FINITE GROUPS WHOSE SYLOW 2-SUBGROUPS ARE THE DIRECT PRODUCT OF A DIHEDRAL AND A SEMI-DIHEDRAL GROUP

BY

Fredrick L. Smith

1. Introduction

The purpose of this paper is to classify all finite fusion-simple groups which have a Sylow 2-subgroup that is the direct product of a dihedral group with a semi-dihedral group. (We say that a group G is fusion-simple if $O^{2}(G)=G$ and $Z^{*}(G)=1$. A semi-dihedral group is also known as a quasi-dihedral group.) Our main result is as follows:

Theorem. Let G be a finite fusion-simple group with a Sylow 2-subgroup that is the direct product of a dihedral group and a semi-dihedral group. Then G has a normal subgroup of odd index of the form $F_{1} \times F_{2}$ where

$$
F_{1} \cong A_{7}, \quad P S L\left(2, q_{3}\right), q_{1} o d d, q_{1} \geq 5, \quad \text { or } \quad Z_{2} \times Z_{2}
$$

and
$F_{2} \cong M_{11}, \quad \operatorname{PSL}\left(3, q_{2}\right), q_{2} \equiv-1(\bmod 4)$, or $\operatorname{PSU}\left(3, q_{2}\right), q_{2} \equiv 1(\bmod 4)$.
The essential ideas used in proof are to be found in [6]. In particular, we assume that a group G is a minimal counter-example to our theorem. We then show that G has an involution fusion pattern compatible with the conclusion of the theorem. Next, we select an arbitrary elementary abelian subgroup A of order 16 in G. Then for suitable four-groups X and Y contained in A such that $A=X \times Y$, we establish the following assertion:

If for $a \epsilon A^{*}$, one sets

$$
\theta\left(C_{G}(a)\right)=\left\langle C_{G}(a) \cap O\left(C_{G}(x)\right) \cap O\left(C_{G}(y)\right) \mid x \in X^{*}, y \in Y^{*}\right\rangle
$$

then θ is an A-signalizer functor on G in the sense of Goldschmidt [4].
If θ is nontrivial, we conclude that $W_{A}=\left\langle\theta\left(C_{G}(a)\right) \mid a \in A^{*}\right\rangle$ is a group of odd order and this allows us to show that $N_{G}\left(W_{A}\right)$ is a strongly imbedded subgroup of G. It then easily follows that θ is trivial and from this we prove that G satisfies the conclusions of our theorem. This contradiction then proves our theorem.

We use the following definitions which are slight restrictions of some definitions in [2]:
(i) A finite group G is said to be an $S D$-group if a Sylow 2-subgroup of G is a semi-dihedral group and G contains one conjugacy class of involutions and one conjugacy class of elements of order 4.
(ii) A finite group G is said to be a Q-group if a Sylow 2-subgroup of G

Received May 13, 1971.
is a semi-dihedral group and if G has two conjugacy classes of involutions and one conjugacy class of elements of order 4.
(iii) A finite group G is said to be a D-group if a Sylow 2-subgroup of G is a semi-dihedral group and G contains one conjugacy class of involutions and two conjugacy classes of elements of order 4, or if a Sylow 2-subgroup of G is a dihedral group and G contains at most two conjugacy classes of involutions.
(iv) Let H be a group in which $O_{r}(H) \neq 1, r$ an odd prime and let R be an r-subgroup of H such that:
(a) $R \cap O_{r^{\prime}, r}(H)$ is a Sylow r-subgroup of $O_{r^{\prime}, r}(H)$;
(b) either R is normal in a Sylow r-subgroup of H or $R K / K$ contains $O_{r}(H / K)$ for every normal subgroup K of H.
Under these conditions we say that H is r-stable with respect to R provided for any nontrivial subgroup P of R such that $O_{r^{\prime}}(H) \cdot P$ is normal in H, we have

$$
A C_{H}(P) / C_{H}(P) \subseteq O_{r}\left(N_{H}(P) / C_{H}(P)\right)
$$

for every subgroup A of R such that $[P, A, A]=1$.
We now list some properties of simple $S D$-groups which are a consequence of results in [2] or [9]. If M is a simple $S D$-group, then by the main result in [2], $M \cong M_{11}, L_{3}(q), q \equiv-1(\bmod 4)$, or $U_{3}(q), q \equiv 1(\bmod 4)$. If Y is a fourgroup contained in M, then $N_{M}(Y)$ contains a group $S \cong S_{4}$. Let D be some dihedral group of order 8 in S. We then have the following properties:
(i) $M \cong M_{11}$.
(a) If $y \in Y^{*}$, then $C_{M}(y) \cong G L(2,3)$.
(b) If P is a maximal nontrivial Y-invariant p-subgroup of M, p odd, then P is a Sylow 3 -subgroup of M and any two Y-invariant Sylow 3 -subgroups of M are conjugate in $N_{M}(Y)$.
(ii) $M \cong L_{3}(q)$.
(a) if $y \epsilon Y^{*}$, then $C_{M}(y) \cong G L(2, q) / Z$ where Z is a subgroup of order $d=(3, q-1)$ in the center of $G L(2, q)$.
(b) If p is an odd prime and p does not divide $q-1$, then any two maximal Y-invariant p-subgroups of M are conjugate in $N_{M}(Y)$; if p does not divide q, then any two maximal D-invariant p-subgroups of M are conjugate in $N_{M}(D)$; if p divides $q-1$, if P and Q are two maximal Y-invariant p-subgroups of M, and if $[P, Y] \neq 1,[Q, Y] \neq 1$, then $P \sim Q$ in $N_{M}(Y)$. There is a unique maximal Y-invariant p-subgroup P such that $[P, Y]=1$.
(iii) $M \cong U_{3}(q)$.
(a) If $y \epsilon Y^{*}$, then $C_{M}(y) \cong G U(2, q) / Z$ where Z is a subgroup of order $d=(3, q+1)$ in the center of $G U(2, q)$.
(b) Let p be an odd prime. If p divides q, then Y does not normalize any nontrivial p-subgroup of M. If p divides $q-1$ and if P and Q are maximal Y-invariant p-subgroups of M, then $P \sim Q$ in $N_{M}(Y)$. If p divides $q+1$ an $\operatorname{dif} P$ and Q are maximal Y-invariant p-subgroups of M such that $[P, Y] \neq 1$, $[Q, Y] \neq 1$, then $P \sim Q$ in $N_{M}(Y)$. There is a unique maximal Y-invariant
p-subgroup P such that $[P, Y]=1$. Finally, any two D-invariant p-subgroups which are maximal are conjugate in $N_{M}(D)$.

Our notation is standard (see [5]) and includes the "bar" convention for homomorphic images.

2. Preliminary lemmas

We now prove some results concerning the structures of $S D$-groups, Q-groups, and D-groups.

Lemma 2.1. Let H be a group in which $O(H)=1$ and which contains a normal simple SD-group M of odd index. Let Y be a four-group contained in M and let p be an odd prime. Then the following statements are true:
(i) If P is a maximal Y-invariant p-subgroup of H, then $P \cap M$ is a maximal Y-invariant p-subgroup of M.
(ii) If p does not divide the order of $C_{M}(Y)$ and if P_{1} and P_{2} are maximal Y-invariant p-subgroups of H, then $P_{1} \sim P_{2}$ in $N_{H}(Y)$.
(iii) If p divides the order of $C_{M}(Y)$ and if P_{1} and P_{2} are maximal Y-invariant p-subgroups such that $\left[P_{1}, Y\right] \neq 1,\left[P_{2}, Y\right] \neq 1$, then $P_{1} \sim P_{2}$ in $N_{H}(Y)$.

Proof. We may assume that there exist nontrivial Y-invariant p-subgroups in H, or else the lemma is trivially true. Set $Q=P \cap M$ and suppose, by way of contradiction, that Q is properly contained in a Y-invariant p-subgroup of M. Since $[P, Y] \subseteq M, P=Q C_{P}(Y)$.

We first consider the case that $Q=1$. Then $P=C_{P}(Y)$ and for $y \in Y^{*}, P$ normalizes $C_{M}(y)$. If $M \cong M_{11}$, then $p=3$ and $C_{D}(y)$ contains exactly two Y-invariant 3 -subgroups of order 3 , each of which must be normalized by P. However this contradicts the maximality of P, and so we can assume that $M \nsupseteq M_{\text {1] }}$.

If p divides the order of $C_{M}(Y)$, then a Sylow p-subgroup U of $C_{M}(Y)$ is nontrivial and characteristic. Then P normalizes U and again we have a contradiction. Thus we can assume that p does not divide the order of $C_{M}(Y)$.

Then p does not divide the order of $C_{M}(y) \cap N_{M}(Y), y \in Y^{*}$ and so P normalizes a Sylow 2 -subgroup D of $C_{M}(y) \cap N_{M}(Y)$. Since $D \cong D_{8}, P$ centralizes D. Let v be an element of order 4 in D and suppose that p divides the order of $C_{M}(v)$. Then a Sylow p-subgroup of $C_{M}(v)$ is nontrivial and characteristic and this leads to a contradiction as above. The remaining possibility is that $M \cong L_{3}(q)$ and p divides q. Then $C_{M}(y)$ contains exactly two Y-invariant subgroups of order q and so each is normalized by P, a contradiction. Thus we can assume that $Q \neq 1$.

Set $K=N_{M}(Q)$ and $J=C_{M}(Q)$. If $Y \subseteq J$, then Q is properly contained in a Sylow p-subgroup of $C_{M}(Y)$ which is normalized by $R=C_{P}(Y)$, a contradiction since $P=Q R$. Suppose p divides the order of $C_{M}(Y)$. Then Q is abelian, Q is a Sylow p-subgroup of $O(J)$, but not of J. Also Q is centralized by a four-group and since $Y \nsubseteq J$, a Sylow 2 -subgroup of J is a dihedral
group. Since $Z(J)$ contains an involution, J has a normal 2-complement and this is a contradiction. Thus p does not divide the order of $C_{M}(Y)$. Since Q must be a Sylow p-subgroup of both $O(K)$ and $O(J Q)$, this forces $M \cong L_{3}(q)$ and p divides q. Since a Sylow 2-subgroup of J is cyclic, Q is a Sylow p-subgroup of $J Q$. In particular, $Z(Q) \supseteq Z(U)$ for some Sylow p-subgroup U of M. It follows from the structure of U that $Q \triangleleft U$ and so $U \subseteq K$. Since $U \nexists K$, there is a second Sylow p-subgroup V of M contained in K and by the structure of $M, Z(U) \cap Z(V)=1$. It follows that $Z(Q)$ contains an abelian subgroup of order q^{2}. Such subgroups of M are self-centralizing and so $Q=Z(Q)$ and has order q^{2}. This now forces $K / Q \cong C_{M}(y), y \in$ Y^{*}. In particular, K contains exactly two Y-invariant Sylow p-subgroups and this leads to a contradiction since each is normalized by P. This completes the proof of (i). We now prove (ii) and (iii).

Set $Q_{i}=P_{i} \cap M$ and $R_{i}=C_{P_{i}}(Y), i=1,2$. It follows by (i) that Q_{i} is a maximal Y-invariant p-subgroup of M, and by the maximality of P_{i}, we have that R_{i} is a Sylow p-subgroup of $N_{M}\left(Q_{i}\right) \cap C_{H}(Y), i=1,2$. If Y does not centralize P_{i}, then Y does not centralize Q_{i}. Hence, by the properties of simple $S D$-groups listed in the introduction, $Q_{1}^{m}=Q_{2}$ for some $m \in N_{M}(Y)$. Then R_{1}^{m} is a Sylow p-subgroup of $N_{M}\left(Q_{2}\right) \cap C_{M}(Y)$ and so for some $h \in N_{M}\left(Q_{2}\right) \cap C_{M}(Y), R_{1}^{m h}=R_{2}$. Then $P_{1}^{m h}=P_{2}$ and $m h \in N_{M}(Y)$ and this proves (ii) and (iii).

Lemma 2.2. Let H be a Q-group in which $O(H)=1$. Set $L=O^{2^{\prime}}(H)$ and let Y be a four-group in L. If p is an odd prime, then the following statements hold:
(i) If P is a maximal Y-invariant p-subgroup of H, then $P \cap L$ is a maximal Y-invariant p-subgroup of L.
(ii) If p does not divide the order of $C_{L}(Y)$ and if P_{1}, P_{2} are maximal Y-invariant p-subgroups of H, then $P_{1} \sim P_{2}$ in $N_{H}(Y)$.
(iii) If p divides the order of $C_{L}(Y)$ and if P_{1} and P_{2} are maximal Y-invariant p-subgroups of H such that $\left[P_{1}, Y\right] \neq 1,\left[P_{2}, Y\right] \neq 1$, then $P_{1} \sim P_{2}$ in $N_{H}(Y)$.

Proof. Since a Sylow 2 -subgroup of L is a semi-dihedral group, it follows by the results in Chapter 2 of [2] that $L \cong S L^{ \pm}(2, q), q \equiv-1(\bmod 4)$ or $S U^{ \pm}(2, q), q \equiv 1(\bmod 4)$. The proof of this lemma is then similar in nature to that of the preceding lemma; only in this case it is easier and it is omitted

Lemma 2.3. Let H be a D-group in which $O(H)=1$ and let Y be a fourgroup in H. If P_{1} and P_{2} are maximal Y-invariant p subgroups of H for some odd prime p, then $P_{1} \sim P_{2}$ in $N_{H}(Y)$.

Proof. If $L=O^{2^{\prime}}(H)$, then $L \cong A_{7}, \operatorname{PSL}(2, q), \operatorname{PGL}(2, q)$, or PGL ${ }^{*}(2, q)$, q odd (where $\mathrm{PGL}^{*}(2, q)$ is a group with semi-dihedral Sylow 2 -subgroups and is described in Chapter 2 of [2]). A maximal Y-invariant p-subgroup of
L is a Sylow p-subgroup of $C_{L}(y)$ for some $y \in Y^{*}$ and it is characteristic. The lemma follows easily from these facts.

Lemma 2.4. Let M be a group and assume that $M \cong L_{3}(q), q \equiv-1(\bmod 4)$, $U_{3}(q), q \equiv 1(\bmod 4)$, or M_{11}. If Y is a four-group in M, then

$$
M=\left\langle Y, C_{M}(y)^{\prime} \mid y \in Y^{*}\right\rangle
$$

Proof. Set $M_{0}=\left\langle Y, C_{M}(y)^{\prime} \mid y \in Y^{*}\right\rangle$. Select $y \in Y^{*}$. Then $Y \cdot C \pi(y)$ contains a Sylow 2 -subgroup of $C_{M}(y)$ and hence, $Y \cdot C_{M}(y)$ contains a Sylow 2-subgroup of M. We conclude that M_{0} is an $S D$-group. Since no proper section of M_{11} contains an $S D$-group, we have that $M_{0}=M$ if $M \cong M_{11}$. Thus we can assume that this is not the case. Similarly, we can assume that $M \npreceq L_{3}(3)$. We then have that $C_{M}(y)^{\prime} \cong S L(2, q), q \geq 5$ and so $C_{M}(y)^{\prime}$ is perfect. Set $\mathrm{C}=C_{M}(y)^{\prime}$.

If $\bar{M}_{0}=M_{0} / O\left(M_{0}\right)$, then \bar{M}_{0} contains a normal subgroup \bar{L} of odd index where \bar{L} is a simple $S D$-group. Since $O(C)=1$ and $O^{2^{\prime}}(C)=C$, we have that $\bar{C} \cong C$ and $\bar{C} \subseteq \bar{L}$. We then conclude that $C_{\bar{L}}(\bar{y})^{\prime}=\bar{C}$. It follows now by the results in [2] that $\bar{L} \cong M$ and hence, $M=M_{0}$.

Lemma 2.5. Let the group M be isomorphic to M_{11} and $p=3$ or let M be isomorphic to $L_{3}(q), q \equiv-1(\bmod 4)$ and p be the odd prime that divides q. Let Y be a four-group in M and let $S \subseteq N_{M}(Y)$ with $S \cong S_{4}$. If P is a maximal Y invariant p subgroup of M, then $M=\langle P, S\rangle$.

