INTERSECTION PROPERTIES OF CURVES OF CONSTANT WIDTH

BY

Bruce B. Peterson

Abstract. Two curves (boundaries of 2-dimensional disks) of constant width in the plane, whose interiors intersect, must meet in an even or infinite number of components. Some new constant width curves are constructed. Corollaries and partial converses suggest several open questions.

1. Introduction

For the purposes of this paper, a convex curve is the boundary of a compact convex disk with interior in the plane. Curves will be denoted by C_{1}, C_{2} etc. and the disks they bound by D_{1}, D_{2} etc. respectively. If S is any set, $\operatorname{conv}(S)$, the convex hull of S, is the minimal convex set containing S. A line m supports the convex set D (or the curve C) if it has a point in common with D and D is contained in one of the two closed halfplanes determined by m. Any convex set possesses two distinct support lines perpendicular to each direction; the distance between these support lines is the width of the set in the perpendicular direction. If its width is the same in every direction, a curve C (or the disk D) issaid to have constant width. Two convex sets share a support line m if m supports both sets at a common point and both sets lie in the same halfplane determined by m. Points p and p^{\prime} correspond on a convex curve C if they are on parallel support lines. The diameter of a convex curve C is the maximum distance between pairs of points on C. We also speak of a chord of maximal length of C as a diameter. Two convex sets intersect properly if their interiors intersect and neither is contained in the other.

A curve of constant width (we will take them all to have width w) is complete in the sense that the addition of any point increases its diameter. Hence, if C_{1} and C_{2} are curves of constant width w, and $D_{1} \subset D_{2}$, it follows that $D_{1}=D_{2}$. For, if $p \in D_{2}-D_{1}$, we have

$$
\text { diameter }\left[\operatorname{conv}\left(D_{1} \cup\{p\}\right]>w\right.
$$

but, any subset of D_{2} can have diameter at most w. Each support line to a curve of constant width meets it in a unique point and the chord joining corresponding points is always perpendicular to the support lines in question. The distance between corresponding points is always w and the chord joining them is always a diameter. Moreover, any two points at distance w are the ends of a diameter and must correspond. Two diameters of a constant width curve intersect inside or on the curve, and the latter occurs only at a corner (a point at which there is more than one support line). All the points corresponding to a corner of a curve of constant width w lie on a circle of radius w

[^0]centered at the corner, and, if C contains an arc of a circle of radius w, all points of that arc correspond to the same corner of C. A set D of constant width w is the intersection of all circular disks of radius w centered in D. From this it follows that any arc of a curve of constant width which contains a pair of corresponding points determines the set completely.

Our main purpose is to establish the following curious property of curves of constant width.

Theorem 1. If C_{1} and C_{2} are curves of constant width w and D_{1} and D_{2} intersect properly, then the number of components of $C_{1} \cap C_{2}$ is even or infinite.

2. Proof of the theorem

If C_{1} and C_{2} are curves of constant width, a component I of $C_{1} \cap C_{2}$ (necessarily a single point or an interval) is a crossing component if for every $\varepsilon>0$ the neighborhood $N(I, \varepsilon)$ contains points of both $D_{2}-D_{1}$ and $D_{1}-D_{2}$. Otherwise I is a non-crossing component. If C_{1} and C_{2} intersect properly, we will denote the number of components of $C_{1} \cap C_{2}$ by $\alpha\left(C_{1}, C_{2}\right)$. To show that, if finite, $\alpha\left(C_{1}, C_{2}\right)$ is even, we begin with a simple lemma.

Lemma. If $p \in I$, a non-crossing component of $C_{1} \cap C_{2}, C_{1}$ and C_{2} share a support line at p.

Proof. Pick $\varepsilon>0$, so that the neighborhood $N(I, \varepsilon)$ misses $D_{1}-D_{2}$, and let $x \in \operatorname{int}\left(D_{1}\right) \cap$ int $\left(D_{2}\right)$. The segment $p x$ contains a point

$$
y \in N(p, \varepsilon) \cap \operatorname{int}\left(D_{1}\right) \cap \operatorname{int}\left(D_{2}\right)
$$

Clearly $N(p, \varepsilon) \cap D_{1} \subset D_{2}$. If m is a support line to D_{2} at p which fails to support D_{1}, there must be a point $q \in D_{1}$ on the opposite side of m from x. But then the segment $y q$ meets $N(p, \epsilon)$ in a point of $D_{1}-D_{2}$.

The converse of this lemma is not true, for two Reuleaux triangles may cross at a pair of corners and share support lines at each corner.

