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1. Introduction

This pper is concerned principally with metric projections in C(T) with
special attention given to the subspace R-0 of functions that vanish on a
closed set Q. The existence of a linear metric projection onto R-0 is shown
to be equivalent to the existence of a bounded linear extension map of norm 1
from C(Q) to C(T) (Theorem 7). It is established that in a connected
metric space R-0 has a linear metric projection of norm 2 (Corollary 9).
Suificient conditions are given in order for a certain subspace of codimension
n to have a linear metric projection (Theorem 10).

2. Notation and definitions

A map P from a normed linear space X onto a subspace Y is called a projec-
tion if Py y for all y Y. The distance from a point x to a set Y is defined
by

dist (x, Y) inf{I] :e- y It: y Y}.

If for each x X there exists a y e Y such that x y dist (x, Y) then
Y is called an E-space. If the projection P X --* Y has the property that
II x Px dist (x, Y) then we call P a metric projection or a promixity map.
The restriction operator R C(T) -- C(Q) is defined by (Rx)(q) x(q)
for all x e C (T) and all q Q. Thus, if Y is a subspace of C (Q),

R-Y {x e C(T) Rx Y}.

A function E C (Q) -- C (T) is called an extension map if REx x for all
x C (Q). The restriction of a function x to set A is sometimes denoted by
x[A. The difference of two sets is writtenA B {x: xeA, xB}. In
topological nomenclature we follow J. L. Kelley’s General topology,

3. E-spaces and linear metric projections
If T is topological space then C(T) will denote the Bnach space of

bounded continuous functions x defined on 7’ with the supremum norm,

l]xll sup{ Ix(t) eT}.

LEMA1. Let Q be a closed set in a normal space T. If xeC(T) and
,z e C (Q) then z has an extension z’ in C (T) such that Rx z x z’ ]1.

Proof. Leta IIRx- zll. Ifa 0thenRx- z 0. I)efinez’ x.
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Thus, l]Rx- zll llx- z’ll. Supposea > 0. By Tietze’s Theorem, z
has an extension y e C (T). Define the function z by.

z’ (t) y (t) if x (t) y (t) --< a
x(t) a if x(t) y(t) > a

x(t) + o if x(t) y(t) < --.
To verify that z’ e C (T) it suffices to show that z’ is continuous on the set

A {t T" Ix(t) y(t) }.
Supposet A andx(t) y(t) . (The case x (t) y(t) -aissimilar.)
Let {t} be a net in T converging to t. Since x y is continuous and a > 0
we can assume x(t) y(t) > O. If x(t) y(t)

_
a then

z (t,) y (t) -- y (t).
If x (t) y (ti) > a then

z’ (t) x(t,) a x(t) a y(t).

Hence, in any case, z’ (t) --, y (t) z’ (t). Thus z’ C (T) and ]1 x z’ [! a.

LEM 2. Let Q be a closed set in a normal space T. For all x C (T) and
for any subspace M in C (Q), dist (x, R-1M) dist (Rx, M).

Thus,
If yR-1M, then ]Ix y]l -> l]Rx Ryll >- dist (Rx, M).

dist (x, R-1M) >_ dist (Rx, M).

Assume there is an x C (T) for which dist (x, R-IM) > dist (Rx, M). Then
there is an m M such that 11 Rx m ]1 < dist (x, R-1M). By Lemma 1
there is an m C (T) such that [] x m ]] ]] Rx- m 1], a contradiction.

THEOREM 3. Let Q be a closed set in a normal space T.
of C (Q) then the following are equivalent:

(1) Z is an E-space in C (Q)
(2) R-Z is an E-space in C (T).

If Z is a subspace

Proof. Assume that (1) is true. Let x e C (T). Let z be a best approxi-
mation to Rx in Z. By Lemma 1, z has an extension z e C (T) such that

IfyR-IZthen]]x- y]l -> IIRx-Ryl] l]x--zr]]. This shows thatz’
is a best approximation to x. Since z R-Z, the latter is an E-space.
Next assume (2). Let x C (Q). Let x be a Tietze extension of x. Let

y be a best approximation to x in R-IZ. If z e Z, then by Lemma 1, z has
an extension z’ such that 1[ x’ z ]] ]] x z ]1. Thus,

So Ry is a best approximation to x, and Z is an E-space.
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Since finite-dimensional spaces are E-spaces we have

COROllaRY 4. Let Q be a closed set in a normal space T. If Z is a finite-
dimensional subspace of C (Q), then R-Z is an E-space in C (T).

A subspace Y is said to be complemented if Y is the range of a bounded
linear projection.

TEORE 5. Let Q be a closed set in a normal space T. If there exists a

finite-dimensional subspace Z in C (Q) such that R-Z is complemented in C (T),
then there is a bounded linear extension operator from C (Q) to C (T).

Proof. Let z, z, ., z. be a basis for Z. By Tietze’s Theorem, each z
has an extension z, in C(T) such that
Define E by the equation Ez i.1 a z. Then E is a bounded linear
extension operator from Z to C (T). If x e R-IZ define L by Lx (I ER)x
and note that L is a bounded projection from R-Z onto R-10. By hypothesis
there is a bounded linear projection L’ from C (T) onto R-Z. Thus, LL’
is a bounded linear projection from C (T) onto R-0 and by a known result
[4] there is a bounded linear extension operator from C (Q) to C (T).
The following elementary lemma will be needed.

