IMAGES OF BILINEAR SYMMETRIC AND SKEWSYMMETRIC FUNCTIONS ${ }^{1}$

BY
Marvin Marcus and M. Shafqat Ali

1. Introduction

Let U, V and W be vector spaces over a field F and let $\varphi: U \times V \rightarrow W$ be a bilinear function. We define the image of φ to be the set of all vectors in W of the form $\varphi(x, y), x \in U, y \in V$ and denote it by $\operatorname{Im} \varphi$. It is not generally the case that $\operatorname{Im} \varphi$ is a subspace of W. In the paper [2] the following result is proved by the first author.

Theorem 1. Let V_{1} and V_{2} be vector spaces of dimensions n_{1} and n_{2} respectively, $n_{1} \leq n_{2}$. If φ is a bilinear function on $V_{1} \times V_{2}$ such that $\operatorname{Im} \varphi$ is a vector space then

$$
\operatorname{dim}(\operatorname{Im} \varphi) \leq n_{1}\left(n_{2}-1\right)-\left[\frac{1}{2}-\sqrt{ }\left(n_{1}+5 / 4\right)\right]
$$

where $[x]$ denotes the greatest integer function.
In this paper we consider this problem for bilinear symmetric and skewsymmetric functions. The main results follow.

Theorem 2. Let F be an algebraically closed field of characteristic 0 and let V be an n-dimensional vector space over F. If φ is a bilinear symmetric function defined on $V \times V$ such that $\operatorname{Im} \varphi$ is a vector space U then

$$
\begin{equation*}
\operatorname{dim}(U) \leq n(n+1) / 2-\left[\frac{1}{2}(n+1-\sqrt{ }(n+3))\right] \tag{1}
\end{equation*}
$$

Theorem 3. Let φ be a bilinear skew-symmetric function defined on $V \times V$, where V is an n-dimensional vector space over a field F of characteristic 0 . If $\operatorname{Im} \varphi$ is a vector space then
(i) $\operatorname{Im} \varphi=\{0\}$ if $n=1$, and
(2) $\operatorname{dim}(\operatorname{Im} \varphi) \leq n(n-1) / 2-\left[\frac{1}{2}(n-\sqrt{ }(n+2))\right]$ if $n \geq 2$.

Some examples follow that show that if φ is a bilinear, symmetric or skewsymmetric function then the image of φ may or may not be a vector space.

Example 1. Let U and V be vector spaces over a field F and let $T: V \rightarrow U$ be a linear transformation. Let $f \in V^{*}$ be a non-zero linear functional. Define $\varphi: V \times V \rightarrow U$ by

$$
\varphi(x, y)=f(x) T y+f(y) T x, \quad x, y \in V
$$

Received October 1, 1971.
${ }^{1}$ The work of both authors was supported by a grant from the U.S. Air Force Office of Scientific Research.

It is obvious that φ is a bilinear, symmetric function and that $\operatorname{Im} \varphi=\operatorname{Im} T$, a subspace of U.

Example 2. Let U, V and f be as in Example 1. Define a bilinear skewsymmetric function $\varphi: V \times V \rightarrow U$ by

$$
\varphi(x, y)=f(x) T y-f(y) T x, \quad x, y \in V
$$

Then $\operatorname{Im} \varphi$ is a subspace of U. Since $\varphi(x, y)=T(f(x) y-f(y) x)$ it suffices to show that the set

$$
W=\{f(x) y-f(y) x: x, y \in V\}
$$

is a subspace of V. Since $f \neq 0$ extend it to a basis f, f_{2}, \cdots, f_{n} of V^{*} which is dual to some basis e_{1}, \cdots, e_{n} of V. Let $x=\sum_{i=1}^{n} a_{i} e_{i}$ and $y=\sum_{i=1}^{n} b_{i} e_{i}$. Then

$$
f(x) y-f(y) x=\sum_{i=2}^{n}\left(a_{1} b_{i}-a_{i} b_{1}\right) e_{i} \in\left\langle e_{2}, \cdots, e_{n}\right\rangle
$$

the subspace spanned by e_{2}, \cdots, e_{n}. Conversely if $z=\sum_{i=2}^{n} c_{i} e_{i}$ then $z=f\left(e_{1}\right) z-f(z) e_{1}$ and hence $W=\left\langle e_{2}, \cdots, e_{n}\right\rangle$.

