REGULAR PROPERLY DISCONTINUOUS Z^{*} -ACTIONS ON OPEN MANIFOLDS

BY

P. F. DUVALL, JR. AND L. S. HUSCH¹

0. Introduction

Let X be a space with metric d, and let h be a homeomorphism of X onto itself. We say that h is regular at $x \in X$ provided that for each $\varepsilon > 0$ there is a $\delta > 0$ such that $d(x, y) < \delta$ implies that $d(h^n(x), h^n(y)) < \varepsilon$ for all integers n. Two homeomorphisms h_1 and h_2 of X are topologically equivalent if there exists a homeomorphism k of X such that $h_1 = k^{-1}h_2k$. B. v. Kerékjártó [20] introduced the notion of regularity and showed that homeomorphisms of the 2-sphere which were regular except at a finite number of points were topologically equivalent to fractional linear transformations of complex numbers. S. Kinoshita [22], T. Homma and S. Kinoshita [8], and L. S. Husch [14], [15], [16], have extended these investigations to higher dimensions.

In Sections 1 and 3 of this paper, we investigate the notions of regularity and proper discontinuity for actions of infinite groups on metric spaces. In sections 2 and 4 we consider actions of Z^k , the free abelian group on k generators with the discrete topology, with the following two questions in mind: What manifolds M can support (effective) regular, properly discontinuous Z^k actions? When such actions exist, how can one classify them with respect to topological equivalence? In particular, for $k \leq n$, let the standard Z^k -action on \mathbb{R}^n be the group whose i^{th} generator is the map

$$(x_1, \cdots, x_i, \cdots, x_n) \rightarrow (x_1, \cdots, x_i + 1, \cdots, x_n).$$

We show (Theorem 11) that if G is a regular, properly discontinuous Z^k -action on \mathbb{R}^n whose extension to S^n is irregular at ∞ , (definitions below), then $k \leq n$, and if k = n > 4, then G is topologically equivalent to the standard Z^n action, and we give examples of non-standard Z^k actions on \mathbb{R}^n for $n \geq k + 3$.

We also show that Z is the only group which can have regular properly discontinuous (effective) actions on an open manifold M with two ends, (Theorem 8), and make a start on the classification problem for such actions.

1. Some preliminary definitions and results

By a space, we will mean a locally compact, separable metrizable space. Let X be a space with metric d and let H(X) be the group of homeomorphisms of X with the compact open topology. If G is a subgroup of H(X) which is a

Received March 8, 1971.

¹ The research of the second author was partially supported by a National Science Foundation grant.

topological group, we say that G acts on X and refer to G as an action. If K is a topological group which is isomorphic to G, we may also refer to G as a K-action on X. (Thus we consider only effective transformation groups.) If G_1 and G_2 are actions on X we say that G_1 is topologically equivalent to G_2 if G_1 is conjugate to G_2 in H(X). We say that the action G is regular at $x \in X$ provided that, for each $\varepsilon > 0$, there is $\delta > 0$ such that for each $g \in G, d(x, y) < \delta$ implies that $d(g(x), g(y)) < \varepsilon$. If G is regular at each $x \in U \subseteq X$, we say that G is a regular action on U. G is irregular at x if for each $g \in G, g \neq$ identity, g fails to be regular at x. G is properly discontinuous at x if there is a neighborhood U of x such that $gU \cap U = \emptyset$ for each $g \in G$ such that $g \neq$ identity. G satisfies Sperner's condition on $U \subseteq X$ if for each compact set $C \subseteq U$, the set $\{g \in G \mid gC \cap C \neq \emptyset\}$ is finite.

Following Freudenthal [7], we define an *end* of a space X to be a collection \mathcal{E} of subsets of X which is maximal with respect to the properties:

(i) each $E \in \mathcal{E}$ is a connected open non-empty set with compact frontier;

(ii) for each pair E_1 , $E_2 \in \mathcal{E}$ there is an E_3 in \mathcal{E} such that $E_3 \subseteq E_1 \cap E_2$; and

(iii) $\bigcap \{ \operatorname{Cl} (E) \mid E \in \mathcal{E} \} = \emptyset.$

Given a space with ends $\{\mathcal{E}_{\alpha}\}\)$, we can define a new space X^* , called the (Freudenthal) *end point compactification* of $X, X^* = X \cup \{\omega_{\alpha}\}\)$ where ω_{α} is a point associated with the end \mathcal{E}_{α} . A topology is defined on X^* by letting a neighborhood basis for $x \in X$ be

- (i) a neighborhood basis for x in X, if $x \in X$, and
- (ii) the collection of sets of the form $E \cup \omega_{\alpha}$, where $E \in \mathcal{E}_{\alpha}$, if $x = \omega_{\alpha}$.

