FINITE GROUPS WHOSE SYLOW 2-SUBGROUPS ARE THE DIRECT
PRODUCT OF A DIHEDRAL AND A SEMI-DIHEDRAL GROUP

BY
FrEDRICK L. SMmIiTH

1. Introduction

The purpose of this paper is to classify all finite fusion-simple groups which
have a Sylow 2-subgroup that is the direct product of a dihedral group with a
semi-dihedral group. (We say that a group G is fusion-simple if 0*(G) = G
and Z* (@) = 1. A semi-dihedral group is also known as a quasi-dihedral
group.) Our main result is as follows:

THEOREM. Let G be a finite fusion-simple group with a Sylow 2-subgroup
that is the direct product of a dihedral group and a semi-dihedral group. Then G
has a normal subgroup of odd index of the form F1 X Fz where

Fi=>~ A, PSL(Q,QJ), qodd, ¢ > 5, or Zs X Z
and

Fy>~ My, PSL(@3,q), ¢g = —1(mod 4), or PSU(S, ¢2), ¢ = 1(mod 4).

The essential ideas used in proof are to be found in [6]. In particular, we
assume that a group (' is a minimal counter-example to our theorem. We
then show that G has an involution fusion pattern compatible with the con-
clusion of the theorem. Next, we select an arbitrary elementary abelian sub-
group A of order 16 in G. Then for suitable four-groups X and Y contained
in A such that A = X X Y, we establish the following assertion:

If for a e A¥, one sets

0(Cs(a)) = (Cal@) n 0(Cow)) n O(Coy)) |z e X, ye¥¥),

then 6 is an A-signalizer functor on @ in the sense of Goldschmidt [4].

If 9 is nontrivial, we conclude that W, = (9(Cs(a)) | a ¢ A*)is a group of odd
order and this allows us to show that N¢(W,) is a strongly imbedded sub-
group of G. It then easily follows that 6 is trivial and from this we prove that
@ satisfies the conclusions of our theorem. This contradiction then proves
our theorem.

We use the following definitions which are slight restrictions of some defi-
nitions in [2]:

(1) A finite group Gis said to be an SD-group if a Sylow 2-subgroup of G'is a
semi-dihedral group and @ contains one conjugacy class of involutions and one
conjugacy class of elements of order 4.

(ii) A finite group @ is said to be a Q-group if a Sylow 2-subgroup of ¢
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is a semi-dihedral group and if G has two conjugacy classes of involutions and
one conjugacy class of elements of order 4.

(iii) A finite group @ is said to be a D-group if a Sylow 2-subgroup of G'is a
semi-dihedral group and G contains one conjugacy class of involutions and
two conjugacy classes of elements of order 4, or if a Sylow 2-subgroup of G'is a
dihedral group and @ contains at most two conjugacy classes of involutions.

(iv) Let H be a group in which O,(H) 5 1, r an odd prime and let B be an
r-subgroup of H such that:

(a) R nO.,(H)is a Sylow r-subgroup of O, .(H);

(b) either R is normal in a Sylow r-subgroup of H or RK/K contains
0. (H/K) for every normal subgroup K of H.

Under these conditions we say that H is r-stable with respect to R provided for
any nontrivial subgroup P of R such that O, (H)- P is normal in H, we have

ACg(P)/Ca(P) S O-(Na(P)/Cu(P))

for every subgroup A of R such that [P, 4, A] = 1.

We now list some properties of simple SD-groups which are a consequence of
results in [2] or [9]. If M is a simple SD-group, then by the main result in [2],
M= Mnu, L;(q),qg = —1(mod 4), or Us(q), g = 1(mod 4). If Yis a four-
group contained in M, then N, (Y) contains a group S = S;. Let D be some
dihedral group of order 8 in 8. We then have the following properties:

i) M=Mu.

(a) IfyeY* then Cy(y) = GL(2, 3).

(b) If P is a maximal nontrivial Y-invariant p-subgroup of M, p odd, then
P is a Sylow 3-subgroup of M and any two Y-invariant Sylow 3-subgroups of
M are conjugate in N (Y).

(i) M = Li(q).

(a) if yeY¥ then Cu(y) = GL(2, ¢)/Z where Z is a subgroup of order
d = (3,q9 — 1) in the center of GL (2, q).

(b) Ifpisan odd prime and p does not divide ¢ — 1, then any two maximal
Y-invariant p-subgroups of M are conjugate in N (Y); if p does not divide g,
then any two maximal D-invariant p-subgroups of M are conjugatein N (D );
if p divides ¢ — 1, if P and @ are two maximal Y-invariant p-subgroups of M,
and if [P, Y] = 1, [Q, Y] # 1, then P ~ @ in Nx(Y). There is a unique
maximal Y-invariant p-subgroup P such that [P, Y] = 1.

(i) M = Us(q).

(a) IfyeY® then Cu(y) = GU (2, q)/Z where Z is a subgroup of order
d = (3, g + 1) in the center of GU (2, q).

(b) Let p be an odd prime. If p divides ¢, then Y does not normalize any
nontrivial p-subgroup of M. If p divides ¢ — 1 and if P and @ are maximal
Y-invariant p-subgroups of M, then P ~ Q in N (Y). If p dividesq + 1
an dif P and @ are maximal Y-invariant p-subgroups of M such that [P, Y] = 1,
[Q, Y] 1, then P ~ Qin Nx(Y). There is a unique maximal Y-invariant



354 FREDRICK L. SMITH

p-subgroup P such that [P, Y] = 1. Finally, any two D-invariant p-sub-
groups which are maximal are conjugate in N (D).

Our notation is standard (see [5]) and includes the ‘“bar” convention for
homomorphic images.

2. Preliminary lemmas

We now prove some results concerning the structures of SD-groups,
Q-groups, and D-groups.

Lemma 2.1. Let H be a group in which O(H) = 1 and which contains a
normal simple SD-group M of odd index. Let Y be a four-group contained in M
and let p be an odd prime. Then the following statemenis are true:

@) If P is a maximal Y -invariant p-subgroup of H, then P n M s a maximal
Y -invariant p-subgroup of M.

(i) If p does not divide the order of Cx(Y') and ¢f Py and P, are maximal
Y-invariant p-subgroups of H, then Py ~ Py in Ng(Y').

@) If p divides the order of Cu(Y') and if P, and Py are maximal Y-in-
variant p-subgroups such that [Py, Y] 5 1,[Py, Y] # 1, then Py ~ PyinNg(Y).

Proof. We may assume that there exist nontrivial Y-invariant p-subgroups
in H, or else the lemma is trivially true. Set @ = P n M and suppose, by
way of contradiction, that @ is properly contained in a Y-invariant p-subgroup
of M. Since[P, Y] C M,P = QCr(Y).

We first consider the case that Q = 1. Then P = C»(Y) and for y ¢ Y*, P
normalizes Cy (y). Tf M = My, then p = 3 and Cp(y) contains exactly two
Y-invariant 3-subgroups of order 3, each of which must be normalized by P.
However this contradicts the maximality of P, and so we can assume that
M é M 11 .

If p divides the order of Cy(Y), then a Sylow p-subgroup U of Cx(Y) is
nontrivial and characteristic. Then P normalizes U and again we have a
contradiction. Thus we can assume that p does not divide the order of
Cu(Y).

Then p does not divide the order of Cy(y) n Nx(Y), y € Y* and so P nor-
malizes a Sylow 2-subgroup D of Cx(y) n Ny (Y). Since D =2 Ds, P cen-
tralizes D. Let v be an element of order 4 in D and suppose that p divides
the order of Cyx(v). Then a Sylow p-subgroup of Cx () is nontrivial and
characteristic and this leads to a contradiction as above. The remaining
possibility is that M = L;(q) and p divides ¢. Then Cx(y) contains exactly
two Y-invariant subgroups of order ¢ and so each is normalized by P, a con-
tradiction. Thus we can assume that @ = 1.

Set K = Nu(Q) and J = Cx(Q). If Y C J, then Q is properly contained
in a Sylow p-subgroup of Cx(Y) which is normalized by B = C»(Y), a con-
tradiction since P = QR. Suppose p divides the order of C»(Y). Then @
is abelian, @ is a Sylow p-subgroup of O (J), but not of J. Also @ is central-
ized by a four-group and since Y $ J, a Sylow 2-subgroup of J is a dihedral
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group. Since Z (J) contains an involution, J has a normal 2-complement and
this is a contradiction. Thus p does not divide the order of Cy(Y). Since
@ must be a Sylow p-subgroup of both O(K) and O(JQ), this forces
M == L;(q) and p divides ¢q. Since a Sylow 2-subgroup of J is cyclic, @ is a
Sylow p-subgroup of JQ. In particular,Z (Q) 2 Z (U) for some Sylow p-sub-
group U of M. 1t follows from the structure of U that @ <{ Uand so U C K.
Since U 4 K, there is a second Sylow p-subgroup V of M contained in K and
by the structure of M, Z(U) n Z(V) = 1. It follows that Z (Q) contains an
abelian subgroup of order ¢’. Such subgroups of M are self-centralizing
and so Q@ = Z(Q) and has order ¢. This now forces K/Q =~ Cx(y), y ¢
Y*. In particular, K contains exactly two Y-invariant Sylow p-subgroups
and this leads to a contradiction since each is normalized by P. This com-
pletes the proof of (). We now prove (ii) and (iii).

Set Q; = PinMand R; = Cp,(Y),2 = 1,2. Itfollowsby (i) that Q;isa
maximal Y-invariant p-subgroup of M, and by the maximality of P;, we
have that R, is a Sylow p-subgroup of Nu(Q;) n Cax(¥),7 = 1,2. If Y does
not centralize P;, then Y does not centralize Q; . Hence, by the properties of
simple SD-groups listed in the introduction, Q7 = Q. for some m ¢ Ny (Y).
Then Ry is a Sylow p-subgroup of Nx(@:) n Cy(Y) and so for some
heNu(@)n Cyu(Y), R = R,. Then P = P, and mh ¢ Ny (Y) and
this proves (i) and (iii).

LemmA 2.2. Let H be a Q-group in which O(H) = 1. Set L = 0% (H) and
let Y be a four-group in L. If p vs an odd prime, then the following statements
hold:

1) If P is a maximal Y-invariant p-subgroup of H, then P n L ts a maximal
Y -invariant p-subgroup of L.

(1) If p does not divide the order of C,(Y') and if Py, Py are maximal Y-in-
variant p-subgroups of H, then Py ~ Py in Ng(Y).

(i) If p divides the order of C(Y') and if Py and P are maximal Y-invari-
ant p-subgroups of H such that [Py, Y] % 1, [Py, Y| # 1, then Py ~ P, in
Nu(Y).

Proof. Since a Sylow 2-subgroup of L is a semi-dihedral group, it follows
by the results in Chapter 2 of [2] that L =~ SL*(2, ¢), ¢ = —1 (mod 4) or
SU*(2,¢),q =1 (mod 4). The proof of this lemma is then similar in nature
to that of the preceding lemma; only in this case it is easier and it is omitted

Lemma 2.3. Let H be a D-group in which O(H) = 1 and let Y be o four-
group in H. If Py and Py are mazimal Y-tnvariant p subgroups of H for some
odd prime p, then Py ~ Py in Ng(Y').

Proof. TfL = 0% (H),then L= 4, PSL(2,q), PGL(2, q), or PGL*(2, q),
g odd (where PGL.*(2, ¢) is a group with semi-dihedral Sylow 2-subgroups
and is described in Chapter 2 of [2]). A maximal Y-invariant p-subgroup of
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L is a Sylow p-subgroup of C(y) for some y ¢ Y¥ and it is characteristic.
The lemma follows easily from these facts.

LeEMmMa 2.4, Let M be a group and assume that M == Ls;(¢), ¢ = —1 (mod 4),
Us(g),q=1 (mod 4), or M. IfY is a four-group in M, then

M = (Y,Cuy) |yeY¥.

Proof. Set Mo = (Y, Cu(y) |y ¢ Y*). Select y ¢ Y*. Then Y -Cr(y)
contains a Sylow 2-subgroup of Cy (y) and hence, Y-Cy (y) contains a Sylow
2-subgroup of M. We conclude that M, is an SD-group. Since no proper
section of M1y contains an SD-group, we have that My = M if M = My,.
Thus we can assume that this is not the case. Similarly, we can assume that
M 2¢ L5(3). We then have that Cy (y)' = SL(2, ¢), ¢ = 5and so Cx (y)’ is
perfect. Set C = Cu(y)'.

If My = Mo/O (M), then M, contains a normal subgroup L of odd index
where L is a simple SD-group. Since O(C) = 1 and 0* (C) = C, we have
that C =~ Cand ¢ £ L. We then conclude that Cz(§)’ = C. It follows now
by the results in [2] that L = M and hence, M = M,.