Proof. Set $L=\langle P, S\rangle$. Choose $y \in Y^{*}$ and let $C=C_{M}(y)^{\prime}$. We shall show that $C \subseteq L$. Conjugating P by a suitable element in S if necessary, we can assume that $Q=C_{P}(y) \neq 1$. If $M \cong M_{11}$, then $\langle Q, D\rangle=C_{M}(y)$ where D is a Sylow 2 -subgroup of $C_{S}(y)$. It follows in this case that $C \subseteq L$. If $M=L_{3}(3)$, a similar argument shows that $C \subseteq L$. We can assume that $M \cong L_{3}(q), q \geq 7$ next. Now by a classical result of L. Dickson (Theorem 2.8.4 of [5]), we conclude that $\langle Q, D\rangle=C$. Thus in all cases $C \subseteq L$. Since the involutions in Y^{*} are all conjugate in S, we can apply the preceding lemma to obtain our result.

Lemma 2.6. Let H be an $S D$-group in which $O_{P}(H) \neq 1, p$ an odd prime, and let \bar{M} be the normal simple $S D$-group of odd index in $\bar{H}=H / O(H)$. Assume that the following conditions are satisfied:
(i) $H=R M$ where M is the preimage in H of \bar{M} and R is a maximal Y-invariant p-subgroup of H for some four-group Y in M.
(ii) Y does not centralize any Sylow p-subgroup of $O(H)$.
(iii) If $M \cong M_{11}$, then $p \neq 3$ and if $M \cong L_{3}(q)$, then p does not divide q. Then H is p-stable with respect to R and $H=N_{H}(Z(J(R))) O(H)$.

Proof. By [2] we have that $M \cong M_{11}, L_{3}(q), q \equiv-1(\bmod 4)$, or $U_{3}(q)$, $q \equiv 1(\bmod 4)$. We proceed to verify conditions (a) and (b) in the definition of relative p-stability given in the introduction.

By the maximality of $R, R \cap O(H)$ is a Sylow p-subgroup of $O(H)$ and by our assumptions, Y does not centralize $R \cap O(H)$. If $O_{p^{\prime}}(H) \nsubseteq O(H)$, then $Y \subseteq O_{p^{\prime}}(H)$ because H has only one conjugacy class of involutions. But then we have $[R \cap O(H), Y] \subseteq R \cap O_{p^{\prime}}(H)=1$, a contradiction. Thus we see that $O_{p^{\prime}}(H) \subseteq O(H)$ and by the maximality of $R, R \cap O_{p^{\prime}, p}(H)$ is a Sylow p-subgroup of $O_{p^{\prime}, p}(H)$. This verifies condition (a).

Now suppose that K is a normal subgroup of H. If $K \subseteq O(H)$, then $O_{p}(H / K) \subseteq O(H) / K$ and so $O_{p}(H / K) \subseteq R K / K$ because $R \cap O(H)$ is a Sylow p-subgroup of $O(H)$. If $K \nsubseteq O(H)$, then K covers M and so $H=$ $R K O(H)$. In this case $R K / K$ is a Sylow p-subgroup of H / K and it follows that $O_{p}(H / K) \subseteq R K / K$. This verifies condition (b).

Next, we show that H is p-constrained. $\operatorname{Set} R_{1}=R \cap O_{p^{\prime}, p}(H)$. We must show that $C_{H}\left(R_{1}\right) \subseteq O_{p^{\prime}, p}(H)$. If $C_{H}\left(R_{1}\right) \subseteq O(H)$, this follows because $O(H)$ is p-constrained. If $C_{H}\left(R_{1}\right) \nsubseteq O(H)$, then $C_{H}\left(R_{1}\right) O_{p^{\prime}}(H)$ is a normal subgroup of even order in H and so contains Y. It follows that Y centralizes R_{1} and so Y acts nontrivially on $C_{R}\left(R_{1}\right) \cap O(H)$ which is contained in R_{1}, a contradiction. Therefore H is p-constrained.

Since H will be p-stable with respect to R if and only if $H / O_{p^{\prime}}(H)$ is p-stable with respect to $R O_{p^{\prime}}(H) / O_{p^{\prime}}(H)$, we can assume to begin with that $O_{p^{\prime}}(H)=1$.

Let P be a nontrivial normal subgroup of H contained in R. Suppose that A is a subgroup of R such that $[P, A, A]=1$, but that

$$
A C_{H}(P) / C_{H}(P) \nsubseteq O_{p}\left(H / C_{H}(P)\right.
$$

Then as in the proof of Proposition 2.6 .1 of [2], we can find an H-invariant section P_{i} of P which is an elementary abelian p-group on which H acts irreducibly and $A \nsubseteq C_{H}\left(P_{i}\right)$.

If $\tilde{H}=H / C_{H}\left(P_{i}\right)$, then $O_{p}(\tilde{H})=1$. Since $\left[P_{i}, A, A\right]=1$, We have that \tilde{H} involves $S L(2, p)$ by Theorem 3.8.3 of [5]. It follows that $C_{H}\left(P_{i}\right)$ is of odd order and so $\widetilde{H}=\widetilde{R} \tilde{M}$ where \widetilde{R} is a maximal \widetilde{Y}-invariant p-subgroup of \tilde{H}. Also we see that $\widetilde{M} / O(\widetilde{M})=\bar{M}$. Since we are interested in the action of \tilde{H} on P_{i}, we shall drop the " \sim " for convenience. Also we shall consider $V=P_{i}$ as a vector space over $G F(p)$ on which H acts faithfully and irreducibly. Thus we shall obtain a contradiction to the following situation:
(i) $H=R M$ where $M / O(H)$ is a simple $S D$-group, Y is a four-group in M and R is a maximal Y-invariant p-subgroup of H.
(ii) $O_{p}(H)=1$ and H acts faithfully and irreducibly on the vector space V over $G F(p)$.
(iii) A is a nontrivial subgroup of R and $[V, A, A]=1$.
(iv) If $M / O(H) \cong L_{3}(q)$, then p does not divide q.
(v) $\quad O_{p^{\prime}}(H) \subseteq O(H)$.

By the proof of Theorem 3.8.3 of [5], if $a \epsilon A^{*}, b \sim a$ in H, and $F=\langle a, b\rangle$ is not a p-group, then F has a normal subgroup F_{0} such that $F / F_{0}=S L\left(2, p^{m}\right)$ or $p=3$ and $F / F_{0}=S L(2,5)$.

We must have $A \cap O(H)=1$. Else we can find $a \epsilon A^{*} \cap O(H)$ and $b \sim a$ in H such that $\langle a, b\rangle$ is not a p-group and is contained in $O(H)$, because $O_{p}(H)=1$, a contradiction.

Set $\bar{H}=H / O(H)$. By our restrictions on p, R is centralized by an involution \bar{y} in \bar{Y}. Also $\bar{M} \npreceq L_{3}(3)$, otherwise the centralizers of involutions would be solvable, a contradiction because $p \neq 3$.

Also $\bar{H} \npreceq M_{11}$ or $U_{3}(5)$. Otherwise $p=3, \bar{A}$ is of order 3 and every subgroup of order 3 in \bar{H} is conjugate to \bar{A}. Since \bar{H} contains a subgroup isomorphic to A_{4}, the alternating group on 4 letters, we have a contradiction. If $\bar{M} \cong U_{3}(5)$, then we can assume $\bar{H}=(M A)^{-} \cong P G U\left(3,5^{2}\right)$. In this case all subgroups of order 3 in $\bar{R}-(R \cap M)^{-}$are conjugate and so \bar{A} normalizes but does not centralize a Sylow 5 -subgroup of \bar{M}, a contradiction.

Let $\bar{E}=O^{2^{\prime}}\left(C_{\bar{M}}(\bar{y})\right)$ so that $\bar{E} \cong S L^{ \pm}(2, q)$ if $\bar{M} \cong L_{3}(q)$ or $\bar{E} \cong S U^{ \pm}(2, q)$ if $\bar{M} \cong U_{3}(q)$ and we also have in either case that $q>5$. Let E be the preimage in H of \bar{E}, set $C=R E$, and let K be the semi-direct product of C and V where the action of C on V is a restriction of the action of H on V to C. Then $R V$ is a maximal Y-invariant p-subgroup of K and K is a Q-group. We also have that $C_{K}(V)=V$ and $O(K) \cap C \subseteq R O(H)$.

If p does not divide q, then $R V$ is a Sylow p-subgroup of K. If p divides q, then our assumptions force $\bar{E} \cong S U^{ \pm}(2, q), \bar{M} \cong U_{3}(q)$, and \bar{Y} centralizes \bar{R}. In this case \bar{R} centralizes a dihedral group \bar{D} of order 8 in $N_{\bar{E}}(\bar{Y})$. Thus we can find a dihedral group of order 8 in E which normalizes $R V$ and if this group is denoted by D^{*}, we have that $R V$ is a maximal D^{*}-invariant p-subgroup of K. Since $q>5$, we are now in a position to apply Proposition 2.6.1 of [2]. By this result we have that K is p-stable with respect to $R V$. It then follows that

$$
A C_{K}(V) / C_{K}(V) \subseteq O_{p}\left(K / C_{K}(V)\right)
$$

and so $A \subseteq O(K) \cap C \subseteq R O(H)$. We see that $[\bar{E}, \bar{A}]$ is a normal subgroup of odd order in \bar{E} and so \bar{A} centralizes \bar{E} and in particular, \bar{A} centralizes \bar{Y}.

Choose $z \epsilon Y-\langle y\rangle$ and let F be the preimage in H of $O^{2^{\prime}}\left(C_{\bar{M}}(\bar{z})\right)$. Working in $A F V$ and using an argument similar to that in the preceding two paragraphs, we conclude that \bar{A} centralizes \bar{F}. Now by Lemma 2.4 we can conclude that \bar{A} centralizes \bar{M}, and so $\bar{A}=1$ since A is a group of odd order. Since A is not contained in $O(H)$, we have a contradiction. This completes the first part of the lemma and it remains to show that $H=$ $N_{H}(Z(J(R))) O(H)$. But this is a direct consequence of the extended form of Glauberman's $Z J$-Theorem (Theorem 2.7.2 of [2]).

Lemma 2.7. Let L be a simple SD-group and let Y be a four-group contained in L. If W is a subgroup of L of odd order such that $N_{L}(Y) \subseteq N_{L}(W)$, then $W \subseteq C_{L}(Y)$.

Proof. Let $S \subseteq N_{L}(Y)$ such that $S \cong S_{4}$. Since $O(S)=1$, we have $S \cap W=1$. $\operatorname{Set} X=W S$.

If $L \cong M_{11}$, then the order of W is 1 or 3 . Then $Y \subseteq C_{S}(W)$ and so we can assume that $L \npreceq M_{11}$.

Suppose that $O_{2}(X)=1$. Then $F(X)=F(W)$. Let R be a Sylow p-subgroup of $F(X)$ and assume that $[R, Y] \neq 1$. If p divides the order of the centralizer of Y in L, then R is abelian. Set $Q=\Omega_{1}(R)$. Then S acts faithfully on $[Q, Y]$ which is cyclic, a contradiction. Next, suppose that p divides q where $L \cong L_{3}(q)$ or $U_{3}(q)$ and let $Q=\Omega_{1}(Z(R))$. Denote the involutions in Y by y_{1}, y_{2}, and y_{3}. Since $C_{Q}(Y)=1$, we have that $Q=C_{Q}\left(y_{1}\right) \times$ $C_{Q}\left(y_{2}\right)$. Since the involutions in Y are conjugate in S, we have that $C_{Q}\left(y_{i}\right) \neq$ $1, i=1,2,3$. Let D be a Sylow 2 -subgroup of $C_{S}\left(y_{1}\right)$. From the structure of $C_{L}\left(y_{1}\right)$ we have that $D / Z(D)$ acts regularly on $C_{Q}\left(y_{1}\right)$, a contradiction. Thus we can assume that p does not divide q and this forces R to be cyclic. Since S acts faithfully on R, we have a contradiction again. We have shown that $O_{2}(X) \neq 1$. Then $Y \subseteq O_{2}(X)$ and so $[W, Y] \subseteq W \cap O_{2}(X)=1$. This completes our proof.

We shall now state two results of [6] on which our proof relies heavily. But first we introduce a definition. Let A be an elementary abelian group of order 16 acting on a group K of odd order. Suppose that $A=X \times Y$ where X and Y are four-groups. We then say that K is (X, Y)-generated if

$$
K=\left\langle K_{x, 2} \mid x \in X^{*}, y \in Y^{*}\right\rangle
$$

where $K_{x, y}$ is a normal subgroup in $C_{K}(\langle x, y\rangle)$ for $x \in X^{*}, y \in Y^{*}$. An A-invariant subgroup F of K will said to be (X, Y)-generated if

$$
F=\left\langle F \cap K_{x, y} \mid x \in X^{*}, y \in Y^{*}\right\rangle .
$$

We now have the following result which gives sufficient conditions for every A-invariant subgroup of K to be (X, Y)-generated.

Proposition (2.1 of [6]). Suppose that A and K are given as above and assume that the following conditions hold for all $x, x^{\prime} \in X^{*}, y, y^{\prime} \in Y^{*}$:
(a) $C_{K_{x, y}}\left(x^{\prime}\right) \subseteq K_{x^{\prime}, y}$ and $C_{K_{x, y}}\left(y^{\prime}\right) \subseteq K_{x, y^{\prime}}$;
(b) every element in $C_{K}(\langle x, y\rangle)$ inverted by the involutions in both $X-\langle x\rangle$ and $Y-\langle y\rangle$ lies in $K_{x, y}$;
(c) every element in $\left[C_{K}(x), Y\right]^{\prime} \cap C_{K}(y)$ inverted by the involutions in Y $\langle y\rangle$ lies in $K_{x, y}$ and every element in $\left[C_{K}(y), X\right]^{\prime} \cap C_{K}(x)$ inverted by the involutions in $X-\langle x\rangle$ lies in $K_{x, y}$;
(d) if P is an (X, Y)-generated p-subgroup of K where p is an odd prime then every A-invariant subgroup of P is (X, Y)-generated. Then under these conditions every A-invariant subgroup of K is (X, Y)-generated.

We also have the following main result of [6].

Theorem A*. Let G be a group with a nonabelian Sylow 2-subgroup which is the direct product of two dihedral groups. If G is fusion-simple then:
(i) $G^{\prime}=L_{1} \times L_{2}$ where $L_{1} \cong A_{7}$ or $L_{2}\left(q_{1}\right)$ with q_{1} odd and $g_{1} \geq 5$ and $L_{2} \cong Z_{2} \times Z_{2}, A_{7}$, or $L_{2}\left(q_{2}\right)$ with q_{2} odd and $q_{2} \geq 5$;
(ii) G / G^{\prime} is of odd order and of rank at most 2 .

3. Fusion of involutions

In this and in all succeeding sections we shall assume that G is a minimal counter-example to our theorem. We let $S=S_{1} \times S_{2}$ be a Sylow 2 -subgroup of G where S_{1} is a dihedral group and S_{2} is a semi-dihedral group. We let z_{i} be an involution in the center of $S_{i}, i=1,2$. We also let r_{1} and s_{1} be two involutions which generate S_{1} and if S_{1} is abelian, we set $z_{1}=r_{1}$. We let s_{2} be an involution in $S_{2}-Z\left(S_{2}\right)$ and we choose v_{2} to be an element of maximal order in S_{2} such that $v_{2}^{s_{2}}=v_{2}^{-1} z_{2}$ and hence, $S_{2}=\left\langle s_{2}, v_{2}\right\rangle$.

If we set

$$
S_{1}^{*}=\left\langle r_{1} e_{1}, s_{1} e_{2} \mid e_{1}, e_{2} \in Z\left(S_{2}\right)\right\rangle, \quad S_{2}^{*}=\left\langle s_{2} e_{3}, \quad v_{2} e_{4} \mid e_{3}, e_{4} \in Z\left(S_{1}\right)\right\rangle,
$$

then $S=S_{1}^{*} \times S_{2}^{*}$ and $S_{i}^{*} \cong S_{i}$ for $i=1,2$. Also every decomposition of S as a direct product of a dihedral group with a semi-dihedral group is of this form for suitable $e_{i}, i=1,2,3,4$.