If X is connected, it follows from [17] that X^* is a compact metric space. Henceforth, we shall assume that X has metric induced from a metric on X^* . This choice of metric is important since the regularity of an action on a non compact space depends on the metric. For example, the dilation $x \to \frac{1}{2}x$ generates a Z-action on \mathbb{R}^n which is not regular anywhere with respect to the usual metric, but which is regular at each point except 0 and ∞ with respect to the metric induced from S^n . However, the reader can easily verify the following.

PROPOSITION 1. Suppose X is connected. If G is an action on X, then G induces a unique action G^* on X^* . The regularity of G at $x \in X$ is independent of the metric induced from X^* . If H and K are topologically equivalent G actions on X, $H = k^{-1}Kk$, H is regular at x if and only if K is regular at k(x).

We will also need the following proposition.

PROPOSITION 2. Let X be connected with finitely many ends, and let the action G be regular at $x_0 \in X$ with respect to the metric d. Then G is regular at x_0 with respect to every metric d^* induced from X^* .

Proof. Let $\omega_1, \dots, \omega_n$ be the end points of X^* , and let $\varepsilon > 0$ be given. We may assume that ε is small enough that the sets $\{N(\varepsilon, \omega_i)\}_{i=1}^n$ are pairwise disjoint, where $N(\alpha, S)$ denotes the α neighborhood of the set S with respect to the metric d^* . Let $W_1 = X^* - \bigcup_{i=1}^n N(\varepsilon/6, \omega_i)$. Since W_1 is compact, there is an $\varepsilon_1 > 0$ such that if $x, y \in W_1$ and $d(x, y) < \varepsilon_1$, then $d^*(x, y) < \varepsilon$. Let $W_2 = X^* - \bigcup_{i=1}^n N(\varepsilon/3, \omega_i)$. There is an $\varepsilon_2 > 0$ such that if $x \in W_2$ and $d(x, y) < \varepsilon_2$, then $y \in W_1$. Finally, there is an $\varepsilon_3 > 0$ such that for each i, if $x \in N(\varepsilon/3, \omega_i)$ and $d(x, y) < \varepsilon_3$, then $y \in N(\varepsilon/2, \omega_i)$. There is a $\delta_1 > 0$ such that if $d(x_0, y) < \delta_1$, then

$$d(g(x_0), g(y)) < \min \{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$$
 for all $g \in G$.

If $\delta > 0$ is chosen so that $d^*(x_0, y) < \delta$ implies that $d(x_0, y) < \delta_1$, it is easy to check that $d^*(x_0, y) < \delta$ implies that $d^*(g(x_0), g(y)) < \varepsilon$ for all $g \in G$.

If G is an action on X and $x \in X$, the orbit, Gx, of x under G is the set $\{g(x) \mid g \in G\}$. The orbits of G partition X, and the resulting quotient space X/G is called the orbit space. We will often use the fact that if G is a properly discontinuous action on a connected space, the natural projection $X \to X/G$ is a covering map [32]. In particular, we have the following proposition.

PROPOSITION 3. Let X be connected and locally path connected with a finite number of ends and let G and H be properly discontinuous actions on X such that there is a homeomorphism $h: X/G \to X/H$ with the property that

$$(hp_1)*(\pi_1(X)) = p_{2*}(\pi_1(X)),$$

where $p_1: X \to X/G$ and $p_2: X \to X/H$ are the natural projections. Then G and H are topologically equivalent.

Proof. By [32; p. 76] there exists a homeomorphism $k: X \to X$ such that $p_2 k = hp_1$. Let $g \in G$ and $x \in X$. Since $p_1 g(x) = p_1(x)$,

$$p_2 kg(x) = h p_1 g(x) = h p_1(x_1) = p_2 k(x),$$

so there exists $j \in H$ such that kg(x) = jk(x). Let

$$Y = \{ y \in X \, | \, g(y) = k^{-1} j k(y) \};$$

it is not difficult, using covering space theory, to show that Y = X, so that $g \in k^{-1}Hk$. Suppose that $g \in k^{-1}Hk$. For $x \in X$ and $g = k^{-1}jk$,

$$p_1 k^{-1} j k(x) = h^{-1} h p_1 k^{-1} j k(x) = h^{-1} p_2 k k^{-1} j k(x) = h^{-1} p_2 j k(x)$$
$$= h^{-1} p_2 k(x) = p_1(x).$$

It follows as before that $g \in G$. Hence $G = k^{-1}Hk$.