Example 3. Let v_{1}, \cdots, v_{n} be a basis of a vector space V over $F, n>2$ and let $M_{n}(F)$ be the space of n-square matrices over F. Define a bilinear symmetric function $\varphi: V \times V \rightarrow M_{n}(F)$ by

$$
\begin{equation*}
\varphi(x, y)=\frac{1}{2}\left(\left[a_{i} b_{j}\right]+\left[a_{i} b_{j}\right]^{T}\right) \tag{3}
\end{equation*}
$$

where $x=\sum_{t=1}^{n} a_{t} v_{t}, y=\sum_{t=1}^{n} b_{t} v_{t},\left[a_{i} b_{j}\right]$ denotes the matrix whose (i, j) entry is $a_{i} b_{j}$ and the superscript T denotes the transpose. We observe that if $A \in \operatorname{Im} \varphi$ then rank $(A) \leq 2$. Let $E_{i j}$ denote the n-square matrix with 1 in the position (i, j) and 0 elsewhere. Then $B=\frac{1}{2}\left(E_{12}+E_{21}\right)=\varphi\left(v_{1}, v_{2}\right)$ and $C=E_{33}=\varphi\left(v_{3}, v_{3}\right)$ but rank $(B+C)=3$ and hence $\operatorname{Im} \varphi$ is not a subspace of $M_{n}(F)$.

Example 4. Let $n=4$ in Example 3 and let $U=\wedge^{2} V$, the second Grassmann space over V. Define a bilinear skew-symmetric function $\varphi: V \times V \rightarrow$ U by $\varphi(x, y)=x \wedge y$. It is easily seen that there do not exist x and y in V such that $\varphi(x, y)=v_{1} \wedge v_{2}+v_{3} \wedge v_{4}$. Thus $\operatorname{Im} \varphi$ is not a vector space.

2. Proofs

We first consider certain subspaces of the $m^{\text {th }}$ completely symmetric space $V^{(m)}[1, \mathrm{Ch} . \mathrm{VII}, \S 1]$ and the $m^{\text {th }}$ Grassmann space $\wedge^{m} V$ over V. We denote the symmetric product of two vectors x and y by $x \cdot y$ and their Grassmann product by $x \wedge y$. We say that $z \in V^{(m)}$ has symmetric length k and write $\tau(z)=k$ if z is a sum of k decomposable elements (i.e., elements of the form $v_{1} \cdot \cdots \cdot v_{m}$) but no fewer. We define $\tau(0)=0$. If z_{1}, \cdots, z_{r} are arbitrary elements of $V^{(m)}$ then it is obvious that

$$
\begin{equation*}
\tau\left(\sum_{i=1}^{r} c_{i} z_{i}\right) \leq \sum_{i=1}^{r} \tau\left(z_{i}\right) \tag{4}
\end{equation*}
$$

for any scalars c_{1}, \cdots, c_{r}.

We define the skew length, $\mu(z)$, for $z \epsilon \bigwedge^{m} V$, in a similar way. An inequality similar to (4) also holds for μ.

Lemma 1. If $\varphi: \times_{1}^{m} V \rightarrow U$ is a symmetric (skew-symmetric) multilinear onto mapping then there exists a subspace K of the $m^{\text {th }}$ completely symmetric space $V^{(m)}\left(m^{\text {th }}\right.$ Grassmann space $\left.\wedge^{m} V\right)$ such that each non-zero coset in the quotient space $V^{(m)} / K\left(\bigwedge^{m} V / K\right)$ contains a non-zero decomposable element. Conversely if K is a subspace of $V^{(m)}\left(\bigwedge^{m} V\right)$ such that each non-zero coset in $V^{(m)} / K\left(\bigwedge^{m} V / K\right)$ contains a non-zero decomposable element then there exists a multilinear symmetric (skew-symmetric) mapping φ defined on $X_{1}^{m} V$ such that the image of φ is a vector space.

