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1. Introduction
In this pper we are concerned with ero sets of functions in the spces

H(U) and in the more general classes H(U). Here U is the unit disk
and U is the n-dimensional polydisk. In the one dimensional case it is
well known that a sequence a} in U is the zero set of a member of H(U),
0 < p _< , if and only if {a} satisfies the Blaschke condition

The necessity of this condition is a consequence of Jensen’s theorem and the
sufficiency is a result of the fact that every such sequence is in fact the zero
set of a Blaschke product.
Rudin [1], [2] has studied zero sets of members of H( U) and H( U) for

n >_ 2. He showed the situation in higher dimensions is quite different from
one dimension by proving in particular that for 0 < p < o and n >_ 2 there
exists f e H( U) such that if g e H( U) and g vanishes at every zero of fi
then g =-- 0. Rudin [2, p. 63] posed the problem of comparing the zero sets of
members of H( U) and H( U) for different finite values of p and q. In this
paper we provide a solution to this problem by showing that for 0 < p <
and n >_ 2 there exists f e H( U") such that if g e H( U) for some q > p and
the zero set of g contains the zero set of f, then g 0. The technique in [1]
is based heavily on the fact that if f e (U) then every ’slice function’ of
f is in H(U). This method is, however, unavailable for our problem because
the corresponding property is false for H(U), 0 < q < o. Our approach
is to modify Rudin’s techniques through a use of Jensen’s theorem so as to
avoid this difficulty.

2. Notation

We let C be the complex numbers, U the open unit disk, T the unit circle,
U and T the Cartesian products of n copies of U and T respectively, and
m Lebesgue measure on T normalized so that m(T) 1. If. (-o, )-[0, )

is convex, non-decreasing, and (t)/t -- as - , is said to be strongly
convex. If is strongly convex, H(U) is the class of 11 holomorphic
functions on U such that

(2.1) sup f (log f(rw) [) dm(w) <: (13.
0(r(1 ’Tn
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For the special case (t) ep we denote H( Un) by H(Un). The class
of all bounded holomorphic functions oa U is H(U). If f is a complex-
valued function, f-l{0} is called the zero set of f and is denoted by Z(f). If

T Uw e and f --+ C, we define fw U --, C by fw(h) f(wk) The func-
tion f is called a slice function associated with f. It is an easy exercise that
if f is holomorphic on U thenf is holomorphic ou U.

3. Statement and proof of theorem
We choose to state our result in somewhat greater generality than indicated

in the introduction.
THEOREM. Suppose ql is a strongly convex function. For n >_ 2 there

exists a function f H(U’) with the property that if . is a strongly convex
function satisfying, for each a > O,

(t- a) > (t) (log

for all > to(a), then g H(U’) and Z(g) Z(f) imply g -=- O.
We observe that if 0 < p < q < then (t) e and (t) eq satisfy

the hypothesis of the theorem and thus there exists f e H( U) such that if
g e Hq(U) and Z(g) Z(f) then g 0. The hypothesis

(t- a) > (t) (log (t))t

for > t0(a) is chosen not because it is the weakest hypothesis which implies
the desired conclusion but because of its convenience in the statement and
proof and because it enables us to demonstrate the differences in the zero sets
of the various spaces H(U). An examination of the proof in fact shows the
exponent 1 on log q(t) could be replaced by any constant greater than 1/2 and
independent of . However we do not know that even this would be sharp.
We first remark it is sufficient to prove the theorem in two dimensions.

Suppose this is already accomplished and consider a value of n greater than 2.
If f(z, z) is the function in H(U) whose existence is asserted by the
theorem, let

f(z z z,) f(z z.).