Levmma 2.5. Let the group M be isomorphic to My and p = 3 or let M be
isomorphic to Ls(q), ¢ = —1 (mod 4) and p be the odd prime that divides q.
Let Y be a four-group in M and let S © Ny (Y) with S = S,. If P is a maxi-
mal Y invariant p subgroup of M, then M = (P, S).

Proof. Set L = (P, S). Choose y ¢ Y* and let C = Cyx(y). We shall
show that C © L. Conjugating P by a suitable element in S if necessary,
we can assume that Q@ = Cp(y) # 1. If M = My, then (Q, D) = Cu(y)
where D is a Sylow 2-subgroup of Cs(y). It follows in this case that C € L.
If M = L;(3), a similar argument shows that C € L. We can assume that
M =2 Ls(q), ¢ = 7 next. Now by a classical result of L. Dickson (Theorem
2.8.4 of [5]), we conclude that (Q, D) = C. Thusin all cases C € L. Since
the involutions in Y* are all conjugate in S, we can apply the preceding lemma,
to obtain our result.

LemmA 2.6. Let H be an SD-group in which Op(H) 5 1, p an odd prime,
and let M be the normal simple SD-group of odd index in H = H/O(H). As-
sume that the following conditions are satisfied:

(i) H = RM where M is the presmage in H of M and R is a mazimal Y-in-
variant p-subgroup of H for some four-group Y wn M.

(i) Y does not centralize any Sylow p-subgroup of O (H ).

(i) If M = Muy,thenp 5= 3 and if M = L;(q), then p does not divide q.
Then H 1s p-stable with respect to R and H = Ng(Z(J(R)))OH).

Proof. By [2] we have that M = My, Ls(¢q), ¢ = —1 (mod 4), or Us(q),
g =1 (mod4). We proceed to verify conditions (a) and (b) in the defini-
tion of relative p-stability given in the introduction.
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By the maximality of R, R n O(H) is a Sylow p-subgroup of O(H) and
by our assumptions, Y does not centralize R n O (H). If O, (H) $ O(H),
then ¥ C 0, (H) because H has only one conjugacy class of involutions.
But then we have [Rn O(H), Y] € Rn O, (H) = 1, a contradiction. Thus
we see that O, (H)Z O(H) and by the maximality of B, R n O, ,(H) is a
Sylow p-subgroup of O,,,(H). This verifies condition (a).

Now suppose that K is a normal subgroup of H. If K € O(H), then
0,(H/K) € O(H)/K and so 0,(H/K) € RK/K because R n O(H) is a
Sylow p-subgroup of O(H). If K & O(H), then K covers M and so H =
RKO(H). In this case RK/K is a Sylow p-subgroup of H/K and it follows
that O,(H/K) € RK/K. This verifies condition (b).

Next, we show that H is p-constrained. Set R; = B n O, ,(H). We
must show that Cx (Ry) C O, ,(H). If Cx(R;) S O(H), this follows because
O (H) is p-constrained. If Cx(R:) & O (H), then Cq(R1)0, (H) is a normal
subgroup of even order in H and so contains Y. It follows that Y centralizes
R, and so Y acts nontrivially on Cr(R;) n O (H) which is contained in Ry, a
contradiction. Therefore H is p-constrained.

Since H will be p-stable with respect to B if and only if H/O, (H) is
p-stable with respect to RO, (H)/0, (H), we can assume to begin with that
O, (H) = 1.

Let P be a nontrivial normal subgroup of H contained in B. Suppose that
A is a subgroup of R such that [P, A, A] = 1, but that

ACx(P)/Cu(P) & 0,(H/Cu(P).

Then as in the proof of Proposition 2.6.1 of [2], we can find an H-invariant
section P; of P which is an elementary abelian p-group on which H acts irre-
ducibly and 4 $ Cy(Ps).

If H = H/Cy(P;), then O,(H) = 1. Since [P;, A, A] = 1, Wehave that
H involves SL(2, p) by Theorem 3.8.3 of [5]. It follows that Cz(P;) is of
odd order and so H = R where R is a maximal Y-invariant p-subgroup of
H. Also we see that M/O () = M. Since we are interested in the action
of H on P, we shall drop the “~” for convenience. Also we shall consider
V = P, as a vector space over GF (p) on which H acts faithfully and irre-
ducibly. Thus we shall obtain a contradiction to the following situation:

(1) H = RM where M /O (H) is a simple SD-group, Y is a four-group in
M and R is a maximal Y-nvariant p-subgroup of H.
(i1) O,(H) = 1 and H acts faithfully and irreducibly on the vector
space V over GF (p).
(iii) A is a nontrivial subgroup of R and [V, 4, A] = 1.
(iv) If M/O(H) = L;(g), then p does not divide gq.
(v) Oy (H)<S OH).
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By the proof of Theorem 3.8.3 of [5],if a ¢ A* b ~ain H,and F = (a, b) is
not a p-group, then F has a normal subgroup F, such that F/Fy, = SL(2, p™)
orp = 3and F/F, = SL(2, 5).

Wemusthave AnO(H) = 1. ElsewecanfindaeA¥*nOH) andb ~ a
in H such that {(a, b) is not a p-group and is contained in O (H ), because
0,(H) = 1, a contradiction.

Set H = H/O(H). By our restrictions on p, R is centralized by an involu-
tion gin Y. Also M ¢ L;(3), otherwise the centralizers of involutions would
be solvable, a contradiction because p = 3.

Also H 26 My or Us(5). Otherwise p = 3, 4 is of order 3 and every sub-
group of order 3 in H is conjugate to A. Since H contains a subgroup iso-
morphlc to A4, the alternating group on 4 letters, we have a contradlctlon
If M = U,(5), then we can assume H = (MA)” = PGU (3, 5°). In this
case all subgroups of order 3in B — (R n M)~ are conjugate and so A normal-
izes but does not centralize a Sylow 5-subgroup of M, a contradiction.

Let E = 0% (Ci (7)) sothat E = SL*(2, q) if M = L (q) or E =~ SU*(2, q)
if M = Us(q) and we also have in either case that ¢ > 5. Let E be the pre-
image in H of E, set C = RE, and let K be the semi-direct product of C and
V where the action of C' on V is a restriction of the action of H on V to C.
Then RV is a maximal Y-invariant p-subgroup of K and K is a @-group. We
also have that Cx(V) = Vand O(K)n C C RO(H).

If p does not divide g, then RV is a Sylow p-subgroup of K. If p divides g,
then our assumptions force B = SU*(2, q), M == U;(g), and Y centralizes
R. 1In this case R centralizes a dihedral group D of order 8 in N5 (Y). Thus
we can find a dihedral group of order 8 in E which normalizes RV and if this
group is denoted by D*, we have that RV is a maximal D*.invariant p-sub-
group of K. Since ¢ > 5, we are now in a position to apply Proposition 2.6.1
of [2]. By this result we have that K is p-stable with respect to RV. It
then follows that

ACg(V)/Cx(V) S 0,(K/Cx(V))

andso A S O(K)nC S RO(H). We see that [E, A] is a normal subgroup
of odd order in E and so A centralizes E and in partlcular A centralizes Y.

Choose z ¢ Y — (y) and let F be the preimage in H of 0* (Ciz (2)). Working
in AFV and using an argument similar to that in the preceding two para-
graphs, we conclude that A centralizes F. Now by Lemma 2.4 we can con-
clude that A centralizes M, and so A = 1 since A is a group of odd order.
Since A is not contained in O (H ), we have a contradiction. This completes
the first part of the lemma and it remains to show that H =
Neg(Z(J (R)))O(H). But this is a direct consequence of the extended form
of Glauberman’s ZJ-Theorem (Theorem 2.7.2 of [2]).

Levma 2.7.  Let L be a simple SD-group and let Y be a four-group contained
in L. If W is a subgroup of L of odd order such that Np(Y) & N (W), then
W < Cu(Y).
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Proof. Let S € Np(Y) such that S = S;. Since O(S) = 1, we have
SaW =1. Set X = W8S.

If L = My, then the order of Wis 1 or 3. Then Y C Cg(W) and so we
can assume that L ¢ My .

Suppose that 0, (X) = 1. Then F(X) = F(W). Let R be a Sylow p-sub-
group of F(X) and assume that [R, Y] # 1. If p divides the order of the
centralizer of Y in L, then R is abelian. Set @ = € (R). Then 8§ acts faith-
fully on [@, Y] which is cyclic, a contradiction. Next, suppose that p divides
g where L =2 L;(q) or Us(g) and let @ = @, (Z(R)). Denote the involutions
in Y by 1, v2, and y3. Since Co(Y) = 1, we have that @ = Co(y1) X
Co(y2). Sincetheinvolutionsin Y are conjugatein S, we have that Cq (y;)
1,2 = 1,2,3. LetD bea Sylow 2-subgroup of Cs(y;). From the structure
of Cr(y1) we have that D/Z (D) acts regularly on Cq(y:1), a contradiction.
Thus we can assume that p does not divide ¢ and this forces R to be cyclic.
Since S acts faithfully on R, we have a contradiction again. We have shown
that 0;(X) = 1. Then Y C 0,(X)andso[W, Y] WnO0,(X) =1. This
completes our proof.

We shall now state two results of [6] on which our proof relies heavily. But
first we introduce a definition. Let A be an elementary abelian group of
order 16 acting on a group K of odd order. Suppose that A = X X Y where
X and Y are four-groups. We then say that K is (X, Y)-generated if

K= (K., |zeX¥ yeV¥

where K, , is a normal subgroup in Cx ((z, y)) for z ¢ X* y ¢ Y*. An A-in-
variant subgroup F of K will said to be (X, Y)-generated if

F=FnK.|zeX yeV¥.

We now have the following result which gives sufficient conditions for every
A-invariant subgroup of K to be (X, Y)-generated.

ProposiTioN (2.1 of [6]). Suppose that A and K are gien as above and
assume that the following conditions hold for all z, &' ¢ X*, y, y' e V*:

(@) Cx,, @) S Ko yand Cx,, ') S Ko ;

(b) every element in Cx ({z, y)) tnverted by the involutions in both X — (x)
and Y — (y) lies in K, ;

(c¢) every element in [Cx(x), Y]’ n Ck(y) inverled by the tnvolutions in ¥ —
{y) lies in K., and every element in [Cx(y), X)' n Cx(zx) tnverted by the involu-
tions in X — (x) lies in K,y ;

(d) if Pisan (X, Y)-generated p-subgroup of K where p is an odd prime
then every A-invariant subgroup of P is (X, Y )-generated. Then under these
conditions every A-invariant subgroup of K is (X, Y )-generated.

We also have the following main result of [6].
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TaeorEM A*.  Let G be a group with a nonabelian Sylow 2-subgroup which
18 the direct product of two dihedral groups. If G is fusion-stimple then:

(i) G = Ly X L, where Ly = A or Ly(q1) with q1 odd and ¢ > 5 and
L2 = Zg X Z2, A7 , or Lz (Q2) with Q2 odd and [/} 2 5,’

(i) G/G is of odd order and of rank at most 2.

3. Fusion of involutions

In this and in all succeeding sections we shall assume that G is a minimal
counter-example to our theorem. Welet S = S; X S; be a Sylow 2-subgroup
of G where 8; is a dihedral group and S, is a semi-dihedral group. We let
2; be an involution in the center of S;,%4 = 1, 2. We also let r; and s; be two
involutions which generate S; and if S; is abelian, we set z; = r;. We let s,
be an involution in S; — Z (S;) and we choose v, to be an element of maximal
order in S, such that v3* = 32, and hence, S; = (83, v2).

If we set

S;L = (7‘16],8]62|61,62€Z(S2)>, S;k = (8263, 1)264163,64€Z(Sl)>,

then S = 87 X S5 and 87 =2 S;fors = 1,2. Also every decomposition of S
as a direct product of a dihedral group with a semi-dihedral group is of this
form for suitable e;, 7 = 1, 2, 3, 4.

We have that S, has one conjugacy class of four-groups and that S; has
one class if it is abelian and two otherwise. If A is an elementary abelian
subgroup of S of order 16, then A = (An8;) X (AnS;)and A D Z(S).
also S has one or two conjugacy classes of elementary abelian subgroups of
order 16, according as S; is abelian or nonabelian.

We shall say that G has product fusion if it is possible to choose the factors
ST, 85 in such a way that the following conditions hold:

(a) the involutions in S} are conjugate in G for i = 1, 2;
(b) the involutionsin 8 — (Sf u S5 ) are conjugate in (;
(¢) the elements of order four in Sy are conjugate in G,
(d) @ has exactly three conjugacy classes of involutions.