We have that S_{2} has one conjugacy class of four-groups and that S_{1} has one class if it is abelian and two otherwise. If A is an elementary abelian subgroup of S of order 16 , then $A=\left(A \cap S_{1}\right) \times\left(A \cap S_{2}\right)$ and $A \supseteq Z(S)$. also S has one or two conjugacy classes of elementary abelian subgroups of order 16, according as S_{1} is abelian or nonabelian.

We shall say that G has product fusion if it is possible to choose the factors S_{1}^{*}, S_{2}^{*} in such a way that the following conditions hold:
(a) the involutions in S_{i}^{*} are conjugate in G for $i=1,2$;
(b) the involutions in $S-\left(S_{1}^{*} \cup S_{2}^{*}\right)$ are conjugate in G;
(c) the elements of order four in S_{2}^{*} are conjugate in G;
(d) G has exactly three conjugacy classes of involutions.

Since G satisfies the hypotheses of our theorem, we have that $O^{2}(G)=G$ and $Z^{*}(G)=1$. Our first goal in this section will be to show that G must have product fusion.

Lemma 3.1. If S_{1} is nonabelian, then $N_{G}(S)=S C_{G}(S)$. If S_{1} is abelian, then there is a 3-element in $N_{G}(S)$ which acts nontrivially on $Z(S)$ and $\left[N_{G}(S): S C_{G}(S)\right]=3$.

Proof. We first assume that S_{1} is nonabelian. Then $\Omega_{1}(S)$ is the direct product of two nonabelian dihedral groups and is of index 2 in S. It follows that every element of odd order in $N_{G}(S)$ stabilizes the chain $S \supseteq \Omega_{1}(S) \supseteq 1$ and hence, every element of odd order must centralize S. This proves the first part of the lemma.

Next, assume that S_{1} is abelian. Then $S / Z(S)$ is a dihedral group and by considering the chain $S \supseteq Z(S) \supseteq Z(S) \cap S^{\prime} \supseteq 1$, we see that S admits a single nontrivial odd order automorphism which is of order 3. If $\left[N_{G}(S)\right.$: $\left.S C_{G}(S)\right]=1$, then no element in G acts nontrivially on $Z(S)$. In this case Glauberman's Z^{*}-Theorem gives a contradiction. The second part of the lemma now follows directly from this.

Lemma 3.2. Suppose that S_{1} is nonabelian and let A and B be representatives of the two conjugacy classes of elementary abelian subgroups of order 16 in S. We than have that A is not conjugate to B in G.

Proof. Suppose, by way of contradiction, that A is conjugate to B in G. Then by Alperin's Fusion Theorem [1] we can find C and D in S such that $C \sim A, D \sim B$ in S and such that C and D are contained in a Sylow 2-subgroup T of G and $N_{S}(S \cap T)$ is a Sylow 2-subgroup of $N_{G}(S \cap T)$ with $C^{y}=D$ for some $y \in N_{G}(S \cap T)$. Let W be the normal closure of C in $N_{G}(S \cap T)$. Since

$$
C=\left(C \cap S_{1}\right) \times\left(C \cap S_{2}\right)
$$

we have $W=\left(W \cap S_{1}\right) \times\left(W \cap S_{2}\right)$ where $W \cap S_{i}$ is a dihedral group for $i=1,2$. If g is of odd order in $N_{G}(S \cap T)$, we have from the structure of W that $C^{g}=C$. It follows that

$$
N_{G}(S \cap T)=N_{N_{G}(S \cap T)}(C) N_{S}(S \cap T)
$$

But then $D=C^{y}$ is conjugate to C in S, a contradiction. This proves the lemma.

Lemma 3.3. If S is nonabelian, then, relabeling if necessary, we have:
(i) The involutions in S_{2} are conjugate in $C_{G}\left(z_{1}\right)$.
(ii) The involutions in S_{1} are conjugate in $N_{G}\left(\Omega_{1}\left(S_{2}\right)^{\prime}\right)$.
(iii) The elements of order four in S_{2} are conjugate in $C_{G}\left(z_{1}\right)$.
(iv) If A is an elementary abelian subgroup of order 16 in S and if $X=A \cap S_{1}, Y=A \cap S_{2}$, then $N_{G}(A) / C_{G}(A)=S_{3} \times S_{3}$ (where S_{3} is the symmetric group on 3 letters], both X and Y are normal in $N_{G}(A)$, and the involutions in X, in Y, and in $A-(X \cup Y)$ are conjugate in $N_{G}(A)$.

Proof. By Burnside's result and by Lemma 3.1 we have that the involutions in $Z(S)$ are mutually non-conjugate in G.

Let y be an involution in $S_{2}-Z\left(S_{2}\right)$. By Thompson's lemma, y is conjugate in G to some involution t in $S_{1}\left\langle v_{2}\right\rangle$. Choose t such that a Sylow 2-subgroup of $C_{G}(t)$ has maximal order. Then $C_{S}(y)$ is a Sylow 2-subgroup of $C_{G}(y)$ or $C_{S}(t)$ is a Sylow 2-subgroup of $C_{G}(t)$. Suppose that t is not contained in $Z(S)$. Then for some $g \in G$, we have $C_{S}(t)^{g} \subseteq C_{S}(y)$ or $C_{S}(y)^{g} \subseteq C_{S}(t)$. In either case it follows that $z \sim z_{2}$, a contradiction. Thus we have that y is conjugate to an involution in $Z(S)$. But then $\left\langle y, z_{1}\right\rangle$ is the center of some Sylow 2-subgroup of G and so either $y \sim z_{2}$ or $y z \sim z_{2}$.

Replacing S by $\left\langle s_{2} z_{1}, v_{2}\right\rangle$ if necessary, we have the involutions in S_{2} are conjugate in $C_{G}\left(z_{1}\right)$.

Next, let x be an involution in $S_{1}-Z\left(S_{1}\right)$. Again, by Thompson's lemma we have that x is conjugate to an involution in $\left\langle r_{1} s_{1}\right\rangle S_{2}$. In particular, x is conjugate to an involution in $Z(S)$. But then $\left\langle u, z_{2}\right\rangle$ is the center of some Sylow 2-subgroup of G and so $u \sim z_{1}$ or $u z_{2} \sim z_{1}$. Replacing S_{1} by $\left\langle r_{1} e_{1}, s_{1} e_{2}\right\rangle$ for suitable e_{1}, e_{2} in $Z\left(S_{2}\right)$ if necessary, we have that the involutions in S_{1} are conjugate in $C_{G}\left(z_{2}\right)$.

Now let $A=X \times Y$ be as in (iv). If $a, b \in A$ and $a \sim b$ in G, then by Lemma 3.2 it follows that $a \sim b$ in $N_{\sigma}(A)$. If $x y \in A$ with $x \in X^{*}, y \in Y^{*}$, then by Thompson's lemma it follows that $x y$ is conjugate to an involution in $Z(S)$ if $x y \notin Z(S)$. We have already shown that the involutions in X, in Y, and in $X z_{2}$ ч $Y z_{1}$ are conjugate in G and hence, in $N_{G}(A)$. Since the involutions in $Z(S)$ are mutually non-conjugate and since $N_{G}(A) / C_{G}(A)$ is isomorphic to a subgroup of $G L(4,2)$, it follows that (iv) holds.

By the preceding paragraph we conclude that no involution in S_{2} is conjugate to an involution in $S-S_{2}$. Again let u be an involution in $S_{1}-Z\left(S_{1}\right)$ and let T be a Sylow 2 -subgroup of $C_{G}(u)$ containing $C_{S}(u)=\left\langle u, z_{1}\right\rangle \times S_{2}$. Then for some $g \in G$, we have that $\Omega_{1}\left(S_{2}\right)^{g} \subseteq T$. Since no involution in S_{2} is conjugate to an involution in $S-S_{2}$, it follows that $g \in N_{G}\left(\Omega_{1}\left(S_{2}\right)^{\prime}\right)$. To complete the proof of the lemma we need to show (iii). Let $\langle w\rangle$ be the cyclic group of order 4 in $\Omega_{1}\left(S_{2}\right)^{\prime}$ and let v be an element of order 4 in $S_{2}-\left\langle v_{2}\right\rangle$. By Harada's Extended Transfer Theorem we have that v is conjugate to an element of order 4 in $S_{1} \cdot \Omega_{1}\left(S_{2}\right)$. It follows that $v \sim w u$ where $u \epsilon S_{1}$ and $u^{2}=1$. If $u=1$, then we are done and so we can assume that this is not the case. By the preceding paragraph we can assume that $u=z_{1}$, since $\langle w\rangle$ char $\Omega_{1}\left(S_{2}\right)^{\prime}$. If T is a Sylow 2 -subgroup of $C_{G}(v)$ containing $C_{S}(v)$, we have that $\left\langle z_{1}\right\rangle=Z(T) \cap T^{\prime}$. It follows that $v \sim w z_{1}$ in $C_{G}\left(z_{1}\right)$. Thus we have that $v z_{1} \sim w$ in $C_{G}\left(z_{1}\right)$. Replacing S_{2} by $\left\langle s_{2}, v_{2} z_{1}\right\rangle$ if necessary, we conclude that the elements of order 4 in S_{2} are conjugate in $C_{G}\left(z_{1}\right)$. This completes the proof of the lemma.

Lemma 3.4. If S_{1} is abelian, then, relabeling if necessary, we have:
(i) The involutions in S_{1} are conjugate in $C_{G}\left(S_{2}\right)$.
(ii) The involutions in S_{2} are conjugate in $C_{G}\left(S_{1}\right)$.
(iii) The elements of order 4 in S_{2} are conjugate in $C_{G}\left(S_{1}\right)$.
(iv) If A is an elementary abelian subgroup of order 16 in S and if $X=A \cap S_{1}, Y=A \cap S_{2}$, then $N_{G}(A) / C_{G}(A) \cong S_{3} \times Z_{3}$, both X and Y are normal in $N_{G}(A)$, and the involutions in X, in Y, and in $A-(X \cup Y)$ are conjugate in $N_{G}(A)$.

Proof. Let g be a 3-element in $N_{G}(S)$ which acts nontrivially on $Z(S)$ and which exists by Lemma 3.1. We may then relabel so that $S_{1}=[Z(S), g]$ and $S_{2}=C_{s}(g)$ and so (i) holds.

By Thompson's lemma every involution in S is conjugate to an involution
in $Z(S)$. Also by Burnside's lemma we have that z_{1}, z_{2}, and $z_{1} z_{2}$ are mutually non-conjugate in G. Let $A=X \times Y$ be as in (iv). If $a, b \in A^{*}$ and $a \sim b$ in G, then $a \sim b$ in $N_{G}(A)$ since S has but one conjugacy class of elementary abelian subgroups of order 16 when S_{1} is abelian. We also have that $g \epsilon N_{G}(A)$ and that $Y=C_{A}(g)$ and since $N_{G}(A) / C_{G}(A)$ is isomorphic to a subgroup of $G L(4,2)$, we conclude that the involutions in Y are conjugate in $C_{N_{G}(A)}(X)$ and that both (ii) and (iv) hold.

Next, let v be an element of order 4 in $S_{2}-\Omega_{1}\left(S_{2}\right)$. By Harada's theorem $v \sim w x$ where w is an element of order 4 in $\Omega_{1}\left(S_{2}\right)$ and $x \in S_{1}$. By the above we can find a 3 -element g in $C_{G}(v)$ which acts nontrivially on $C_{S}(v)$. It follows that there exists a 3 -element in $C_{G}(w x)$ which acts nontrivially on $S_{1} \times\langle w x\rangle$. This forces x to be 1 and we have $v \sim w$ in $N_{G}\left(S_{1}\right)$. Since $C_{N G\left(S_{1}\right)}\left(S_{2}\right)$ covers $N_{G}\left(S_{1}\right) / C_{G}\left(S_{1}\right)$, we conclude that $v \sim w$ in $C_{G}\left(S_{1}\right)$. This completes the proof of the lemma.

Proposition 3.5. The group G has product fusion. The involutions in S_{1} are conjugate in $N_{G}\left(\Omega_{1}\left(S_{2}\right)^{\prime}\right)$, and hence, in $C_{G}\left(Z\left(S_{2}\right)\right)$. The involutions in S_{1} are conjugate in $C_{G}\left(Z\left(S_{1}\right)\right)$ and the elements of order 4 in S_{2} are conjugate in $C_{G}\left(Z\left(S_{1}\right)\right)$.

Proof. This lemma is a direct consequence of Lemmas 3.3 and 3.4.
Our next goal is to determine the structures of the centralizers of involutions in G. We first prove

Lemma 3.6. Let $C=C_{G}\left(z_{1}\right)$. If $\bar{C}=C / O(C)$, then $\bar{C}=\bar{S}_{1} \times \bar{C}_{1}$ where \bar{C}_{1} has a normal subgroup \bar{C}_{0} of odd index such that $\bar{S}_{2} \subseteq \bar{C}_{0}$ and $\bar{C}_{0} \cong M_{11}, L_{3}\left(q_{2}\right)$, $q_{2} \equiv-1(\bmod 4)$, or $U_{3}\left(q_{2}\right), q_{2} \equiv 1(\bmod 4)$.

Proof. Set $\bar{C}_{3}=O^{2}(\bar{C})$. We claim that \bar{S}_{2} is a Sylow 2 -subgroup of \bar{C}_{3}. It follows by Proposition 3.5 that $\bar{S}_{2} \subseteq \bar{C}_{1}$. Set $\bar{T}_{1}=\bar{S}_{1} \cap \bar{C}_{1}$. Then $\bar{T}=\bar{T}_{1} \times$ \bar{S}_{2} is a Sylow 2 -subgroup of \bar{C}_{1}. Suppose that \bar{T}_{1} is non-cyclic and let \bar{t} be an involution in $\bar{T}_{1}-\left\langle\bar{z}_{1}\right\rangle$. By Thompson's lemma \bar{t} is conjugate in \bar{C}_{1} to an involution in $\left\langle\bar{z}_{1}\right\rangle \dot{S}_{2}$. It follows that \bar{t} is conjugate in C to \bar{z}_{1}, a contradiction. Next suppose that \bar{T}_{1} is cyclic and nontrivial. Let $\langle\bar{t}\rangle=\bar{T}_{1}$. By Harada's theorem \bar{t} is conjugate to an element in $\left\langle\bar{t}^{2}\right\rangle \bar{S}_{2}$. But this forces z_{1} to be conjugate to an involution in $Z(S)-\left\langle z_{1}\right\rangle$, a contradiction. Therefore S_{2} is a Sylow 2 -subgroup of \bar{C}_{1} as asserted.

If we now set $\bar{C}_{0}=O^{2 \prime}\left(\bar{C}_{1}\right)$, then \bar{C}_{0} is a simple $S D$-group. The lemma is now a direct consequence of the main result of [2], once we have shown that \dot{S}_{1} centralizes \bar{C}_{1}. To see this let t be an arbitrary involution in S_{1} and let C_{1} be the preimage of \bar{C}_{1} in C. Then $\langle t\rangle \times S_{2}$ is a Sylow 2 -subgroup of $\langle t\rangle C_{1}$ and since G has product fusion, we have that t is isolated in $\langle t\rangle C_{1}$. Now Glauberman's theorem yields that t centralizes \bar{C}_{3}. Since $S_{1}=\Omega_{1}\left(S_{1}\right)$, we conclude that S_{1} centralizes \bar{C}_{1}.

We shall retain the notation of this lemma. Henceforth, we let $C=C_{G}\left(z_{1}\right)$ and we let C_{i} denote the preimage in C of $\bar{C}_{i}, i=0,1$.