Certainlyf eH(U). We show in factf is the required function. Suppose
g is holomorphic on Un, g e H(U), and Z(g) Z(fi.). We claim for each

un-2 the function (z, z) g(z, z., ) is in H(U). Because
g e H,( U) it follows [2, p. 41] that 9.(log g I) has an n-harmonic majorant u.
Let fi(z, z:) u(z, z2, ). Thus is a 2-harmonic majorant of

U2and consequently . e H,( U) For each e the function certainly
vanishes on Z(f). We conclude 0 on U. Since this is true for each

n--2 Un.eU ,wehaveg--- 0on
We now prove the result for n 2. We first define sequences R, n, r,

and which will play a central role in the entire discussion. For each
integer ]c ) max (2, q(2) we define R to be a real number satisfying

(3.1) (1 + log R)
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We then let

(3.2)
and

(3.3)

where
For large values of k, we have

(3.4)
Hence
(3.5)

We also have

nk []c log Rk (log k) 4]

r 1- 1/k (log k)

denotes the greatest integer function.

k

=k0Rkr 1 log 2,

O< a < r/2, k >_ ]co,

e-1,< 1-- 1/8nk, ]_> k0,

8(]c + 1) (log (]c - 1) ) < ] (log ]c), k_> k0,

if 0 e (-r, r) and r0 < cos 0, then cos 0 < 1 0/4.
From (3.7) we see that the integers greater than or equal to k can be

partitioned into sets I0, I, 1, such that

(3.14) ’,, 1/]c log ] , j 0, 1, 2,
and
(3.15) I- k[ < /2+ if mI. and ]eI..
If k e I. we define
(3.16) , -{-(1 2-).
For any function e satisfying the hypothesis of the theorem and for each
b 0 we have for k > ]0(b),

.(log R b)

(3.17) > (1 -t-log R)(log (1 -t-log R))(1 -t-log R)1

k.(log Rk)l.(log k)
1

k log/"

(3.7)
where It0 is chosen so that
(3.8)

(3.9)

(3.10)
(3.11)
(3.12)
and

(3.13)

(3.6) qa(1 + log Rk) /(1 r) 1/k(log k) < oo.

We define an increasing bounded sequence by

n]

log R r < log Rk n/]c (log k) < -2 log k.
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Consequently, for each b > 0,

(3.18) k. 2(log Rk b)/’n , j O, 1, 2, ....
The desired holomorphic function is

(3.19) f(zl, z2) I-I=o (1 R((z + ez)/2)).
The product converges to a holomorphic function on U by (3.5). We
remark that f depends only on , noting in particular that the partition
I0, I, .I, is independent of .
We first show f eH(U). Our approach is to show the partial products

f forf are uniformly bounded on T except on a small set, namely oa A,
and that

f ,(log If, (w) ) dm (w)

is dominat for all p by the lcth term of a convergent series. TNs fact,
combined with the 2-subharmonicity of (log f ) and the uniform con-
vergence of the f to f on compact sets, is sufficient to imply f e H,(U).
We define A T by

(3.20) A (w,w) w+ew > 2r}.

If (w w:) e A then for appropriate choices of real a and B we have w e",
W2 ei and

r < 1 + e(+--) cos ( + a)
(3.21)

< ( + - )/6,
where the last inequality follows from (3.13).
WeletB Tbe

(3.22) Bk l( ie ,ei) "1+-- i --< 4/(1
and note from (3.21) that At0 B.
For each r(al a,

(3.23) mllei (e", e) B} 4(v/(1 r) )/.
Hence
(3.24) m(Bk) 4(x/(1 r))/r.

We next show the sets B are disjoint. We note this implies the sets A are
also disjoint. Suppose (wl, w.) e B l B nd ] m. From (3.11) and
the fact that and/ are in (0, 3/2) we see there exist real a und such
that w e" ei,)2

(3.25)
and
(3.26)
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First suppose ] and m belong to the same I.. From (3.7) and (3.16),

(3.27) a >_ 1/(]c - 1)(log (k + 1)) .
Now suppose k e I and m I. It follows from (3.15) and (3.16) that if
pIandp > ]cthen- <-. Hence

(3.28) - > q+l/q (logq) > 1/(kT 1)(log(k+ 1)) .
However from (3.12), (3.25), and (3.26) we conclude

(3.29) i 8(1 r) < 1/(k + 1)(log (k + 1)) ,
which is the desired contradiction.