Remark. If, in the above proposition, X is a smooth manifold and G a group of diffeomorphisms, we may conclude that k is a diffeomorphism. Similar remarks hold in the piecewise linear (PL) category.

In the light of Homma and Kinoshita's work [10], [11] on Z-actions, one

might suspect that if X is "nice" and G is a discrete action such that G^* is regular on X and irregular on $X^* - X$, then G is properly discontinuous.

EXAMPLE 4. There exists an action G on S^2 which is regular on \mathbb{R}^2 irregular at ∞ and G is algebraically isomorphic to Z^2 , but which is not properly discontinuous on \mathbb{R}^2 .

Proof. Let $h, k \in H(\mathbb{R}^2)$ be defined by

$$h(x, y) = (x, y + 1), \quad k(x, y) = (x, y + \sqrt{2}).$$

Then h and k generate an action G which extends to an action G^* on S^2 . Since G is clearly regular with respect to the usual metric on \mathbb{R}^2 , it follows from Proposition 3 that G^* is regular on $S^2 - \{\infty\}$. It is easy to check that G^* is irregular at ∞ . To see that G is not properly discontinuous on \mathbb{R}^2 , recall that the set $\{m + n\sqrt{2} \mid m, n \in Z\}$ is dense in \mathbb{R} . It follows that G is not properly discontinuous. Note, however, G is not a Z^2 -action since each $g \in G$ is a limit point of G. It is unknown to the authors whether there exists a Z^2 -action on S^n which is regular on \mathbb{R}^n and irregular at ∞ , but which is not properly discontinuous on \mathbb{R}^n .

We conclude this section by stating a theorem of Homma and Kinoshita and a corollary which will allow us to assume that we are working with manifolds with at most two ends.

PROPOSITION 5 (Homma and Kinoshita). Let X be a compact metric space such that X contains no isolated points and X - A is connected for each finite subset A of X. Let G be a Z-action on X which is regular on X except possibly for a finite number of points. Then the number of points at which G fails to be regular is at most two [10].

COROLLARY 6. Let X be connected with finitely many ends, and suppose that no finite set of points in X separates X. Let G act on X such that G is regular on X but G^* is irregular on $X^* - X$. Then X has at most two ends.

Remark. If we assume that X is locally connected, we can omit the finiteness conditions in Corollary 6 [19].

2. Manifolds with two ends

PROPOSITION 7. Let X be connected with two ends and let G be a regular action on X such that G^* is irregular on $X^* - X$. Then the orbit space X/G is compact.

Proof. Let \mathcal{E}_1 and \mathcal{E}_2 be the two ends of X, let $V_0 \in \mathcal{E}_1 - \mathcal{E}_2$, and let V be the closure of V_0 in X^* . If $g \in G$, there exists an integer n such that $g^n(V) \subseteq$ int V [22], [11]. Let $W = \text{cl} (V - g^n(V))$; we claim that

$$\bigcup_{i=0}^{\infty} g^{ni}(W) = V - \omega(\mathfrak{E}_1).$$

Let $v \in V - \omega(\mathcal{E}_1)$; since $\limsup_{i \to +\infty} g^{ni}(V) = \omega(\mathcal{E}_1)$, there exists only finitely

many j's such that $v \in g^{nj}(V)$. Hence

$$v \,\epsilon \, g^{nj}(V) \,-\, g^{n(j+1)}(V) \,=\, g^{nj}(V \,-\, g^n(V)) \,=\, g^{nj}(W)$$

for some j. Therefore $\bigcup_{i=0}^{\infty} g^{ni}(W) = V - \omega(\varepsilon_1)$.

Suppose $x \in X$; since $\lim_{i \to +\infty} g^{ni}(x) = \omega(\varepsilon_1)$ [22], for some *i*, $g^{ni}(x) \in V$. It follows that $X = \bigcup_{i=-\infty}^{\infty} g^{ni}(W)$. Consider the natural projection $p: X \to X/G$. Note that p(W) = X/G and since W is compact, X/S is compact.

The following theorem is a partial generalization of a theorem of Kinoshita [23].

THEOREM 8. Let X be connected with two ends and let G be a properly discontinuous regular action on X such that G^* is irregular on $X^* - X$. Then G is a Z-action.

Proof. By Theorem 3 of [23], G satisfies Sperner's condition on X. Since X/G is compact, by Theorem 12 of [5], G contains an infinite cyclic subgroup H of finite index, say r. (Although Theorem 12 of [5] is stated for complexes, the proof generalizes to the case under consideration.)

