PROJECTIONS AND EXTENSION MAPS IN C(T)

ΒY

BILL D. ANDERSON

1. Introduction

This paper is concerned principally with metric projections in C(T) with special attention given to the subspace $R^{-1}0$ of functions that vanish on a closed set Q. The existence of a linear metric projection onto $R^{-1}0$ is shown to be equivalent to the existence of a bounded linear extension map of norm 1 from C(Q) to C(T) (Theorem 7). It is established that in a connected metric space $R^{-1}0$ has a linear metric projection of norm 2 (Corollary 9). Sufficient conditions are given in order for a certain subspace of codimension n to have a linear metric projection (Theorem 10).

2. Notation and definitions

A map P from a normed linear space X onto a subspace Y is called a *projection* if Py = y for all $y \in Y$. The distance from a point x to a set Y is defined by

dist
$$(x, Y) = \inf \{ || x - y || : y \in Y \}.$$

If for each $x \in X$ there exists a $y \in Y$ such that ||x - y|| = dist(x, Y) then Y is called an *E-space*. If the projection $P: X \to Y$ has the property that ||x - Px|| = dist(x, Y) then we call P a *metric projection* or a promixity map. The *restriction* operator $R: C(T) \to C(Q)$ is defined by (Rx)(q) = x(q) for all $x \in C(T)$ and all $q \in Q$. Thus, if Y is a subspace of C(Q),

$$R^{-1}Y = \{x \in C(T) : Rx \in Y\}.$$

A function $E: C(Q) \to C(T)$ is called an *extension* map if REx = x for all $x \in C(Q)$. The restriction of a function x to a set A is sometimes denoted by $x \mid A$. The difference of two sets is written $A - B = \{x : x \in A, x \in B\}$. In topological nomenclature we follow J. L. Kelley's General topology,

3. E-spaces and linear metric projections

If T is a topological space then C(T) will denote the Banach space of bounded continuous functions x defined on T with the supremum norm,

$$|| x || = \sup \{ | x(t) | : t \in T \}.$$

LEMMA 1. Let Q be a closed set in a normal space T. If $x \in C(T)$ and $z \in C(Q)$ then z has an extension z' in C(T) such that ||Rx - z|| = ||x - z'||.

Proof. Let $\alpha = || Rx - z ||$. If $\alpha = 0$ then Rx - z = 0. Define z' = x.

Received October 22, 1971.

Thus, ||Rx - z|| = ||x - z'||. Suppose $\alpha > 0$. By Tietze's Theorem, z has an extension $y \in C(T)$. Define the function z' by

$$\begin{aligned} z'(t) &= y(t) & \text{if } | x(t) - y(t) | \leq \alpha \\ &= x(t) - \alpha & \text{if } x(t) - y(t) > \alpha \\ &= x(t) + \alpha & \text{if } x(t) - y(t) < -\alpha. \end{aligned}$$

To verify that $z' \in C(T)$ it suffices to show that z' is continuous on the set

 $A = \{t \in T : |x(t) - y(t)| = \alpha\}.$

Suppose $t \in A$ and $x(t) - y(t) = \alpha$. (The case $x(t) - y(t) = -\alpha$ is similar.) Let $\{t_i\}$ be a net in T converging to t. Since x - y is continuous and $\alpha > 0$ we can assume $x(t_i) - y(t_i) > 0$. If $x(t_i) - y(t_i) \le \alpha$ then

$$z'(t_i) = y(t_i) \rightarrow y(t)$$

If $x(t_i) - y(t_i) > \alpha$ then

$$z'(t_i) = x(t_i) - \alpha \rightarrow x(t) - \alpha = y(t).$$

Hence, in any case, $z'(t_i) \rightarrow y(t) = z'(t)$. Thus $z' \in C(T)$ and $||x - z'|| = \alpha$.

