PROJECTIONS AND EXTENSION MAPS IN $C(T)$

BY
Bill D. Anderson

1. Introduction

This paper is concerned principally with metric projections in $C(T)$ with special attention given to the subspace $R^{-1} 0$ of functions that vanish on a closed set Q. The existence of a linear metric projection onto $R^{-1} 0$ is shown to be equivalent to the existence of a bounded linear extension map of norm 1 from $C(Q)$ to $C(T)$ (Theorem 7). It is established that in a connected metric space $R^{-1} 0$ has a linear metric projection of norm 2 (Corollary 9). Sufficient conditions are given in order for a certain subspace of codimension n to have a linear metric projection (Theorem 10).

2. Notation and definitions

A map P from a normed linear space X onto a subspace Y is called a projection if $P y=y$ for all $y \in Y$. The distance from a point x to a set Y is defined by

$$
\operatorname{dist}(x, Y)=\inf \{\|x-y\|: y \in Y\}
$$

If for each $x \in X$ there exists a $y \in Y$ such that $\|x-y\|=\operatorname{dist}(x, Y)$ then Y is called an E-space. If the projection $P: X \rightarrow Y$ has the property that $\|x-P x\|=\operatorname{dist}(x, Y)$ then we call P a metric projection or a promixity map. The restriction operator $R: C(T) \rightarrow C(Q)$ is defined by $(R x)(q)=x(q)$ for all $x \in C(T)$ and all $q \varepsilon Q$. Thus, if Y is a subspace of $C(Q)$,

$$
R^{-1} Y=\{x \in C(T): R x \in Y\}
$$

A function $E: C(Q) \rightarrow C(T)$ is called an extension map if $R E x=x$ for all $x \in C(Q)$. The restriction of a function x to a set A is sometimes denoted by $x \mid A$. The difference of two sets is written $A-B=\{x: x \in A, x \notin B\}$. In topological nomenclature we follow J. L. Kelley's General topology,

3. E-spaces and linear metric projections

If T is a topological space then $C(T)$ will denote the Banach space of bounded continuous functions x defined on T with the supremum norm,

$$
\|x\|=\sup \{|x(t)|: t \in T\}
$$

Lemma 1. Let Q be a closed set in a normal space T. If $x \in C(T)$ and $z \in C(Q)$ then z has an extension z^{\prime} in $C(T)$ such that $\|R x-z\|=\left\|x-z^{\prime}\right\|$.

Proof. Let $\alpha=\|R x-z\|$. If $\alpha=0$ then $R x-z=0$. Define $z^{\prime}=x$.
Received October 22, 1971.

Thus, $\|R x-z\|=\left\|x-z^{\prime}\right\|$. Suppose $\alpha>0$. By Tietze's Theorem, z has an extension $y \in C(T)$. Define the function z^{\prime} by

$$
\begin{array}{rlrl}
z^{\prime}(t) & =y(t) \quad & & \text { if }|x(t)-y(t)| \leq \alpha \\
& =x(t)-\alpha & & \text { if } \quad x(t)-y(t)>\alpha \\
& =x(t)+\alpha \quad \text { if } \quad x(t)-y(t)<-\alpha .
\end{array}
$$

To verify that $z^{\prime} \in C(T)$ it suffices to show that z^{\prime} is continuous on the set

$$
A=\{t \in T:|x(t)-y(t)|=\alpha\}
$$

Suppose $t \epsilon A$ and $x(t)-y(t)=\alpha$. (The case $x(t)-y(t)=-\alpha$ is similar.) Let $\left\{t_{i}\right\}$ be a net in T converging to t. Since $x-y$ is continuous and $\alpha>0$ we can assume $x\left(t_{i}\right)-y\left(t_{i}\right)>0$. If $x\left(t_{i}\right)-y\left(t_{i}\right) \leq \alpha$ then

$$
z^{\prime}\left(t_{i}\right)=y\left(t_{i}\right) \rightarrow y(t) .
$$

If $x\left(t_{i}\right)-y\left(t_{i}\right)>\alpha$ then

$$
z^{\prime}\left(t_{i}\right)=x\left(t_{i}\right)-\alpha \rightarrow x(t)-\alpha=y(t)
$$

Hence, in any case, $z^{\prime}\left(t_{i}\right) \rightarrow y(t)=z^{\prime}(t)$. Thus $z^{\prime} \in C(T)$ and $\left\|x-z^{\prime}\right\|=\alpha$.
Lemma 2. Let Q be a closed set in a normal space T. For all $x \in C(T)$ and for any subspace M in $C(Q)$, dist $\left(x, R^{-1} M\right)=\operatorname{dist}(R x, M)$.