Proof of the theorem. That the number of crossing components is even, if it is finite, is obvious even for arbitrary convex curves. We need only show that the number of non-crossing components is also even. This we will do by showing that to each non-crossing component I, there corresponds a unique different non-crossing component.

If $p \in I=[x, y]$, where the closed interval I may degenerate to a single point, we let m be a shared support line at p and p^{\prime} the corresponding point on C_{1}. Since the distance $d\left(p, p^{\prime}\right)=w, p^{\prime}$ is also a corresponding point on C_{2}. Hence p^{\prime} is on a component I^{\prime} of $C_{1} \cap C_{2}$, and $I^{\prime}=\left[x^{\prime}, y^{\prime}\right]$, where x^{\prime} and y^{\prime} correspond to x and y respectively. Since all diameters intersect in or on the curve and some neighborhood $N(x, \varepsilon)$ contains points of $D_{1}-D_{2}$ but not of $D_{2}-D_{1}$, it follows that there is a neighborhood $N\left(x^{\prime}, \varepsilon^{\prime}\right)$ containing points of $D_{2}-D_{1}$ but no points of $D_{1}-D_{2}$. (If C_{1} is "outside" C_{2} at x, C_{2} is "outside" C_{1} at x^{\prime}.) Moreover, if $I=I^{\prime}$, it is an arc of both C_{1} and C_{2} containing
a pair of corresponding points. But then I determines each curve completely, and $C_{1}=C_{2}$ in contradiction to our proper intersection. Hence the component I^{\prime} is crossing if and only if I is crossing, and $I \neq I^{\prime}$. The non-crossing components can thus be counted in pairs and the number of all components is even.

It is worth noting that, although the result requires it, the pairing of noncrossing components is not dependent upon finiteness of α.

3. Corollaries and converses

Corollary 1. If C is a curve of constant width and C^{\prime} a congruent copy of C, then $\alpha\left(C, C^{\prime}\right)$ is even or infinite.

Corollary 2. If C is a curve of constant width w and S a circle of diameter $w, \alpha(C, S)$ is even or infinite.

Each of these obvious statements offers a way of generalizing various properties of circles which appear to be shared by few other curves. No curves, other than those of constant width, are known to enjoy either of these properties.

The direction of generalization to higher dimension is most unclear both because the intersection of round spheres is connected in every dimension but 2 and because the necessary properties of diameters do not generalize in any obviously useful way.

We do know, however, that every even number $2 k$ can occur as $\alpha\left(C, C^{\prime}\right)$ and $\alpha(C, S)$ for a proper choice of C. In the case where k is odd, C can be taken as a Reuleaux k-gon (we will consider the circle a Reuleaux 1-gon). The position of C^{\prime} is determined by a 180° rotation about a point on an axis of symmetry and close to but different from the center of the set. The same point may be taken as the center of S. The situations for $k=3$ are exhibited in Figure 1. For k even, C may be taken as a Reuleaux $(k+1)$-gon, C^{\prime} a

Figure 1.

Figure 2.

Figure 3.
rotation through 180° about the center, and S concentric with C. The situations for $k=2$ are exhibited in Figure 2.

It is worth noting here that a curve of constant width may have any number of corners, and those for which the number of corners is even provide another class of examples to achieve the results above. To construct these curves, it is necessary only to repeat judiciously the following construction of Sallee [6].

Pick two points x_{1} and x_{2} on S, a circle centered at 0 of diameter w (The circle is not crucial here. Any constant width curve would work, but we need here only the simplest situation.) and such that the angle $x_{1} 0 x_{2} \leq \pi / 3$. Construct a circular arc of radius w centered at x_{1}, passing through the corresponding point x_{1}^{\prime} and lying on the opposite side of the line $x_{1} x_{1}^{\prime}$ from x_{2}. Perform the corresponding construction with x_{2} and let the arcs determined this way intersect at y. With y as center, construct a circular arc of radius w joining x_{1} and x_{2} and lying inside the circle S. The new curve S_{1} is formed by replacing the smaller arc $x_{1} x_{2}$ on S by this new arc and the smaller arc $x_{1}^{\prime} x_{2}^{\prime}$ on S by the small $\operatorname{arcs} x_{1}^{\prime} y$ and $y x_{2}^{\prime}$ (see Figure 3.) It is easy to see that S_{1} has constant width and corners at each of the x_{i} 's.

Choosing small intervals $x_{1} x_{2}$ and $x_{2} x_{3}$, the construction of S_{1} will not disturb $x_{2} x_{3}$, so that we may, using it again, construct a new curve S_{2} with precisely 5 corners (see Figure 3). Clearly any odd number is possible. Now if $2 k \geq 6$, we may take small disjoint intervals on S and reiterate the construction so that one interval contributes 3 corners and the other $2 k-3$ to the final curve.