Since G satisfies the hypotheses of our theorem, we have that 0°(Q) = G
and Z*(@) = 1. Our first goal in this section will be to show that G must
have product fusion.

LeEmma 3.1. If S; is nonabelian, then N¢(S) = SCe(S). If S; is abelian,
then there is a 3-element in Ng(S) which acts nontrivially on Z(S) and
[N6(S):SCs(8)] = 3.

Proof. We first assume that S; is nonabelian. Then @, (S) is the direct
product of two nonabelian dihedral groups and is of index 2 in S. It follows
that every element of odd order in N¢(S) stabilizes the chain S 2D & (S) D 1
and hence, every element of odd order must centralize S. This proves the
first part of the lemma.
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Next, assume that S; is abelian. Then S/Z (8) is a dihedral group and by
congidering the chain S D Z(S) 2 Z(S) n S’ 2 1, we see that S admits a
single nontrivial odd order automorphism which is of order 3. If [N¢(S):
SCs(S)] = 1, then no element in G acts nontrivially on Z (S). In this case
Glauberman’s Z*-Theorem gives a contradiction. The second part of the
lemma now follows directly from this.

Lemma 3.2. Suppose that S, is nonabelian and let A and B be representa-
tives of the two conjugacy classes of elementary abelian subgroups of order 16 in
S. We than have that A is not conjugate to B in G.

Proof. Suppose, by way of contradiction, that A is conjugate to B in G.
Then by Alperin’s Fusion Theorem [1] we can find C and D in S such that
C ~ A, D ~ Bin S and such that C and D are contained in a Sylow 2-sub-
group 7T of Gand Ns(Sn T)is a Sylow 2-subgroup of N¢(Sn T') with C* = D
for some y e N¢(SnT). Let W be the normal closure of C in Ng(Sn T).
Since

C=(Cn&) X (Cns,),

we have W = (W n 81) X (W n 8;) where W n 8S; is a dihedral group for
1 =1,2. Ifgisof odd orderin N¢(S n T'), we have from the structure of W
that C° = (. It follows that

Ne(SnT) = Nygsnny (C)Ns(Sn T).

But then D = (¥ is conjugate to C in S, a contradiction. This proves the
lemma.

LEmMmA 3.3. If S s nonabelian, then, relabeling if necessary, we have:
(1) The involutions in Sy are conjugate in Cgq(z1).

(i) The inwolutions in Sy are conjugate tn N (1 (S:2)").

(iii) The elements of order four in S, are conjugate in Cg(21).

(iv) If A is an elementary abelian subgroup of order 16 wn S and of
X=A4n Sl, Y=A4n Sz, then Ng(A)/C(;(A) = Sa X S; (where Ss 1s the
symmetric group on 3 letters], both X and Y are normal in N ¢(A ), and the involu-
tionsin X, mY,andin A — (X uY) are conjugate in Ng(A ).

Proof. By Burnside’s result and by Lemma 3.1 we have that the involutions
in Z (8) are mutually non-conjugate in G.

Let y be an involution in S, — Z(S.). By Thompson’s lemma, y is con-
jugate in @ to some involution ¢ in Syp.). Choose ¢ such that a Sylow 2-sub-
group of C¢(t) has maximal order. Then Cs(y) is a Sylow 2-subgroup of
Ca(y) or Cs(t) is a Sylow 2-subgroup of C¢(t). Suppose that ¢ is not con-
tained in Z(S). Then for some ge@, we have Cs(t)’ & Cs(y) or
Cs(y)’ € Cs(t). In either case it follows that z ~ 2z, a contradiction.
Thus we have that y is conjugate to an involution in Z (S). But then (y, 21)
is the center of some Sylow 2-subgroup of G and so either y ~ z; or yz ~ 2.
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Replacing S by (sz21, v2) if necessary, we have the involutions in S, are con-
jugate in Cg(21).

Next, let « be an involution in 8; — Z(S;). Again, by Thompson’s lemma
we have that z is conjugate to an involution in {rys;)S;. In particular, « is
conjugate to an involution in Z (S). But then (u, 2;) is the center of some
Sylow 2-subgroup of G and so u ~ 2z or uz ~ 2z . Replacing S; by
(r1 €1, 81 6) for suitable e, e2in Z (S;) if necessary, we have that the involutions
in 8; are conjugate in Cg(22).

Nowlet A = X X Ybeasin (iv). If a,bed and ¢ ~ b in G, then by
Lemma 3.2 it follows that @ ~ bin Ng(4). If zy e A with x e X*, y e V¥,
then by Thompson’s lemma, it follows that 2y is conjugate to an involution in
Z(S)if xzy ¢ Z(S). We have already shown that the involutions in X, in Y,
and in Xz u Yz are conjugate in G and hence, in Ng(4). Since the involu-
tions in Z(S) are mutually non-conjugate and since Ng(4)/Ce(4) is iso-
morphic to a subgroup of GL (4, 2), it follows that (iv) holds.

By the preceding paragraph we conclude that no involution in S, is con-
jugate to an involutionin S — S;. Again let  be an involution in 8; — Z (S:1)
and let T be a Sylow 2-subgroup of C'¢(u) containing Cs(u) = (u, z1) X Se.
Then for some g € G, we have that € (S;)’ € T. Since no involution in S; is
conjugate to an involution in S — 8;, it follows that g e Ne(@:(S:)’). To
complete the proof of the lemma we need to show (iii). Let (w) be the cyclic
group of order 4 in ©;(S;)’ and let » be an element of order 4 in S, — (vg).
By Harada’s Extended Transfer Theorem we have that v is conjugate to an
element of order 4 in S;-2;(S;). It follows that v ~ wu where u ¢ S; and
u’ = 1. Ifu = 1, then we are done and so we can assume that this is not the
case. By the preceding paragraph we can assume that v = 2;, since
(w) char @ (S:)’. If T is a Sylow 2-subgroup of C¢(v) containing Cs(),
we have that (z;) = Z(T) n T". It follows that v ~ we; in Cg(z1). Thus we
have that vz; ~ win C¢(21). Replacing S; by (s, v2 21) if necessary, we con-
clude that the elements of order 4 in S, are conjugate in C¢(z1). This com-
pletes the proof of the lemma.

Lemma 34. If S is abelian, then, relabeling <f necessary, we have:
(1) The involutions in Sy are conjugate in Cq(S,).

(i) The tnvolutions in S, are conjugate in Ce(Sy).

(iii) The elements of order 4 in S, are conjugate in Cs(Sy).

(iv) If A is an clementary abelian subgroup of order 16 in S and if
X=An8,Y =A4AnS8;, then Neg(A)/Co(A) =2 8; X Z3, both X and Y
are normal in N¢(A), and the involutions in X, in Y, and in A — (X u Y)
are conjugate in Ng(A).

Proof. Let g be a 3-clement in N¢(S) which acts nontrivially on Z (S)
and which exists by Lemma 3.1. 'We may then relabel so that S; = [Z (8S), ¢]
and S; = C,(g9) and so (i) holds.

By Thompson’s lemma every involution in S is conjugate to an involution
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inZ(8). Alsoby Burnside’s lemma we have that 21, 2., and z: 2, are mutually
non-conjugatein . Let A = X X Ybeasin (iv). Ifa,beA*anda ~b
in G, then @ ~ b in Ng(4) since S has but one conjugacy class of elementary
abelian subgroups of order 16 when S; is abelian. We also have that g e Ng(4)
and that ¥ = C4(¢) and since N¢(4)/Ce(A) is isomorphic to a subgroup of
GL (4, 2), we conclude that the involutions in ¥ are conjugate in Cyga) (X)
and that both (ii) and (iv) hold.

Next, let v be an element of order 4 in S, — €, (S;). By Harada’s theorem
v ~ wx where w is an element of order 4 in Q;(S;) and z ¢ S;. By the above
we can find a 3-element ¢ in C¢ () which acts nontrivially on Cs(v). It follows
that there exists a 3-element in C¢ (wz ) which acts nontrivially on S; X (wz).
This forces x to be 1 and we have v ~ win Ng(S;1). Since Cyqesy) (S2) covers
Ng(81)/Ce(S1), we conclude that v ~ win C¢(S;). This completes the proof
of the lemma.

ProrosiTioN 3.5. The group G has product fuston. The tnvolutions in S,
are conjugate 1 N (1 (S2)"), and hence, in Ce(Z (S;)). The involutions in S,
are conjugate tn Cq¢(Z (S1)) and the elements of order 4 in S are conjugate in
CalZ(8:)).

Proof. This lemma, is a direct consequence of Lemmas 3.3 and 3.4.
Our next goal is to determine the structures of the centralizers of involu-
tions in . We first prove

Lemma 3.6. Let C = Co(zr). IfC = C/0O(C), then C = 81 X Cy where Cy
has a normal subgroup Cy of odd index such that Se & Co and Co =2 My, L;(gz),
@ = —1 (mod 4), or Us(g:), ¢ = 1 (mod 4).

Proof. Set €y = 0°(C). We claim that S, is a Sylow 2-subgroup of C; .
It follows by Proposition 3.5 that S; & C1. Set Ty = Sin C;. Then T = T X
S is a Sylow 2-subgroup of Cy. Suppose that T is non-cyclic and let f be
an involution in 75y — (&). By Thompson’s lemma { is conjugate in C; to an
involution in (2)S.. It follows that { is conjugate in C to 2 , a contradiction.
Next suppose that T} is eyclic and nontrivial. Let () = T, . By Harada’s theo-
rem { is conjugate to an element in @ \S, . But this forces 21 to be conjugate to
an involution in Z (S) — (21), a contradiction. Therefore S, is a Sylow 2-sub-
group of € as asserted.

If we now set Co = 0% (Cy), then (o is a simple SD-group. The lemma is
now a direct consequence of the main result of [2], once we have shown that S,
centralizes C;. To see this let ¢ be an arbitrary involution in S; and let C; be
the preimage of €y in C. Then {f) X S; is a Sylow 2-subgroup of (t)C; and
since G has product fusion, we have that ¢ is isolated in ({)C;. Now Glauber-
man’s theorem yields that ¢ centralizes C;. Since S; = 2:(S:), we conclude
that S; centralizes C .

We shall retain the notation of this lemma. Henceforth, welet C = Cq(21)
and we let C; denote the preimage in C of C;,7 = 0, 1.
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Lemma 3.7. If D = C¢(z) and D = D/O(D), then D has a normal sub-
group Dy of odd index of the form Dy X D, where Dy and D» have the following
structures:

(l) Sl g Dl and Dl = A7 5 PSL(Z, ql), [/} Odd, (74} Z 5, or Z2 X Z2.'

(i) S € D, and D, == SL*(2, 3) i Co/O(C) = My, SL*(2, ) if
Co = Ly (g2), or SU*(2, go) #f Co =2 Us(ge).

Also both Dy and D, are normal in D.

Proof. Set V = {803, v2), s0 that the index of V in S, equals 2 and V is a
generalized quaternion group. Then we have that s is not conjugate in D
to any involution in S; X V. From the structure of Cy the elements of order
4 in V are conjugate in Con D. By Proposition 3.5 the involutions in S; are
conjugate in D. It follows that D contains a subgroup E of index 2 such that
81 X V is a Sylow 2-subgroup of E.

Set D = D/Z*(D). Then Eis a fusion-simple group and S; X ¥ isa direct
product of two dihedral groups. Furthermore, V is nonabelian and thus we
can apply Theorem A* of [6] to conclude that E has a normal subgroup of odd
index of the form L; X L, where

i S c L1andL1NA7,L2(Q1) ¢ odd, %, > 5,0r Zs X Zy;
(i) V S Lyand Ly = 47, La(gs), g Odd ¢ > 5.

Also both I, and L, are normal in E. By considering the preimage in D
of Lx(%), we see that L, 2¢ A7 .

Now let Ly and L be the preimages in D of I, and L, respectively. We have
that S; X (&) is a Sylow 2-subgroup of L, and so L, has a normal subgroup D;
of index 2 such that Sy C Dy. If 8 = Dy, then S is a four-group and since
@ has product fus1on, D, <« D. 1t Dis simple, then D, =2 I and Dy char L1
Again, we have D; <{| D. By a result of Schur [8] we have that L, = SL (2, ¢3).
Moreover, % centralizes L, a,n;d so Ly = (Isn C,y)”. From this it follows that
g = 31 Co/O(C) =X Muorg, = ¢if Co/O(C) = Ls(g) or Us(ge).