Proof. If $y \in R^{-1} M$, then $\|x-y\| \geq\|R x-R y\| \geq \operatorname{dist}(R x, M)$. Thus,

$$
\operatorname{dist}\left(x, R^{-1} M\right) \geq \operatorname{dist}(R x, M)
$$

Assume there is an $x \in C(T)$ for which dist $\left(x, R^{-1} M\right)>\operatorname{dist}(R x, M)$. Then there is an $m \in M$ such that $\|R x-m\|<\operatorname{dist}\left(x, R^{-1} M\right)$. By Lemma 1 there is an $m^{\prime} \in C(T)$ such that $\left\|x-m^{\prime}\right\|=\|R x-m\|$, a contradiction.

Theorem 3. Let Q be a closed set in a normal space T. If Z is a subspace of $C(Q)$ then the following are equivalent:
(1) Z is an E-space in $C(Q)$
(2) $R^{-1} Z$ is an E-space in $C(T)$.

Proof. Assume that (1) is true. Let $x \in C(T)$. Let z be a best approximation to $R x$ in Z. By Lemma $1, z$ has an extension $z^{\prime} \epsilon C(T)$ such that

$$
\|R x-z\|=\left\|x-z^{\prime}\right\|
$$

If $y \in R^{-1} Z$ then $\|x-y\| \geq\|R x-R y\|=\left\|x-z^{\prime}\right\|$. This shows that z^{\prime} is a best approximation to x. Since $z^{\prime} \in R^{-1} Z$, the latter is an E-space.

Next assume (2). Let $x \in C(Q)$. Let x^{\prime} be a Tietze extension of x. Let y be a best approximation to x^{\prime} in $R^{-1} Z$. If $z \in Z$, then by Lemma $1, z$ has an extension z^{\prime} such that $\left\|x^{\prime}-z^{\prime}\right\|=\|x-z\|$. Thus,

$$
\|x-R y\| \leq\left\|x^{\prime}-y\right\| \leq\left\|x^{\prime}-z^{\prime}\right\|=\|x-z\|
$$

So $R y$ is a best approximation to x, and Z is an E-space.

Since finite-dimensional spaces are E-spaces we have
Corollary 4. Let Q be a closed set in a normal space T. If Z is a finitedimensional subspace of $C(Q)$, then $R^{-1} Z$ is an E-space in $C(T)$.

A subspace Y is said to be complemented if Y is the range of a bounded linear projection.

Theorem 5. Let Q be a closed set in a normal space T. If there exists a finite-dimensional subspace Z in $C(Q)$ such that $R^{-1} Z$ is complemented in $C(T)$, then there is a bounded linear extension operator from $C(Q)$ to $C(T)$.

Proof. Let $z_{1}, z_{2}, \cdots, z_{n}$ be a basis for Z. By Tietze's Theorem, each z_{i} has an extension z_{i}^{\prime} in $C(T)$ such that $\left\|z_{i}\right\|=\left\|z_{i}^{\prime}\right\|$. If $z \in Z, z=\sum_{i=1}^{n} \alpha_{i} z_{i}$. Define E by the equation $E z=\sum_{i=1}^{n} \alpha_{i} z_{i}^{\prime}$. Then E is a bounded linear extension operator from Z to $C(T)$. If $x \in R^{-1} Z$ define L by $L x=(I-E R) x$ and note that L is a bounded projection from $R^{-1} Z$ onto $R^{-1} 0$. By hypothesis there is a bounded linear projection L^{\prime} from $C(T)$ onto $R^{-1} Z$. Thus, $L L^{\prime}$ is a bounded linear projection from $C(T)$ onto $R^{-1} 0$ and by a known result [4] there is a bounded linear extension operator from $C(Q)$ to $C(T)$.

The following elementary lemma will be needed.
Lemma 6. Let P be a linear projection from a normed linear space E onto a nontrivial subspace M. Then P is a metric projection if and only if $I-P$ is of norm 1.

The next theorem is similar to a result of Dean [4].
Theorem 7. Let Q be a closed set in a normal space T. Then the following are equivalent:
(1) $R^{-1} O$ has a linear metric projection.
(2) There is a linear norm 1 extension operator from $C(Q)$ to $C(T)$.