Suppose $G = g_1 H \cup g_2 H \cup \cdots \cup g_r H$, where g_1 = identity. Let h be a generator of H; then since $g_i H g_i^{-1}$, $i = 1, 2, \cdots, r$, also has index r in G, some power of h lies in $g_i H g_i^{-1}$. Hence $H \cap g_i H g_i^{-1}$ is a nontrivial subgroup of H. Since the intersection of a finite number of nontrivial subgroups of H is also nontrivial, $\bigcap_{i=1}^r g_i H g_i^{-1}$ is nontrivial. But $\bigcap_{g \in G} g H g^{-1} = \bigcap_{i=1} g_i H g_i^{-1}$ is therefore a normal infinite cyclic subgroup of G of finite index. Hence there is no loss of generality in assuming that H is normal in G.

Suppose that there exists $g \in G$ such that g does not commute with h, the generator of H. Since the inner automorphism defined on G by g maps H onto H, we have $gh^{-1} = hg$. Since G/H is finite, there exist integers n and m such that $g^n = h^m$. Hence $g^{n-1}hg = h^{m-1}$ and we have

$$h^{2m+1} = g^n h g^n = g h^{m-1} g^{n-1} = h^{1-m} g^n = h.$$

It follows that m = 0 and G has an element of finite order contradicting [22]. Hence H lies in the center of G; this implies that the center has finite index, say n, in G. By [4], each commutator in G has order dividing n and hence must be the identity. Therefore G is abelian and therefore G = Z by [23].

THEOREM 9. Let M be an open connected n-manifold with two ends which has the homotopy type of a finite complex, $n \neq 4, 5$. If n = 3, suppose that Mcontains no fake 3-cells;—i.e. if Σ is a locally flat contractible 2-sphere in M, then Σ bounds a 3-cell in M and if n > 5, suppose that the Whitehead group of $\pi_1(M)$ is trivial. If G is a regular Z-action on M such that G^* is irregular on $M^* - M$, then there exists a closed submanifold N of M and homeomorphisms

$$\lambda: M \to N \times \mathbf{R} \quad and \quad \eta: N \to N$$

such that, if H is the action of $N \times \mathbb{R}$ generated by $(x, t) \to (\eta(x), t + 1)$, then $\lambda^{-1}H\lambda$ is topologically equivalent to G.

 $\mathbf{294}$

Proof. By Proposition 7 and [21], M/G is a closed connected *n*-manifold. By [33], if n = 3, and by [30], if n > 5, there exists a closed (n - 1) submanifold N of M/G such that M/G fibers over the circle with fiber N. (Although Theorem 4.1 of [30] is stated in the differential category, it is also valid in the topological category; see [30; p. 2].) Hence there exists a homeomorphism $\lambda : M \to N \times \mathbb{R}$ such that if $p : M \to M/G$ is the natural projection, then $\lambda p^{-1}(N) = \bigcup_{r \in N} N \times \{r\}$.

Let $N_r = \lambda^{-1}(N \times \{r\})$ and let $g \in G$ such that $g(N_0) = N_1$. Let

$$\eta: N \to N$$

be the homeomorphism defined by $\lambda g \lambda^{-1}(x, 0) = (\eta(x), 1)$ and let *H* be the action of $N \times \mathbf{R}$ generated by $(x, t) \to (\eta(x), t+1)$.

Let T be the compact submanifold of M whose boundary is $N_0 \cup N_1$ and let $q: M \to M/\lambda H \lambda^{-1}$ be the natural projection. Note that

$$q(T) = M/\lambda H \lambda^{-1}$$
 and $p(T) = M/G$.

Define $\alpha : M/\lambda H \lambda^{-1} \to M/G$ by $\alpha(q(x)) = p(x)$ for each $x \in T$. It is easily seen that α is a homeomorphism such that $\alpha(q(N_0)) = p(N_0)$. We have the following commutative diagram

where i, j, k are inclusion maps. Note that

$$(\alpha q)_*(\pi_1 M) = (\alpha q i)_*(\pi_1 N_0) = (k\alpha q)_*(\pi_1 N_0) = k_*(\pi_1 p(N_0))$$
$$= (kp)_*(\pi_1 N_0) = (pi)_*(\pi_1 N_0) = p_*(M).$$

Apply Proposition 3.

Remarks. (1) If we assume that G is either a differentiable or piecewise linear action, then G is differentiably or piecewise linearly equivalent to $\lambda^{-1}H\lambda$.

(2) If we assume that the projective class group of $\pi_1(M)$, $\tilde{K}_0(Z\pi_1(M))$, is zero instead of the Whitehead group, it is possible to show that M is homeomorphic to $N \times R$ at least in the piecewise linear and differential case (and probably in the topological case) [29], [6]. If $\tilde{K}_0(Z\pi_1(M)) \neq 0$, it may be possible to construct a counterexample (see [29]).