LEMMA 6. Let P be a linear projection from a normed linear space E onto a
nontrivial subspace M. Then P is a metric projection if and only if I P
is of norm 1.

The next theorem is similar to a result of Dean [4].

TnORE 7. Let Q be a closed set in a normal space T. Then the following
are equivalent:

(1) R-O has a linear metric projection.
(2) There is a linear norm 1 extension operator from C (Q) to C(T).

Proof. Assume (2) is true. Define L I ER. Since ER is a linear
projection of norm 1, by Lemma 6, L is a metric projection. If x e C (T),
thenRLx O. ThusLxeR-10. LetyeR-0. ThenLy y and L is a
projection onto R-0.

If (1) is true, let P be a linear metric projection from C(T) onto R-10.
Let E be a Tietze extension map of norm 1 from C (Q) to C (T). We wish to
obtain a linear norm 1 extension map. Define the map E’ by E’ (/-- P)E.
Since RE’ RE RPE I, E’ is an extension operator from C (Q) to
C (T). By Lemma 6, li I P ll 1 and therefore ]] E’ ]i 1.
To prove E is lilear it suffices to show that for arbitrary x and y in C (Q),

and scalars a and

(I P)[E (ax + By) (aEx + BEy)] O.

Since P is a projection onto R-0, it follows that (I P)-I (0) R-10.
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Thus it suffices to show that E (ax + y) (aEx + Ey) R-IO. Since

RE (cx -+- y) aREx REy cx y ax y O,

the conclusion follows.

THEOREM 8. Let Q be a closed set in a T4-space T. Then the following are
equivalent:

(1) R--O has a linear projection of norm < 2.
(2) Q is open.
(3) R-O has a linear metric projection of norm 1.

Proof. if (!) is true, let L be a linear projection from C (T) onto R-0
of norm2- e, where0 < 1. Lety l--L1, lfteQtheny(t) 1.
Let U t" y(t) > 1 . Then U is an open set containing Q. IfQis
not open, there exists a point t0 e U Q. By Urysohn’s Lemma there is a
function xeC(T) such that x]Q 1, x(to) -1 and x[ 1. Since
Ly O, Lx L(x-- y). Sincex- yeR-0, L(x- y) x- y. Hence,
Lx x- y. However,

x(to) y(to) -1 y(to) < -2 + v,

sothat ]]Lx] > 2- . Since ]]x] 1, lL]] > 2- ’. Thiseontrdic-
tion implies Q is open.
Assume (2) is true and let v be the characteristic function of T Q. For

y e C (T) define Py vy. Clearly, P is a linear projection of norm 1 onto
R-0. That P is a metric projection follows by writing

dist (y,R-0) ly-Py] Ry-0l] dist (Ry, O) dist (y,R-10).

If (3) is true, then (1) follows trivially.

CooLv 9. Let Q be a closed set in a connected metric space T. Then
R-O has a linear metric projection of norm 2.

Pr(of. If P is a metric projection note that P N 2, since

By the Borsuk-Dugundji Theorem [5] there is a bounded linear norm 1 ex-
tension operator from C (Q) to C (T). By Theorem 7, R-0 hs a linear metric
projection nd by Theorem 8 it is of norm 2.

if B is set in T, define RO {x e C(T) xB 0} If e (con-
tinuous linear functionals on C (T)), we define the support of , denoted by
S (), as the smallest closed set A such that R0 - (0).

THEOREM 10. Let T be a normal space and let , , ... be multiplica-
tire linear ]znctionals on C(T) having disjoint supports. Then (0)
has a linear metric projection.

Proof. Each : has the property that (1) and 1. Since T
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is normal, there exist disjoint open sets U1, Us, .-., Un such that U D S (,:).
By Urysohn’s Lemma there exist functions yl, y2, ..., y, such that
y I() , y I(T/U) o, and 0 _< y _< 1. Thus, y S() .
Since (1 y) S() 0, (1 y) 4(1) 4,(y,) 0, which implies
(y) 1. ThusO(yi) .

Let Y be the subspaee generated by y, y, ..., y. Define the map P from
C(T) to YbyPx (x)y. IfyeYthen

It is clear that P is linear and therefore P is a linear projection from C (T)
onto Y.

Let H 1 1(0). If x e C (T) then

( P)x (x) (x)(y) o.
Thus (I P)xeH. IfheHtheni(h) 0 for each i and (I- P)h h.
Thus I P is a linear projection from C (T) onto H. By the definition of the
yndsince[ lwehave]P 1. Thus]]P] l and by Lemma 6,
I P is a linear metric projection.

Since the point-evaluation functionM : defined by (x) x(t) for each
x e C (T) satisfy the hypotheses of Theorem 10 and R-10 n --=t (0) we
obtain

COnOSLRY 11. Let T be a T-space and let Q 1 ti} where ti T.
Then R-10 has a linear metric projection.
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