Lemma 3.7. If $D=C_{G}\left(z_{2}\right)$ and $\bar{D}=D / O(D)$, then \bar{D} has a normal subgroup \bar{D}_{0} of odd index of the form $\bar{D}_{1} \times \bar{D}_{2}$ where \bar{D}_{1} and \bar{D}_{2} have the following structures:
(i) $\bar{S}_{1} \subseteq \bar{D}_{1}$ and $\bar{D}_{1} \cong A_{7}, \operatorname{PSL}\left(2, q_{1}\right), q_{1}$ odd, $q_{1} \geq 5$, or $Z_{2} \times Z_{2}$:
(ii) $\bar{S}_{2} \subseteq \bar{D}_{2}$ and $\bar{D}_{2} \cong S L^{ \pm}(2,3)$ if $C_{0} / O(C) \cong M_{11}, S L^{ \pm}\left(2, q_{2}\right)$ if $C_{0} \cong L_{3}\left(q_{2}\right)$, or $S U^{ \pm}\left(2, q_{2}\right)$ if $C_{0} \cong U_{3}\left(q_{2}\right)$.
Also both \bar{D}_{1} and \bar{D}_{2} are normal in \bar{D}.
Proof. Set $V=\left\langle s_{2} v_{2}, v_{2}\right\rangle$, so that the index of V in S_{2} equals 2 and V is a generalized quaternion group. Then we have that s_{2} is not conjugate in D to any involution in $S_{1} \times V$. From the structure of C_{0} the elements of order 4 in V are conjugate in $C_{0} \cap D$. By Proposition 3.5 the involutions in S_{1} are conjugate in D. It follows that D contains a subgroup E of index 2 such that $S_{1} \times V$ is a Sylow 2-subgroup of E.

Set $\widetilde{D}=D / Z^{*}(D)$. Then \widetilde{E} is a fusion-simple group and $\widetilde{S}_{1} \times \widetilde{V}$ is a direct product of two dihedral groups. Furthermore, \tilde{V} is nonabelian and thus we can apply Theorem A ${ }^{*}$ of [6] to conclude that \widetilde{E} has a normal subgroup of odd index of the form $\widetilde{L}_{1} \times \widetilde{L}_{2}$ where
(i) $\widetilde{S}_{1} \subseteq \widetilde{L}_{1}$ and $\widetilde{L}_{1} \cong A_{7}, L_{2}\left(q_{1}\right), q_{1}$ odd, $q_{1} \geq 5$, or $Z_{2} \times Z_{2}$;
(ii) $\widetilde{V} \subseteq \widetilde{L}_{2}$ and $\widetilde{L}_{2} \cong A_{7}, L_{2}\left(q_{2}^{\prime}\right), q_{2}$ odd, $q_{2}^{\prime} \geq 5$.

Also both \widetilde{L}_{1} and \widetilde{L}_{2} are normal in \widetilde{E}. By considering the preimage in D of $\widetilde{L}_{2}\left\langle\tilde{s}_{2}\right\rangle$, we see that $\widetilde{L}_{2} \npreceq A_{7}$.

Now let \bar{L}_{1} and \bar{L}_{2} be the preimages in \bar{D} of \widetilde{L}_{1} and \widetilde{L}_{2} respectively. We have that $\bar{S}_{1} \times\left\langle\bar{z}_{2}\right\rangle$ is a Sylow 2 -subgroup of \bar{L}_{1} and so \bar{L}_{1} has a normal subgroup \bar{D}_{1} of index 2 such that $\bar{S}_{1} \subseteq \bar{D}_{1}$. If $\bar{S}_{1}=\bar{D}_{1}$, then S_{1} is a four-group and since G has product fusion, $\bar{D}_{1} \triangleleft \bar{D}$. If \bar{D}_{1} is simple, then $\bar{D}_{1} \cong \widetilde{L}_{1}$ and $\bar{D}_{1} \operatorname{char} \bar{L}_{1}$. Again, we have $\bar{D}_{1} \triangleleft D$. By a result of Schur [8] we have that $\bar{L}_{2}=S L\left(2, q_{2}^{\prime}\right)$. Moreover, \bar{z}_{1} centralizes \bar{L}_{2} and so $\bar{L}_{2}=\left(L_{2} \cap C_{0}\right)^{-}$. From this it follows that $q_{2}^{\prime}=3$ if $C_{0} / O(C) \cong M_{11}$ or $q_{2}^{\prime}=q_{2}$ if $C_{0} / O(C)=L_{3}\left(q_{2}\right)$ or $U_{3}\left(q_{2}\right)$.

We have $\bar{S}_{1} \times\left\langle\bar{s}_{2}\right\rangle$ is a Sylow 2-subgroup of $\left\langle\bar{s}_{2}\right\rangle \bar{D}_{1}$ and since G has product fusion, \bar{s}_{2} is isolated in $\left\langle\bar{s}_{2}\right\rangle \bar{D}_{1}$. It follows by Glauberman's theorem that \bar{s}_{2} centralizes \bar{D}_{1}. Set $\bar{D}_{2}=\left\langle\bar{s}_{2}\right\rangle \bar{L}_{2}$. Then \bar{D}_{2} centralizes \bar{D}_{1} and $\bar{D}_{1} \cap \bar{D}_{2}=1$. Also $\bar{D}_{2} \cong S L^{ \pm}(2,3)$ if $C_{0} / O(C) \cong M_{11}, S L^{ \pm}\left(2, q_{2}\right)$ if $C_{0} / O(C) \cong L_{3}\left(q_{2}\right)$, or $S U^{ \pm}\left(2, q_{2}\right)$ if $C_{0} / O(C) \cong U_{3}\left(q_{2}\right)$. Moreover, \bar{D}_{2} char $C_{\bar{D}}\left(\bar{D}_{1}\right)$ and so $\bar{D}_{2} \triangleleft \bar{D}$. Set $\bar{D}_{0}=\bar{D}_{1} \times \bar{D}_{2}$. This completes the proof of the lemma.

Henceforth we let $D=C_{G}\left(z_{1}\right)$ and we let D_{i} denote the preimage in D of $\bar{D}_{i}, i=0,1,2$. We also find it convenient to fix some further notation. We let A denote a fixed elementary abelian subgroup of order 16 in S. Set $X=A \cap S_{1}$ and $Y=A \cap S_{2}$. Also let x_{i} denote the involutions in X and y_{i} denote the involutions in $Y, i=1,2,3$. Finally, we let x_{1} and z_{1} and $y_{1}=z_{2}$.
We now have
Proposition 3.8. If

$$
\left(C_{G}(X)\right)^{-}=C_{G}(\mathrm{X}) / O\left(C_{G}(X)\right), \quad\left(C_{G}(Y)\right)^{-}=C_{G}(Y) / O\left(C_{G}(Y)\right)
$$

$M=O^{2}\left(C_{G}(X)\right)$, and $N_{-}=O^{2}\left(C_{G}(Y)\right)$, then $\left(C_{G}(X)\right)^{-}=\bar{X} \times \bar{M},\left(C_{G}(Y)\right)^{-}$ $=\bar{Y} \times \bar{N}$, and \bar{M} and \bar{N} contain characteristic subgroups of odd index, \bar{M}_{0} and \bar{N}_{0} respectively such that
(i) $\bar{S}_{2} \subseteq \bar{M}_{0} \cong C_{0} / O(C)$;
(ii) $\bar{S}_{1} \subseteq \bar{N}_{0}$ and $\bar{N}_{0} \cong D_{1} / O(D)$.

Proof. This proposition is a direct consequence of Lemmas 3.6 and 3.7.
We shall retain the notation of this proposition and also we shall let M_{0} and N_{0} denote the preimages in $C_{G}(X)$ and $C_{G}(Y)$ of \bar{M}_{0} and \bar{N}_{0} respectively. We note that $O\left(C_{G}(X)\right)=O(M)=O\left(M_{0}\right)$ and $O\left(C_{G}(Y)\right)=O(N)=O\left(N_{0}\right)$.

Lemma 3.9. If $B=C_{G}\left(z_{1} z_{2}\right)$ and $\bar{B}=B / O(B)$, then $\bar{B}=\bar{S}_{1} \times \bar{B}_{1}$ where \bar{B}_{1} has a normal subgroup \bar{B}_{0} of odd index such that $\bar{S}_{2} \subseteq \bar{B}_{0}$ and $\bar{B}_{0} \cong D_{2} / O(D)$.

Proof. We first show that z_{1} is isolated in B. Suppose, on the contrary, that $z_{1} \sim t$ in B where $t \in S-\left\langle z_{1}\right\rangle$. Since G has product fusion, we have $t \in S_{1}$. But then $z_{2}=z_{1} z_{1} z_{2} \sim t z_{1} z_{2} \sim z_{1} z_{2}$, a contradiction. It follows that $\bar{B}=\left(C_{B}\left(z_{1}\right)\right)^{-}=\left(C_{B}\left(z_{2}\right)\right)^{-}$and this lemma is now a direct consequence of Lemmas 3.6 and 3.7.

Henceforth, we shall let $B=C_{G}\left(z_{1} z_{2}\right)$ and B_{i} shall denote the preimage in B of $\bar{B}_{i}, i=0,1$.

4. Subgroup structure of G

In this section we study the subgroup structure of G to the extent needed to enable us to construct a suitable signalizer functor on G. In this section H will denote a proper subgroup of G. Moreover, since we are primarily concerned with the subgroups of G which contain $A=X \times Y$, we shall assume that $A \subseteq H$. In order to study the abstract structure of H, we can assume without loss of generality that $H \cap S$ is a Sylow 2-subgroup of H.

We first prove
Lemma 4.1. If H has an isolated involution, then either $C_{H}(x)$ or $C_{H}(y)$ covers $H / O(H)$ for some $x \in X^{*}$ or $y \in Y^{*}$.

Proof. Set $T=H \cap S$. Then we must have $Z(T) \subseteq A$. Thus if z is an isolated involution in H, we can assume that $z \in A$. By Glauberman's theorem $C_{H}(z)$ covers $H / O(H)$. Suppose that $z \notin X \cup Y$. Then $z=x y$ with $x \in X^{*}$, $y \epsilon Y^{*}$. By Lemma 3.9 both x and y are isolated in $C_{G}(z)$. In particular, they are isolated in $C_{H}(z)$ and it follows that both $C_{H}(x)$ and $C_{H}(y)$ cover $H / O(H)$ in this case.

Lemma 4.2. If H contains no isolated involution and $\bar{H}=H / O(H)$, then $O^{2}(\bar{H})$ has a normal subgroup of odd index of the form $\bar{L}_{1} \times \bar{L}_{2}$ where both \bar{L}_{1} and \bar{L}_{2} are normal in H and have the following structures:
(i) $\bar{S}_{1} \cap \bar{L}_{1}$ is a Sylow 2 -subgroup of \bar{L}_{1} and $\bar{L}_{1} \cong A_{7}, L_{2}\left(r_{1}\right), r_{1}$ odd, $r_{1} \geq 5$, or $Z_{2} \times Z_{2}$.
(ii) $\bar{S}_{2} \cap \bar{L}_{2}$ is a Sylow 2-subgroup of \bar{L}_{2} and $\bar{L}_{2} \cong M_{11}, L_{3}\left(r_{2}\right)$, $r_{2} \equiv-1(\bmod 4), U_{3}\left(r_{2}\right), r_{2} \equiv 1(\bmod 4), A_{7}, L_{2}\left(r_{2}\right), r_{2}$ odd, $r_{2} \geq 5$, or $Z_{2} \times Z_{2}$.

Proof. Set $K=O^{2}(H)$ and $T=S \cap K$ so that $\bar{K}=O^{2}(\bar{H})$ and T is a Sylow 2-subgroup of K. Also set $T_{i}=T \cap S_{i}, i=1,2$.

Suppose first that $T_{1} \cap X=1$. Then we must have $T_{1}=1$. But $H \cap S$ covers H / K and it follows that z_{1} is isolated in H, contrary to our assumptions. Thus we have $T_{1} \cap X \neq 1$. A similar argument gives that $T_{2} \cap Y \neq 1$.

If T_{i} is cyclic, $i=1,2$, or if T_{2} is generalized quaternion, then it follows that K contains an isolated involution which is not the case. Thus T_{1} is a dihedral group and T_{2} is a dihedral or a semi-dihedral group.

Suppose that $T \neq T_{1} \times T_{2}$. Since $T_{2} \triangleleft T$ and $\left[N_{S}\left(T_{2}\right): T_{2} C_{S}\left(T_{2}\right)\right] \leq 2$, we conclude that $T_{1} \times T_{2}=T_{2} C_{T}\left(T_{2}\right)$ is of index 1 or 2 in T. Thus this index must be 2 .

If there are involutions in $T-T_{1} \times T_{2}$, let $t=t_{1} t_{2}$ be one where t_{i} is an involution in $S_{i}, i=1,2$. If there are none, let $t=t_{1} t_{2}$ be an element of order 4 in $T-T_{1} \times T_{2}$ where t_{1} is an involution in S_{1} and t_{2} is an element of order 4 in S_{2}. Either by Thompson's lemma or by Harada's theorem t is conjugate in K to some element u in $T_{1} T_{2}$.

We have that $E=C_{T}(t)$ is abelian of type $(2,2,2)$ or $(2,4)$ and $C_{T}(u)$ contains an abelian subgroup of type $(2,2,2,2)$ or $(2,2,4)$. It follows that E is contained in abelian subgroup of K of type ($2,2,2,2$) or ($2,2,4$). We can then conclude that for some $k \in C_{K}\left(\left\langle z_{1}, z_{2}\right\rangle\right)$, we have t^{k} is contained in $T_{1} T_{2}$. By Section 3 we see that $C_{K}\left(\left\langle z_{1}, z_{2}\right\rangle\right)$ has a normal subgroup of index 2 which contains $T_{1} T_{2}$ and this is a contradiction. Therefore $T=T_{1} \times T_{2}$ is a Sylow 2-subgroup of K.

If T is abelian, then the structure of K is determined by [10]. Since G has product fusion, $K \npreceq L_{2}(16)$ and consequently, \bar{K}^{\prime} is of odd order and has the asserted structure. Suppose that T is nonabelian. Then we are in a position to apply either Theorem A^{*} of [6] or we utilize the fact that we are working in a minimal counter-example to our theorem. In either case \bar{K} is fusion-simple and our lemma is proved.

Lemma 4.3. If H contains no isolated involutions, if $J=O^{2}(H) A$, and if $\bar{H}=H / O(H)$, then \bar{J} contains a normal subgroup of odd index of the form $\bar{F}_{1} \times \bar{F}_{2}$ where \bar{F}_{1} and \bar{F}_{2} have the following structures:
(i) $\bar{S}_{1} \cap \bar{F}_{1}$ is a Sylow 2-subgroup of \bar{F}_{1} and $\bar{F}_{1} \cong A_{7}, L_{2}\left(r_{1}\right), P G L\left(2, r_{1}\right)$, r_{1} odd, or $Z_{2} \times Z_{2}$.
(ii) $\bar{S}_{2} \cap \bar{F}_{2}$ is a Sylow 2-subgroup of \bar{F}_{2} and $\bar{F}_{2} \cong M_{11}, L_{3}\left(r_{2}\right)$, $r_{2} \equiv-1(\bmod 4), U_{3}\left(r_{2}\right), r_{2} \equiv 1(\bmod 4), A_{7}, L_{2}\left(r_{2}\right), P G L\left(2, r_{2}\right), r_{2}$ odd, or $Z_{2} \times Z_{2}$.
Also both \bar{F}_{1} and \bar{F}_{2} are normal in \bar{J}.
Proof. By the preceding lemma $\bar{K}=O^{2}(\bar{H})$ has a normal subgroup of odd index of the form $\bar{L}_{1} \times \bar{L}_{2}$ where $\bar{S}_{i} \cap \bar{L}_{i}$ is a Sylow 2 -subgroup of \bar{L}_{i} and
\bar{L}_{i} has the structure specified in that lemma, $i=1,2$. Since G has product fusion, Glauberman's theorem yields that \bar{X} centralizes \bar{L}_{2} and \bar{Y} centralizes $\bar{L}_{1} . \quad \operatorname{Set} \bar{F}_{1}=\bar{L}_{1} \bar{X}$ and $\bar{F}_{2}=\bar{L}_{2} \bar{Y}$. Then \bar{F}_{i} has the structure asserted in the conclusion of this lemma and $\dot{S}_{i} \cap \bar{F}_{i}$ is a Sylow 2 -subgroup of $\bar{F}_{i}, i=1,2$. Moreover, \bar{F}_{1} and \bar{F}_{2} centralize each other and $\bar{F}_{i} \cap \bar{F}_{2}=1$. In order to obtain the conclusion of the lemma it is sufficient to show that $\bar{F}_{i} \triangleleft \bar{J}, i=1,2$. If $\bar{X} \subseteq \bar{L}_{1}$ and $\bar{Y} \subseteq \bar{L}_{2}$, then this follows from the fact that $\bar{L}_{i} \triangleleft \bar{J}, i=1,2$.