Let
nk(3.30) ffi0 (1 + R r c

where c < e/2 by (3.8). For p k0, define

(3.31) h(z, z) 0 (1 R((z, + ez)/2)’).
T then by (3.20)If (w, w) A,

(3.3) ]f(, :) H=. (1 + R r) < c.

If (w, w) Aq for some q, k0 q p, then by the disjointness of the sets A,

(3.33) f(w, w) c(1 + Rq) < 2cRq < eRq.

Thus from (3.24), (3.32), and (3.33) we have

() ()

(a.a) (log c) + . (log f (w) I) dm (w)

(og c) + (4/) =o( + og R)(1 r)

c

for some constant c which is independent of p by (3.6). Since
(log f(z) ]) is 2-subharmonic, we have for all r < 1 and all p ,
3.35) fr (log f (rw) ) dm (w) c.

For each r < 1, (rw) converges uniformly to f(rw) on T as p . Thus

(3.36) fr (log f(rw) ) dm: (w) c, 0 r < 1

and f e H,(U).
We now consider a holomohic function g on U, g 0, such that

Z(g) Z(f). Suppose g has a zero of multiplicity m at the origin where if
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g(0) 0 we of course take m 0. Let the homogeneous polynomial of
degree m in the Taylor series for g be

m--1(3.37) a0 zl -t- al z z2 -{- -t- aM z2.

Fork k01etC, Tbe
(3.38) C {(e", e) + - a ] llano}.
Clely C B and thus the C are disjoint. By an argument identical to
that used establishing (3.24) we see that

(3.39) m(C) 1/n.
Suppose w (w, w) eC. Let and B be real numbers such that

" andwl e ,w2 e

(3.40) +--a (w) where ] llano.
The coefficient of h in the Taylor series for g() is thus

(3.41) e"(ao + ae(-) + + ae(-)).
Because the polynoal ao az a has only finitely many eros
and {B} has infinitely many limit points in (0, 2) by (3.16), we see there
exist an integer j, a positive number , and an integer k such that if k e I,
k lc, d w e C then gu(h)/ has absolute value at 0 exceeding .
For the rest of the discussioa we let j have this fixed value.

If w (w, w:) e C and if a and B are chosen as in (3.40) then

=cos(+-)
(3.42) 1 ( + - a):/

1- 1/8n
e-/n

where we have used (3.10). For such a value of w, it follows from the deft-
nition of f and the fact that Z(g) Z(f) that g(h)/h has at least n zeros
at values of of modulus

(3.43) (1/R)/ 2/(Wl + e’w) (e/R) 1.
If we let nw(t) be the number of zeros of g(h)/h in and
x (e/R) TM then for x r 1,

(aA) ( ()/) (lo r / + (og )/).

If in addition w e for some eIi, lc , ghen because (X)/X has ab-
solute value ag X 0 exceeding , Jensen’s gheorem implies

(n ()/) d + log + m log r.
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Thus for each/c e I.,/c _> kl, there exists p(/c) such that p(/c) < r < 1 implies
for all w e Ck that

(3.46) (1/2r) log gw (re) dO > log Rk - log 2.

From Jensen’s inequality we conclude for k e I., k _> kl, w e Ck, and
p(lc) < r < lthat

(1 )2(logR +log- 2) <_ log g,o(re) dO

(3.47)

2 (log[g(re’) I) .
Suppose M > 0. By (3.18) there exists an iateger N such that

(3.48) o, (log R + log 2)/n > M.
Then by Lemma 3.3.2Suppose r > max {p(]) ]ce I and kl _< ] _< N}.

of [2], the disjointness of the C, and (3.39),

(3.49)

>_ Z
keI.i,kl <_k:N

(log R q- log ti 2)m (C)

(log R q- log ti 2)
keI’j,k <_ k "<N

>M.

Thus g H.(U) and the proof is complete.
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