(3) If M is homeomorphic to $N \times R$ but the Whitehead group of $\pi_1(M)$ is not trivial, then G need not be topologically equivalent to a product action since there exist nontrivial h-cobordisms whose boundary components are homeomorphic [26; p. 400].

3. Some equivalent conditions

The following theorem is known when $G = \mathbb{Z}$ [22]. The implication $(10.1) \Rightarrow (10.3)$ has also been shown in [23] and [18].

THEOREM 10. Let X be connected with a finite number of ends, suppose no finite set of points in X separates X and let G act on X. The following conditions are equivalent.

(10.1) G is a properly discontinuous regular action on X but G^* is irregular on $X^* - X$.

(10.2) G has no elements of finite order and satisfies Terasaka's condition [34]: $\limsup_{g \in G} \{g(C)\} = X^* - X$ for each compact set $C \subseteq X$.

(10.3) G has no elements of finite order and satisfies Sperner's condition on X.

Proof. (10.1) \Rightarrow (10.2). Suppose $y \in \lim \sup_{g \in G} \{g(C)\}$ for some compact subset C of X. There exist sequences $\{c_i\}_{i=1}^{\infty} \subseteq C$ and $\{g_i\}_{i=1}^{\infty} \subseteq G$ and $c \in C$ such that $\lim_{i \to +\infty} g_i(c_i) = y$ and $\lim_{i \to +\infty} c_i = c$. By Lemma 2.3 of [18], $\lim_{i \to +\infty} g_i(c) = y$ and by Theorem 2.2 of [18], $y \in X^* - X$. It follows from [22] that

$$X^* - X \subseteq \lim \sup_{g \in G} \{g(C)\}.$$

 $(10.2) \Rightarrow (10.3)$. It is easily seen that (10.2) implies that for each $\varepsilon > 0$, the set $\{g \in G \mid g(C) \text{ does not lie in the } \varepsilon$ -neighborhood of $X^* - X\}$ has at most finitely many elements. (10.3) follows easily.

 $(10.3) \Rightarrow (10.1)$. It is easily seen that if G satisfies Sperner's condition, then G is properly discontinuous. Let G_1 be an infinite cyclic subgroup of G; then G_1 also satisfies Sperner's condition on X. As remarked above, Theorem 10 is known in the case when G = Z and hence G_1 is regular on X and is irregular on $X^* - X$. By Corollary 6, X has at most two ends. If X has two ends, then the proof of Theorem 8 shows that G = Z and the implication follows from [23].

Suppose X has one end \mathcal{E} and let $x \in X$ and $\mathcal{E} > 0$. Let $\delta_0 = d(x, \omega(\mathcal{E}))$ and consider

$$G_0 = \{g \in G \mid d(x, y) < \delta_0 \text{ implies } d(\omega(\mathcal{E}), g(y)) < \varepsilon/2\};\$$

we claim that G_0 is finite. Suppose to the contrary that there exist sequences

$$\{g_i\}_{i=1}^{\infty} \subseteq G_0 \text{ and } \{x_i\}_{i=1}^{\infty} \subseteq X$$

such that $d(g_i(x_i), \omega(\varepsilon)) \ge \varepsilon/2$ and $d(x_i, x) < \delta_0$. We may assume that

 $\lim_{i\to+\infty} x_i = y$ and $\lim_{i\to+\infty} g_i(x_i) = w$.

Let $C = \{x_i, y, g_i(x_i), w\}$; note that C is a compact subset of X such that $g_i C \cap C \neq \emptyset$ for each i. This contradicts (10.3); hence G_0 is finite.

Let $G_0 = \{g_1, g_2, \dots, g_n\}$ and choose $\delta_i > 0$ such that $d(x, y) < \delta_i$ implies $d(g_i(x), g_i(y)) < \varepsilon$. Let $\delta = \text{Minimum } \{\delta_0, \delta_1, \dots, \delta_n\}$; this is the desired δ to show that G is regular at x.

4. Manifolds with one end

THEOREM 11. Let U be an open contractible n-dimensional manifold and let G be a properly discontinuous regular Z^k action on U such that G^* is irregular on $U^* - U$; then $k \leq n$. If k = n > 4 or if k = n = 3 and U contains no fake 3-cells, then U is homeomorphic to \mathbb{R}^n and G is topologically equivalent to the standard Z^n -action.