We have 8; X (%) is a Sylow 2-subgroup of (5;)D; and since G has product
fusion, 5; is isolated in (5,)D;. It follows by Glauberman’s theorem that 3
centralizes Dy. Set D, = (5,)L,. Then D, centralizes Dy and Dy n D, = 1.
Also D, =~ SL*(2, 3) if Co/O(C) = My, SL*(2,¢) if Co/O(C) = Ls(ge),
or SU*(2, @) if Co/ 0(C) = Us(g). Moreover, D, char C5(D;) and so
Dy <A D. Set Dy = D; X D,. This completes the proof of the lemma.

Henceforth we let D = Cg(21) and we let D; denote the preimage in D of
D;,7=0,1,2. We also find it convenient to fix some further notation. We
let A denote a fixed elementary abelian subgroup of order 16 in S. Set
X=A4A4n8andY = 4 n8,. Alsolet z; denote the involutions in X and
ys denote the involutionsin Y, 72 = 1,2,3. Finally, welet zyand z;and y, = 2, .

We now have

ProposiTion 3.8. If
(Ce(X))™ = Ce(X)/0(Ca(X)), (Ca(Y)) = Ca(Y)/0(Ca(Y)),
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M=0 (Co(X)), and N = 0*(Ce(Y)), then (Ce(X))” = X X M, (Ca(Y))~
= Y X N, and M and N contain characteristic subgroups of odd index, M, and
No respectively such that

(1) 8 & My= Co/O(C);

Proof. This proposition is a direct consequence of Lemmas 3.6 and 3.7.

We shall retain the notation of this proposition and also we shall let Mo
and N, denote the preimages in C¢(X) and Ce(Y') of M, and N, respectively.
Wenote that O (Co(X)) =0 ) = O(M,) and O (Ce(Y)) = O(N) = O (N,).

_Lemma 39. If B = Cg(z12:) and B = B/O(B), then B = 8, X By where
By has a normal subgroup By of odd index such that Sy By and By =2 D,/0 (D).

Proof. We first show that 2z, is isolated in B. Suppose, on the contrary,
that 21 ~ ¢ in B where {e S — (z1). Since G has product fusion, we have
te Sy. But thenz = 212120 ~ {212, ~ 212, , a contradiction. It follows that
B = (Cs(z1))” = (Cy(z))” and this lemma is now a direct consequence of
Lemmas 3.6 and 3.7.

Henceforth, we shalllet B = C4(212:) and B; shall denote the preimage in B
of B;,7=0, 1.

4. Subgroup structure of G

In this section we study the subgroup structure of G to the extent needed to
enable us to construct a suitable signalizer functor on G. In this section H
will denote a proper subgroup of G. Moreover, since we are primarily con-
cerned with the subgroups of G which contain A = X X Y, we shall assume
that A © H. In order to study the abstract structure of H, we can assume
without loss of generality that H n S is a Sylow 2-subgroup of H.

We first prove

Lemma 4.1. If H has an isolated tnvolution, then either Cy(x) or Cu(y)
covers H/O (H) for some x € X* or y e Y*.

Proof. SetT = Hn S. Then we must have Z(T) € A. Thusif zisan
isolated involution in H, we can assume that z e A. By Glauberman’s theorem
Cx(z) covers H/O(H). Suppose that z¢ X uY. Then z = zy with z e X*,
yeY*. By Lemma 3.9 both z and y are isolated in Cg(z). In particular,
they are isolated in Cx(2) and it follows that both Cx(z) and Cx(y) cover
H/O(H) in this case.

Lemma 4.2. If H contains no isolated involution and H = H/O(H), then
O’ (H) has a normal subgroup of odd index of the form Ly X L, where both Ly and
L. are normal <n H and have the following structures:

(i) Sin Ly is a Sylow 2-subgroup of Ly and Ly = A+, Ly (r1), 1 0dd, 11 > 5,
or Z2 X Z2 .
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(i) Sy n Ly is a Sylow 2-subgroup of L and L, =~ Mn, L;(r),
r, = —1 (mod 4), Us(rz), 12 = 1 (mod 4), A7, Le(rs), 72 odd, r» > b, or
Zo X Zy.

Proof. Set K = O(H)and T = Sn K sothat K = O°(H) and T is a
Sylow 2-subgroup of K. Alsoset T; = TnS;,7=1,2.

Suppose first that T1n X = 1. Then we must have 71y = 1. But Hn 8
covers H/K and it follows that 2, is isolated in H, contrary to our assumptions.
Thus wehave Tin X £ 1. A similar argument gives that Ton Y > 1.

If T';is eyelic, ¢ = 1, 2, or if T’ is generalized quaternion, then it follows that
K contains an isolated involution which is not the case. Thus T is a dihedral
group and 7% is a dihedral or a semi-dihedral group.

Suppose that T ## T1 X Ty. Since T, < T and [Ns(T2):T:Cs(T>)] < 2,
we conclude that Ty X T = T2 Cr(T:) is of index 1 or 2in T. Thus this
index must be 2.

If there are involutions in ' — Ty X T.,let £ = i1 {» be one where ¢; is an
involution in S;, ¢ = 1, 2. If there are none, let ¢ = #; ¢ be an element of
order 4in T' — T X T where # is an involution in S; and ¢, is an element of
order 4 in S, . Either by Thompson’s lemma or by Harada’s theorem ¢ is con-
jugate in K to some element % in T4 7.

We have that £ = Crz(t) is abelian of type (2, 2, 2) or (2, 4) and Cr(u)
contains an abelian subgroup of type (2, 2, 2,2) or (2,2,4). Itfollowsthat ¥
is contained in abelian subgroup of K of type (2,2, 2,2) or (2,2,4). Wecan
then conclude that for some & € Cx ({1, 22)), we have ¢* is contained in T; T:.
By Section 3 we see that Cx ({21, 22)) has a normal subgroup of index 2 which
contains T T, and this is a contradiction. Therefore T = Ty X T, is a
Sylow 2-subgroup of K.

If T is abelian, then the structure of K is determined by [10]. Since G has
product fusion, K 2¢ L,(16) and consequently, K’ is of odd order and has the
asserted structure. Suppose that T is nonabelian. Then we are in a position
to apply either Theorem A* of [6] or we utilize the fact that we are working in a
minimal counter-example to our theorem. In either case K is fusion-simple
and our lemma is proved.

Levmma 4.3. If H contains no isolated involutions, if J = O°(H)A, and if
H = H/O(H), then J contains a normal subgroup of odd index of the form
Fy X Fy where Fy and Fy have the following structures:

() Sy n Fiis a Sylow 2-subgroup of 1 and F1 = A, Ly (1), PGL (2, 1),
71 Odd, or Z2 X Z2 .

Gi) S;n Fy is a Sylow 2-subgroup of Fy and Fy = Mu, Ls(ry),
ro = —1 (mod 4), Us(r2), 72 = 1 (mod 4), A7, Le(r2), PGL(2, 2), 72 0dd, or
Zy X Zs.

Also both Fy and F, are normal in J.

Proof. By the preceding lemma I—{_ = 92 (H) has a normal subgroup of
odd index of the form L; X L, where S; n L; is a Sylow 2-subgroup of L; and
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L; has the structure specified in that lemma, ¢ = 1, 2. Since G has product
fusion, Glauberman’s theorem yields that X centralizes L, and Y centralizes
L. SetF,=IL,XandF, = L, Y. Then F,has the structure asserted in the
conclusion of this lemma and S; n F; is a Sylow 2-subgroup of F;, 7 = 1, 2.
Moreover, F; and F, centralize each other and F;n F, = 1. In order to obtain
the conclusion of the lemma it is sufficient to show that F; <1 J, ¢ = 1, 2.
If X € Lyand Y C L,, then this follows from the fact that L; <{J, 7 = 1, 2.

Suppose then that X &€ L,. If L, = Z, X Z,, then W = K n S; is a four-
group and W = L,. It follows thatJ = (N,(W))". From Proposition 3.8
we conclude that F; char Cy (W) <|J and so Fy <|J. If Ly is a simple group,
then C;(Ly) n Ly, = 1. Since C;(L,) is a D-group, we have F; char Cy(L;)
and that F; < J.

Suppose now that ¥ & L,. Then S, n L, is a dihedral group and so
Y (S: n L) is also a dihedral group. Arguing as in the preceding paragraph
we can conclude that F, <{J as well. This completes the proof.

We now find it convenient to fix some more notation. We set p. = 3 if
Mo/O(M) = My, we set ps to be the prime which divides ¢, if Mo/O (M) =
L;(g2), and we do not define p, if Mo/O (M) = Us(gz). Also we let 8, denote
the set of all odd primes which divide the order of Cy0an (Y).

Our next goal is to prove some results on the transitivity of maximal A-in-
variant p-subgroups under conjugation by the elements in N ¢ (A4 ) where p is an
odd prime.

Lremma 4.4. Suppose that p 1s an odd prime and that p ¢S, . If P and P,
are maximal A -invariant p-subgroups of H, then Py ~ Py in Ny (A).

Proof. Any maximal A-invariant p-subgroup of H contains a Sylow p-sub-
group of O (H ) and any two A-invariant Sylow p-subgroups of O (H) are con-
jugate in Comy (A). It isimmediate from this that it will suffice to prove that
Py~ P,in Na(A) where H = H/O (H).

If H has no isolated involution and if J = O (H )4, then by the preceding
lemma J has a normal subgroup of odd index of the form F; X F, where S;n F;
is a Sylow 2-subgroup of F; and F; has the structure asserted in the conclusion
of that lemma, ¢z = 1, 2.

If F; denotes the preimage in J of F;, 4 = 1,2, then F; = (F1n N,)~ and
Fy, = (Fyn M,)~. Since p¢$,, we have that p does not divide the order
of Cs,(Y).

Set U; = P;nF,,V,=P;nF,,and R; = C5,(A). ThenbyLemmas 2.1,
2.2, or 2.3 and by the structures of Fy and Fo, Uy Vi~ Uy Vain N, (4).
Also by the maximality of P; we have that R; is a Sylow p-subgroup of
Ny U;V)nCs(A), 3 =1,2. Since P; = U;V;R:, 7 = 1,2, we can con-
clude as in the proof of Lemma 2.1 that Py ~ P, in N;(4).

Next we consider the case that H contains an isolated involution. Suppose
first that some z ¢ X* isisolated. For definiteness, letz = 2;. Then we have
J=XX (JnC)". SetF X 0" (JnC)". ThenS;nF isa Sylow 2-sub-
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group of F and since p ¢$, , p does not divide the order of C#(Y). Since F is
an SD-group, a @-group, a D-group, or a 2-group, we have by Lemmas 2.1,
2.2, and 2.3 that P, ~ P, in Nun,,,~(¥) and hence, in Ny(4).

If no involution in X is isolated in H, then by Lemma 4.1 we have that some
y e Y* is isolated in H. For definiteness, let ¥ = 5. Set J; = J n Dy,
Jo=JnDy,and E = 0(C;(4)). SinceJ = (J nD)”, we haveJ, and J,
are normal inJ. Also J; n J; has odd order and so J;J; = J1 X J.. Now
let K = J:J,EOH) and K = K/O(K). Also set F; = 0" (J;), 7 = 1, 2.
As above we have that p does not divide Cs,(¥). Since

Pi = (Pinﬁl X Pian)(PinE'), 1= 1,2,
we conclude that Py ~ Py in Nz (A). This completes the proof of the lemma.

ProrosiTioN 4.5. Suppose that p is an odd prime and that p ¢$;. If P,
and P, are maximal A-invariant p-subgroups of G, then Py ~ Py in Ng(A).

Proof. Suppose that the proposition is false and choose Py and P, such that
they violate it and such that the order of R = Py n P, is maximal subject to
this. Set K = N¢(R). Without loss we can assume that K n S is a Sylow
S-subgroup of K. If R 5 1, then K is a proper subgroup of G and the pre-
ceding lemma is applicable. This leads to a contradiction by a standard
argument.

In any case, we have P; % 1,7 = 1,2. Considering the action of A on P;,
we see then that Cp, (T;) # 1 for some maximal subgroup T; of 4,¢ = 1, 2.
Setting H = C¢(T) where T = Tin Ty 5 1 and hence, Cp,(T) 5 1,¢ = 1,2,
we can assume without loss that S n H is a Sylow 2-subgroup of H. Again,
the preceding lemma is applicable. We let @; be a maximal A-invariant
p-subgroup of G containing C», (T') as well as a maximal A-invariant p-sub-
group R; of H,7 = 1,2. Then @;n P; 5 1,7 = 1, 2 and @y contains R, for
some u e Nu(A) by the preceding lemma. These conditions together with
our maximal choice of Py n P, = R now force R # 1 and the lemma is proved.

Levma 4.6. If pe$S; and if P is a maximal A-invariant p-subgroup of G,
then P n Mo covers a mazximal Y -invariant p-subgroup of Mo/O (M ).

