not homeomorphic to R [39] and if r < n 3, let X be the interior of
a compact contractible (n r)-manifold whose boundary is not simply con-
nected [24] [28] [3]. Note that X R is homeomorphic to R" [25].

Consider T X;if T X were homeomorphic to T R-r, then by
Proposition 1.3 of [15], X would be properly homotopically equivalent to P.-.
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In particular, X would be "simnl",.z-connected at infinity" [31] this would be a
contradiction on the choice of X.

Let U be the universal cover of T X and let G be the covering transfor-
mation group. Note that U is homeomorphic to R X R and G is a
Zk-action which satisfies Sperner’s condition. The result follows from Propo-
sition 3 and Theorem 10.

Remarks. (1) In Theorem 11, if k n 3, the result is valid in both the
differentiable and piecewise linear category. However, if k n > 4, the
results are not valid [36] in the differentiable and piecewise linear category.
For example, the piecewise linear equivalence classes of Z actions on R are
classified by H (Tn; Z2).

(2) The results of 12, 13, and 17 are valid in both the differentiable and
piecewise linear categories.

(3) C.T.C. Wall [38] defines a P-group of rank n inductively as follows.
Z is the only P-group of rank 1. A P-group of rank n is any group which is
the extension of a P-group of rank (n 1 by Z. Note that Z" is a P-group of
rank n. All the theorems and examples of this section on Z actions remain
valid when Z" is replaced by P-group actions.

(4) One can similarly define a standard Zk-action on an infinite dimen-
sional separable Frechet space E. The notion of regularity is no longer use-
ful in characterizing actions on E; however, it can be shown that any Z-ac
tion on E which satisfies either Sperner’s condition or Terasaka’s condition is
topologically equivalent to the standard Z-action. This is a straightforward
generalization of [14].
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