IMAGES OF BILINEAR SYMMETRIC AND SKEW-SYMMETRIC FUNCTIONS¹

BY

MARVIN MARCUS AND M. SHAFQAT ALI

1. Introduction

Let U, V and W be vector spaces over a field F and let $\varphi : U \times V \to W$ be a bilinear function. We define the *image* of φ to be the set of all vectors in W of the form $\varphi(x, y)$, $x \in U$, $y \in V$ and denote it by $\text{Im } \varphi$. It is not generally the case that $\text{Im } \varphi$ is a subspace of W. In the paper [2] the following result is proved by the first author.

THEOREM 1. Let V_1 and V_2 be vector spaces of dimensions n_1 and n_2 respectively, $n_1 \leq n_2$. If φ is a bilinear function on $V_1 \times V_2$ such that $\operatorname{Im} \varphi$ is a vector space then

dim (Im
$$\varphi$$
) $\leq n_1(n_2 - 1) - [\frac{1}{2} - \sqrt{(n_1 + 5/4)}]$

where [x] denotes the greatest integer function.

In this paper we consider this problem for bilinear symmetric and skewsymmetric functions. The main results follow.

THEOREM 2. Let F be an algebraically closed field of characteristic 0 and let V be an n-dimensional vector space over F. If φ is a bilinear symmetric function defined on $V \times V$ such that $\operatorname{Im} \varphi$ is a vector space U then

(1)
$$\dim (U) \le n(n+1)/2 - \left[\frac{1}{2}(n+1 - \sqrt{(n+3)})\right].$$

THEOREM 3. Let φ be a bilinear skew-symmetric function defined on $V \times V$, where V is an n-dimensional vector space over a field F of characteristic 0. If Im φ is a vector space then

(i) Im
$$\varphi = \{0\}$$
 if $n = 1$, and
(ii)

(2) dim
$$(\operatorname{Im} \varphi) \le n(n-1)/2 - [\frac{1}{2}(n-\sqrt{n+2})]$$
 if $n \ge 2$.

Some examples follow that show that if φ is a bilinear, symmetric or skewsymmetric function then the image of φ may or may not be a vector space.

Example 1. Let U and V be vector spaces over a field F and let $T: V \to U$ be a linear transformation. Let $f \in V^*$ be a non-zero linear functional. Define $\varphi: V \times V \to U$ by

$$\varphi(x, y) = f(x)Ty + f(y)Tx, \quad x, y \in V.$$

Received October 1, 1971.

¹ The work of both authors was supported by a grant from the U.S. Air Force Office of Scientific Research.

It is obvious that φ is a bilinear, symmetric function and that $\operatorname{Im} \varphi = \operatorname{Im} T$, a subspace of U.

Example 2. Let U, V and f be as in Example 1. Define a bilinear skew-symmetric function $\varphi : V \times V \to U$ by

$$\varphi(x, y) = f(x)Ty - f(y)Tx, \quad x, y \in V.$$

Then Im φ is a subspace of U. Since $\varphi(x, y) = T(f(x)y - f(y)x)$ it suffices to show that the set

$$W = \{f(x)y - f(y)x : x, y \in V\}$$

is a subspace of V. Since $f \neq 0$ extend it to a basis f, f_2, \dots, f_n of V^* which is dual to some basis e_1, \dots, e_n of V. Let $x = \sum_{i=1}^n a_i e_i$ and $y = \sum_{i=1}^n b_i e_i$. Then

$$f(x)y - f(y)x = \sum_{i=2}^{n} (a_1 b_i - a_i b_1)e_i \epsilon \langle e_2, \cdots, e_n \rangle,$$

the subspace spanned by e_2, \dots, e_n . Conversely if $z = \sum_{i=2}^n c_i e_i$ then $z = f(e_1)z - f(z)e_1$ and hence $W = \langle e_2, \dots, e_n \rangle$.