Proof. Let T be the set of all maximal A-invariant p-subgroups P* of G
such that P* covers a maximal Y-invariant p-subgroup of Mo/O(M). Sup-
pose, by way of contradiction, that there exist maximal 4-invariant p-sub-
groups of (¢ not contained in I'.  Among those not in I', select the subset 3
consisting of all subgroups P, such that the order of Py n M, is maximal. For
each group P €3, let T' (P1) denote the subset of I' which consists of all groups
P, such that P, D Pyn M,. Itis clear that T'(Py) = @ for each P1e 3. We
now consider the set of all pairs of groups (P1, Ps) where Py e 3and Py e T (Py)
and among these we choose a pair (P, P;) such that the order of R = Pyn P,
is maximal.

Suppose that B = 1. Since P1n My C R, Pyn M, = 1. Since P, # 1,
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Cp,(x) 5 1 for some x e X*. But a maximal A-invariant p-subgroup of
Cs(x) covers a maximal Y-invariant p-subgroup of My/O (M) and so we
can find some P; eI containing Cp,(x). Since Py n My, = 1, we have
P; e (P1). Since Py n P; 5 1, we have contradicted the maximality of R.
Thus we have that B = 1.

Set H = Ng(R). Without loss we can assume S n H is a Sylow 2-subgroup
of H. Alsoset K = O°(H)A. NowletQ; = Np,(R)and let V; be a maximal
A-invariant p-subgroup of ¢ containing @; and a maximal A4-invariant p-sub-
group U, of H,7 = 1, 2.

Suppose that VieI';since Vi 2 R 2 Pin My, we have VieI'(P1). Since
Vin Py D @1 D R, we have a contradiction. It follows that V,¢T. Since
Vin M, 2 Pin M,, we see that V3.

Suppose next that Vo ¢ I'.  Since Vo, 2 R 2 Py n My, it follows that Vi €3
and also that Vo n My = Py n My. From this it follows that P, eI'(V3)
and since P, n V, D R, we again have a contradiction. Thus we have that
Vz el

Now suppose that H has no isolated involution and set K = 0°(H)A and
H = H/O(H). Alsolet F = F, X F, be the normal subgroup of odd index
in K which satisfies the conclusion of Lemma 4.3 and retain the notation of
that lemma. Finally, let F; denote the preimage in H of F;,7 = 1,2. Then
we see that Fy = (Fy n M,)".

By the maximality of U; we have (U1n F2)™ is a maximal Y-invariant p-sub-
group of F,. Since Uy n My 2 R n M, and the order of U n M, equals the
order of Py n My, we conclude that

UlnMogRQO(H)

Since (Uin Fy)” = (UinFon M,), it follows that (UinF;)” = 1. Butnow
the structure of F, forces (U n F,)~ = 1 also. It follows then that
U; = (U;n Fy1) Cp,(A) for i = 1, 2 and we also have that (U;n F;)” is a
maximal X-invariant p-subgroup of Fy. As in previous arguments we then
have that Us = U, for some k eNg(A). Since normalizes M, and
Vs D R D Py n M, it follows that Vi e T'(Py). This again contradicts the
maximality of R, since Vs n Py O R.

We can assume then that H contains an isolated involution. Tirst sup-
pose that z is isolated in H for some z ¢ X*. Then we have that
K = X X (K n M) and that U; is a maximal y-invariant p-subgroup of
(KnaM),i=1,2. Since (KnM,)~ < (Kn M), we see that

U= (UinKnMy) Cp,(4), i=1,2.

But as above we conclude that (Uin K n M,)~ = 1 and hence, that
(Usn KnM,)” = lalso. Then U,is a Sylow p-subgroup of Cx(4),7 = 1,2
and it follows easily that Uy ~ U,in Nx(4). But this leads to the same con-
tradiction as above.

Finally, we consider the case that an involution y in Y is isolated in H.



370 FREDRICK L. SMITH

For definiteness, we let y = y1. Set K; = Kn D;, 7 = 1,2 and let
E = 0(Cx(4)). Alsoset L = KiK,EO(H) and let L = L/O(L). Then
we have that U; C L and that L = (K, X K,)E. Finally, let F; = 0" (K,)
and let F; denote the preimage in L of F;, 7 = 1,2. Then F, = (Fyn M)~
and we conclude as above that (U;n F.)” = 1,7 = 1,2. Again, we see that
U; ~ U, in N (A) and this leads to the same contradiction as above. This
however forces our lemma, to be true.

LeEmMma 4.7.  Suppose that p € S, and that P; is @ mazimal A-invariant p-sub-
group of G, 1 = 1,2. If Pyn Pyn M, covers a maximal Y-invariant p-subgroup
Of Mo/O(M), then P1 ~ P2 m Ng(A)

Proof. Suppose that the lemma is false and among all pairs of subgroups
violating the lemma choose P; and P, such that the order of R = Py n P, is
maximal. Then we see that R covers a maximal Y-invariant p-subgroup of
My/O (M) and in particular, B = 1.

Set H = Ng(R) and let U; be a maximal A-invariant p-subgroup of H
containing Ny, (R), 7 = 1, 2. Since R covers a maximal Y-invariant p-sub-
group of My/0 (M) and argueing as in the previous lemma, we can conclude
that Uy ~ Uy in Ng(A). This leads to a contradiction by a standard argu-
ment and proves the lemma.

ProposimioN 4.8. Suppose that p € S.. Then there exist mazimal A-in-
variant p-subgroups Py and Py of G such that P; n My is @ maximal A-invariant
p-subgroup of Moand [Pyn My, Y] S O(M) and [P My, Y] EOM). Let
P be any maximal A-invariant p-subgroup of G. If [P n M,, Y] € O(M),
then P ~ Pyand if [P n M,, Y] $ O(M), then P ~ Py in Ng(A).

Proof. Let Q; be a maximal A-invariant p-subgroup of My, ¢ = 1, 2
such that [@:, Y] = O(M) and [Q:, Y] ¢ O(M) and let P; be a maximal
A-invariant p-subgroup of G containing @;,7 = 1, 2.

Suppose that P is a maximal A-invariant p-subgroup of G and that
[PaM,,Y S OW).

Since P n M, covers a maximal Y-invariant p-subgroup of M,/O (M) by
Lemma 4.6, we have

(PnM,)" € Pyn M, forsomemeNy,(4).

Then P"n Pin My = (P nM,)" covers a maximal ¥-invariant p-subgroup of
Mo/O(M). By the preceding lemma P™ ~ P1in N¢(A) and hence, P ~ P,
in N @ (A )

If[PnM,,Y] $ O (M), we can apply a similar argument to conclude that
P ~ Pyin Ng(4).

We shall say that a proper subgroup H of G covers Mo/O(M) if H n M,
covers Mo/O (M ). Similarly, we shall say that H covers No/O (N ) if H n N,
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covers No/O(N). We now prove some results concerning p-local subgroups
of G which eover Mo/O (M) and No/O (N ).

Lemma 4.9. Suppose that a Sylow p-subgroup of O(C) s nontrivial. If
P is a mazimal A-invariant p-subgroup of G, then there is a p-local subgroup K
of G containing PA and covering Mo/O (M ).

Proof. Let @ be an A-invariant Sylow p-subgroup of O(C). Then N¢(Q)
contains 4 and covers Co/O(C) and hence, covers Mo/O(M). Let R be
a maximal A-invariant p-subgroup of N¢(Q) so that R covers a maximal
Y-invariant p-subgroup of Mo/O(M). If peS:, we choose R such that
R~ (MynP) in Ng,(Y) where My = Mo/O(M).

Now among all p-local subgroups of G containing RA and covering
Mo/O (M) choose K such that an 4-invariant p-subgroup U of K has maxi-
mal order subject to containing R. Suppose that U is not a maximal A-in-
variant p-subgroup of G. Then there exists an A-invariant p-subgroup of G
which properly contains and normalizes U. We denote this subgroup by
V.

By Lemmas 4.1, 4.2, and 4.3, 0’ (K)A has a normal subgroup L containing
O(K) such that L = (L n My)~ = M,/OM) in K = K/O(K). Set
F = LUA and let F = F/O(F). By the maximality of U we have that
Vo= U nO(F)isa Sylow p-subgroup of O (F). Also F = (LanM,)" U X X
and N inwu, (Vo) covers L n M, by the Frattini argument and hence, covers
Moy/O(M).

Now Cy(z) & U for some » ¢ X*. Suppose x centralizes Vo. Then
Cy(x) O U and we can find a maximal A-invariant p-subgroup of C¢(z)
containing Cy (xz) such that this subgroup and A are contained in a p-local
subgroup of C¢(x) which covers Mo/O(M). However, this contradicts the
maximality of U and our choice of K. Thus we can assume that [V, 2] & 1.
Set Vi = [Vo,2]. Then V; is normalized by UCvy(z), by A4, and by
Ninw, (Vo). But then N¢(Vi) contradicts our choice of K. This contra-
diction then proves our lemma since U must be a maximal A-invariant p-sub-
group of Gand U ~ P in Ng(A).

Levuma 4.10  Suppose that a Sylow p-subgroup of O (D) is nontrivial. Then
there exists a p-local subgroup H of G containing A and a maximal A-invariant
p-subgroup P of G such that H covers No/O (N).

Proof. Let V be an A-invariant Sylow p-subgroup of O(D). Then N, (V)
contains A and covers D:/0 (D) and hence, covers No/O(N). Now among
all p-local subgroups of G containing A and covering No/O(N) choose H
such that an A-invariant p-subgroup of H has maximal order. Suppose
that P'is not a maximal A-invariant p-subgroup of G. Then there is an
A-invariant p-subgroup U of G containing P properly and normalizing P.
Then Cy(y) E P for some y € Y*. We can now argue as in the preceding
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lemma to obtain a contradiction to our choice of H. It follows that P is a
maximal A-invariant p-subgroup of G and the lemma is proved.

We conclude this section with a result needed in the next.
Levma 4.11. Suppose p € $: and R is an A-invariant p-subgroup such that
R=(Rn0(Csx))]|xeXH.
Then R s contained in maximal A-invariant p-subgroups P and Q of G such that
[PnM,, YIS OM) and [@n M,, Y] E0OW).

Proof. Let U be a maximal A-invariant p-subgroup of G containing R.
By the preceding Lemma 4.9 there is a p-local subgroup K of G containing
UA and covering Mo/O(M). Then 0°(K)A has a normal subgroup L con-
taining O (K) such that

L= (LaM) =My/OM) inK = K/O(K).

Let J = LUA and set J = J/O(J). ThenJ = (L nM,)~ U X X and for
z ¢ X* we have that
[(Bn0O(Ce(x))),” (Ln Mo)]

is a normal subgroup of odd orderin L = (L n M,)~. It follows that (R n O
(Ce¢(®)))~ centralizes L and so we conclude that R n O (Ce(z)) & O(J).
It follows that R € O(J). Since J covers Mo/0 (M ), we have that maximal
A-invariant p-subgroups of J cover maximal Y-invariant p-subgroups of
My/O(M). Moreover, we can find maximal A-invariant p-subgroups @, and
Q, of J such that O(J) n U C @1 n @, and such that

[QlnM,, YIS OM) and [@n M,, Y] E OWM).

It is now only necessary to choose P; to be a maximal 4-invariant p-subgroup
of G containing Q;, 2 = 1, 2 in order to obtain the conclusion of our lemma.
5. An A-signalizer functor

Our main goal in this section is to show that if for a ¢ A* we set
0(Ce(a)) = (Co(@)n (Co@)) nO(Caly)) |z e X*, y e Y,

then 0 is an A-signalizer functor on . In order to do this we must show that
0(Cg(a)) has odd order for all @ € A* and that 0 satisfies the balance condition

0(Ce(a)) nO Ce(d) S 6(Cs(d)), a,beA*.

We shall use Proposition 2.1 of [6] to show this.

We are retaining the following notation of the preceding sections: B, C, D,
B], Cl,Do,D1,D2,M, ﬂ[o,N, No, Co, B,.

We first prove the following useful lemma.
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Lemwma 5.1, The following conditions hold for all z, x' € X*,y, y' ¢ Y*:
(i) Co@)n0(Co(@)) & 0(Celx)).
(1) Cely)nO(Colx))nO(Caly’)) S O(Co(y)).
(i) Colxy)nO0(Ce@')) S 0(Celay)).
(iv) [D n O0(Ce()), D] & OD) and in particular, (D n O(Ce(zx)))”
centralizes Y in D = D/O(D).

Proof. Choosez e X — (z)andset R = CnO(Ce(z)). If C = C/0(C),
then [R, C4] is a normal subgroup of odd order in Cisince C; = (CinM)™. It
follows that R centralizes C; and so R € O(C). Now (i) follows easily
from this.