Suppose then that $\bar{X} \nsubseteq \bar{L}_{1}$. If $\bar{L}_{2} \cong Z_{2} \times Z_{2}$, then $W=K \cap S_{2}$ is a fourgroup and $\bar{W}=\bar{L}_{2}$. It follows that $\bar{J}=\left(N_{J}(W)\right)^{-}$. From Proposition 3.8 we conclude that \bar{F}_{1} char $C_{\bar{J}}(\bar{W}) \triangleleft \bar{J}$ and so $\bar{F}_{1} \triangleleft \bar{J}$. If \bar{L}_{2} is a simple group, then $C_{\bar{J}}\left(\bar{L}_{2}\right) \cap \bar{L}_{2}=1$. Since $C_{\bar{J}}\left(\bar{L}_{2}\right)$ is a D-group, we have \bar{F}_{1} char $C_{J}\left(\bar{L}_{2}\right)$ and that $\bar{F}_{1} \triangleleft \bar{J}$.

Suppose now that $\bar{Y} \nsubseteq \bar{L}_{2}$. Then $\bar{S}_{2} \cap \bar{L}_{2}$ is a dihedral group and so $\bar{Y}\left(\bar{S}_{2} \cap \bar{L}_{2}\right)$ is also a dihedral group. Arguing as in the preceding paragraph we can conclude that $\bar{F}_{2} \triangleleft \bar{J}$ as well. This completes the proof.

We now find it convenient to fix some more notation. We set $p_{2}=3$ if $M_{0} / O(M) \cong M_{11}$, we set p_{2} to be the prime which divides q_{2} if $M_{0} / O(M) \cong$ $L_{3}\left(q_{2}\right)$, and we do not define p_{2} if $M_{0} / O(M) \cong U_{3}\left(q_{2}\right)$. Also we let δ_{2} denote the set of all odd primes which divide the order of $C_{M_{0} / O(M)}(Y)$.

Our next goal is to prove some results on the transitivity of maximal A-invariant p-subgroups under conjugation by the elements in $N_{G}(A)$ where p is an odd prime.

Lemma 4.4. Suppose that p is an odd prime and that $p \notin \mathrm{~S}_{2}$. If P_{1} and P_{2} are maximal A-invariant p-subgroups of H, then $P_{1} \sim P_{2}$ in $N_{H}(A)$.

Proof. Any maximal A-invariant p-subgroup of H contains a Sylow p-subgroup of $O(H)$ and any two A-invariant Sylow p-subgroups of $O(H)$ are conjugate in $C_{O(H)}\left(A_{\bar{\prime}}\right)$. It is immediate from this that it will suffice to prove that $\bar{P}_{1} \sim \bar{P}_{2}$ in $N_{\bar{H}}(\bar{A})$ where $\bar{H}=H / O(H)$.

If H has no isolated involution and if $J=O^{2}(H) A$, then by the preceding lemma \bar{J} has a normal subgroup of odd index of the form $\bar{F}_{1} \times \bar{F}_{2}$ where $\bar{S}_{i} \cap \bar{F}_{i}$ is a Sylow 2 -subgroup of \vec{F}_{i} and \bar{F}_{i} has the structure asserted in the conclusion of that lemma, $i=1,2$.

If F_{i} denotes the preimage in J of $\bar{F}_{i}, i=1,2$, then $\bar{F}_{i}=\left(F_{1} \cap N_{0}\right)^{-}$and $\bar{F}_{2}=\left(F_{2} \cap M_{0}\right)^{-}$. Since $p \notin \mathcal{S}_{2}$, we have that p does not divide the order of $C_{\tilde{F}_{2}}(\bar{Y})$.

Set $\bar{U}_{i}=\bar{P}_{i} \cap \bar{F}_{1}, \bar{V}_{i}=\bar{P}_{i} \cap \bar{F}_{2}$, and $\bar{R}_{i}=C_{\bar{P}_{i}}(\bar{A})$. Then by Lemmas 2.1, 2.2, or 2.3 and by the structures of \bar{F}_{1} and $\bar{F}_{2}, U_{1} V_{1} \sim U_{2} V_{2}$ in $N_{\tilde{F}_{1} \tilde{F}_{2}}(\bar{A})$. Also by the maximality of P_{i} we have that \bar{R}_{i} is a Sylow p-subgroup of $N_{J}\left(\bar{U}_{i} \bar{V}_{i}\right) \cap C_{J}(\bar{A}), i=1,2$. Since $\bar{P}_{i}=\bar{U}_{i} \bar{V}_{i} \bar{R}_{i}, i=1$, 2 , we can conclude as in the proof of Lemma 2.1 that $\bar{P}_{1} \sim \bar{P}_{2}$ in $N_{J}(\bar{A})$.

Next we consider the case that H contains an isolated involution. Suppose first that some $x \in X^{*}$ is isolated. For definiteness, let $x=x_{1}$. Then we have $\bar{J}=\bar{X} \times\left(J \cap C_{1}\right)^{-}$. Set $\bar{F} \times O^{2^{\prime}}\left(J \cap C_{1}\right)^{-}$. Then $\bar{S}_{2} \cap \bar{F}$ is a Sylow 2-sub-
group of \bar{F} and since $p \notin \mathbb{S}_{2}, p$ does not divide the order of $C_{\tilde{F}}(\bar{Y})$. Since \bar{F} is an $S D$-group, a Q-group, a D-group, or a 2 -group, we have by Lemmas 2.1, 2.2, and 2.3 that $\bar{P}_{1} \sim \bar{P}_{2}$ in $N_{\left(J \cap_{\left.s_{1}\right)}\right.}{ }^{-}(\bar{Y})$ and hence, in $N_{\bar{J}}(\bar{A})$.

If no involution in X is isolated in H, then by Lemma 4.1 we have that some $y \in Y^{*}$ is isolated in H. For definiteness, let $y=y_{1}$. Set $J_{1}=J \cap D_{1}$, $J_{2}=J \cap D_{2}$, and $E=O\left(C_{J}(A)\right)$. Since $\bar{J}=(J \cap D)^{-}$, we have \bar{J}_{1} and \bar{J}_{2} are normal in \bar{J}. Also $J_{1} \cap J_{2}$ has odd order and so $\bar{J}_{1} \bar{J}_{2}=\bar{J}_{1} \times \bar{J}_{2}$. Now let $K=J_{1} J_{2} E O(H)$ and $\bar{K}=K / O(K)$. Also set $\bar{F}_{i}=O^{2^{\prime}}\left(\bar{J}_{i}\right), i=1,2$. As above we have that p does not divide $C_{\tilde{P}_{2}}(\bar{Y})$. Since

$$
\bar{P}_{i}=\left(\bar{P}_{i} \cap \bar{F}_{1} \times \bar{P}_{i} \cap F_{2}\right)\left(\bar{P}_{i} \cap \bar{E}\right), \quad i=1,2,
$$

we conclude that $\bar{P}_{1} \sim \bar{P}_{2}$ in $N_{\bar{K}}(\bar{A})$. This completes the proof of the lemma.
Proposition 4.5. Suppose that p is an odd prime and that $p \notin \mathbb{S}_{2}$. If P_{1} and P_{2} are maximal A-invariant p-subgroups of G, then $P_{1} \sim P_{2}$ in $N_{G}(A)$.

Proof. Suppose that the proposition is false and choose P_{1} and P_{2} such that they violate it and such that the order of $R=P_{1} \cap P_{2}$ is maximal subject to this. Set $K=N_{G}(R)$. Without loss we can assume that $K \cap S$ is a Sylow S-subgroup of K. If $R \neq 1$, then K is a proper subgroup of G and the preceding lemma is applicable. This leads to a contradiction by a standard argument.

In any case, we have $P_{i} \neq 1, i=1,2$. Considering the action of A on P_{i}, we see then that $C_{P_{i}}\left(T_{i}\right) \neq 1$ for some maximal subgroup T_{i} of $A, i=1,2$. Setting $H=C_{G}(T)$ where $T=T_{1} \cap T_{2} \neq 1$ and hence, $C_{P_{i}}(T) \neq 1, i=1,2$, we can assume without loss that $S \cap H$ is a Sylow 2 -subgroup of H. Again, the preceding lemma is applicable. We let Q_{i} be a maximal A-invariant p-subgroup of G containing $C_{P_{i}}(T)$ as well as a maximal A-invariant p-sub$\operatorname{group} R_{i}$ of $H, i=1,2$. Then $Q_{i} \cap P_{i} \neq 1, i=1,2$ and Q_{1}^{u} contains R_{2} for some $u \in N_{H}(A)$ by the preceding lemma. These conditions together with our maximal choice of $P_{1} \cap P_{2}=R$ now force $R \neq 1$ and the lemma is proved.

Lemma 4.6. If $p \in S_{2}$ and if P is a maximal A-invariant p-subgroup of G, then $P \cap M_{0}$ covers a maximal Y-invariant p-subgroup of $M_{0} / O(M)$.

Proof. Let Γ be the set of all maximal A-invariant p-subgroups P^{*} of G such that P^{*} covers a maximal Y-invariant p-subgroup of $M_{0} / O(M)$. Suppose, by way of contradiction, that there exist maximal A-invariant p-subgroups of G not contained in Γ. Among those not in Γ, select the subset J consisting of all subgroups P_{1} such that the order of $P_{1} \cap M_{0}$ is maximal. For each group $P_{1} \in J$, let $\Gamma\left(P_{1}\right)$ denote the subset of Γ which consists of all groups P_{2} such that $P_{2} \supseteq P_{1} \cap M_{0}$. It is clear that $\Gamma\left(P_{1}\right) \neq \emptyset$ for each $P_{1} \in \mathfrak{J}$. We now consider the set of all pairs of groups $\left(P_{1}, P_{2}\right)$ where $P_{1} \in \mathcal{J}$ and $P_{2} \in \Gamma\left(P_{1}\right)$ and among these we choose a pair (P_{1}, P_{2}) such that the order of $R=P_{1} \cap P_{2}$ is maximal.

Suppose that $R=1$. Since $P_{1} \cap M_{0} \subseteq R, P_{1} \cap M_{0}=1 . \quad$ Since $P_{1} \neq 1$,
$C_{P_{1}}(x) \neq 1$ for some $x \in X^{*}$. But a maximal A-invariant p-subgroup of $C_{G}(x)$ covers a maximal Y-invariant p-subgroup of $M_{0} / O(M)$ and so we can find some $P_{3} \in \Gamma$ containing $C_{P_{1}}(x)$. Since $P_{1} \cap M_{0}=1$, we have $P_{3} \in \Gamma\left(P_{1}\right)$. Since $P_{1} \cap P_{3} \neq 1$, we have contradicted the maximality of R. Thus we have that $R \neq 1$.

Set $H=N_{G}(R)$. Without loss we can assume $S \cap H$ is a Sylow 2-subgroup of H. Also set $K=O^{2}(H) A$. Now let $Q_{i}=N_{P_{i}}(R)$ and let V_{i} be a maximal A-invariant p-subgroup of G containing Q_{i} and a maximal A-invariant p-subgroup U_{i} of $H, i=1,2$.

Suppose that $V_{1} \in \Gamma$; since $V_{1} \supseteq R \supseteq P_{1} \cap M_{0}$, we have $V_{1} \in \Gamma\left(P_{1}\right)$. Since $V_{1} \cap P_{1} \supseteq Q_{1} \supset R$, we have a contradiction. It follows that $V_{1} \not \subset \Gamma$. Since $V_{1} \cap M_{0} \supseteq P_{1} \cap M_{0}$, we see that $V_{1} \in \mathfrak{J}$.

Suppose next that $V_{2} \notin \Gamma$. Since $V_{2} \supseteq R \supseteq P_{1} \cap M_{0}$, it follows that $V_{1} \in \mathfrak{J}$ and also that $V_{2} \cap M_{0}=P_{1} \cap M_{0}$. From this it follows that $P_{2} \in \Gamma\left(V_{2}\right)$ and since $P_{2} \cap V_{2} \supset R$, we again have a contradiction. Thus we have that $V_{2} \in \Gamma$.

Now suppose that H has no isolated involution and set $K=O^{2}(H) A$ and $\bar{H}=H / O(H)$. Also let $\bar{F}=\bar{F}_{1} \times \bar{F}_{2}$ be the normal subgroup of odd index in \bar{K} which satisfies the conclusion of Lemma 4.3 and retain the notation of that lemma. Finally, let F_{i} denote the preimage in H of $\bar{F}_{i}, i=1,2$. Then we see that $\bar{F}_{2}=\left(F_{2} \cap M_{0}\right)^{-}$.

By the maximality of U_{1} we have ($\left.U_{1} \cap F_{2}\right)^{-}$is a maximal Y-invariant p-subgroup of \bar{F}_{2}. Since $U_{1} \cap M_{0} \supseteq R \cap M_{0}$ and the order of $U_{1} \cap M_{0}$ equals the order of $P_{1} \cap M_{0}$, we conclude that

$$
U_{1} \cap M_{0} \subseteq R \subseteq O(H)
$$

Since $\left(U_{1} \cap F_{2}\right)^{-}=\left(U_{1} \cap F_{2} \cap M_{0}\right)^{-}$, it follows that $\left(U_{1} \cap F_{2}\right)^{-}=1$. But now the structure of \bar{F}_{2} forces $\left(U_{2} \cap F_{2}\right)^{-}=1$ also. It follows then that $\bar{U}_{i}=\left(U_{i} \cap F_{1}\right)^{-} C_{\bar{U}_{i}}(\bar{A})$ for $i=1,2$ and we also have that $\left(U_{i} \cap F_{1}\right)^{-}$is a maximal X-invariant p-subgroup of \bar{F}_{3}. As in previous arguments we then have that $U_{2}^{k}=U_{1}$ for some $k{ }_{\epsilon} N_{K}(A)$. Since normalizes M_{0} and $V_{2}^{k} \supseteq R \supseteq P_{1} \cap M_{0}$, it follows that $V_{2}^{k} \in \Gamma\left(P_{1}\right)$. This again contradicts the maximality of R, since $V_{2}^{k} \cap P_{1} \supset R$.

We can assume then that H contains an isolated involution. First suppose that x is isolated in H for some $x \in X^{*}$. Then we have that $\bar{K}=\bar{X} \times(K \cap M)^{-}$and that \bar{U}_{i} is a maximal y-invariant p-subgroup of $(K \cap M)^{-}, i=1,2$. Since $\left(K \cap M_{0}\right)^{-} \triangleleft(K \cap M)^{-}$, we see that

$$
\bar{U}_{i}=\left(U_{i} \cap K \cap M_{0}\right)^{-} C_{\bar{U}_{i}}(\bar{A}), \quad i=1,2 .
$$

But as above we conclude that $\left(U_{1} \cap K \cap M_{0}\right)^{-}=1$ and hence, that $\left(U_{2} \cap K \cap M_{0}\right)^{-}=1$ also. Then \bar{U}_{i} is a Sylow p-subgroup of $C_{\bar{K}}(\bar{A}), i=1,2$ and it follows easily that $U_{1} \sim U_{2}$ in $N_{K}(A)$. But this leads to the same contradiction as above.

Finally, we consider the case that an involution y in Y is isolated in H.