Example 3. Let v_1, \dots, v_n be a basis of a vector space V over F, n > 2 and let $M_n(F)$ be the space of *n*-square matrices over F. Define a bilinear symmetric function $\varphi: V \times V \to M_n(F)$ by

(3)
$$\varphi(x, y) = \frac{1}{2} ([a_i b_j] + [a_i b_j]^T),$$

where $x = \sum_{i=1}^{n} a_i v_i$, $y = \sum_{i=1}^{n} b_i v_i$, $[a_i b_j]$ denotes the matrix whose (i, j)entry is $a_i b_j$ and the superscript T denotes the transpose. We observe that if $A \in \text{Im } \varphi$ then rank $(A) \leq 2$. Let E_{ij} denote the *n*-square matrix with 1 in the position (i, j) and 0 elsewhere. Then $B = \frac{1}{2}(E_{12} + E_{21}) = \varphi(v_1, v_2)$ and $C = E_{33} = \varphi(v_3, v_3)$ but rank (B + C) = 3 and hence Im φ is not a subspace of $M_n(F)$.

Example 4. Let n = 4 in Example 3 and let $U = \bigwedge^2 V$, the second Grassmann space over V. Define a bilinear skew-symmetric function $\varphi : V \times V \rightarrow U$ by $\varphi(x, y) = x \land y$. It is easily seen that there do not exist x and y in V such that $\varphi(x, y) = v_1 \land v_2 + v_3 \land v_4$. Thus Im φ is not a vector space.

2. Proofs

We first consider certain subspaces of the m^{th} completely symmetric space $V^{(m)}$ [1, Ch. VII, §1] and the m^{th} Grassmann space $\bigwedge^m V$ over V. We denote the symmetric product of two vectors x and y by $x \cdot y$ and their Grassmann product by $x \land y$. We say that $z \in V^{(m)}$ has symmetric length k and write $\tau(z) = k$ if z is a sum of k decomposable elements (i.e., elements of the form $v_1 \cdot \cdots \cdot v_m$) but no fewer. We define $\tau(0) = 0$. If z_1, \cdots, z_r are arbitrary elements of $V^{(m)}$ then it is obvious that

(4)
$$\tau\left(\sum_{i=1}^{r} c_i z_i\right) \leq \sum_{i=1}^{r} \tau(z_i),$$

for any scalars c_1, \cdots, c_r .

We define the skew length, $\mu(z)$, for $z \in \bigwedge^m V$, in a similar way. An inequality similar to (4) also holds for μ .

LEMMA 1. If $\varphi : \times_1^m V \to U$ is a symmetric (skew-symmetric) multilinear onto mapping then there exists a subspace K of the mth completely symmetric space $V^{(m)}$ (mth Grassmann space $\wedge^m V$) such that each non-zero coset in the quotient space $V^{(m)}/K$ ($\wedge^m V/K$) contains a non-zero decomposable element. Conversely if K is a subspace of $V^{(m)}$ ($\wedge^m V$) such that each non-zero coset in $V^{(m)}/K$ ($\wedge^m V/K$) contains a non-zero decomposable element then there exists a multilinear symmetric (skew-symmetric) mapping φ defined on $\times_1^m V$ such that the image of φ is a vector space.

The proof of the above lemma is analogous to that of Lemma 1 in [2] and is omitted. In view of this lemma the problem of finding a necessary and sufficient condition in order that the image of a symmetric (skew-symmetric) multilinear function φ be a vector space is reduced to investigating those subspaces K of $V^{(m)}$ ($\wedge^m V$) which have the property that a system of distinct representatives for the non-zero cosets in $V^{(m)}/K$ ($\wedge^m V/K$) can be chosen from the non-zero decomposable elements in $V^{(m)}$ ($\wedge^m V$).

The proof of the following lemma is analogous to that of Lemma 2 in [2] and is also omitted.

LEMMA 2. Let K be a subspace of $V^{(m)}$ (of $\wedge^m V$), dim K = p, such that the cosets in $V^{(m)}/K$ ($\wedge^m V/K$) can be represented by nonzero decomposable elements. Then given any p + 1 elements of $V^{(m)}$ ($\wedge^m V$) there exists a nontrivial linear combination of these of symmetric (skew) length at most p + 1.