Proof. By [21], the orbit space U/G is an *n*-dimensional manifold. Note that U/G is an Eilenberg-MacLane $K(Z^k, 1)$ -space [32]. Since the product of k 1-spheres, T^k , is also a $K(Z^k, 1)$ -space and both T^k and U/G have the homotopy type of a CW-complex, then T^k and U/G are homotopy equivalent. Since $H_k(T^k) \neq 0, k \leq n$.

Suppose k = n; since $H_k(T^k) \neq 0$, U/G is compact. By [12], U/G is homeomorphic to T^n if n > 4. If n = 3, U/G contains no fake 3-cells [1] and is homeomorphic to T^3 by [35]. By uniqueness of universal covering spaces, U is homeomorphic to \mathbb{R}^n and by Proposition 3, G is equivalent to the standard Z^n -action.

EXAMPLE 12. For each k > 0 and $n \ge 4$, there exists an n-manifold M and a regular properly discontinuous Z^k -action on M whose extension to M^* is irregular on $M^* - M$.

Proof. Let K be a finite 2-complex such that $\pi_1(K) = Z^k$ and let N be a regular neighborhood of some piecewise linear embedding of K in the (n + 1)-sphere [13]. Note that $\pi_1(\operatorname{bdry} N) = Z^k$. Let M be the universal covering space of bdry N and let G be the covering transformation group. By [21], G satisfies Sperner's condition and the conclusion follows from Theorem 10.

If K is formed by using the standard presentation for Z^k , $k \ge 2$, it is not difficult to see that M does not have the homotopy type of a finite complex.

CONJECTURE. If U is an open connected n-manifold with the homotopy type of a finite complex and if G is a regular properly discontinuous Z^k -action on U such that G^* is irregular on $U^* - U$, then $k \leq n$.

THEOREM 13. Let U be an open simply connected n-manifold with the homotopy type of a finite complex and let G be a regular properly discontinuous Z^k -action on U such that G^* is irregular on $U^* - U$ and U/G is compact. Then U is homeomorphic to $V \times \mathbf{R}^k$, provided $n - k \ge 6$.

Proof. Let $G = G_k \supset G_{k-1} \supset \cdots \supset G_1$ be a sequence of subgroups such that G_i and G_{i+1}/G_i are isomorphic to Z^i and Z respectively. Let $U_i = U/G_{k-i}$ and note that we get a sequence of covering maps

$$U \xrightarrow{p_1} U_1 \xrightarrow{p_2} U_2 \rightarrow \cdots \xrightarrow{p_k} U/G$$

Since U is the universal covering space of each U_i , U has the homotopy type of a finite complex, and $\tilde{K}_0(Z^i) = 0$, it follows from [37] that each U_i has the homotopy type of a finite complex.

Consider $p_k: U_{k-1} \to U/G$ which induces a map $f_k: U/G \to S^1$ such that

 $(f_k)_*$ is an epimorphism on the fundamental groups. Since the Whitehead group of $\pi_1(U/G) = Z^k$ is zero, by [30] U/G fibers over the circle and U_{k-1} is homeomorphic to $N_1 \times \mathbf{R}$ for some closed (n-1)-manifold. Suppose $U_{k-1} = N_1 \times \mathbf{R}$ and $N_1 = N_1 \times \{0\}$. Hence U_{k-2} is homeomorphic to $p_{k-1}^{-1}(N_1) \times \mathbf{R}$. In particular, $p_{k-1}^{-1}(N_1)$

Hence U_{k-2} is homeomorphic to $p_{k-1}^{-1}(N_1) \times \mathbb{R}$. In particular, $p_{k-1}^{-1}(N_1)$ has the homotopy type of a finite complex. We proceed as before to show that $p_{k-1}^{-1}(N_1)$ is homeomorphic to $N_2 \times \mathbb{R}$ for some closed (n-2)-manifold and hence U_{k-2} is homeomorphic to $N_2 \times \mathbb{R}^2$. The proof is completed by induction.

THEOREM 14. Let M be homeomorphic to the interior of a compact connected manifold N with connected boundary and let G be a regular action on M such that G^* is irregular on $M^* - M$; then $\pi_1(N, \text{bdry } N)$ is trivial.

Proof. Note that M^* is semilocally 1-connected at each point [32], let $p: M' \to M^*$ be the universal covering of M^* . Since G^* has a fixed point, G^* can be lifted to an action G' of M' [2; p. 231];—i.e. G^* and G' are algebraically isomorphic and $pG' = G^*p$.