For definiteness, we let $y=y_{1}$. Set $K_{i}=K \cap D_{i}, i=1,2$ and let $E=O\left(C_{K}(A)\right)$. Also set $L=K_{1} K_{2} E O(H)$ and let $\tilde{L}=L / O(L)$. Then we have that $U_{i} \subseteq L$ and that $\bar{L}=\left(\bar{K}_{1} \times \bar{K}_{2}\right) \bar{E}$. Finally, let $\bar{F}_{i}=O^{2^{\prime}}\left(\bar{K}_{i}\right)$ and let F_{i} denote the preimage in L of $\bar{F}_{i}, i=1,2$. Then $\bar{F}_{2}=\left(F_{2} \cap M_{0}\right)^{-}$ and we conclude as above that $\left(U_{i} \cap F_{2}\right)^{-}=1, i=1,2$. Again, we see that $U_{1} \sim U_{2}$ in $N_{L}(A)$ and this leads to the same contradiction as above. This however forces our lemma to be true.

Lemma 4.7. Suppose that $p \in \mathrm{~S}_{2}$ and that P_{i} is a maximal A-invariant p-subgroup of $G, i=1,2$. If $P_{1} \cap P_{2} \cap M_{0}$ covers a maximal Y-invariant p-subgroup of $M_{0} / O(M)$, then $P_{1} \sim P_{2}$ in $N_{G}(A)$.

Proof. Suppose that the lemma is false and among all pairs of subgroups violating the lemma choose P_{1} and P_{2} such that the order of $R=P_{1} \cap P_{2}$ is maximal. Then we see that R covers a maximal Y-invariant p-subgroup of $M_{0} / O(M)$ and in particular, $R \neq 1$.

Set $H=N_{G}(R)$ and let U_{i} be a maximal A-invariant p-subgroup of H containing $N_{P_{i}}(R), i=1,2$. Since R covers a maximal Y-invariant p-subgroup of $M_{0} / O(M)$ and argueing as in the previous lemma, we can conclude that $U_{1} \sim U_{2}$ in $N_{H}(A)$. This leads to a contradiction by a standard argument and proves the lemma.

Proposition 4.8. Suppose that $p \in \mathrm{~S}_{2}$. Then there exist maximal A-invariant p-subgroups P_{1} and P_{2} of G such that $P_{i} \cap M_{0}$ is a maximal A-invariant p-subgroup of M_{0} and $\left[P_{1} \cap M_{0}, Y\right] \subseteq O(M)$ and $\left[P_{2} \cap M_{0}, Y\right] \nsubseteq O(M)$. Let P be any maximal A-invariant p-subgroup of G. If $\left[P \cap M_{0}, Y\right] \subseteq O(M)$, then $P \sim P_{1}$ and if $\left[P \cap M_{0}, Y\right] \nsubseteq O(M)$, then $P \sim P_{2}$ in $N_{G}(A)$.

Proof. Let Q_{i} be a maximal A-invariant p-subgroup of $M_{0}, i=1,2$ such that $\left[Q_{1}, Y\right] \equiv O(M)$ and $\left[Q_{2}, Y\right] \nsubseteq O(M)$ and let P_{i} be a maximal A-invariant p-subgroup of G containing $Q_{i}, i=1,2$.

Suppose that P is a maximal A-invariant p-subgroup of G and that

$$
\left[P \cap M_{0}, Y\right] \subseteq O(M)
$$

Since $P \cap M_{0}$ covers a maximal Y-invariant p-subgroup of $M_{0} / O(M)$ by Lemma 4.6, we have

$$
\left(P \cap M_{0}\right)^{m} \subseteq P_{1} \cap M_{0} \quad \text { for some } m \in N_{M_{0}}(A)
$$

Then $P^{m} \cap P_{1} \cap M_{0}=\left(P \cap M_{0}\right)^{m}$ covers a maximal Y-invariant p-subgroup of $M_{0} / O(M)$. By the preceding lemma $P^{m} \sim P_{1}$ in $N_{G}(A)$ and hence, $P \sim P_{1}$ in $N_{G}(A)$.

If $\left[P \cap M_{0}, Y\right] \nsubseteq O(M)$, we can apply a similar argument to conclude that $P \sim P_{2}$ in $N_{G}(A)$.

We shall say that a proper subgroup H of G covers $M_{0} / O(M)$ if $H \cap M_{0}$ covers $M_{0} / O(M)$. Similarly, we shall say that H covers $N_{0} / O(N)$ if $H \cap N_{0}$
covers $N_{0} / O(N)$. We now prove some results concerning p-local subgroups of G which cover $M_{0} / O(M)$ and $N_{0} / O(N)$.

Lemma 4.9. Suppose that a Sylow p-subgroup of $O(C)$ is nontrivial. If P is a maximal A-invariant p-subgroup of G, then there is a p-local subgroup K of G containing $P A$ and covering $M_{0} / O(M)$.

Proof. Let Q be an A-invariant Sylow p-subgroup of $O(C)$. Then $N_{C}(Q)$ contains A and covers $C_{0} / O(C)$ and hence, covers $M_{0} / O(M)$. Let R be a maximal A-invariant p-subgroup of $N_{c}(Q)$ so that R covers a maximal Y-invariant p-subgroup of $M_{0} / O(M)$. If $p \in \mathrm{~S}_{2}$, we choose R such that $\bar{R} \sim\left(M_{0} \cap P\right)^{-}$in $N_{\bar{M}_{0}}(\bar{Y})$ where $\bar{M}_{0}=M_{0} / O(M)$.

Now among all p-local subgroups of G containing $R A$ and covering $M_{0} / O(M)$ choose K such that an A-invariant p-subgroup U of K has maximal order subject to containing R. Suppose that U is not a maximal A-invariant p-subgroup of G. Then there exists an A-invariant p-subgroup of G which properly contains and normalizes U. We denote this subgroup by V.

By Lemmas 4.1, 4.2, and 4.3, $O^{2}(K) A$ has a normal subgroup L containing $O(K)$ such that $\bar{L}=\left(L \cap M_{0}\right)^{-} \cong M_{0} / O(M)$ in $\bar{K}=K / O(K)$. Set $F=L U A$ and let $\bar{F}=F / O(F)$. By the maximality of U we have that $V_{0}=U \cap O(F)$ is a Sylow p-subgroup of $O(F)$. Also $\bar{F}=\left(L \cap M_{0}\right)^{-} \bar{U} \times \bar{X}$ and $N_{L \cap} M_{0}\left(V_{0}\right)$ covers $L \cap M_{0}$ by the Frattini argument and hence, covers $M_{0} / O(M)$.

Now $C_{V}(x) \nsubseteq U$ for some $x \in X^{*}$. Suppose x centralizes V_{0}. Then $C_{V}(x) \supset U$ and we can find a maximal A-invariant p-subgroup of $C_{G}(x)$ containing $C_{V}(x)$ such that this subgroup and A are contained in a p-local subgroup of $C_{G}(x)$ which covers $M_{0} / O(M)$. However, this contradicts the maximality of U and our choice of K. Thus we can assume that $\left[V_{0}, x\right] \neq 1$. Set $V_{1}=\left[V_{0}, x\right]$. Then V_{1} is normalized by $U C_{V}(x)$, by A, and by $N_{L \cap_{M_{0}}}\left(V_{0}\right)$. But then $N_{G}\left(V_{1}\right)$ contradicts our choice of K. This contradiction then proves our lemma since U must be a maximal A-invariant p-subgroup of G and $U \sim P$ in $N_{G}(A)$.

Lemma 4.10 Suppose that a Sylow p-subgroup of $O(D)$ is nontrivial. Then there exists a p-local subgroup H of G containing A and a maximal A-invariant p-subgroup P of G such that H covers $N_{0} / O(N)$.

Proof. Let V be an A-invariant Sylow p-subgroup of $O(D)$. Then $N_{D}(V)$ contains A and covers $D_{1} / O(D)$ and hence, covers $N_{0} / O(N)$. Now among all p-local subgroups of G containing A and covering $N_{0} / O(N)$ choose H such that an A-invariant p-subgroup of H has maximal order. Suppose that P is not a maximal A-invariant p-subgroup of G. Then there is an A-invariant p-subgroup U of G containing P properly and normalizing P. Then $C_{V}(y) \nsubseteq P$ for some $y \in Y^{*}$. We can now argue as in the preceding
lemma to obtain a contradiction to our choice of H. It follows that P is a maximal A-invariant p-subgroup of G and the lemma is proved.

We conclude this section with a result needed in the next.
Lemma 4.11. Suppose $p \in \mathrm{~S}_{2}$ and R is an A-invariant p-subgroup such that

$$
R=\left\langle R \cap O\left(C_{G}(x)\right) \mid x \in X^{*}\right\rangle .
$$

Then R is contained in maximal A-invariant p-subgroups P and Q of G such that

$$
\left[P \cap M_{0}, Y\right] \subseteq O(M) \quad \text { and } \quad\left[Q \cap M_{0}, Y\right] \nsubseteq O(M)
$$

Proof. Let U be a maximal A-invariant p-subgroup of G containing R. By the preceding Lemma 4.9 there is a p-local subgroup K of G containing $U A$ and covering $M_{0} / O(M)$. Then $O^{2}(K) A$ has a normal subgroup L containing $O(K)$ such that

$$
\bar{L}=\left(L \cap M_{0}\right)^{-} \cong M_{0} / O(M) \quad \text { in } \bar{K}=K / O(K)
$$

Let $J=L U A$ and set $\bar{J}=J / O(J)$. Then $\bar{J}=\left(L \cap M_{0}\right)^{-} \bar{U} \times \bar{X}$ and for $x \in X^{*}$ we have that

$$
\left.\left[\left(R \cap O\left(C_{G}(x)\right)\right)\right)^{-}\left(L \cap M_{0}\right)^{-}\right]
$$

is a normal subgroup of odd order in $\bar{L}=\left(L \cap M_{0}\right)^{-}$. It follows that $(R \cap O$ $\left.\left(C_{G}(x)\right)\right)^{-}$centralizes \bar{L} and so we conclude that $R \cap O\left(C_{G}(x)\right) \subseteq O(J)$. It follows that $R \subseteq O(J)$. Since J covers $M_{0} / O(M)$, we have that maximal A-invariant p-subgroups of J cover maximal Y-invariant p-subgroups of $M_{0} / O(M)$. Moreover, we can find maximal A-invariant p-subgroups Q_{1} and Q_{2} of J such that $O(J) \cap U \subseteq Q_{1} \cap Q_{2}$ and such that

$$
\left[Q 1 \cap M_{0}, Y\right] \subseteq O(M) \quad \text { and } \quad\left[Q_{2} \cap M_{0}, Y\right] \nsubseteq O(M)
$$

It is now only necessary to choose P_{i} to be a maximal A-invariant p-subgroup of G containing $Q_{i}, i=1,2$ in order to obtain the conclusion of our lemma.

5. An A-signalizer functor

Our main goal in this section is to show that if for $a \in A^{*}$ we set

$$
\theta\left(C_{G}(a)\right)=\left\langle C_{G}(a) \cap\left(C_{G}(x)\right) \cap O\left(C_{G}(y)\right) \mid x \in X^{*}, y \in Y^{*}\right\rangle
$$

then θ is an A-signalizer functor on G. In order to do this we must show that $\theta\left(C_{G}(a)\right)$ has odd order for all $a \in A^{*}$ and that θ satisfies the balance condition

$$
\theta\left(C_{G}(a)\right) \cap O C_{G}(b) \subseteq \theta\left(C_{G}(b)\right), \quad a, b \in A^{*}
$$

We shall use Proposition 2.1 of [6] to show this.
We are retaining the following notation of the preceding sections: B, C, D, $B_{1}, C_{1}, D_{0}, D_{1}, D_{2}, M, M_{0}, N, N_{0}, C_{0}, B_{0}$.

We first prove the following useful lemma.

Lemma 5.1. The following conditions hold for all $x, x^{\prime} \in X^{*}, y, y^{\prime} \in Y^{*}$:
(i) $\quad C_{G}(x) \cap O\left(C_{G}\left(x^{\prime}\right)\right) \subseteq O\left(C_{G}(x)\right)$.
(ii) $C_{G}(y) \cap O\left(C_{G}(x)\right) \cap O\left(C_{G}\left(y^{\prime}\right)\right) \subseteq O\left(C_{G}(y)\right)$.
(iii) $C_{G}(x y) \cap O\left(C_{G}\left(x^{\prime}\right)\right) \subseteq O\left(C_{G}(x y)\right)$.
(iv) $\left[D \cap O\left(C_{G}(x)\right), D_{2}\right] \subseteq O(D)$ and in particular, $\left(D \cap O\left(C_{G}(x)\right)\right)^{-}$ centralizes \bar{Y} in $\bar{D}=D / O(D)$.

Proof. Choose $x \in X-\left\langle x_{1}\right\rangle$ and set $R=C \cap O\left(C_{G}(x)\right) . \quad$ If $\bar{C}=C / O(C)$, then $\left[\bar{R}, \bar{C}_{1}\right]$ is a normal subgroup of odd order in \bar{C}_{1} since $\bar{C}_{1}=\left(C_{1} \cap M\right)^{-}$. It follows that \bar{R} centralizes \bar{C}_{1} and so $R \subseteq O(C)$. Now (i) follows easily from this.

Choose $y \epsilon Y-\left\langle y_{1}\right\rangle$ and set $Q=D \cap O(C) \cap O\left(C_{G}(y)\right) . \quad$ If $\bar{D}=D / O(D)$, then $\left[\bar{Q}, \bar{D}_{i}\right]$ is a normal subgroup of odd order in $\bar{D}_{i}, i=1,2$ since $\bar{D}_{1}=$ $\left(D_{1} \cap N\right)^{-}$and $\bar{D}_{2}=\left(D_{2} \cap M\right)^{-}$. From this it follows that \bar{Q} centralizes both \bar{D}_{1} and \bar{D}_{2} and hence, $R \subseteq O(D)$. Then (ii) follows easily from this.

Next, choose x in $X-\left\langle x_{1}\right\rangle$ and set $P=B \cap O\left(C_{G}(x)\right)$. If $\bar{B}=B / O(B)$, then $\left[\bar{P}, \bar{B}_{1}\right]$ is a normal subgroup of odd order in \bar{B}_{1} since $\bar{B}_{1}=\left(B_{1} \cap M\right)^{-}$. We conclude that $R \subseteq O(B)$ and (iii) follows easily from this.

If $\bar{D}=D / O(D)$, then $\left[(D \cap O(C))^{-}, \bar{D}_{2}\right]$ is a normal subgroup of odd order in \bar{D}_{2}. It follows that $(D \cap O(C))^{-}$centralizes \bar{D}_{2} and (iv) is a consequence of this.