Now let v_1, \dots, v_n be a basis of a vector space V over a field F and let $S_n(F)$ and $\mathfrak{I}_n(F)$ denote the spaces of all $n \times n$ symmetric and skew-symmetric matrices respectively over F. Define $\varphi : V \times V \to S_n(F)$ as in (3) and define $f : V \times V \to \mathfrak{I}_n(F)$ by

(5)
$$f(x, y) = \frac{1}{2} ([a_i b_j] - [a_i b_j]^T),$$

where $x = \sum_{i=1}^{n} a_i v_i$ and $y = \sum_{i=1}^{n} b_i v_i$. It is routine to verify that $(S_n(F), \varphi)$ is a second completely symmetric space and $(\mathfrak{I}_n(F), f)$ is a second Grassmann space over V. Since any two m^{th} completely symmetric (Grassmann) spaces over V are canonically isomorphic we can regard a matrix in $S_n(F)$ $(\mathfrak{I}_n(F))$ to be an element of $V^{(2)}$ $(\bigwedge^2 V)$. The following lemma gives a relationship between the rank of a symmetric matrix and its symmetric (skew) length.

LEMMA 3. (i) Let A be an n-square symmetric matrix over an algebraically closed field F of characteristic zero. Then

$$\tau(A) = [\frac{1}{2}(\operatorname{rank}(A) + 1)].$$

(ii) Let B be an n-square skew-symmetric matrix over a field F of character-

istic zero. Then

$$\mu(B) = \frac{1}{2} \operatorname{rank} (B).$$

Proof. It is well known that A is congruent to

 $D = \text{diag} (I_{2p}, \varepsilon, O_{n-2p-1})$

where ε is 0 or 1 and B is congruent to

 $E = \operatorname{diag} (J, \cdots, J, O_{n-2k}),$

where J = antidiag (1, -1). It is easily verified that $\tau(A) = \tau(D)$ and $\mu(B) = \mu(E)$. Since $x \cdot y$ and $x \wedge y$ have rank at most 2 we have

rank
$$(A) \leq 2\tau(A)$$
 and rank $(B) \leq 2\mu(B)$.

We note that

diag
$$(I_2 + O_{n-2}) = (v_1 + iv_2) \cdot (v_1 - iv_2)$$

and

diag
$$(J + O_{n-2}) = (v_1 + v_2) \land (-v_1 + v_2),$$

where $i = \sqrt{(-1)}$. This leads us to define

Then $D = \sum_{i=1}^{p} x_i \cdot y_i + \varepsilon v_{2p+1} \cdot v_{2p+1}$ and $E = \sum_{i=1}^{k} u_i \wedge w_i$. Thus it follows that if $\varepsilon = 0$ then

$$\tau(A) = \tau(D) \le \frac{1}{2} \operatorname{rank} (A) \le \tau(A)$$

and if $\varepsilon = 1$ then

$$\tau(A) = \tau(D) \le \frac{1}{2}(\operatorname{rank}(A) + 1) \le \tau(A) + \frac{1}{2}.$$

Also $\mu(B) = \mu(E) \leq \frac{1}{2}$ rank $(B) \leq \mu(B)$. These inequalities prove the lemma.

LEMMA 4. Let V be a vector space over a field F of characteristic 0, dim $V = n \ge 3$. Let k be any positive integer satisfying $1 < 2k + 1 \le n$. Then there exists a subspace W of $V^{(2)}$ such that

$$\dim W = \frac{1}{2}(n - 2k)(n - 2k + 1)$$

and every non-zero element of W has symmetric length at least k + 1.

Proof. Let p be an integer $1 \le p < n$. For an integer r, $p + 1 \le r \le n$, consider the r-tuples

(6)
$$\beta_i = (1, 2^{i-1}, 3^{i-1}, \cdots, r^{i-1}), \quad i = 1, \cdots, r - p.$$

Any non-trivial linear combination of the vectors (6) must have at least p + 1 non-zero entries. For, suppose that the components j_1, \dots, j_{r-p} of $\sum_{j=1}^{r-p} d_j \beta_j$ are 0, i.e., $\sum_{i=1}^{r-p} d_i j_t^{i-1} = 0, t = 1, \dots, r-p$. But the (r-p)-square matrix $[j_t^{i-1}], i = 1, \dots, r-p, t = 1, \dots, r-p$, is a Vandermonde and hence is non-singular. Thus $d_i = 0, i = 1, \dots, r-p$.