Let $x \in M^* - M$ and $x' \in p^{-1}(x)$. There exists a compact neighborhood U of x' in M' such that $p \mid U$ is a homeomorphism. Let $g \in G$, $g \neq$ identity and let $h \in G'$ such that ph = gp. There exists an integer n such that

$$g^{n}(\operatorname{Cl}(M - pU)) \subseteq \operatorname{int} pU.$$

Let $V = p^{-1}g^n(\operatorname{Cl}(M - U)) \cap U$; note that $p \mid h^{-n}V \cup U$ is a homeomorphism of $h^{-n}V \cup U$ onto M^* and hence $M' = M^*$. Therefore $\pi_1(N, \operatorname{bdry} N) = \pi_1(M^*, X)$ is trivial.

COROLLARY 15. If dimension $M = 2, M = \mathbb{R}^2$.

COROLLARY 16. If dimension M = 3, then N is either a 3-cell or a solid torus (—i.e. N is homeomorphic to a regular neighborhood of a tamely embedded wedge of 1-spheres).

Proof. Note that if Σ is a locally flat 2-sphere in M which bounds a contractible manifold and $g \in G$, $g \neq$ identity, then for some n, $g^n(\Sigma)$ lies in a collar of bdry N in N. Hence Σ bounds a 3-cell in M. We now apply [27].

EXAMPLE 17. For each $n \ge 4$ and $r \le n - 3$, there exists a regular and properly discontinuous Z^r -action on \mathbb{R}^n whose extension to S^n is irregular at ∞ but which is not topologically equivalent to the standard Z^r -action.

Proof. This is a generalization of results from [15]. Since the techniques of proof are similar in the light of the results of this paper, we sketch a proof.

If r = n - 3, let X be Whitehead's example of a contractible 3-manifold which is not homeomorphic to \mathbb{R}^3 [39] and if r < n - 3, let X be the interior of a compact contractible (n - r)-manifold whose boundary is not simply connected [24] [28] [3]. Note that $X \times \mathbb{R}^r$ is homeomorphic to \mathbb{R}^n [25].

Consider $T^r \times X$; if $T^r \times X$ were homeomorphic to $T^r \times \mathbb{R}^{n-r}$, then by Proposition 1.3 of [15], X would be properly homotopically equivalent to \mathbb{R}^{n-r} .

In particular, X would be "simply-connected at infinity" [31]; this would be a contradiction on the choice of X.

Let U be the universal cover of $T^r \times X$ and let G be the covering transformation group. Note that U is homeomorphic to $\mathbb{R}^r \times X = \mathbb{R}^n$ and G is a Z^k -action which satisfies Sperner's condition. The result follows from Proposition 3 and Theorem 10.

Remarks. (1) In Theorem 11, if k = n = 3, the result is valid in both the differentiable and piecewise linear category. However, if k = n > 4, the results are not valid [36] in the differentiable and piecewise linear category. For example, the piecewise linear equivalence classes of Z^n actions on \mathbb{R}^n are classified by $H^3(T^n; \mathbb{Z}_2)$.

(2) The results of 12, 13, and 17 are valid in both the differentiable and piecewise linear categories.

(3) C. T. C. Wall [38] defines a *P*-group of rank *n* inductively as follows. *Z* is the only *P*-group of rank 1. A *P*-group of rank *n* is any group which is the extension of a *P*-group of rank (n - 1) by *Z*. Note that Z^n is a *P*-group of rank *n*. All the theorems and examples of this section on Z^n actions remain valid when Z^n is replaced by *P*-group actions.

(4) One can similarly define a standard Z^{k} -action on an infinite dimensional separable Frechet space E. The notion of regularity is no longer useful in characterizing actions on E; however, it can be shown that any Z^{k} -action on E which satisfies either Sperner's condition or Terasaka's condition is topologically equivalent to the standard Z^{k} -action. This is a straightforward generalization of [14].