Choosey e Y — (yn)andset @ = DnO(C)nO0(Ce(y)). If D= D/O(D),
then [, D.] is a normal subgroup of odd order in D;, ¢ = 1, 2 since D; =
(DinN) and Dy, = (D: n M)”. From this it follows that Q centralizes
both D and D, and hence, R € O(D). Then (ii) follows easily from this.

Next, choose z in X — (i) and set P = Bn 0(Ce(z)). If B = B/O(B),
then [P, By] is a normal subgroup of odd order in B; since By = (Byn M)™.
We conclude that R € O (B) and (iii) follows easily from this.

If D = D/O(D), then [(D n O(C))~, D,] is a normal subgroup of odd order
in Dy. It follows that (D n O(C))™ centralizes D, and (iv) is a consequence
of this.

LemwmaA 5.2. Let E be an A-invariant subgroup of G of odd order such thai
AE C H n K where H is a proper subgroup of G covering No/O(N) and K is a
proper subgroup of G covering Mo/O(M ). Then E € O(H) n O(K) #f and
only if

=(En0Ce@))n0(Cely))|zeX¥ ye¥®.

Proof. Without loss of generality we can assume that H = O*(H)A and
= O’(K)A. Set H = H/O(H) and K = K/O(K). By Lemmas 4.1,
4.2, and 4.3 we have that H has a normal subgroup of odd index of the form
Fy X Fywhere X C F,, Y C F,, and F; = No/O(N) and K has a normal
subgroup of odd index of the form L; X L, where X € L, ¥ C L, and
L, = My/O(M). Let F; be the preimage in H of F;, ¢ = 1, 2 and let L; be
the preimage in K of L;j,j = 1, 2. We then have F; = (F1 nNo) , P, =
(anMo) L1 = (L;nNo) a,ndL2 = (LGMo) .

First assume that £ C O(H) nO(K)andlet R = EnCnD. SetC =
C/0(C). Since C = (Con M,)~ = (Con Mon Ly)7, it follows that [R, Co] is
a normal subgroup of odd order in Cy and thus, that R centralizes C,. We
conclude that R € O0(C). Now set D = D/OD). Then D, =
(DyinNon Fy)” and D, = (D2n C)~ and so we see as above that R centralizes
both Dy and D,. It follows that R € O(D). From this we easily conclude
that

Ce (&, 9)) € 0(Ce(x))n0(Cely)) forallzeX* yeV*
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Since £ = (Cx((x, ¥)) | x ¢ X*, y ¢ Y*), the “only if”’ part of the lemma is
proved.
Next, assume that £ = (En 0(Cq¢(z)) n 0(Ce(y))). Set

R=0C)nOD)nE.

We then see that R centralizes F; and F, in H and that R centralizes L; and
L, in K. It follows that R € O(H) n O(K) and easily conclude that E C
O(H)n O(K). This completes the proof of the lemma.

We now select an arbitrary a e A and set K = 0(Cs(a)). By Lemma 5.1
K has odd order. If for z ¢ X* and y ¢ Y* we set

K:c.]/ = K n O(CG(x)) n O(Cd(y))’

then K., <| Cx(x,y) and K = (K,, |z ¢ X* y e Y*. We shall show that
every A-invariant subgroup of K is (X, Y )-generated with respect to the
subgroups K., .

LemMaA 5.3. Forall z, 2’ ¢ X*, y, y¢ € Y* we have
CKz.y (x') g Kx'ﬂl and CKz,y (y,) —C- Kz,ll' .

Proof. By Lemma 5.1, Cg,, (z'] € 0(Ce(z’)) and Cx,, (¥') S 0(Ce(y’))
and the lemma follows easily from this.

Lemma 54 Every element in Cx ((x, y)) inverted by the involulions in both
X —{xyand Y — (y) liesin K., .

Proof. Suppose that k € Ck (z, y) and that k is inverted by the involutions
in both X — @) and ¥ — (y). By (i) of Lemma 5.1, k ¢ O (C¢(z)) and then
by (iv) of the same lemma, k € 0(Cs(y)). It follows that k € K,y .

LevMaA 5.5. The elements in [C (zx), Y] n Cx(x) tnverted by the tnvolu-
tions in Y — (y) lie in K, . The elements in [Cx(y), 2]’ n Cx(x) inverted by
the tnvolutions in X — (x) lie in Ky y.

Proof. For definiteness let x = z; and y = 1. We then have that
[(KnC), Y] S (Con 0(Cela))” S 0(Cq,(a))
which is abelian in ¢ = C/0(C). It follows that
[KnC,Y) S O(Q).

If ge[KnC, Y) nD and g is inverted by y. , then g e O (D) by (iv) of Lemma
5.1. Thuswehavege K.y.

We also see that [K n D), X]is an X-invariant subgroup of D; of odd order
and so it is abelian by the structure of Dyin D = D/O(D). It follows that
[KnD, X! COWMD). IfgelKnD, X} nC and ¢ is inverted by x., then
g € O(C) since ¢ is of odd order and so g e K, 5.
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LemmA 5.6. If R is an (X, Y')-generated p-subgroup of K for some prime p,
then every A-invariant subgroup of R is (X, Y )-generated.

Proof. We assume that B s 1, otherwise the lemma is trivial. By
Lemmas 4.9, 4.10, and 4.11 we can find a maximal A-invariant p-subgroup P
of @ containing B and we can find p-local subgroups H and K of G containing
PA such that H covers No/O(N) and K covers Mo/O(M). Now by Lemma,
5.2 we have R € O(H) n O(K) and by the same lemma we conclude that
every A-invariant subgroup of R is (X, Y')-generated.

ProrosiTioN 5.7. We have that 8 is an A-signalizer functor on G and that
the group W = (8(C¢(a)) | a e A*) is of odd order.

Proof. Since 6(Ce(a)), a ¢ A¥, is of odd order, we need only verify the
balance condition. Choose a, b e A* and set K = 6(Cq¢(a)). Then Lemmas
5.3-5.6 show that K satisfies conditions (a)—(d) of Proposition 2.1 of [6]. It
follows by that proposition that every A-invariant subgroup of K is (X, Y')-
generated. Since K n C¢(b) is A-invariant, we conclude that

KnCe() = (Koyn Cad) |z e X* ye V¥ S 0(Celd)).

Thus 6 is an A-signalizer functor on G and the second part of the lemma, is a
consequence of the main result of Goldschmidt’s paper [4].

6. A strongly imbedded subgroup

In this section we will show that N (W) is a strongly imbedded subgroup
of Gif W s 1 where W is the group defined in Proposition 5.7. We retain
the notation of the preceding sections and we set G* = Ng(W).

If H is a proper subgroup of G containing A and covering No/O (N ), then
by Lemmas 4.1, 4.2, and 4.3 we conclude that H has a normal subgroup F
containing O (H) such that X € Fand F = (F n No)~ = No/O(N) in
H = H/O(H). Similarly, if K is a proper subgroup of G containing A and
covering M,/O (M ), then K has a normal subgroup L containing O (K) such
that Y € Land L = (L n My)~ = M,/O(M). We shall use these facts
several times in this section. We also note here that W = (0(Ce(z)) n
0Ce(y)) | weX* yeV¥.

Lemma 6.1. We have that
(Na(4), 0(M),0N), 0(Ce()) |y e Y*)  G*.
Proof. Since the subgroups O (Ce(z)) n O0(Ce(y)), z e X* and y € ¥, are
permuted among themselves by Ng(4 ), we see that Ng(4) S G*.

Let E be an A-invariant Sylow p-subgroup of O (M ) and let E = E, E: E; E;
be the Y-decomposition of E. If g e E; then § centralizes ¥ in D = D/0 (D).
Since ¢ is inverted by y., we see that g e O (D) and it follows that g e W. We
then see that By € G¥, % = 1, 2, 3. Since By S Ne(4), we conclude that
E C G*. Ttfollowsthat O (M) C G*. Recalling thatifgeO(N)n0(Ce())
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where z ¢ X*, then g ¢ 0 (Ce(y)) for all y e Y*, we may use a similar argument
to show that O(N) € G*.

Now let B be an A-invariant Sylow p-subgroup of O(D). This time we
let R = RyR;R:R; be the X-decomposition of B. Suppose that g e Ri.
Since ¢ is of odd order and is inverted by z. , we see that g e O(C'). It follows
that R1 C W C G*,7=1,2,3. Now suppose that ¢ € Ko and is inverted by
yo. If M = M/O(M), then we see that j ¢ (Mon O(D))” S Z (Ciz, @1)).
Since ¥, inverts g, we conclude that g e O(M ). It now follows that R C G*
and thus, that R € G*. It then follows that O (Ce(y)) S G*, y e Y*.

Now set W, = 0(Ce(x)) n 0(Cs(y)), x e X* y e Y*. Then

W= W.y|lxweX* yeV¥
and so Wis (X, Y )-generated. We then have
LeEmMA 6.2.  Every A-invariant subgroup of W is (X, Y )-generated.

Proof. We again use Proposition 2.1 of [6]. Condition (iv) follows by the
proof of Lemma 5.6 and conditions (i) and (ii) follow by the proofs of Lem-
mas 5.3 and 5.4. Thus we need only verify condition (iii) to prove our
lemma.

Suppose that u € [Cw (x), Y]’ n Ce(y) where z ¢ X*, y ¢ Y* and suppose
that w is inverted by the involutions in ¥ — (y). For definiteness let 2 =
andy = y;.. Wethen have [Cn W, Y]is a subgroup of odd order in (s which
is normalized by N¢,(4). It follows by Lemma 2.7 that

[(CaW), Y] Ce(Y)

and so is abelian in ¢ = C/0(C) and thus [C n W, Y]’ € 0(C). Since ¥,
inverts u, we have by Lemma 5.1 that w e O(D) and so w € W, .

Now suppose that u € [D n W, X]' n C and that u is inverted by the involu-
tionsin X — (x1). Since the order of uis odd,u e 0 (C). Since [(Dn W)™, X]
is an X-invariant subgroup of D; of odd order in D = D/O (D), it is abelian.
It follows that [D n W, X| € O(D) and that w ¢ W,,,,, . Thus condition
(iii) of Proposition 2.1 of [6] is verified and this lemma is a direct consequence
of that proposition.

We now introduce a concept defined in [6]. We then prove a result which
gives a sufficient condition for the existence of a p-local subgroup J of @
which covers both No/O(N) and Mo/O (M) and which contains A. Let H
be a subgroup of G which contains A. We say that H is (X, p)-constrained
if X does not centralize any Sylow p-subgroup of O (H ) and we say that H is
(Y, p)-constrained if Y does not centralize any Sylow p-subgroup of O (H).

We recall that p. divides g, if Mo/O (M) = L3;(g:). We then have

Lemma 6.3. Let p be an odd prime such that p 5~ p,. If C vs (Y, p)-con-
strained and if D is (X, p)-constrained, then for some maximal A-invariant
p-subgroup P of G we have N¢(Z (J (P))) covers both Mo/O (M) and No/O (N ).
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Proof. By our assumptions Sylow p-subgroups of both O(C) and O(D)
are nontrivial. By Lemma 4.10 we can find a p-local subgroup H of G con-
taining A and covering No/O (N ) such that H also contains a maximal A-in-
variant p-subgroup P of G. By the proof of that lemma we can assume that
P contains an A-invariant Sylow p-subgroup R of O (D). Then H contains
a normal subgroup F such that XO(H) € Fand F = (Fn Ny) in H =
H/O(H)and F = No/O(N). Without loss we can assume that H = FPA.
Let Hy = FPandlet Q = Pn O(H,). Since R C @, we conclude that H is
(X, p)-constrained and so O, (Hy) & O (H:). Asin section 5 of [6], we have
that H; is p-stable with respect to P and by the extended form of Glauber-
man’s ZJ-theorem we have that Nu,(Z (J (P))) covers H;/O (H,) and hence,
covers No/O(N ).

By Lemma 4.9 we can find a p-local subgroup K of G containing PA and
covering Mo/O(M ). Then K has a normal subgroup L containing YO (K)
such that L = (L n My)” = M,/OM)in K = K/O(K). Without loss of
generality we can assume that K = LPA. Since P is a maximal A-invariant
p-subgroup of G, we can also assume that P contains an A-invariant Sylow
p-subgroup R of 0(C). LetV=PnO(K)=PnO(LP). ThenR, C V.
Suppose that O, (LP) $ O(LP). Then O, (LP) has even order and so we
can assume that Y C O, (LP). But then |Y, Rs] € Ry n O (LP) = 1 and
this contradicts our assumption that C is (Y, p)-constrained. We may now
apply Lemma 2.6 to conclude that Nz (Z (J(P))) covers LP/O(LP) and
hence covers Mo/O (M ). This then completes the proof of the lemma.