LEMMA 2. Let Q be a closed set in a normal space T. For all $x \in C(T)$ and for any subspace M in C(Q), dist $(x, R^{-1}M) = \text{dist } (Rx, M)$.

Proof. If $y \in \mathbb{R}^{-1}M$, then $||x - y|| \ge ||\mathbb{R}x - \mathbb{R}y|| \ge \text{dist } (\mathbb{R}x, M)$. Thus,

dist
$$(x, R^{-1}M) \ge$$
 dist (Rx, M) .

Assume there is an $x \in C(T)$ for which dist $(x, R^{-1}M) > \text{dist}(Rx, M)$. Then there is an $m \in M$ such that $||Rx - m|| < \text{dist}(x, R^{-1}M)$. By Lemma 1 there is an $m' \in C(T)$ such that ||x - m'|| = ||Rx - m||, a contradiction.

THEOREM 3. Let Q be a closed set in a normal space T. If Z is a subspace of C(Q) then the following are equivalent:

(1) Z is an E-space in C(Q)

(2) $R^{-1}Z$ is an *E*-space in C(T).

Proof. Assume that (1) is true. Let $x \in C(T)$. Let z be a best approximation to Rx in Z. By Lemma 1, z has an extension $z' \in C(T)$ such that

$$|| Rx - z || = || x - z' ||.$$

If $y \in \mathbb{R}^{-1}Z$ then $||x - y|| \ge ||\mathbb{R}x - \mathbb{R}y|| = ||x - z'||$. This shows that z' is a best approximation to x. Since $z' \in \mathbb{R}^{-1}Z$, the latter is an *E*-space.

Next assume (2). Let $x \in C(Q)$. Let x' be a Tietze extension of x. Let y be a best approximation to x' in $R^{-1}Z$. If $z \in Z$, then by Lemma 1, z has an extension z' such that ||x' - z'|| = ||x - z||. Thus,

$$||x - Ry|| \le ||x' - y|| \le ||x' - z'|| = ||x - z||.$$

So Ry is a best approximation to x, and Z is an E-space.

Since finite-dimensional spaces are E-spaces we have

COROLLARY 4. Let Q be a closed set in a normal space T. If Z is a finitedimensional subspace of C(Q), then $R^{-1}Z$ is an E-space in C(T).

A subspace Y is said to be *complemented* if Y is the range of a bounded linear projection.

THEOREM 5. Let Q be a closed set in a normal space T. If there exists a finite-dimensional subspace Z in C(Q) such that $R^{-1}Z$ is complemented in C(T), then there is a bounded linear extension operator from C(Q) to C(T).

Proof. Let z_1, z_2, \dots, z_n be a basis for Z. By Tietze's Theorem, each z_i has an extension z'_i in C(T) such that $||z_i|| = ||z'_i||$. If $z \in Z$, $z = \sum_{i=1}^n \alpha_i z_i$. Define E by the equation $Ez = \sum_{i=1}^n \alpha_i z'_i$. Then E is a bounded linear extension operator from Z to C(T). If $x \in R^{-1}Z$ define L by Lx = (I - ER)x and note that L is a bounded projection from $R^{-1}Z$ onto $R^{-1}O$. By hypothesis there is a bounded linear projection L' from C(T) onto $R^{-1}Z$. Thus, LL' is a bounded linear projection from C(T) onto $R^{-1}O$ and by a known result [4] there is a bounded linear extension operator from C(Q) to C(T).

The following elementary lemma will be needed.

LEMMA 6. Let P be a linear projection from a normed linear space E onto a nontrivial subspace M. Then P is a metric projection if and only if I - P is of norm 1.

The next theorem is similar to a result of Dean [4].

THEOREM 7. Let Q be a closed set in a normal space T. Then the following are equivalent:

(1) $R^{-1}O$ has a linear metric projection.

(2) There is a linear norm 1 extension operator from C(Q) to C(T).