Proof. Assume (2) is true. Define $L=I-E R$. Since $E R$ is a linear projection of norm 1, by Lemma 6, L is a metric projection. If $x \in C(T)$, then $R L x=0$. Thus $L x \in R^{-1} 0$. Let $y \in R^{-1} 0$. Then $L y=y$ and L is a projection onto $R^{-1} 0$.

If (1) is true, let P be a linear metric projection from $C(T)$ onto $R^{-1} 0$. Let E be a Tietze extension map of norm 1 from $C(Q)$ to $C(T)$. We wish to obtain a linear norm 1 extension map. Define the map E^{\prime} by $E^{\prime}=(I-P) E$. Since $R E^{\prime}=R E-R P E=I, E^{\prime}$ is an extension operator from $C(Q)$ to $C(T)$. By Lemma 6, $\|I-P\|=1$ and therefore $\left\|E^{\prime}\right\|=1$.

To prove E^{\prime} is linear it suffices to show that for arbitrary x and y in $C(Q)$, and scalars α and β,

$$
(I-P)[E(\alpha x+\beta y)-(\alpha E x+\beta E y)]=0
$$

Since P is a projection onto $R^{-1} 0$, it follows that $(I-P)^{-1}(0)=R^{-1} 0$.

Thus it suffices to show that $E(\alpha x+\beta y)-(\alpha E x+\beta E y) \epsilon R^{-1} 0$. Since

$$
R E(\alpha x+\beta y)-\alpha R E x-\beta R E y=\alpha x+\beta y-\alpha x-\beta y=0
$$

the conclusion follows.
Theorem 8. Let Q be a closed set in a T_{4}-space T. Then the following are equivalent:
(1) $R^{-1} 0$ has a linear projection of norm <2.
(2) Q is open.
(3) $\quad R^{-1} 0$ has a linear metric projection of norm 1.

Proof. If (1) is true, let L be a linear projection from $C(T)$ onto $R^{-1} 0$ of norm $2-\varepsilon$, where $0<\varepsilon \leq 1$. Let $y=1-L 1$. If $t \epsilon Q$ then $y(t)=1$. Let $U=\{t: y(t)>1-\varepsilon$. Then U is an open set containing Q. If Q is not open, there exists a point $t_{0} \epsilon U-Q$. By Urysohn's Lemma there is a function $x \in C(T)$ such that $x \mid Q=1, x\left(t_{0}\right)=-1$ and $\|x\|=1$. Since $L y=0, L x=L(x-y)$. Since $x-y \in R^{-1} 0, L(x-y)=x-y$. Hence, $L x=x-y$. However,

$$
x\left(t_{0}\right)-y\left(t_{0}\right)=-1-y\left(t_{0}\right)<-2+\varepsilon,
$$

so that $\|L x\|>2-\varepsilon$. Since $\|x\|=1,\|L\|>2-\varepsilon$. This contradiction implies Q is open.

Assume (2) is true and let v be the characteristic function of $T-Q$. For $y \in C(T)$ define $P y=v y$. Clearly, P is a linear projection of norm 1 onto $R^{-1} 0$. That P is a metric projection follows by writing

$$
\operatorname{dist}\left(y, R^{-1} 0\right) \leq\|y-P y\|=\|R y-0\|=\operatorname{dist}(R y, 0)=\operatorname{dist}\left(y, R^{-1} 0\right)
$$

If (3) is true, then (1) follows trivially.
Corollary 9. Let Q be a closed set in a connected metric space T. Then $R^{-1} 0$ has a linear metric projection of norm 2.

Proof. If P is a metric projection note that $\|P\| \leq 2$, since

$$
\|P x\|=\|P x-x+x\| \leq\|x-P x\|+\|x\| \leq 2\|x\|
$$

By the Borsuk-Dugundji Theorem [5] there is a bounded linear norm 1 extension operator from $C(Q)$ to $C(T)$. By Theorem 7, $R^{-1} 0$ has a linear metric projection and by Theorem 8 it is of norm 2 .

If B is a set in T, define $R_{B}^{-1} 0=\{x \in C(T): x \mid B=0\}$. If $\phi \epsilon C^{*}$ (continuous linear functionals on $C(T)$), we define the support of ϕ, denoted by $S(\phi)$, as the smallest closed set A such that $R_{A}^{-1} 0 \subset \phi^{-1}(0)$.