Lemma 5.2. Let E be an A-invariant subgroup of G of odd order such that $A E \subseteq H \cap K$ where H is a proper subgroup of G covering $N_{0} / O(N)$ and K is a proper subgroup of G covering $M_{0} / O(M)$. Then $E \subseteq O(H) \cap O(K)$ if and only if

$$
E=\left\langle E \cap O\left(C_{G}(x)\right) \cap O\left(C_{G}(y)\right) \mid x \in X^{*}, y \in Y^{*}\right\rangle .
$$

Proof. Without loss of generality we can assume that $H=O^{2}(H) A$ and $K=O^{2}(K) A$. Set $\bar{H}=H / O(H)$ and $\bar{K}=K / O(K)$. By Lemmas 4.1, 4.2, and 4.3 we have that \bar{H} has a normal subgroup of odd index of the form $\bar{F}_{1} \times \bar{F}_{2}$ where $\bar{X} \subseteq \bar{F}_{1}, \bar{Y} \subseteq \bar{F}_{2}$, and $\bar{F}_{1} \cong N_{0} / O(N)$ and \bar{K} has a normal subgroup of odd index of the form $\bar{L}_{1} \times \bar{L}_{2}$ where $\bar{X} \subseteq \bar{L}_{1}, \bar{Y} \subseteq \bar{L}_{2}$, and $\bar{L}_{2} \cong M_{0} / O(M)$. Let F_{i} be the preimage in H of $\bar{F}_{i}, i=1,2$ and let L_{j} be the preimage in K of $\bar{L}_{j}, j=1,2$. We then have $\bar{F}_{1}=\left(F_{1} \cap N_{o}\right)^{-}, \bar{F}_{2}=$ $\left(F_{2} \cap M_{0}\right)^{-}, \bar{L}_{1}=\left(L_{1} \cap N_{0}\right)^{-}$, and $\bar{L}_{2}=\left(L_{2} \cap M_{0}\right)^{-}$.
First assume that $E \subseteq O(H) \cap O(K)$ and let $R=E \cap C \cap D$. Set $\bar{C}=$ $C / O(C)$. Since $\bar{C}=\left(C_{0} \cap M_{0}\right)^{-}=\left(C_{0} \cap M_{0} \cap L_{2}\right)^{-}$, it follows that $\left[\bar{R}, \bar{C}_{0}\right]$ is a normal subgroup of odd order in \bar{C}_{0} and thus, that \bar{R} centralizes \bar{C}_{0}. We conclude that $R \subseteq O(C)$. Now set $\bar{D}=D / O(D)$. Then $\bar{D}_{1}=$ $\left(D_{1} \cap N_{0} \cap F_{1}\right)^{-}$and $\bar{D}_{2}=\left(D_{2} \cap C\right)^{-}$and so we see as above that \bar{R} centralizes both \bar{D}_{1} and \bar{D}_{2}. It follows that $R \subseteq O(D)$. From this we easily conclude that

$$
C_{E}(\langle x, y\rangle) \subseteq O\left(C_{G}(x)\right) \cap O\left(C_{G}(y)\right) \quad \text { for all } x \in X^{*}, y \in Y^{*}
$$

Since $E=\left\langle C_{E}(\langle x, y\rangle) \mid x \in X^{*}, y \in Y^{*}\right\rangle$, the "only if" part of the lemma is proved.

Next, assume that $E=\left\langle E \cap O\left(C_{G}(x)\right) \cap O\left(C_{G}(y)\right)\right\rangle$. Set

$$
R=O(C) \cap O(D) \cap E
$$

We then see that \bar{R} centralizes \bar{F}_{1} and \bar{F}_{2} in \bar{H} and that \bar{R} centralizes \bar{L}_{1} and \bar{L}_{2} in \bar{K}. It follows that $R \subseteq O(H) \cap O(K)$ and easily conclude that $E \subseteq$ $O(H) \cap O(K)$. This completes the proof of the lemma.

We now select an arbitrary $a \epsilon A$ and set $K=\theta\left(C_{G}(a)\right)$. By Lemma 5.1 K has odd order. If for $x \epsilon X^{*}$ and $y \in Y^{*}$ we set

$$
K_{x, y}=K \cap O\left(C_{G}(x)\right) \cap O\left(C_{\sigma}(y)\right)
$$

then $K_{x, y} \triangleleft C_{K}(x, y)$ and $K=\left\langle K_{x, y} \mid x \in X^{*}, y \in Y^{*}\right\rangle$. We shall show that every A-invariant subgroup of K is (X, Y)-generated with respect to the subgroups $K_{x, y}$.

Lemma 5.3. For all $x, x^{\prime} \in X^{*}, y, y \notin \in Y^{*}$ we have

$$
C_{K_{x, y}}\left(x^{\prime}\right) \subseteq K_{x^{\prime}, y} \quad \text { and } \quad C_{K_{x, y}}\left(y^{\prime}\right) \subseteq K_{x, y^{\prime}}
$$

Proof. By Lemma 5.1, $C_{K_{x, y}}\left(x^{\prime}\right] \subseteq O\left(C_{G}\left(x^{\prime}\right)\right)$ and $C_{K_{x, y}}\left(y^{\prime}\right) \subseteq O\left(C_{G}\left(y^{\prime}\right)\right)$ and the lemma follows easily from this.

Lemma 5.4 Every element in $C_{K}(\langle x, y\rangle)$ inverted by the involutions in both $X-\langle x\rangle$ and $Y-\langle y\rangle$ lies in $K_{x, y}$.

Proof. Suppose that $k \in C_{K}(x, y)$ and that k is inverted by the involutions in both $X-\langle x\rangle$ and $Y-\langle y\rangle$. By (i) of Lemma 5.1, $k \in O\left(C_{G}(x)\right)$ and then by (iv) of the same lemma, $k \in O\left(C_{G}(y)\right)$. It follows that $k \in K_{x, y}$.

Lemma 5.5. The elements in $\left[C\left(x_{K}\right), Y\right]^{\prime} \cap C_{K}(x)$ inverted by the involutions in $\mathrm{Y}-\langle y\rangle$ lie in $K_{x, y}$. The elements in $\left[C_{K}(y), x\right]^{\prime} \cap C_{K}(x)$ inverted by the involutions in $X-\langle x\rangle$ lie in $K_{x, y}$.

Proof. For definiteness let $x=x_{1}$ and $y=y_{1}$. We then have that

$$
\left[(K \cap C)^{-}, \bar{Y}\right] \subseteq\left(C_{0} \cap O\left(C_{G}(a)\right)^{-} \subseteq O\left(C_{\bar{c}_{0}}(\bar{a})\right)\right.
$$

which is abelian in $\bar{C}=C / O(C)$. It follows that

$$
[K \cap C, Y]^{\prime} \subseteq O(C)
$$

If $g \epsilon[K \cap C, Y]^{\prime} \cap D$ and g is inverted by y_{2}, then $g \epsilon O(D)$ by (iv) of Lemma 5.1. Thus we have $g \in K_{x, y}$.

We also see that $\left.[K \cap D)^{-}, \bar{X}\right]$ is an X-invariant subgroup of \bar{D}_{1} of odd order and so it is abelian by the structure of \bar{D}_{1} in $\bar{D}=D / O(D)$. It follows that $[K \cap D, X]^{\prime} \subseteq O(D)$. If $g \in[K \cap D, X]^{\prime} \cap C$ and g is inverted by x_{2}, then $g \in O(C)$ since g is of odd order and so $g \in K_{a, y}$.

Lemma 5.6. If R is an (X, Y)-generated p-subgroup of K for some prime p, then every A-invariant subgroup of R is (X, Y)-generated.

Proof. We assume that $R \neq 1$, otherwise the lemma is trivial. By Lemmas 4.9, 4.10, and 4.11 we can find a maximal A-invariant p-subgroup P of G containing R and we can find p-local subgroups H and K of G containing $P A$ such that H covers $N_{0} / O(N)$ and K covers $M_{0} / O(M)$. Now by Lemma 5.2 we have $R \subseteq O(H) \cap O(K)$ and by the same lemma we conclude that every A-invariant subgroup of R is (X, Y)-generated.

Proposition 5.7. We have that θ is an A-signalizer functor on G and that the group $W=\left\langle\theta\left(C_{G}(a)\right) \mid a \in A^{*}\right\rangle$ is of odd order.

Proof. Since $\theta\left(C_{G}(a)\right), a \in A^{*}$, is of odd order, we need only verify the balance condition. Choose $a, b \in A^{*}$ and set $K=\theta\left(C_{G}(a)\right)$. Then Lemmas $5.3-5.6$ show that K satisfies conditions (a)-(d) of Proposition 2.1 of [6]. It follows by that proposition that every A-invariant subgroup of K is (X, Y)generated. Since $K \cap C_{G}(b)$ is A-invariant, we conclude that

$$
K \cap C_{G}(b)=\left\langle K_{x, y} \cap C_{G}(b) \mid x \in X^{*}, y \in Y^{*}\right\rangle \subseteq \theta\left(C_{G}(b)\right)
$$

Thus θ is an A-signalizer functor on G and the second part of the lemma is a consequence of the main result of Goldschmidt's paper [4].

6. A strongly imbedded subgroup

In this section we will show that $N_{G}(W)$ is a strongly imbedded subgroup of G if $W \neq 1$ where W is the group defined in Proposition 5.7. We retain the notation of the preceding sections and we set $G^{*}=N_{G}(W)$.

If H is a proper subgroup of G containing A and covering $N_{0} / O(N)$, then by Lemmas 4.1, 4.2, and 4.3 we conclude that H has a normal subgroup F containing $O(H)$ such that $X \subseteq F$ and $\bar{F}=\left(F \cap N_{0}\right)^{-} \cong N_{0} / O(N)$ in $\bar{H}=H / O(H)$. Similarly, if K is a proper subgroup of G containing A and covering $M_{0} / O(M)$, then K has a normal subgroup L containing $O(K)$ such that $Y \subseteq L$ and $\bar{L}=\left(L \cap M_{0}\right)^{-} \cong M_{0} / O(M)$. We shall use these facts several times in this section. We also note here that $W=\left\langle O\left(C_{G}(x)\right) \mathrm{n}\right.$ $O\left(C_{G}(y)\right)\left|x \in X^{*}, y \in Y^{*}\right\rangle$.

Lemma 6.1. We have that

$$
\left\langle N_{G}(A), O(M), O(N), O\left(C_{G}(y)\right) \mid y \in Y^{*}\right\rangle \subseteq G^{*}
$$

Proof. Since the subgroups $O\left(C_{G}(x)\right) \cap O\left(C_{G}(y)\right), x \in X^{*}$ and $y \in Y^{*}$, are permuted among themselves by $N_{G}(A)$, we see that $N_{G}(A) \subseteq G^{*}$.

Let E be an A-invariant Sylow p-subgroup of $O(M)$ and let $E=E_{0} E_{1}^{\prime} E_{2}^{\prime} E_{3}^{\prime}$ be the Y-decomposition of E. If $g \in E_{1}^{\prime}$ then \bar{g} centralizes \bar{Y} in $\bar{D}=D / O(D)$. Since g is inverted by y_{2}, we see that $g \in O(D)$ and it follows that $g \epsilon W$. We then see that $E_{1}^{\prime} \subseteq G^{*}, i=1,2,3$. Since $E_{0} \subseteq N_{G}(A)$, we conclude that $E \subseteq G^{*}$. It follows that $O(M) \subseteq G^{*}$. Recalling that if $g \epsilon O(N) \cap O\left(C_{G}(x)\right)$
where $x \epsilon X^{*}$, then $g \epsilon O\left(C_{G}(y)\right)$ for all $y \in Y^{*}$, we may use a similar argument to show that $O(N) \subseteq G^{*}$.

Now let R be an A-invariant Sylow p-subgroup of $O(D)$. This time we let $R=R_{0} R_{1}^{\prime} R_{2}^{\prime} R_{3}^{\prime}$ be the X-decomposition of R. Suppose that $g \in R_{1}^{\prime}$. Since g is of odd order and is inverted by x_{2}, we see that $g \in O(C)$. It follows that $R_{1}^{\prime} \subseteq W \subseteq G^{*}, i=1,2,3$. Now suppose that $g \in R_{0}$ and is inverted by y_{2}. If $\bar{M}=M / O(M)$, then we see that $\bar{g} \epsilon\left(M_{0} \cap O(D)\right)^{-} \subseteq Z\left(C_{\bar{M}_{0}}\left(\bar{y}_{1}\right)\right)$. Since y_{2} inverts g, we conclude that $g \in O(M)$. It now follows that $R_{0} \subseteq G^{*}$ and thus, that $R \subseteq G^{*}$. It then follows that $O\left(C_{G}(y)\right) \subseteq G^{*}, y \in Y^{*}$.

Now set $W_{x, y}=O\left(C_{G}(x)\right) \cap O\left(C_{G}(y)\right), x \in X^{*}, y \in Y^{*}$. Then

$$
W=\left\langle W_{x, y} \mid x \in X^{*}, y \in Y^{\#}\right\rangle
$$

and so W is (X, Y)-generated. We then have
Lemma 6.2. Every A-invariant subgroup of W is (X, Y)-generated.
Proof. We again use Proposition 2.1 of [6]. Condition (iv) follows by the proof of Lemma 5.6 and conditions (i) and (ii) follow by the proofs of Lemmas 5.3 and 5.4. Thus we need only verify condition (iii) to prove our lemma.

Suppose that $u \in\left[C_{W}(x), Y\right]^{\prime} \cap C_{G}(y)$ where $x \in X^{*}, y \in Y^{*}$ and suppose that u is inverted by the involutions in $Y-\langle y\rangle$. For definiteness let $x=x_{1}$ and $y=y_{1}$. We then have [$C \cap W, Y$] is a subgroup of odd order in C_{0} which is normalized by $N_{c_{0}}(A)$. It follows by Lemma 2.7 that

$$
\left[(C \cap W)^{-}, \bar{Y}\right] \subseteq C_{c_{0}}(\bar{Y})
$$

and so is abelian in $\bar{C}=C / O(C)$ and thus $[C \cap W, Y]^{\prime} \subseteq O(C)$. Since y_{2} inverts u, we have by Lemma 5.1 that $u \in O(D)$ and so $u \in W_{x, y}$.

Now suppose that $u \in[D \cap W, X]^{\prime} \cap C$ and that u is inverted by the involutions in $X-\left\langle x_{1}\right\rangle$. Since the order of u is odd, $u \in O(C)$. Since [$\left.(D \cap W)^{-}, \bar{X}\right]$ is an X-invariant subgroup of \bar{D}_{1} of odd order in $\bar{D}=D / O(D)$, it is abelian. It follows that $[D \cap W, X]^{\prime} \subseteq O(D)$ and that $u \in W_{x_{1}, y_{1}}$. Thus condition (iii) of Proposition 2.1 of [6] is verified and this lemma is a direct consequence of that proposition.

We now introduce a concept defined in [6]. We then prove a result which gives a sufficient condition for the existence of a p-local subgroup J of G which covers both $N_{0} / O(N)$ and $M_{0} / O(M)$ and which contains A. Let H be a subgroup of G which contains A. We say that H is (X, p)-constrained if X does not centralize any Sylow p-subgroup of $O(H)$ and we say that H is (Y, p)-constrained if Y does not centralize any Sylow p-subgroup of $O(H)$.

We recall that p_{2} divides q_{2} if $M_{0} / O(M) \cong L_{3}\left(q_{2}\right)$. We then have
Lemma 6.3. Let p be an odd prime such that $p \neq p_{2}$. If C is (Y, p)-constrained and if D is (X, p)-constrained, then for some maximal A-invariant p-subgroup P of G we have $N_{G}(Z(J(P)))$ covers both $M_{0} / O(M)$ and $N_{0} / O(N)$.

Proof. By our assumptions Sylow p-subgroups of both $O(C)$ and $O(D)$ are nontrivial. By Lemma 4.10 we can find a p-local subgroup H of G containing A and covering $N_{0} / O(N)$ such that H also contains a maximal A-invariant p-subgroup P of G. By the proof of that lemma we can assume that P contains an A-invariant Sylow p-subgroup R_{1} of $O(D)$. Then H contains a normal subgroup F such that $X O(H) \subseteq F$ and $\bar{F}=\left(F \cap N_{0}\right)^{-}$in $\bar{H}=$ $H / O(H)$ and $\bar{F} \cong N_{0} / O(N)$. Without loss we can assume that $H=F P A$. Let $H_{1}=F P$ and let $Q=P \cap O\left(H_{1}\right)$. Since $R_{1} \subseteq Q$, we conclude that H is (X, p)-constrained and so $O_{p^{\prime}}\left(H_{1}\right) \subseteq O\left(H_{1}\right)$. As in section 5 of [6], we have that H_{1} is p-stable with respect to P and by the extended form of Glauberman's $Z J$-theorem we have that $N_{H_{1}}(Z(J(P)))$ covers $H_{1} / O\left(H_{1}\right)$ and hence, covers $N_{0} / O(N)$.