508

For a fixed $r, p < r \leq n$ construct r - p matrices by inserting the vectors $\beta_1, \dots, \beta_{r-p}$ along the partial diagonals of length r indicated in the diagram below:

The remaining entries of the above matrix are taken to be 0. For

$$r = p + t \le n$$

we have t such matrices. Hence the total number of such matrices is

$$1 + 2 + \dots + n - p = \frac{1}{2}(n - p)(n - p + 1).$$

These symmetric matrices are obviously linearly independent. Let W be the subspace of $S_n(F)$ spanned by these matrices. If $A \in W, A \neq 0$ then starting from the lower left corner of A there is a first non-zero partial diagonal of length r, say, containing entries b_1, \dots, b_r such that not all b_i 's are 0. But then starting from the upper right corner of A the first non-zero partial diagonal is also b_1, \dots, b_r . These partial diagonals are a non-trivial linear combination of the vectors (6) and hence have at least p + 1 non-zero entries. It follows that rank $(A) \geq p + 1$. In particular if p = 2k, $1 < 2k + 1 \leq n$, then we have proved the existence of a subspace W of $S_n(F)$ (and hence of $V^{(2)}$) such that dim $W = \frac{1}{2}(n - 2k)(n - 2k + 1)$, and every non-zero element of W has rank at least 2k + 1 and hence, by Lemma 3, has symmetric length at least k + 1.

LEMMA 5. Let V be a vector space over F, dim $V \ge 3$. Let K be a subspace of $V^{(2)}$ such that every non-zero coset in $V^{(2)}/K$ contains a non-zero decomposable element. Then, dim $K \ge k_0$, where k_0 is the largest integer satisfying

(i) $1 < 2k_0 + 1 \leq n$, and

(ii)
$$\frac{1}{2}(n-2k_0)(n-2k_0+1) \ge k_0+1$$
.

Proof. Suppose that dim $K = p < k_0$. Then

$$p + 1 < k_0 + 1 \leq \frac{1}{2}(n - 2k_0)(n - 2k_0 + 1) = q_0.$$

By Lemma 4 there exists a subspace W of dimension q_0 such that every nonzero element in W has symmetric length at least $k_0 + 1$. Since $p + 1 < q_0$, we can find p + 1 linearly independent vectors in W, say w_1, \dots, w_{p+1} . Then

(7)
$$\tau(\sum_{j=1}^{p+1} c_j w_j) \ge k_0 + 1,$$

for any choice of scalars c_1, \dots, c_{p+1} not all of which are 0. On the other hand by Lemma 2 there exists a non-trivial linear combination, $\sum_{j=1}^{p+1} d_j w_j$, such that $\tau(\sum_{j=1}^{p+1} d_j w_j) \leq p+1 < k_0 + 1$, in contradiction to (7). This completes the proof of the lemma. It is easily seen that if k_0 is the largest integer satisfying the conditions (i) and (ii) of the preceding lemma then

(8)
$$k_0 = [\frac{1}{2}(n+1-\sqrt{(n+3)})].$$

Proof of Theorem 2. From the universal factorization property of the completely symmetric space $V^{(2)}$ we find the unique linear map $h: V^{(2)} \to U$ such that the diagram

is commutative. We observe that h is onto because φ is onto. Therefore

(9) dim $U = \dim (\operatorname{Im} h)$ = dim $V^{(2)}$ - dim (ker h) = $\frac{1}{2}n(n+1)$ - dim (ker h).

We notice that for n = 1 or 2 the inequality (1) reduces to

(10)
$$\dim U \leq \frac{1}{2}n(n+1),$$

which, in view of (9) is obviously true. If $n \ge 3$ then it follows from Lemma 1, Lemma 5 and (8) that dim (ker h) $\ge [\frac{1}{2}(n + 1 - \sqrt{(n + 3)})]$ and the result follows from (9).