Theorem 10. Let T be a normal space and let $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ be multiplicative linear functionals on $C(T)$ having disjoint supports. Then $\bigcap_{i=1}^{n} \phi_{i}^{-1}(0)$ has a linear metric projection.

Proof. Each ϕ_{i} has the property that $\phi_{i}(1)=1$ and $\left\|\phi_{i}\right\|=1$. Since T
is normal, there exist disjoint open sets $U_{1}, U_{2}, \cdots, U_{n}$ such that $U_{i} \supset S\left(\phi_{i}\right)$. By Urysohn's Lemma there exist functions $y_{1}, y_{2}, \cdots, y_{n}$ such that $y_{i}\left|S\left(\phi_{i}\right)=1, y_{i}\right|\left(T / U_{i}\right)=0$, and $0 \leq y_{i} \leq 1$. Thus, $y_{i} \mid S\left(\phi_{j}\right)=\delta_{i j}$. Since $\left(1-y_{i}\right) \mid S\left(\phi_{i}\right)=0, \phi_{i}\left(1-y_{i}\right)=\phi_{i}(1)-\phi_{i}\left(y_{i}\right)=0$, which implies $\phi_{i}\left(y_{i}\right)=1$. Thus $\phi_{i}\left(y_{j}\right)=\delta_{i j}$.

Let Y be the subspace generated by $y_{1}, y_{2}, \cdots, y_{n}$. Define the map P from $C(T)$ to Y by $P x=\sum_{i=1}^{n} \phi_{i}(x) y_{i}$. If $y \in Y$ then

$$
y=\sum_{j=1}^{n} \alpha_{j} y_{j} \quad \text { and } \quad P y=\sum_{i=1}^{n} \phi_{i}\left(\sum_{j=1}^{n} \alpha_{j} y_{j}\right) y_{i}=\sum_{i=1}^{n} \alpha_{i} y_{i}=y
$$

It is clear that P is linear and therefore P is a linear projection from $C(T)$ onto Y.

Let $H=\bigcap_{i=1}^{n} \phi_{i}^{-1}(0)$. If $x \in C(T)$ then

$$
\phi_{j}(I-P) x=\phi_{j}(x)-\sum_{i=1}^{n} \phi_{i}(x) \phi_{j}\left(y_{i}\right)=0
$$

Thus $(I-P) x \in H$. If $h \in H$ then $\phi_{i}(h)=0$ for each i and $(I-P) h=h$. Thus $I-P$ is a linear projection from $C(T)$ onto H. By the definition of the y_{i} and since $\left\|\phi_{i}\right\|=1$ we have $\|P\| \leq 1$. Thus $\|P\|=1$ and by Lemma 6 , $I-P$ is a linear metric projection.

Since the point-evaluation functional \hat{t}_{i} defined by $\hat{t}_{i}(x)=x\left(t_{i}\right)$ for each $x \in C(T)$ satisfy the hypotheses of Theorem 10 and $R^{-1} 0=\bigcap_{i=1}^{n} \hat{t}_{i}^{-1}(0)$ we obtain

Corollary 11. Let T be a T_{4}-space and let $Q=\bigcup_{i=1}^{n}\left\{t_{i}\right\}$ where $t_{i} \epsilon T$. Then $R^{-1} 0$ has a linear metric projection.

References

1. R. Arens, Projections on continuous function spaces, Duke Math. J., vol. 32 (1965), pp. 469-478.
2. E. W. Cheney, Introduction to approximation theory, McGraw-Hill, New York, 1966.
3. E. W. Cheney and D. E. Wulbert, Existence and unicity of best approximations, Math. Scand., vol. 24 (1969), pp. 113-140.
4. D. W. Dean, Subspaces of $C(H)$ which are direct factors of $C(H)$, Proc. Amer. Math. Soc., vol. 16 (1965), pp. 237-242.
5. J. Dugundir, An extension of Tietze's Theorem, Pacific J. Math., vol. 1 (1951), pp. 353-367.
6. E. Michael and A. Pelczynski, Peaked partition subspaces of $C(X)$, Illinois J. Math., vol. 11 (1967), pp. 555-562.
7. R. R. Phelps, Čebyšev subspaces of finite codimension in $C(X)$, Pacific J. Math., vol. 13 (1963), pp. 647-655.

East Texas State University
Commerce, Texas