The next proposition incorporates many ideas found in Section 5 of [6].

ProposiTioN 6.4. Let p be a prime divisor of the order of W. If R is an
A-tnvariant Sylow p-subgroup of W, then N¢(R) covers Mo/O (M ).

Proof. We assume, by way of contradiction, that the proposition is false.
The proof is then broken into a number of steps.

By Lemma 6.2, R is (X, Y )-generated and so by Lemmas 4.9, 4.10, and
4.11 we can find a maximal 4-invariant p-subgroup P of G containing R and
we can find p-local subgroups H and K of G containing PA such that H
covers No/O(N) and K covers My/O(M). As we have seen previously, H
contains a normal subgroup F such that XO(H) C Fand F = (F n No)~ =
No/O(N)in H = H/O(H) and K contains a normal subgroup L such that
YOK)C Land L = (L n M,)” = My/O(M)in K = K/O(K). Without
loss of generality we can assume that H = FPA and that K = LPA. We
may also choose H and K such that the orders of O, (H ) and O, (K ) are maxi-
mal. IfQ=PnO@H)andV = PnO(K), then we have @ is a Sylow p-sub-
group of O (H) and by the maximality of 0,(H ), @ < H, and we have V is a
Sylow p-subgroup of O(K) and also V <1 K. By Lemma 5.2 we conclude
that R = @ n V is a Sylow p-subgroup of O (H) n O (K).

(a) We have RA is not contained in any proper subgroup J of G such that J
covers both Mo/O (M) and No/O (N ).
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Proof. Suppose thereissucha J. Then by Lemma 5.2wehaveR € O(J)
and O(J) € W and so R is a Sylow p-subgroup of O(J). It follows that
Ninu, (R) covers (J n Mo)O(J)/O(J) by the Frattini argument and hence,
covers Mo/0 (M ), contrary to our assumption.

(b) We have that p = p. .

Proof. Set E = Nyu,(R). If p = ps, then E contains a maximal Y-in-
variant p-subgroup P n M, of M, since R <] P. By the Frattini argument
Nuy (W)W = EW and soin Mo = M,/O (M ), E contains a subaroup S =< ;.
By Lemma 2.5 we conclude that M, = E, a contradiction. This proves
(b). We shall retain the notation £ = Ny, (R).

(¢) We have that Y does not centralize V.

Proof. If Y centralizes V, then Cina, (V) covers L/O(K) and hence’
covers Mo/O(M). Since R C V, this is a contradiction.

(d) We have that X centralizes @ and that V & Q.

Proof. Suppose that X does not centralize . Then H is (X, p)-con-
strained and as in the proof of Lemma 6.3, we conclude that Ng (Z (J (P)))
covers F/0O (H) and hence, covers No/O(N ). Since Y does not centralize V'
by (c), we see that K is (Y, p)-constrained and since p = p. by (b), we also
conclude that Nx(Z(J(P))) covers L/O(K) and hence, covers M,/O(M).
Since RA € Ng(Z (J (P))), this contradicts (a). Thus X centralizes Q.

If VC Q,then R = V and so R < K, a contradiction.

(e) We have that X centralizes V and P.

Proof. Suppose that V; = [V, X] ## 1. Since X centralizes @, we have
that Cz(Q) covers F/O(H) and also that V; & Cx(Q). Moreover, we have
Vi C Q. Since C»(X) covers P in K, we have that [P, X] = V, and so Vi is
a Sylow p-subgroup of Cz (%) for some z ¢ X* in H. Then Cy, (X) C Q.
Since Vi < P and R centralizes X, we see that B normalizes Cy, (X ). But
L n M, and Cx(Q) both normalize Cy,(X) and this contradicts (a), if
Cy,(X) # 1. It follows that Vin @ = 1.

Set Py = Cp(X)andso P = Py Vy. Since Vi # 1, we have F = Ly(q1),
¢ odd and ¢ > 5. It follows that F n P, = 1. If P, = 1, then P, = Q
and R = Cy(X)is normal in L n Mo, a contradiction. Thus P; # 1 and so
Cr(Q(Py)) = Ly(q) where ¢» = ¢ and C5, (V1) = 1 by the proof of (v) of
Lemma 2.4.2 of [2]. It follows that Cp, (V1) = Q.

Set V¥ = Cynp,(V1). Then we have V¥ < Vi Py = P. Also we have

12 Vysince Vin Q = 1. We claim that V* ¢ 1. Now Y centralizes V,
and since V = CV (X)V1, we conclude that for all y ¢ Y*, y does not cen-
tralize Cy(X). We can also find a 3-element u ¢ L n M, which permutes the
involutions in Y cyclically and so (%)Y acts on Cy(X). Now as in the proof
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of Lemma 5.10 in [6] we conclude that C'y (X)) contains an elementary abelian
subgroup of order p°’. Since Cy(X) normalizes V; and V; is cyclic, we see
that V* = Copm (V1) # 1 as asserted. Now L n M, normalizes V* and since
V* C Q, Cx(Q) centralizes V*, and R normalizes V*, we have contradicted
(a). This forces Vi = 1 and (e) is proved.

(f) Wehave F = Ly(q1), qrodd, s > 5and PnF = 1in H = H/O(H).

Proof. To prove (f) it is sufficient to show that F' 2¢ A7, since we already
have that F o¢ Z» X Z,. Suppose then that F = A;. Then V = P is of
order 3 in F. Without loss of generality we can assume that S; & Cx(Q)
and we also have that Sy = D;. It follows that S; normalizes C¢(X) and
centralizes M/O(M). We can also assume that S; acts on P in F and thus
that S; normalizes P. By our maximal choice of 0,(K) we must have that V
is a Sylow p-subgroup of O(M ) and so S, also normalizes V = P n O(M).
We then have Cy(S1)) € @ n V C (Cy(81) and so B = Cy(S1). Since
Ce(S1) n N, (V) covers Mo/O(M ) and normalizes R, we have a contradic-
tion. This proves (f).

Now as in the proof of Lemma 5.13 of [6], we can find an A-invariant ¢-sub-
group T™ where ¢ is an odd prime distinct from p such that T *C O QY (x))
for some z ¢ X*, T* is permutable with P, and [T*, X] = T*. For definite-
nesslet z = 2,. We also have Cz (T*) = 1in H and so C»(T*) € Q. Since
T* = [T* X], T* € Cx(Q) and s0 Q = Cp(T™).

As we have seen above, V is a Sylow p-subgroup of O (M ) and for the same
reason we have V is a Sylow p-subgroup of O (Ce(x)) for all x e X*. Since
T* = [T*, X), we have T* € 0(C) and so we can find an A-invariant Sylow
t-subgroup 7T of O (C) containing T and permutable with P. Then T is also
permutable with V since VT = PT n O(C). Thus we see that VT is a Hall-
subgroup of O(C). Weset I = [T, X] and see that I = [TV, X] <{ TV and
I # 1since T* C I.

(g) We have that Cv(I) = 1.

Proof. Set Vy = Cy(I) and assume that V; # 1. Since N¢(VT) covers
Co/0(C), we have J = Ny, (VT) covers Mo/O(M ). Also we have I < J
and V C J and since V is a Sylow p-subgroup of O (M ), V is a Sylow p-sub-
group of O(J). By the Frattini argument J; = N,;(V') covers J/0(J) and
hence, covers Mo/O(M). We also have V, <1 Jy. Since T* € I and
Q = C»(T™), we have Vi € Q and so Cx (V1) covers No/O(N). SinceR
normalizes I, this contradicts (a). Thus V; = 1 and this proves (g).

th) IfI = LI I, I; is the Y-decomposition of I, then I: € 0(Ce(y:))
and X does not centralize I; for eachi = 1, 2, 3.

Proof. TFirst we show that Y does not centralize I. Set J = IVY. If
Y C C,;(I), then [V, Y] € C;(I) because C;(I) <1 J. Since [V, Y] == 1,
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this contradicts (g). Thus Y does not centralize I. Since N, (I) covers
Mo/O (M) we can find a 3-element which cyclically permutes the involutions
in Y and which is contained in N, (I). This element then cyclically permutes
Ii,i=1,23. Sincel; C 0(C), weconcludethatI; C 0(Ce(y:)),s = 1,2,3
by Lemma 5.1. If X centralizes I, ¢ = 1, 2, 3, then [I, X] C I, = Cr(Y).
Since I = [I, X], this is a contradiction. It follows that X does not centralize
Iiforeachi = 1,2, 3.

(1) There is a maximal A-invariant t-subgroup U of G permutable with V
and containing I and there is a t-local subgroup J of G covering Mo/O (M) and
containing UVA. IfteS,,andif U* is any mazimal A-invariant t-subgroup of
G, then a conjugate of U™ by a suilable element in Ng(A) has the properties of
the preceding sentence.

Proof. Let Ty be a maximal A-invariant {-subgroup of C containing 7'
such that T, is permutable with V. If {€¢S,, we can choose Ty such that
[Ty, Y] £ O(C) or we can choose T such that [To, Y] $ 0(C). Sinc T,
covers a maximal Y-invariant ¢-subgroup of M,/0 (M ), we see by Proposition
4.8 that in order to prove (i) it is sufficient to show that V is permutable with
a maximal A-invariant ¢-subgroup U of G containing T such that UVA is
contained in a ¢-local subgroup of G which covers Mo/0 (M ).

Now N ¢(I) contains ToVA and covers Mo/O(M). Among all t-local sub-
groups of G containing ToVA and covering Mo/O (M) choose J such that an
A-invariant ¢-subgroup T; of J containing T and permutable with V has
maximal order and relative to this, choose J such that an A-invariant {-sub-
group of J containing T'; has maximal order.

We first show that T is a maximal A-invariant {-subgroup of J. Without
loss of generality we can assume that J = 0*(J)A. By Lemmas 4.1, 4.2,
and 4.3 J has normal subgroups L; and L, such that XO(J) € L,
YO(J)C Ly, andinJ = J/0(J) wehave Iy Ly = L; X L,is of odd index and
Ly = (Ien Mo)”™ = My/O(M). Since VC O(M), we see that V centralizes
L,and so V = (Cy(4))". Let T, T, where T; is a maximal A-invariant
t-subgroup of J. Since L, is a 2-group or L; =< L, (q) or PGL(2, q), q odd, we
conclude that [T, X]is a characteristic subgroup of Cz, () for some x ¢ X*.
It follows that ¥V normalizes [T:, X] and so V & J, where

Jo= Ly T:0(Cs(A))A.

If Jo = Jo/O(Jo), then X centralizes 0°(Jo) and since V & O(M), we
conclude that V € 0(J,). We claim that V is a Sylow p-subgroup of O (J).
Suppose V is contained in an A-invariant p-subgroup Vi of O (Jy). Since X
centralizes P, we conclude that X centralizes every A-invariant p-subgroup of
G and in particular, X centralizes V,. We then have that V; centralizes

(Jon Mo)O(M)/0(M) = Mo/O(M)
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and hence, V1 & O(M ). It follows that V1 = V and that V is a Sylow p-sub-
group of O (J,). We then conclude that V is permutable with a conjugate T
of T containing 7y where j ¢ N s, (A ) and by our maximal choice of T we have
Ty = T = T,. It follows that T, is a maximal 4-invariant t-subgroup of J
as asserted. We can now assume without loss that J = L, Th VA.

Suppose that T is contained in an A-invariant t-subgroup U of G. We shall
show that U must equal T and this will then show that T; is a maximal
A-invariant t-subgroup of G and complete the proof of (i). Assume, by
way of contradiction, that T is properly contained in U; we may choose U
such that Ty ¢ U. Then Cy(x) $ T, for some z e X*. Since Ty C T,
and T is a maximal A-invariant t-subgroup of C, we conclude that z # ;.
Since X centralizesJ = J/0(J), weseethat I C O(J). Set [y =Tin0(J)
and set Iy = [[o, z]. Since I & I, we have I # 1. By the Frattini argu-
ment N;(Iy) covers J and so N, (Ly) covers Mo/O(M). We also have
[T.V, 21 = [T1, 2] = Lo, 2] = Iy and so V normalizes I;. Since
I, = [Ty Cy(z), z], we have Iy < T1Cy(x). TFinally, we have I, <| N, (Io)
and since T, € T Cy (x), we have contradicted our original choice of J. This
contradiction completes the proof of ().

(G) There is a maximal A-invariant t-subgroup U of G containing I and
permutable with V such that N ¢(Z (J (U))) contains UV A and covers No/O (N)
and such that UVA s contained in a t-local subgroup J of G which covers
Mo/O(M).