The proof of the above lemma is analogous to that of Lemma 1 in [2] and is omitted. In view of this lemma the problem of finding a necessary and sufficient condition in order that the image of a symmetric (skew-symmetric) multilinear function φ be a vector space is reduced to investigating those subspaces K of $V^{(m)}$ ($\bigwedge^{m} V$) which have the property that a system of distinct representatives for the non-zero cosets in $V^{(m)} / K\left(\bigwedge^{m} V / K\right)$ can be chosen from the non-zero decomposable elements in $V^{(m)}\left(\bigwedge^{m} V\right)$.

The proof of the following lemma is analogous to that of Lemma 2 in [2] and is also omitted.

Lemma 2. Let K be a subspace of $V^{(m)}$ (of $\wedge^{m} V$), $\operatorname{dim} K=p$, such that the cosets in $V^{(m)} / K\left(\bigwedge^{m} V / K\right)$ can be represented by nonzero decomposable elements. Then given any $p+1$ elements of $V^{(m)}\left(\bigwedge^{m} V\right)$ there exists a nontrivial linear combination of these of symmetric (skew) length at most $p+1$.

Now let v_{1}, \cdots, v_{n} be a basis of a vector space V over a field F and let $S_{n}(F)$ and $J_{n}(F)$ denote the spaces of all $n \times n$ symmetric and skew-symmetric matrices respectively over F. Define $\varphi: V \times V \rightarrow \varsigma_{n}(F)$ as in (3) and define $f: V \times V \rightarrow J_{n}(F)$ by

$$
\begin{equation*}
f(x, y)=\frac{1}{2}\left(\left[a_{i} b_{j}\right]-\left[a_{i} b_{j}\right]^{T}\right) \tag{5}
\end{equation*}
$$

where $x=\sum_{t=1}^{n} a_{t} v_{t}$ and $y=\sum_{t=1}^{n} b_{t} v_{t}$. It is routine to verify that ($S_{n}(F), \varphi$) is a second completely symmetric space and ($\left.J_{n}(F), f\right)$ is a second Grassmann space over V. Since any two $m^{\text {th }}$ completely symmetric (Grassmann) spaces over V are canonically isomorphic we can regard a matrix in $\varsigma_{n}(F)\left(J_{n}(F)\right)$ to be an element of $V^{(2)}\left(\bigwedge^{2} V\right)$. The following lemma gives a relationship between the rank of a symmetric matrix and its symmetric (skew) length.

Lemma 3. (i) Let A be an n-square symmetric matrix over an algebraically closed field F of characteristic zero. Then

$$
\tau(A)=\left[\frac{1}{2}(\operatorname{rank}(A)+1)\right]
$$

(ii) Let B be an n-square skew-symmetric matrix over a field F of character-
istic zero. Then

$$
\mu(B)=\frac{1}{2} \operatorname{rank}(B) .
$$

Proof. It is well known that A is congruent to

$$
D=\operatorname{diag}\left(I_{2 p}, \varepsilon, O_{n-2 p-1}\right)
$$

where ε is 0 or 1 and B is congruent to

$$
E=\operatorname{diag}\left(J, \cdots, J, O_{n-2 k}\right)
$$

where $J=\operatorname{antidiag}(1,-1)$. It is easily verified that $\tau(A)=\tau(D)$ and $\mu(B)=\mu(E)$. Since $x \cdot y$ and $x \wedge y$ have rank at most 2 we have

$$
\operatorname{rank}(A) \leq 2 \tau(A) \quad \text { and } \quad \operatorname{rank}(B) \leq 2 \mu(B)
$$