Proof. Assume (2) is true. Define L = I - ER. Since ER is a linear projection of norm 1, by Lemma 6, L is a metric projection. If $x \in C(T)$, then RLx = 0. Thus $Lx \in R^{-1}0$. Let $y \in R^{-1}0$. Then Ly = y and L is a projection onto $R^{-1}0$.

If (1) is true, let P be a linear metric projection from C(T) onto $R^{-1}0$. Let E be a Tietze extension map of norm 1 from C(Q) to C(T). We wish to obtain a linear norm 1 extension map. Define the map E' by E' = (I - P)E. Since RE' = RE - RPE = I, E' is an extension operator from C(Q) to C(T). By Lemma 6, ||I - P|| = 1 and therefore ||E'|| = 1.

To prove E' is linear it suffices to show that for arbitrary x and y in C(Q), and scalars α and β ,

 $(I - P)[E(\alpha x + \beta y) - (\alpha Ex + \beta Ey)] = 0.$

Since P is a projection onto $R^{-1}0$, it follows that $(I - P)^{-1}(0) = R^{-1}0$.

Thus it suffices to show that $E(\alpha x + \beta y) - (\alpha Ex + \beta Ey) \epsilon R^{-1}0$. Since

 $RE(\alpha x + \beta y) - \alpha REx - \beta REy = \alpha x + \beta y - \alpha x - \beta y = 0,$

the conclusion follows.

THEOREM 8. Let Q be a closed set in a T_4 -space T. Then the following are equivalent:

- (1) $R^{-1}0$ has a linear projection of norm < 2.
- (2) Q is open.
- (3) $R^{-1}0$ has a linear metric projection of norm 1.

Proof. If (1) is true, let L be a linear projection from C(T) onto $R^{-1}0$ of norm $2 - \varepsilon$, where $0 < \varepsilon \leq 1$. Let y = 1 - L1. If $t \in Q$ then y(t) = 1. Let $U = \{t : y(t) > 1 - \varepsilon$. Then U is an open set containing Q. If Q is not open, there exists a point $t_0 \in U - Q$. By Urysohn's Lemma there is a function $x \in C(T)$ such that $x \mid Q = 1$, $x(t_0) = -1$ and $\parallel x \parallel = 1$. Since Ly = 0, Lx = L(x - y). Since $x - y \in R^{-1}0$, L(x - y) = x - y. Hence, Lx = x - y. However,

$$x(t_0) - y(t_0) = -1 - y(t_0) < -2 + \varepsilon,$$

so that $||Lx|| > 2 - \varepsilon$. Since ||x|| = 1, $||L|| > 2 - \varepsilon$. This contradiction implies Q is open.

Assume (2) is true and let v be the characteristic function of T - Q. For $y \in C(T)$ define Py = vy. Clearly, P is a linear projection of norm 1 onto $R^{-1}0$. That P is a metric projection follows by writing

dist $(y, R^{-1}0) \le ||y - Py|| = ||Ry - 0|| = \text{dist } (Ry, 0) = \text{dist } (y, R^{-1}0).$

If (3) is true, then (1) follows trivially.

COROLLARY 9. Let Q be a closed set in a connected metric space T. Then $R^{-1}0$ has a linear metric projection of norm 2.

Proof. If P is a metric projection note that $||P|| \leq 2$, since

 $|| Px || = || Px - x + x || \le || x - Px || + || x || \le 2 || x ||.$

By the Borsuk-Dugundji Theorem [5] there is a bounded linear norm 1 extension operator from C(Q) to C(T). By Theorem 7, $R^{-1}0$ has a linear metric projection and by Theorem 8 it is of norm 2.

If B is a set in T, define $R_B^{-1}0 = \{x \in C(T) : x \mid B = 0\}$. If $\phi \in C^*$ (continuous linear functionals on C(T)), we define the support of ϕ , denoted by $S(\phi)$, as the smallest closed set A such that $R_A^{-1}0 \subset \phi^{-1}(0)$.