Proof. By (h) we see that X does not centralize any Sylow ¢-subgroup of
O (D) and so by Lemma 4.10 we can find a ¢-local subgroup H, of G containing
A and a maximal 4 -invariant i-subgroup U, of G. Without loss we can assume
that Ho = Fo U011 where Fo 4 Ho and Fo 2 XO(Hu) and Fo = (Fon No)— =
No/O(N)in Hy = Ho/O(H,). By Propositions 4.5 and 4.8, a conjugate U of
U, by an element in N¢(A ) satisfies the conclusions of (1). Without loss of
generality we can assume that U = U,. If I = I,[ I ; I is the Y-decom-
position of I, we have by (h) that I; C O(Cs(y:)) and hence, I; < O (H,).
Also by (h) we conclude that H, is (X, ¢)-constrained. Argueing as in
Lemma 6.3, we conclude that Nz, (Z(J(U))) covers H, and hence, covers
My/O(M). To complete the proof it remains to show that V normalizes
ZWJU)). Sincel C Uand Cy{I) = 1,0,(UV) = 1. By Glauberman’s
ZJ-theorem we have Z (J (U) ) is normal in UV and this completes the proof.

(k) Wehaet = p,.

Proof. Let U and J be as in the conclusion of (j). We assume, by way of
contradiction, that ¢ % p.. As we have seen before, J has a normal subgroup
L, containing YO (J) such that Ly = (Ion Mo)™ = My/O(M)inJ = J/OWJ).
Without loss of generality we can assume thatJ = L, UVA. Sincel C 0(C),
we conclude that I € O(J). In the proof of (h) we have seen that ¥ does
not centralize I and it follows that J is (Y, ¢)-constrained. Since we are
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assuming that ¢ # p,, we can now argue as in Lemma 6.3 to conclude that
Ns(Z(J(U))) covers J and hence, covers Mo/O(M ). Since V normalizes
Z(J(U)) and R © V, we have contradicted (a). This proves (k).

Again, let U and J be as in the conclusion of (j) and set
J* = Nu(Z(J(U)))A

so that J* covers Mo/O(M). Set Z = O(J)n O(J*) and so by Lemma 5.2,
R is a Sylow p-subgroup of Z. Let U, be an A-invariant Sylow ¢-subgroup of
Nyz(R) so that UZ = U,Z. Since U covers a maximal Y-invariant ¢-sub-
group of Mo/O (M) and U, = U in J, we conclude that Uy covers a maximal
Y-invariant t-subgroup of Mo/O(M). Set M, = M,/O (M) and recall that
E = Nuy,(R). As in the proof of (a) we see that E contains a subgroup
S=S,. Sincet = p,and (Usn M,)” is a Y-invariant Sylow ¢-subgroup of
M, we have by Lemma, 2.7 that £ = M, contrary to our original assumption.
This contradiction proves our proposition.

LeMMA 6.5. We have G* = Ng(W) contains Ce(X).

Proof. WehaveCo(X) =X X Mand M = Ny(A)M,. By Lemma 6.1
we see that N (A ) and O (M) are contained in @*. Let R be an A-invariant
Sylow p-subgroup of W. By the preceding proposition we have
Mo = Nu,(R)OM). Tt follows that R™ C W for all m e M, and this implies
that M, € G*. This proves the lemma.

LeMMA 6.6. We have O(Ce(y)) S 0(G*)O(Ce(4)) for all y e Y*.

Proof. Since N¢(4) € G, it will be sufficient to show that

0(D) S 0(G*)0(Ca(4)).

Set Go = 0°(G*)A and Gy = Go/O(Gy). Then by Lemmas 4.1, 4.2, and 4.3,
Gy has normal subgroups L, and L, such that X0 (Gy) C Ly, YO (Gy) C L,
Ly = (LinNy) ™ and Ly is a 2-group or Ly = A+, Ly(q), or PGL(2, ¢), q odd
and L, = (Lo n My)” & Mo/O(M). Then (0(D))” centralizes Land
(OMD) n L)~ € Z(Cz,(@)) so that (O(D))” also centralizes ¥. Since
X € L;, we conclude that Cowpy(4) covers (O(D))” and the lemma follows
from this.

Lemma 6.7. If geCo(Y), then W° S 0(G*)O(Cs(4)). Also we have
0(G*) = WCowh (V).

Proof. Since W = (W n 0(Ce(y)) |y e Y*), we see that
W’ C(0(Ca(y)) |y e V¥
and so W’ S 0(G*)0(Ce(A4)) by the preceding lemma.
Let E be an A-invariant Sylow p-subgroup of W. Since M € G, we have
Ce(x) € 0(Ce(x)) forall x e X*
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Let F = Cg((z, y)) for some z ¢ X*, y e Y*. Also let F* denote the set of
elements in F which are inverted by the involutions in ¥ — (y). By Lemma
5.1 we have F* C O(Cq(y)) and hence, F* © W. We then have
F © WCo@* (Y) and it follows that E & WCo@e+(Y). The lemma follows
immediately from this.

Levmma 6.8. Ify e Y* then Co(y)W is a group and
0(Ce(y)W) = 0(Ca(y))W.
Proof. For definiteness let y = ;. Using Lemma 3.7 we see that
D = Np(A)(D:n My)O(D)(Dyn Ny)
and so if deD, then W* € 0(G*)0(Cs(4)). Thus we have
[W, D] € 0(G*)0(Ce(A)) = WCoa (Y)O(Ca(A))

by the preceding lemma. It follows that [W, D] is of odd order and is con-
tained in WD. Since W{W, DID = WD, we conclude that WD is a group.
We then see that W <§ WD and so W € O(WD). Since O (D) is also con-
tained in O(WD), we have D n O(WD) = O(D) and it follows that
O(WD) = WO(D). This completes the proof.

Lemma 6.9. If geCo(Y), then W°  O(G™).

Proof. Let Go, Gy, L1, and L, be as in the proof of Lemma 6.6 and let O
denote the intersection of the groups WO (Ce(y:)), ¢ = 1, 2, 3. Then O is
of odd order in Gy and O centralizes (Ly n No)~ = L.

Now (', (y:) contains a subgroup J: such that Jo= SL*(2,3) if Ly = My,
J, = SLi(Q Q2) lng = Ls({]z), OI’J, = SU:E(Q Q2) lfL2 o~ Ug(Qz), 7 = 1 2 3.
We then have [J;, O] is a normal subgroup of odd order in Ji, because
J; char Ci, () and it follows that O centralizes J;, 7 = 1, 2, 3. Since
L, = (J:|i = 1, 2, 3) by Lemma 2.4, we conclude that O centralizes L,.
It follows that 0 € 0(G™) and since W’ C O by the preceding lemma, this
lemma is proved.

Lemma 6.10. If N* = NW, then N* is a group and O(N*) = WO(N).

Proof. By the previous lemma we have [W, N] € 0(Q™*) and by Lemma
6.7,0(G*) = W(O(G*)nN). Thislemma then follows by a proof similar to
that of Lemma 6.8.

Lemma 6.11. If Z = O(N™) n O(G™), then Z contains W and Z is nor-
mal in N*.

Proof. We first show that O(N*) = WCow (X ) Let E be an A-in-
variant Sylow p- subgroup of O(N). If E = EyE; E, E; is the X-decomposi-
tion of E, then E; has odd order and so E; C O(Cq(x.)), 1=1,23. We
then see that E; centralizes Doin D = D/O (D) and so EiCo (D ), 1=1,23.
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It follows that E; € W, i = 1,2, 3. Thus O(N) € WCom (X) and so
ON™*) = WCou (X).

Let W™ be the normal closure of W in N* and set N* = N *IW*. Also
set Jo = NoO(N™). We then have O0(Jo) = (O(N*))™ and Jo/O(Jo) =
No/O(N). But (OWN*))™ = (WCom@))™ = (Cow(X))™ and so
C5,(O(N™))™ covers Jo/O (Jo). Tt follows that Cs,(Z) also covers Jo/O (Jo)
and since Z <| O (N™*), we conclude that Z <] Jo. Since W* C Z, we have
Z<QJy. Since N* = N;(A)NOO(N*), we have Z <{ N* and the lemma is
proved.

LemmA 6.12. We have Z = W and so both M and N novmalize W.

Proof. Let Gy and L be as in the proof of Lemma 6.6. Set Ly = Ly/W.
Then
OL:) = (OG™)) = (WCowaw (Y))™ = (Cowh(¥))™
and
L;/0 (Ly) = Mo/O(M).

Then C3,(0(G*))™ covers Ly/O(Lz) and so Cz,(Z) also covers Ly/O (Ls).
Since Z <1 O(G*) and W < Z, we conclude that Z <] L,. Now N¢(Z)
contains L, which covers Mo/O (M), contains N* which covers No/O(N),
and contains 4 and so by Lemma 5.2 we conclude that Z C W. ThusZ = W
and the lemma follows from this.

ProrosITION 6.13. We have W = 1 and so for all z e X*, y e Y* we have
0(Cs(x)) n0(Cely)) = 1.

Proof. Suppose W = 1. Since D = Np(A) (D20 Mo)NoO (D), we have
D C G*andso Ce(y) S Q¥ forally e Y*. We also see that Cocq) (y) S GF
for all y e Y* and thus, 0(C) € G*. Since § € D and since ¢ = SMO(C),
we have ¢ C G and it follows that Ce(x)  G* for all z ¢ X*. Acting on
0 (B) with ¥, we conclude that O (B) = G™ and it follows that B € G*. We
now see that Ce(a)  G* for all a e A* and since every involution in S is
conjugate in G to an involution in A, we conclude that G* S C4(2) for every
involution z e G*. Thus G* is a strongly imbedded subgroup of G and by a
well known argument it follows that G has only one conjugacy class of in-
volutions, a contradiction. Therefore W = 1 and the proposition is proved.

7. The proof of the main theorem

In this section we show that our minimal counter-example G satisfies the
conclusion of our main theorem. This contradiction then proves that
theorem. We retain the notation of the preceding sections.

Lemma 7.1. Wehawve B = Cn D.

Proof. By Lemma 3.9, it is sufficient to show that x; = 2z centralizes



CLASSIFYING FINITE GROUPS 385

O(B). Suppose that this is not the case. Since
O(B) = (Com {x, y)) |z e X* ye Y*) forsomexeX¥ yeV*

there is an element ¢ in Co ({x, ¥)) such that ¢ % 1 and g is inverted by x;
and hence, by y1 also. Since ¢ is of odd order, g e 0 (Cq(z)) and so by Lemma
5.1, e O(Cq(y)) because g is inverted by 4. This contradicts Proposition
6.13. Thus B € C and it follows that B = C n D.

LEmmA 7.2, The order of G equals the order of CD and so G = CD.

Proof. For z = 1, 11, and z1 91 let J(2) be the set of all ordered pairs
(u, v) such that u ~ x1 and ¢ ~ y;in G and 2 € (wv). By a result of Thompson
(proven in [7]) we have

[G:C[G:D] = [G:CIn(x1) + [G:DIn(y1) + [G:Bn (2191
where n (z) denotes the order of J (2), 2 = x1, y1, T1 Y1 -

We claim that n(z;) = n(y1) = 0. Suppose first that v ~ 21, v ~ y; in
G and that z; € (wv). Then both » and » are containedin C. If ¢ = C/0(C),
then ¢ = 8; X C; where C; is as in Lemma 3.6. We then see that % eS;
and 5¢Cy. Since (@)* = & for some integer k, we must have k odd and it
follows that @5 = & . It follows that 7eS: and this is a contradiction.
Thusn (2;) = 0. Next, suppose that u ~ 21 and v ~ y: in G and that y1 e (w).
If D = D/O(D), then @ e Dy and # e D, and it follows that @ e Dy, a contradic-
tion. Thus n(y:) = 0.

Now suppose that 4 ~ z1 and » ~ y; in G and that 2,y e (wv). We claim
that w = z1and v = y;. If B = B/O(B), then argueing as above we have
% eS; and 7 e By and it follows that @5 = 1 71. We then see that @ = 7,
and ¥ = 1. Since B = C n D, we conclude that 4 = z;andv = y. It
follows that n(z1%1) = land that |G| = |C||D|/|B| = |CD|.

We are now in a position to complete the proof of our main theorem. Let
F be the normal closure in G of ; and let L be the normal closure in G of y; .
By the preceding lemma, F & D and L © C. It follows that F € D, and that
F/O(F) = Dy/OD). We also have L & Co and L/O(L) = Co/0O(C).
Since O(G) = 1, wehave O(F) = O(L) = 1 and since F n L has odd order
we see that FL = F X L. Since the index of FL in G is odd, we conclude that
@ satisfies the conclusions of our theorem and this is contrary to our choice of G.
This then proves our main theorem.
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