To construct curves with 1 or 2 corners is somewhat more difficult, but can be accomplished by the addition of curves with more corners, since the sum curve has a corner on a support line in the direction ϑ if and only if each of the summands has a corner on the support line in the corresponding direction and on the corresponding side. Clearly a Reuleaux triangle and an "isosceles triangle" with a very small base (the curve S_{1} is one) can be arranged (let the axes of symmetry coincide) so that precisely two corners correspond. The sum curve will have one and only one corner. The same trick can be used to construct a curve with precisely two corners. A much simpler construction for curves with precisely four corners will follow immediately from Theorem 2.

Clearly, the fundamental construction could be applied on a sequence of disjoint intervals converging to a point x_{0} on S to produce a curve of constant width S_{∞} with infinitely many corners and such that each of $\alpha\left(S_{\infty}, S_{\infty}^{\prime}\right)$ and $\alpha\left(S_{\infty}, S\right)$ can be made infinite. See Figure 4.

Since the number of corners of any convex curve is always countable, and since each corner corresponds to an arc of a circle, the worst possible set of corners of a constant width curve C would be dense in an arc on C whose endpoints correspond. It has apparently not been noted that this situation can indeed occur. To construct the set we begin with a circle S centered at the

Figure 4.
origin and an interval $x_{0} x_{1}$ on S so that x_{0} is the point with polar coordinates $(w / 2,0)$ and the angle $x_{0} 0 x_{1}=\varphi \leq \pi / 3$. We will construct a curve C with a corner on each of the lines $\boldsymbol{\vartheta}=\varphi m, 0 \leq m \leq 1, m$ a dyadic fraction. This curve C has corners at a dense subset of its arc $\left[x_{0} x_{1}\right]$, and, if $\varphi=\pi / 3, x_{0}$ and x_{1} correspond.

In step 1 , we construct a new curve S_{1}, replacing the $\operatorname{arc} x_{0} x_{1}$ on S by a new arc A_{1} lying inside S, using of course the same fundamental construction. A third circular are is constructed between A_{1} and S and also lying on x_{0} and x_{1}. Halfway between this arc and A_{1} on the line $\vartheta=\frac{1}{2} \varphi$, we pick the point $x_{1 / 2}$. With $x_{1 / 2}$ as center we construct a circle of radius w which cuts the arcs $x_{0}^{\prime} y$ and $y x_{1}^{\prime}$, added in the construction of S_{1}, in points y_{0} and y_{1} respectively.

In step 2 , we modify S_{1} by the fundamental construction, adding the new arc $y_{0} y_{1}$ and arcs of circles centered at y_{0} (and y_{1}) and passing through x_{0} and $x_{1 / 2}$ (and $x_{1 / 2}$ and x_{1}). Clearly the new curve S_{2} has corners at $x_{0}, x_{1 / 2}$, and x_{1}. See Figure 5.

There is a circle on these three points. Between it and the arc $x_{0} x_{1 / 2}$ we construct a circular arc on x_{0} and $x_{1 / 2}$. Halfway between this arc and S_{2} we pick the point $x_{1 / 4}$ on the line $\vartheta=\frac{1}{4} \varphi$. Similarly, we find the point $x_{3 / 4}$, and, applying the fundamental construction twice more, produce a new curve S_{3} with corners at $x_{0}, x_{1 / 4}, x_{1 / 2}, x_{3 / 4}, x_{1}$.

The limit curve of the sequence $\left\{S_{n}\right\}$ has the desired property since there

Figure 5.
are distinct support lines to each corner of each curve in the sequence which remain support lines to each succeeding curve.

Given two intersecting curves of constant width, another construction leads to the following:

Theorem 2. If C_{1} and C_{2} are curves of constant width w and $\alpha\left(C_{1}, C_{2}\right)=$ $n \geq 4$, there is a curve C_{3} of constant width w such that

$$
D_{1} \cap D_{2} \subset D_{3}, \quad \alpha\left(C_{1}, C_{3}\right)=n-2 \quad \text { and } \quad \alpha\left(C_{2}, C_{3}\right)=2
$$

Proof. First fix an endpoint x_{1} of a component I_{1} of $C_{1} \cap C_{2}$ and, in the obvious fashion, order the points of C_{1} by arc length measured in the counterclockwise direction. We order the points of C_{2} similarly; the orderings coincide on $C_{1} \cap C_{2}$. We choose x_{1} so that I_{1} is a closed (possibly degenerate) interval $\left[x_{1}, y_{1}\right], x_{1} \leq y_{1}$. Proceeding around C_{1} in the counterclockwise direction, we let $I_{2}=\left[x_{2}, y_{2}\right]$ be the component adjacent to I_{1}, so that $x_{1} \leq y_{1}<x_{2} \leq y_{2}$.