THEOREM 10. Let T be a normal space and let $\phi_1, \phi_2, \dots, \phi_n$ be multiplicative linear functionals on C(T) having disjoint supports. Then $\bigcap_{i=1}^n \phi_i^{-1}(0)$ has a linear metric projection.

Proof. Each ϕ_i has the property that $\phi_i(1) = 1$ and $\|\phi_i\| = 1$. Since T

516

is normal, there exist disjoint open sets U_1, U_2, \dots, U_n such that $U_i \supset S(\phi_i)$. By Urysohn's Lemma there exist functions y_1, y_2, \dots, y_n such that $y_i | S(\phi_i) = 1, y_i | (T/U_i) = 0$, and $0 \le y_i \le 1$. Thus, $y_i | S(\phi_j) = \delta_{ij}$. Since $(1 - y_i) | S(\phi_i) = 0, \phi_i(1 - y_i) = \phi_i(1) - \phi_i(y_i) = 0$, which implies $\phi_i(y_i) = 1$. Thus $\phi_i(y_j) = \delta_{ij}$.

Let Y be the subspace generated by y_1, y_2, \dots, y_n . Define the map P from C(T) to Y by $Px = \sum_{i=1}^{n} \phi_i(x) y_i$. If $y \in Y$ then

$$y = \sum_{j=1}^{n} \alpha_j y_j$$
 and $Py = \sum_{i=1}^{n} \phi_i (\sum_{j=1}^{n} \alpha_j y_j) y_i = \sum_{i=1}^{n} \alpha_i y_i = y.$

It is clear that P is linear and therefore P is a linear projection from C(T) onto Y.

Let $H = \bigcap_{i=1}^{n} \phi_i^{-1}(0)$. If $x \in C(T)$ then

$$\phi_j(I-P)x = \phi_j(x) - \sum_{i=1}^n \phi_i(x)\phi_j(y_i) = 0.$$

Thus $(I - P)x \epsilon H$. If $h \epsilon H$ then $\phi_i(h) = 0$ for each i and (I - P)h = h. Thus I - P is a linear projection from C(T) onto H. By the definition of the y_i and since $||\phi_i|| = 1$ we have $||P|| \le 1$. Thus ||P|| = 1 and by Lemma 6, I - P is a linear metric projection.

Since the point-evaluation functional \hat{t}_i defined by $\hat{t}_i(x) = x(t_i)$ for each $x \in C(T)$ satisfy the hypotheses of Theorem 10 and $R^{-1}0 = \bigcap_{i=1}^{n} \hat{t}_i^{-1}(0)$ we obtain

COROLLARY 11. Let T be a T_4 -space and let $Q = \bigcup_{i=1}^n \{t_i\}$ where $t_i \in T$. Then $R^{-1}0$ has a linear metric projection.

References

- R. ARENS, Projections on continuous function spaces, Duke Math. J., vol. 32 (1965), pp. 469-478.
- 2. E. W. CHENEY, Introduction to approximation theory, McGraw-Hill, New York, 1966.
- E. W. CHENEY AND D. E. WULBERT, Existence and unicity of best approximations, Math. Scand., vol. 24 (1969), pp. 113-140.
- D. W. DEAN, Subspaces of C(H) which are direct factors of C(H), Proc. Amer. Math. Soc., vol. 16 (1965), pp. 237-242.
- J. DUGUNDJI, An extension of Tietze's Theorem, Pacific J. Math., vol. 1 (1951), pp. 353-367.
- E. MICHAEL AND A. PELCZYNSKI, Peaked partition subspaces of C(X), Illinois J. Math., vol. 11 (1967), pp. 555–562.
- R. R. PHELPS, Čebyšev subspaces of finite codimension in C(X), Pacific J. Math., vol. 13 (1963), pp. 647-655.

EAST TEXAS STATE UNIVERSITY COMMERCE, TEXAS