We note that

$$
\operatorname{diag}\left(I_{2}+O_{n-2}\right)=\left(v_{1}+i v_{2}\right) \cdot\left(v_{1}-i v_{2}\right)
$$

and

$$
\operatorname{diag}\left(J+O_{n-2}\right)=\left(v_{1}+v_{2}\right) \wedge\left(-v_{1}+v_{2}\right)
$$

where $i=\sqrt{ }(-1)$. This leads us to define

$$
\begin{array}{cl}
x_{t}=v_{2 t-1}+i v_{2 t}, & y_{t}=v_{2 t-1}-i v_{2 t}, \\
u_{t}=v_{2 t-1}+v_{2 t} & \text { and } \\
w_{t}=-v_{2 t-1}+v_{2 t} .
\end{array}
$$

Then $D=\sum_{i=1}^{p} x_{t} \cdot y_{t}+\varepsilon v_{2 p+1} \cdot v_{2 p+1}$ and $E=\sum_{t=1}^{k} u_{t} \wedge w_{t}$. Thus it follows that if $\varepsilon=0$ then

$$
\tau(A)=\tau(D) \leq \frac{1}{2} \operatorname{rank}(A) \leq \tau(A)
$$

and if $\varepsilon=1$ then

$$
\tau(A)=\tau(D) \leq \frac{1}{2}(\operatorname{rank}(A)+1) \leq \tau(A)+\frac{1}{2}
$$

Also $\mu(B)=\mu(E) \leq \frac{1}{2} \operatorname{rank}(B) \leq \mu(B)$. These inequalities prove the lemma.

Lemma 4. Let V be a vector space over a field F of characteristic 0, $\operatorname{dim} V=n \geq 3$. Let k be any positive integer satisfying $1<2 k+1 \leq n$. Then there exists a subspace W of $V^{(2)}$ such that

$$
\operatorname{dim} W=\frac{1}{2}(n-2 k)(n-2 k+1)
$$

and every non-zero element of W has symmetric length at least $k+1$.
Proof. Let p be an integer $1 \leq p<n$. For an integer $r, p+1 \leq r \leq n$, consider the r-tuples

$$
\begin{equation*}
\beta_{i}=\left(1,2^{i-1}, 3^{i-1}, \cdots, r^{i-1}\right), \quad i=1, \cdots, r-p \tag{6}
\end{equation*}
$$

Any non-trivial linear combination of the vectors (6) must have at least $p+1$ non-zero entries. For, suppose that the components j_{1}, \cdots, j_{r-p} of $\sum_{j=1}^{r-p} d_{j} \beta_{j}$ are 0, i.e., $\sum_{i=1}^{r-p} d_{i} j_{t}^{i-1}=0, t=1, \cdots, r-p$. But the $(r-p)$ square matrix $\left[j_{t}^{i-1}\right], i=1, \cdots, r-p, t=1, \cdots, r-p$, is a Vandermonde and hence is non-singular. Thus $d_{i}=0, i=1, \cdots, r-p$.

For a fixed $r, p<r \leq n$ construct $r-p$ matrices by inserting the vectors $\beta_{1}, \cdots, \beta_{r-p}$ along the partial diagonals of length r indicated in the diagram below:

The remaining entries of the above matrix are taken to be 0 . For

$$
r=p+t \leq n
$$

we have t such matrices. Hence the total number of such matrices is

$$
1+2+\cdots+n-p=\frac{1}{2}(n-p)(n-p+1)
$$

These symmetric matrices are obviously linearly independent. Let W be the subspace of $\mathrm{S}_{n}(F)$ spanned by these matrices. If $A \in W, A \neq 0$ then starting from the lower left corner of A there is a first non-zero partial diagonal of length r, say, containing entries b_{1}, \cdots, b_{r} such that not all b_{i} 's are 0 . But then starting from the upper right corner of A the first non-zero partial diagonal is also b_{1}, \cdots, b_{r}. These partial diagonals are a non-trivial linear combination of the vectors (6) and hence have at least $p+1$ non-zero entries. It follows that rank $(A) \geq p+1$. In particular if $p=2 k, 1<2 k+1 \leq n$, then we have proved the existence of a subspace W of $S_{n}(F)$ (and hence of $\left.V^{(2)}\right)$ such that $\operatorname{dim} W=\frac{1}{2}(n-2 k)(n-2 k+1)$, and every non-zero element of W has rank at least $2 k+1$ and hence, by Lemma 3 , has symmetric length at least $k+1$.