References

- 1. E. M. BROWN, Unknotting in $M^2 \times I$, Trans. Amer. Math. Soc., vol. 123 (1966), pp. 480-505.
- P. E. CONNER AND F. RAYMOND, "Actions of compact Lie groups on aspherical manifolds" in *Topology of manifolds*, Markham, Chicago, 1970, pp. 227-264.
- 3. M. L. CURTIS AND K. W. KWUN, Infinite sums of manifolds, Topology, vol. 3 (1965), pp. 31-42.
- 4. J. D. DIXON, Problems in group theory, Blaisdell, Waltham, Mass. 1967.
- D. B. A. EPSTEIN, Ends, Topology of 3-manifolds, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 110-117.
- F. T. FARRELL, The obstruction to fibering a manifold over the circle, Bull. Amer. Math. Soc., vol. 73 (1967), pp. 737-740.
- 7. H. FREUDENTHAL, Über die Enden topologischer Räume and Gruppen, Math. Zeitschrift, vol. 33 (1931), pp. 692-713.
- 8. W. GOTTSCHALK AND G. HEDLUND, Topological dynamics, Vol. XXXVI, Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, R. I., 1955.
- T. HOMMA AND S. KINOSHITA, On a topological characterization of the dilatation in E³, Osaka Math. J., vol. 6 (1954), pp. 135-144.
- 10. ——, On homeomorphisms which are regular except at a finite number of points, Osaka Math. J., vol. 7 (1955), pp. 29–38.
- 11. ——, On the regularity of homeomorphisms of E^n , J. Math. Soc. Japan, vol. 5 (1953), pp. 365–371.
- W. C. HSIANG AND C. T. C. WALL, On homotopy tori, II, Bull. London Math. Soc., vol. 1 (1969), pp. 341-342.
- 13. J. F. P. HUDSON, Piecewise linear topology, W. A. Benjamin, New York, 1969.

- 14. L. S. HUSCH, Topological characterization of the dilation and the translation in Frechet spaces, Math. Ann., vol. 190 (1970), pp. 1-5.
- ——, A homotopy theoretic characterization of the translation in Eⁿ, Compositio Math., vol. 24 (1972), pp. 55-61.
- Topological characterization of the dilation in Eⁿ, Proc. Amer. Math. Soc., vol. 28 (1971), pp. 234-236.
- 17. J. R. ISBELL, Uniform spaces, Mathematical surveys, Number 12, Amer. Math. Soc., Providence, R. I., 1964.
- S. K. KAUL, On a transformation group, Canadian J. Math., vol. 21 (1969), pp. 935– 941.
- 19. ——, On almost regular homeomorphisms, Canadian J. Math., vol. 20 (1968), pp. 1–6.
- B. V. KERÉKJÁRTÓ, Topologische characterisierungen der linearen Abbildungen, Acta Litt. ac. Sci. Szeged, vol. 6 (1934), pp. 235-262.
- S. KINOSHITA, Notes on covering transformation groups, Proc. Amer. Math. Soc., vol. 19 (1968), pp. 421-424.
- "On Quasi-translations in 3-space" in Topology of 3-manifolds, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 223-226.
- S. KINOSHITA, On a kind of discrete transformation group, Proceedings of the Conference on Transformation Groups, New Orleans, 1967, Springer-Verlag, New York, 1968, pp. 451-456.
- B. MAZUR, A note on some contractible 4-manifolds, Ann. of Math., vol. 73 (1961), pp. 221-228.
- D. R. McMILLAN, JR., Cartesian products of contractible open manifolds, Bull. Amer. Math. Soc., vol. 67 (1961), pp. 510-514.
- 26. J. MILNOR, Whitehead torsion, Bull. Amer. Math. Soc., vol. 72 (1966), pp. 358-426.
- C. D. PAPAKYRIAKOPOULOS, On solid tori, Proc. London Math. Soc., vol. 7 (1957), pp. 281-299.
- V. POÉNARU, Les decompositions de l'hypercube en produit topologique, Bull. Soc. Math. France, vol. 88 (1960), pp. 113-129.
- 29. L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Princeton University Thesis, 1965.
- , A total Whitehead torsion obstruction to fibering over the circle, Comm. Math. Helv., vol. 45 (1970), pp. 1–48.
- On detecting Euclidean space homotopically among topological manifolds, Inventiones Math., vol. 6 (1968), pp. 245-261.
- 32. E. H. SPANIER, Algebraic topology, McGraw-Hill, New York, 1966.
- J. STALLINGS, "On fibering certain 3-manifolds" in *Topology of 3-manifolds*, Prentice-Hall, Englewood Cliffs, N. J., pp. 95-100.
- H. TERASAKA, On quasi-translations in Eⁿ, Proc. Japan Acad., vol. 30 (1954), pp. 80-84.
- F. WALDHAUSEN, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., vol. 87 (1968), pp. 56-88.
- C. T. C. WALL, On homotopy tori and the annulus theorem, Bull. London Math. Soc., vol. 1 (1969), pp. 95–97.
- 37. ——, Finiteness conditions for CM-complexes, Ann. of Math., vol. 81 (1965), pp. 56-69.
- "
 — ", "The topological space-form problems" in *Topology of manifolds*, Markham, Chicago, 1970, pp. 319–331.
- J. H. C. WHITEHEAD, A certain open manifold whose group is unity, Quart. J. Math. Oxford Ser. (2), vol. 6 (1935), pp. 364-366.
 - VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG, VIRGINIA