Remark. If n is 1 or 2 then the inequality (10) cannot be improved. Suppose $n = \dim V = 1$ and $\varphi \neq 0$ then it is easily verified that Im φ is a 1-dimensional vector space and the equality holds in (10). Next let $\{e_1, e_2\}$ be a basis of V. Then $\{e_1, e_1, e_1 \cdot e_2, e_2 \cdot e_2\}$ is a basis of $V^{(2)}$. Let

$$\varphi: V \times V \to V^{(2)}$$

be a symmetric bilinear function defined by $\varphi(x, y) = x \cdot y, x, y \in V$. Then it is easily seen that each element of $V^{(2)}$ is decomposable. Hence Im $\varphi = V^{(2)}$ is a vector space and again the equality holds in (10).

LEMMA 6. Assume $n \ge 2$ and let p be an odd integer, $1 \le p < n$. Then there is a subspace W of $\Im_n(F)$ such that every non-zero matrix in W has rank at least p + 1 and dim $W = \frac{1}{2}(n-p)(n-p+1)$.

Proof. For any integer $r, p \leq r \leq n - 1$, consider the *r*-tuples

(11)
$$\beta_i = (1, 2^{i-1}, 3^{i-1}, \cdots, r^{i-1}), \quad i = 1, \cdots, r - p + 1.$$

Then using a similar argument as in the proof of Lemma 4 we conclude that any non-trivial linear combination of the vectors (11) has at least p non-zero entries. For a fixed $r, p \leq r \leq n-1$, construct r-p+1 matrices in $\Im_n(F)$ by inserting β_i and $-\beta_i$, $i = 1, \dots, r-p+1$ along the partial diagonals of length r as shown in the diagram below:

The remaining entries of the matrix (12) are taken to be 0. There are a total of $\frac{1}{2}(n-p)(n-p+1)$ such matrices and they are linearly independent. Let W be the subspace of $\mathfrak{I}_n(F)$ spanned by them. If $A \in W$, $A \neq 0$ then rank $(A) \geq p$. Since A is skew-symmetric and p is odd we have

rank
$$(A) \ge p + 1$$
.

LEMMA 7. Let V be a vector space over F, dim $V = n \ge 2$. Let k be an integer satisfying $2 \le 2k + 2 \le n$. Then there is a subspace W of $\bigwedge^2 V$ such that dim $W = \frac{1}{2}(n - 2k - 1)(n - 2k)$ and if $z \in W$, $z \ne 0$ then $\mu(z) \ge k + 1$. This is an immediate consequence of Lemmas 3 and 6.

LEMMA 8. Let V be as in Lemma 7. Let K be a subspace of $\wedge^2 V$ such that every non-zero coset in $\wedge^2 V/K$ contains a non-zero decomposable element. Then dim $K \geq [\frac{1}{2}(n - \sqrt{(n+2)})].$

Proof. We assert that dim $K \ge k_0$, where k_0 is the largest integer satisfying:

(i) $2k_0 + 2 \le n$, and

(ii) $\frac{1}{2}(n-2k_0)(n-2k_0-1) \ge k_0+1$.

The rest of the argument is analogous to the proof of Lemma 5.

Proof of Theorem 3. If n = 1 then it is trivial that $\varphi = 0$ and hence $U = \{0\}$. Next consider the diagram

Since φ is onto U, T is onto U and hence

(13) dim $U = \dim (\bigwedge^2 V) - \dim (\ker T) = n(n-1)/2 - \dim (\ker T)$. Thus for $n \ge 2$ we use (13) and Lemma 8 to obtain the inequality (2).

Thus for $n \geq 2$ we use (19) and Estimate 0 to obtain the inequality (2).

Remark. If dim V is 2 or 3 then define φ on $V \times V$ by $\varphi(x, y) = x \wedge y$. Then each element in $\wedge^2 V$ is decomposable. Thus Im φ is a vector space and (2) becomes an equality in these cases.

References

1. W. H. GREUB, Multilinear algebra, Springer-Verlag, New York, 1967.

2. MARVIN MARCUS, "A dimension inequality for multilinear functions," in Inequalities-

III, Proceedings of the Third Symposium on Inequalities Held at The University of California, Los Angeles, September 1-9, 1969, Academic Press, New York, 1972, pp. 217-224.

UNIVERSITY OF CALIFORNIA

Santa Barbara, California California State College Long Beach, California