Lemma 5. Let V be a vector space over $F, \operatorname{dim} V \geq 3$. Let K be a subspace of $V^{(2)}$ such that every non-zero coset in $V^{(2)} / K$ contains a non-zero decomposable element. Then, $\operatorname{dim} K \geq k_{0}$, where k_{0} is the largest integer satisfying
(i) $1<2 k_{0}+1 \leq n$, and
(ii) $\frac{1}{2}\left(n-2 k_{0}\right)\left(n-2 k_{0}+1\right) \geq k_{0}+1$.

Proof. Suppose that $\operatorname{dim} K=p<k_{0}$. Then

$$
p+1<k_{0}+1 \leq \frac{1}{2}\left(n-2 k_{0}\right)\left(n-2 k_{0}+1\right)=q_{0}
$$

By Lemma 4 there exists a subspace W of dimension q_{0} such that every nonzero element in W has symmetric length at least $k_{0}+1$. Since $p+1<q_{0}$, we can find $p+1$ linearly independent vectors in W, say w_{1}, \cdots, w_{p+1}. Then

$$
\begin{equation*}
\tau\left(\sum_{j=1}^{p+1} c_{j} w_{j}\right) \geq k_{0}+1 \tag{7}
\end{equation*}
$$

for any choice of scalars c_{1}, \cdots, c_{p+1} not all of which are 0 . On the other hand by Lemma 2 there exists a non-trivial linear combination, $\sum_{j=1}^{p+1} d_{j} w_{j}$, such that $\tau\left(\sum_{j=1}^{p+1} d_{j} w_{j}\right) \leq p+1<k_{0}+1$, in contradiction to (7). This completes the proof of the lemma.

It is easily seen that if k_{0} is the largest integer satisfying the conditions (i) and (ii) of the preceding lemma then

$$
\begin{equation*}
k_{0}=\left[\frac{1}{2}(n+1-\sqrt{ }(n+3))\right] \tag{8}
\end{equation*}
$$

Proof of Theorem 2. From the universal factorization property of the completely symmetric space $V^{(2)}$ we find the unique linear map $h: V^{(2)} \rightarrow U$ such that the diagram

$\mathbf{i}_{\text {S }}$ commutative. We observe that h is onto because φ is onto. Therefore
(9) $\operatorname{dim} U=\operatorname{dim}(\operatorname{Im} h)$

$$
=\operatorname{dim} V^{(2)}-\operatorname{dim}(\operatorname{ker} h)=\frac{1}{2} n(n+1)-\operatorname{dim}(\operatorname{ker} h)
$$

We notice that for $n=1$ or 2 the inequality (1) reduces to

$$
\begin{equation*}
\operatorname{dim} U \leq \frac{1}{2} n(n+1) \tag{10}
\end{equation*}
$$

which, in view of (9) is obviously true. If $n \geq 3$ then it follows from Lemma 1 , Lemma 5 and (8) that $\operatorname{dim}(\operatorname{ker} h) \geq\left[\frac{1}{2}(n+1-\sqrt{ }(n+3))\right]$ and the result follows from (9).

Remark. If n is 1 or 2 then the inequality (10) cannot be improved. Suppose $n=\operatorname{dim} V=1$ and $\varphi \neq 0$ then it is easily verified that $\operatorname{Im} \varphi$ is a 1 -dimensional vector space and the equality holds in (10). Next let $\left\{e_{1}, e_{2}\right\}$ be a basis of V. Then $\left\{e_{1} \cdot e_{1}, e_{1} \cdot e_{2}, e_{2} \cdot e_{2}\right\}$ is a basis of $V^{(2)}$. Let

$$
\varphi: V \times V \rightarrow V^{(2)}
$$

be a symmetric bilinear function defined by $\varphi(x, y)=x \cdot y, x, y \in V$. Then it is easily seen that each element of $V^{(2)}$ is decomposable. Hence $\operatorname{Im} \varphi=V^{(2)}$ is a vector space and again the equality holds in (10).