Each of the intervals I_{1} and I_{2} contains no pair of corresponding points, but, more importantly, we can choose them so that the entire interval [x_{1}, y_{2}] contains no such pair from either curve. For, if I_{1} and I_{2} contain a pair of corresponding points, we take the next component I_{3} and consider it with I_{2}. If these two contain a pair of corresponding points, there is a point of I_{2} to which correspond points of both I_{1} and I_{3}. This is impossible since these two components are disjoint. Hence, if I_{1} and I_{2} contain such a pair of points, I_{2} and I_{3} do not, and we can choose them to start our construction. We assume now that I_{1} and I_{2} do not contain a pair of corresponding points.

If $p \in C_{1} \cap C_{2}$, we will denote a point corresponding to p on C_{1} by p^{\prime} and write $p \sim p^{\prime}$. Similarly a point corresponding to p on C_{2} is $p^{\prime \prime}$ and we write $p \sim p^{\prime \prime}$. We assume without loss of generality, that C_{2} lies outside of C_{1} between y_{1} and x_{2} (i.e. if $z \epsilon C_{1}, y_{1}<z<x_{2}$, there is a neighborhood of z contained in D_{2}.) Since there may be more than one point $y_{1}^{\prime} \sim y_{1}$, we pick

$$
\begin{aligned}
y_{1}^{* *} & =\max \left\{y_{1}^{\prime \prime} \mid y_{1}^{\prime \prime} \sim y_{1}\right\}, & & y_{1}^{*}=\min \left\{y_{1}^{\prime} \mid y_{1}^{\prime} \sim y_{1}\right\} \\
x_{2}^{*} & =\max \left\{x_{2}^{\prime} \mid x_{2}^{\prime} \sim x_{2}\right\}, & & x_{2}^{* *}=\min \left\{x_{2}^{\prime \prime} \mid x_{2}^{\prime \prime} \sim x_{2}\right\}
\end{aligned}
$$

With y_{1} as center we construct a circular arc A_{1} on $y_{1}^{* *}$ and y_{1}^{*}. With x_{2} as center we construct a circular arc A_{2} on x_{2}^{*} and $x_{2}^{* *}$. The curve C_{3} consists of the arcs

$$
y_{1} x_{2} \text { on } C_{1}, \quad x_{2} y_{1}^{* *} \text { on } C_{2}, A_{1}, y_{1}^{*} x_{2}^{*} \text { on } C_{1}, A_{2}, x_{2}^{* *} y_{1} \text { on } C_{2} .
$$

(Note that if, say, $y_{1}^{* *} \epsilon C_{1} \cap C_{2}$, we may have $y_{1}^{*}<y_{1}^{* *}$ on C_{1}. To avoid any difficulty here we will simply adopt the convention that arcs swept out twice in opposite directions are disregarded. See Figure 6.) From this construction it is clear that C_{3} is a curve of constant width w and that $D_{1} \cap D_{2} \subset D_{3}$.

Since I_{1} and I_{2} are adjacent and C_{1} lies inside C_{2} between them, and since

Figure 6.
C_{3} and C_{1} coincide between y_{1} and x_{2}, C_{3} lies inside C_{2} on that interval. By construction C_{3} lies outside C_{2} between $y_{1}^{* *}$ and $x_{2}^{* *}$. Since C_{3} coincides with C_{2} elsewhere, the only components of $C_{2} \cap C_{3}$ are the intervals $\left[x_{2}, y_{1}^{* *}\right.$] and $\left[x_{2}^{* *}, y_{1}\right]$. Hence $\alpha\left(C_{2}, C_{3}\right)=2$.

We have left only the computation of $\alpha\left(C_{1}, C_{3}\right)$. To do this note that C_{3} differs from C_{2} only on the intervals $\left[y_{1}, x_{2}\right]$ and $\left[y_{1}^{* *}, x_{2}^{* *}\right]$. Noting first that two components I_{1} and I_{2} have become one in $C_{1} \cap C_{3}$ by the addition of [y_{1}, x_{2}], we distinguish three cases.