Lemma 6. Assume $n \geq 2$ and let p be an odd integer, $1 \leq p<n$. Then there is a subspace W of $J_{n}(F)$ such that every non-zero matrix in W has rank at least $p+1$ and $\operatorname{dim} W=\frac{1}{2}(n-p)(n-p+1)$.

Proof. For any integer $r, p \leq r \leq n-1$, consider the r-tuples

$$
\begin{equation*}
\beta_{i}=\left(1,2^{i-1}, 3^{i-1}, \cdots, r^{i-1}\right), \quad i=1, \cdots, r-p+1 \tag{11}
\end{equation*}
$$

Then using a similar argument as in the proof of Lemma 4 we conclude that any non-trivial linear combination of the vectors (11) has at least p non-zero entries. For a fixed $r, p \leq r \leq n-1$, construct $r-p+1$ matrices in $J_{n}(F)$ by inserting β_{i} and $-\beta_{i}, i=1, \cdots, r-p+1$ along the partial diagonals of length r as shown in the diagram below:

The remaining entries of the matrix (12) are taken to be 0 . There are a total of $\frac{1}{2}(n-p)(n-p+1)$ such matrices and they are linearly independent. Let W be the subspace of $J_{n}(F)$ spanned by them. If $A \epsilon W, A \neq 0$ then rank $(A) \geq p$. Since A is skew-symmetric and p is odd we have

$$
\operatorname{rank}(A) \geq p+1
$$

Lemma 7. Let V be a vector space over $F, \operatorname{dim} V=n \geq 2$. Let k be an integer satisfying $2 \leq 2 k+2 \leq n$. Then there is a subspace W of $\wedge^{2} V$ such that $\operatorname{dim} W=\frac{1}{2}(n-2 k-1)(n-2 k)$ and if $z \in W, z \neq 0$ then $\mu(z) \geq k+1$.

This is an immediate consequence of Lemmas 3 and 6.
Lemma 8. Let V be as in Lemma 7. Let K be a subspace of $\wedge^{2} V$ such that every non-zero coset in $\wedge^{2} V / K$ contains a non-zero decomposable element. Then $\operatorname{dim} K \geq\left[\frac{1}{2}(n-\sqrt{ }(n+2))\right]$.

Proof. We assert that $\operatorname{dim} K \geq k_{0}$, where k_{0} is the largest integer satisfying:
(i) $2 k_{0}+2 \leq n$, and
(ii) $\quad \frac{1}{2}\left(n-2 k_{0}\right)\left(n-2 k_{0}-1\right) \geq k_{0}+1$.

The rest of the argument is analogous to the proof of Lemma 5.
Proof of Theorem 3. If $n=1$ then it is trivial that $\varphi=0$ and hence $U=\{0\}$. Next consider the diagram

Since φ is onto U, T is onto U and hence
(13) $\quad \operatorname{dim} U=\operatorname{dim}\left(\bigwedge^{2} V\right)-\operatorname{dim}(\operatorname{ker} T)=n(n-1) / 2-\operatorname{dim}(\operatorname{ker} T)$.

Thus for $n \geq 2$ we use (13) and Lemma 8 to obtain the inequality (2).
Remark. If $\operatorname{dim} V$ is 2 or 3 then define φ on $V \times V$ by $\varphi(x, y)=x \wedge y$. Then each element in $\wedge^{2} V$ is decomposable. Thus $\operatorname{Im} \varphi$ is a vector space and
(2) becomes an equality in these cases.

References

1. W. H. Greub, Multilinear algebra, Springer-Verlag, New York, 1967.
2. Marvin Marcus, "A dimension inequality for multilinear functions," in Inequalities-
$I I I$, Proceedings of the Third Symposium on Inequalities Held at The University of California, Los Angeles, September 1-9, 1969, Academic Press, New York, 1972, pp. 217-224.

University of California
Santa Barbara, California
California State College
Long Beach, California