Case 1. $y_{1}^{* *} \neq y_{1}^{*} ; x_{2}^{*} \neq x_{2}^{* *}$. In this case, the angles $y_{1}^{* *} y_{1} y_{1}^{*}$ and $x_{2}^{*} x_{2} x_{2}^{* *}$ each contain one component of $C_{1} \cap C_{2}$. These are lost in the construction, but $\left[y_{1}^{*}, x_{2}^{*}\right]$ is added so that $C_{1} \cap C_{3}$ has precisely two fewer components than $C_{1} \cap C_{2}$.

Case 2. $\quad y_{1}^{* *} \neq y_{1}^{*} ; x_{2}^{*}=x_{2}^{* *}$ (or vice versa). Now only one component, that in the angle $y_{1}^{* *} y_{1} y_{1}^{*}$, is lost, but, since $x_{2}^{*} \in C_{1} \cap C_{2}$, the component [y_{1}^{*}, x_{2}^{*}] is not new. Again the number of components is reduced by precisely two.

Case 3. $y_{1}^{* *}=y_{1}^{*} ; x_{2}^{*}=x_{2}^{* *}$. In this instance, the addition of $\left[y_{1}^{*}, x_{2}^{*}\right]$ to construct C_{3} connects two existing components of $C_{1} \cap C_{2}$, reducing the number of components by one and making the total reduction precisely two.

Thus in any case $\alpha\left(C_{1}, C_{3}\right)=n-2$. This completes the proof.
Figure 7 illustrates the construction in the case where C_{1} is a circle, C_{2} a Reuleaux triangle, and $n=6$. In this case the intervals I_{1} and I_{2} are degenerate. It is interesting to note this method incidentally produces an easy ruler and compass (actually compass alone) construction of a curve of constant width with precisely four corners.

Finally, we wish to note that converses to the two corollaries are available for two special classes of curves.

Figure 7.
Theorem 3. If C is a curve with two unequal chords of lateral symmetry (i.e. the reflection of C in the chord is C), then there is a congruent copy C^{\prime} of C for which $\alpha\left(C, C^{\prime}\right)$ is odd.

Proof. We need only place the smaller chord on the larger one so that a pair of end points coincide. Except for this point, the other components of $C \cap C^{\prime}$ are paired by the double symmetry, so that the total number is odd.

Theorem 4. If P is a convex polygon there is a congruent copy P^{\prime} of P such that $\alpha\left(P, P^{\prime}\right)$ is odd.

Proof. Place a vertex v of Q, a congruent copy of P, at the midpoint of a side m of P so that the two sides of Q adjacent to v lie on the same side of m. The polygon Q may be rotated about v to a position Q^{\prime} such that no side of Q^{\prime} is parallel to a side of P and the sides of Q^{\prime} adjacent to v are still on the same side of m. A slight translation of Q^{\prime} parallel to m, will move Q^{\prime} to a position P^{\prime} such that no vertex of P^{\prime}, other than v, is on P. Hence the only components of $P \cap P^{\prime}$ are crossing components, the number of which is necessarily even, and $\{v\}$. Note that if P is an infinite convex polygon the theorem still holds in the sense that, although possibly infinite, $P \cap P^{\prime}$ consists of one vertex plus a set of points which can be counted in pairs. This completes the proof.

Whether the curves of constant width are the only curves with the properties of Corollaries 1 and 2 is an open question. An affirmative answer would generalize results of Fujiwara [1], Kojima [3], Kubota [4], and Hombu [2], to the effect that the circle is the only convex curve which coincides with itself as soon as three points coincide.

The referee has kindly pointed out that material related especially to the properties in Section 1 and to Theorem 1 appears in a paper of E. Meissner, Vierteljahrsschrift Naturforsch. Ges. Zurich 56, 1911.

References

1. M. Fujiwara, Eine Satz uber convexe geschlossene Kurven, Sci. Rept. Tôhoku Univ., vol. 9 (1920), pp. 289-294.
2. H. Hombu, Notes on closed convex curves, Tôhoku Math. J., vol. 33 (1930), pp. 72-77.
3. T. Kojima, On the curvature of the closed convex curve, Tôhoku Math. J., vol. 21 (1922), pp. 15-20.
4. T. Kubota, Notes on closed convex curves, Tôhoku Math. J., vol. 21 (1922), pp. 21-23.
5. H. Rademacher and O. Toeplitz, The enjoyment of mathematics, Princeton University Press, Princeton, N. J., 1957.
6. G. T. Sallee, The maximal set of constant width in a lattice, Pacific J. Math., vol. 28 (1969), pp. 669-674.
7. I. M. Yaglom and V. G. Boltyanskit, Convex figures, Holt, Rinehart and Winston, New York, 1961.

Middlebury College
Middlebury, Vermont
University of Washington, Seattle, Washington

[^0]: Received July 16, 1971.