By Lemma 4.9 we can find a p-local subgroup K of G containing $P A$ and covering $M_{0} / O(M)$. Then K has a normal subgroup L containing $Y O(K)$ such that $\bar{L}=\left(L \cap M_{0}\right)^{-} \cong M_{0} / O(M)$ in $\bar{K}=K / O(K)$. Without loss of generality we can assume that $K=L P A$. Since P is a maximal A-invariant p-subgroup of G, we can also assume that P contains an A-invariant Sylow p-subgroup R_{2} of $O(C)$. Let $V=P \cap O(K)=P \cap O(L P)$. Then $R_{2} \subseteq V$. Suppose that $O_{p^{\prime}}(L P) \nsubseteq O(L P)$. Then $O_{p^{\prime}}(L P)$ has even order and so we can assume that $Y \subseteq O_{p^{\prime}}(L P)$. But then $\left[Y, R_{2}\right] \subseteq R_{2} \cap O_{p^{\prime}}(L P)=1$ and this contradicts our assumption that C is (Y, p)-constrained. We may now apply Lemma 2.6 to conclude that $N_{L P}(Z(J(P)))$ covers $L P / O(L P)$ and hence covers $M_{0} / O(M)$. This then completes the proof of the lemma.

The next proposition incorporates many ideas found in Section 5 of [6].
Proposition 6.4. Let p be a prime divisor of the order of W. If R is an A-invariant Sylow p-subgroup of W, then $N_{G}(R)$ covers $M_{0} / O(M)$.

Proof. We assume, by way of contradiction, that the proposition is false. The proof is then broken into a number of steps.

By Lemma $6.2, R$ is (X, Y)-generated and so by Lemmas 4.9, 4.10, and 4.11 we can find a maximal A-invariant p-subgroup P of G containing R and we can find p-local subgroups H and K of G containing $P A$ such that H covers $N_{0} / O(N)$ and K covers $M_{0} / O(M)$. As we have seen previously, H contains a normal subgroup F such that $X O(H) \subseteq F$ and $\bar{F}=\left(F \cap N_{0}\right)^{-} \cong$ $N_{0} / O(N)$ in $\bar{H}=H / O(H)$ and K contains a normal subgroup L such that $Y O(K) \subseteq L$ and $\bar{L}=\left(L \cap M_{0}\right)^{-} \cong M_{0} / O(M)$ in $\bar{K}=K / O(K)$. Without loss of generality we can assume that $H=F P A$ and that $K=L P A$. We may also choose H and K such that the orders of $O_{p}(H)$ and $O_{p}(K)$ are maximal. If $Q=P \cap O(H)$ and $V=P \cap O(K)$, then we have Q is a Sylow p-subgroup of $O(H)$ and by the maximality of $O_{p}(H), Q \triangleleft H$, and we have V is a Sylow p-subgroup of $O(K)$ and also $V \triangleleft K$. By Lemma 5.2 we conclude that $R=Q \cap V$ is a Sylow p-subgroup of $O(H) \cap O(K)$.
(a) We have $R A$ is not contained in any proper subgroup J of G such that J covers both $M_{0} / O(M)$ and $N_{0} / O(N)$.

Proof. Suppose there is such a J. Then by Lemma 5.2 we have $R \subseteq O(J)$ and $O(J) \subseteq W$ and so R is a Sylow p-subgroup of $O(J)$. It follows that $N_{J \cap_{M_{0}}}(R)$ covers $\left(J \cap M_{0}\right) O(J) / O(J)$ by the Frattini argument and hence, covers $M_{0} / O(M)$, contrary to our assumption.
(b) We have that $p \neq p_{2}$.

Proof. Set $E=N_{M_{0}}(R)$. If $p=p_{2}$, then E contains a maximal Y-invariant p-subgroup $P \cap M_{0}$ of M_{0} since $R \triangleleft P$. By the Frattini argument $N_{M_{0}}(W) W=E W$ and so in $\bar{M}_{0}=M_{0} / O(M), \bar{E}$ contains a subaroup $S \cong S_{4}$. By Lemma 2.5 we conclude that $\bar{M}_{0}=\bar{E}$, a contradiction. This proves (b). We shall retain the notation $E=N_{M_{0}}(R)$.
(c) We have that Y does not centralize V.

Proof. If Y centralizes V, then $C_{L \cap_{M_{0}}}(V)$ covers $L / O(K)$ and hence' covers $M_{0} / O(M)$. Since $R \subseteq V$, this is a contradiction.
(d) We have that X centralizes Q and that $V \nsubseteq Q$.

Proof. Suppose that X does not centralize Q. Then H is (X, p)-constrained and as in the proof of Lemma 6.3, we conclude that $N_{H}(Z(J(P)))$ covers $F / O(H)$ and hence, covers $N_{0} / O(N)$. Since Y does not centralize V by (c), we see that K is (Y, p)-constrained and since $p \neq p_{2}$ by (b), we also conclude that $N_{K}(Z(J(P)))$ covers $L / O(K)$ and hence, covers $M_{0} / O(M)$. Since $R A \subseteq N_{G}(Z(J(P)))$, this contradicts (a). Thus X centralizes Q.

If $V \subseteq Q$, then $R=V$ and so $R \triangleleft K$, a contradiction.
(e) We have that X centralizes V and P.

Proof. Suppose that $V_{1}=[V, X] \neq 1$. Since X centralizes Q, we have that $C_{H}(Q)$ covers $F / O(H)$ and also that $V_{1} \subseteq C_{H}(Q)$. Moreover, we have $V_{1} \subseteq Q$. Since $C_{P}(X)$ covers \bar{P} in \bar{K}, we have that $[P, X]=V_{1}$ and so \bar{V}_{1} is a Sylow p-subgroup of $C_{\tilde{F}}(\bar{x})$ for some $x \in X^{*}$ in \bar{H}. Then $C_{V_{1}}(X) \subseteq Q$. Since $V_{1} \triangleleft P$ and R centralizes X, we see that R normalizes $C_{V_{1}}(X)$. But $L \cap M_{0}$ and $C_{H}(Q)$ both normalize $C_{V_{1}}(X)$ and this contradicts (a), if $C_{V_{1}}(X) \neq 1$. It follows that $V_{1} \cap Q=1$.

Set $P_{1}=C_{p}(X)$ and so $P=P_{1} V_{1}$. Since $V_{1} \neq 1$, we have $F=L_{2}\left(q_{1}\right)$, q_{1} odd and $q_{1} \geq 5$. It follows that $\bar{F} \cap \bar{P}_{1}=1$. If $\bar{P}_{1}=1$, then $P_{1}=Q$ and $R=C_{V}(X)$ is normal in $L \cap M_{0}$, a contradiction. Thus $\bar{P}_{1} \neq 1$ and so $C_{\tilde{F}}\left(\Omega_{1}\left(P_{1}\right)\right) \cong L_{2}(q)$ where $q^{p}=q_{1}$ and $C_{\bar{P}_{1}}\left(\bar{V}_{1}\right)=1$ by the proof of (v) of Lemma 2.4.2 of [2]. It follows that $C_{P_{1}}\left(V_{1}\right)=Q$.

Set $V^{*}=C_{V \cap_{P_{1}}}\left(V_{1}\right)$. Then we have $V^{*} \triangleleft V_{1} P_{1}=P$. Also we have $V_{1} \cong \bar{V}_{1}$ since $V_{1} \cap Q=1$. We claim that $V^{*} \neq 1$. Now Y centralizes V_{1} and since $V=C \bar{V}(X) V_{1}$, we conclude that for all $y \in Y^{*}, y$ does not centralize $\mathrm{C}_{V}(\mathrm{X})$. We can also find a 3 -element $u \in \mathrm{~L} \cap \mathrm{M}_{0}$ which permutes the involutions in Y cyclically and so $\langle u\rangle Y$ acts on $C_{V}(X)$. Now as in the proof
of Lemma 5.10 in [6] we conclude that $C_{V}(X)$ contains an elementary abelian subgroup of order p^{3}. Since $C_{V}(X)$ normalizes V_{1} and V_{1} is cyclic, we see that $V^{*}=C_{C_{V}(\mathbb{X})}\left(V_{1}\right) \neq 1$ as asserted. Now $L \cap M_{0}$ normalizes V^{*} and since $V^{*} \subseteq Q, C_{H}(Q)$ centralizes V^{*}, and R normalizes V^{*}, we have contradicted (a). This forces $V_{1}=1$ and (e) is proved.
(f) We have $F \cong L_{2}\left(q_{1}\right), q_{1}$ odd, $q_{1} \geq 5$ and $\bar{P} \cap \bar{F}=1$ in $\bar{H}=H / O(H)$.

Proof. To prove (f) it is sufficient to show that $F \npreceq A_{7}$, since we already have that $F \npreceq Z_{2} \times Z_{2}$. Suppose then that $F \cong A_{7}$. Then $\bar{V}=\bar{P}$ is of order 3 in \bar{F}. Without loss of generality we can assume that $S_{1} \subseteq C_{H}(Q)$ and we also have that $S_{1} \cong D_{8}$. It follows that S_{1} normalizes $C_{G}(X)$ and centralizes $M / O(M)$. We can also assume that S_{1} acts on \bar{P} in \bar{F} and thus that S_{1} normalizes P. By our maximal choice of $O_{p}(K)$ we must have that V is a Sylow p-subgroup of $O(M)$ and so S_{1} also normalizes $V=P \cap O(M)$. We then have $C_{V}\left(S_{1}\right) \subseteq Q \cap V \subseteq C_{V}\left(S_{1}\right)$ and so $R=C_{V}\left(S_{1}\right)$. Since $C_{G}\left(S_{1}\right) \cap N_{M_{0}}(V)$ covers $M_{0} / O(M)$ and normalizes R, we have a contradiction. This proves (f).

Now as in the proof of Lemma 5.13 of [6], we can find an A-invariant t-subgroup T^{*} where t is an odd prime distinct from p such that $T^{*} \subseteq C_{F}(Q Y\langle x\rangle)$ for some $x \in X^{*}, T^{*}$ is permutable with P, and $\left[T^{*}, X\right]=T^{*}$. For definiteness let $x=x_{1}$. We also have $C_{\bar{P}}\left(\bar{T}^{*}\right)=1$ in \bar{H} and so $C_{P}\left(T^{*}\right) \subseteq Q$. Since $T^{*}=\left[T^{*}, X\right], T^{*} \subseteq C_{H}(Q)$ and so $Q=C_{P}\left(T^{*}\right)$.

As we have seen above, V is a Sylow p-subgroup of $O(M)$ and for the same reason we have V is a Sylow p-subgroup of $O\left(C_{G}(x)\right)$ for all $x \in X^{*}$. Since $T^{*}=\left[T^{*}, X\right]$, we have $T^{*} \subseteq O(C)$ and so we can find an A-invariant Sylow t-subgroup T of $O(C)$ containing T^{*} and permutable with P. Then T is also permutable with V since $V T=P T \cap O(C)$. Thus we see that $V T$ is a Hallsubgroup of $O(C)$. We set $I=[T, X]$ and see that $I=[T V, X] \triangleleft T V$ and $I \neq 1$ since $T^{*} \subseteq I$.
(g) We have that $C_{V}(I)=1$.

Proof. Set $V_{1}=C_{V}(I)$ and assume that $V_{1} \neq 1$. Since $N_{c}(V T)$ covers $C_{0} / O(C)$, we have $J=N_{M_{0}}(V T)$ covers $M_{0} / O(M)$. Also we have $I \triangleleft J$ and $V \subseteq J$ and since V is a Sylow p-subgroup of $O(M), V$ is a Sylow p-subgroup of $O(J)$. By the Frattini argument $J_{1}=N_{J}(V)$ covers $J / O(J)$ and hence, covers $M_{0} / O(M)$. We also have $V_{1} \triangleleft J_{1}$. Since $T^{*} \subseteq I$ and $Q=C_{P}\left(T^{*}\right)$, we have $V_{1} \subseteq Q$ and so $C_{H}\left(V_{1}\right)$ covers $N_{0} / O(N)$. Since R normalizes I, this contradicts (a). Thus $V_{1}=1$ and this proves (g).
(h) If $I=I_{0} I_{1}^{\prime} I_{2}^{\prime} I_{3}^{\prime}$ is the Y-decomposition of I, then $I_{i}^{\prime} \subseteq O\left(C_{G}\left(y_{i}\right)\right)$ and X does not centralize I_{i}^{\prime} for each $i=1,2,3$.

Proof. First we show that Y does not centralize I. Set $J=I V Y$. If $Y \subseteq C_{J}(I)$, then $[V, Y] \subseteq C_{J}(I)$ because $C_{J}(I) \triangleleft J$. Since $[V, Y] \neq 1$,
this contradicts (g). Thus Y does not centralize I. Since $N_{M_{0}}(I)$ covers $M_{0} / O(M)$ we can find a 3 -element which cyclically permutes the involutions in Y and which is contained in $N_{M_{0}}(I)$. This element then cyclically permutes $I_{i}^{\prime}, i=1,2,3 . \quad$ Since $I_{i}^{\prime} \subseteq O(C)$, we conclude that $I_{i}^{\prime} \subseteq O\left(C_{G}\left(y_{i}\right)\right), i=1,2,3$ by Lemma 5.1. If X centralizes $I_{i}^{\prime}, i=1,2,3$, then $[I, X] \subseteq I_{0}=C_{r}(Y)$. Since $I=[I, X]$, this is a contradiction. It follows that X does not centralize I_{i}^{\prime} for each $i=1,2,3$.
(i) There is a maximal A-invariant t-subgroup U of G permutable with V and containing I and there is a t-local subgroup J of G covering M_{0} / O (M) and containing UVA. If $t \in \mathrm{~S}_{2}$, and if U^{*} is any maximal A-invariant t-subgroup of G, then a conjugate of U^{*} by a suitable element in $N_{G}(A)$ has the properties of the preceding sentence.

Proof. Let T_{0} be a maximal A-invariant t-subgroup of C containing T such that T_{0} is permutable with V. If $t \in \mathcal{S}_{2}$, we can choose T_{0} such that $\left[T_{0}, Y\right] \subseteq O(C)$ or we can choose T_{0} such that $\left[T_{0}, Y\right] \nsubseteq O(C)$. Sinc T_{0} covers a maximal Y-invariant t-subgroup of $M_{0} / O(M)$, we see by Proposition 4.8 that in order to prove (i) it is sufficient to show that V is permutable with a maximal A-invariant t-subgroup U of G containing T_{0} such that $U V A$ is contained in a t-local subgroup of G which covers $M_{0} / O(M)$.

Now $N_{C}(I)$ contains T_{0} VA and covers $M_{0} / O(M)$. Among all t-local subgroups of G containing $T_{0} V A$ and covering $M_{0} / O(M)$ choose J such that an A-invariant t-subgroup T_{1} of J containing T_{0} and permutable with V has maximal order and relative to this, choose J such that an A-invariant t-subgroup of J containing T_{1} has maximal order.

We first show that T_{1} is a maximal A-invariant t-subgroup of J. Without loss of generality we can assume that $J=O^{2}(J) A$. By Lemmas 4.1, 4.2, and $4.3 J$ has normal subgroups L_{1} and L_{2} such that $X O(J) \subseteq L_{1}$, $Y O(J) \subseteq L_{2}$, and in $\bar{J}=J / O(J)$ we have $\bar{L}_{1} \bar{L}_{2}=\bar{L}_{1} \times \bar{L}_{2}$ is of odd index and $\bar{L}_{2}=\left(L_{2} \cap M_{0}\right)^{-} \cong M_{0} / O(M)$. Since $V \subseteq O(M)$, we see that \bar{V} centralizes \bar{L}_{2} and so $\bar{V}=\left(C_{V}(A)\right)^{-}$. Let $T_{2} \quad T_{1}$ where T_{2} is a maximal A-invariant t-subgroup of J. Since L_{1} is a 2 -group or $L_{1} \cong L_{2}(q)$ or $P G L(2, q), q$ odd, we conclude that $\left[\bar{T}_{2}, \bar{X}\right]$ is a characteristic subgroup of $C_{\bar{L}_{1}}(\bar{x})$ for some $x \in X^{*}$. It follows that \bar{V} normalizes $\left[\bar{T}_{2}, \bar{X}\right]$ and so $V \subseteq J_{0}$ where

$$
J_{0}=L_{2} T_{2} O\left(C_{J}(A)\right) A
$$

If $\bar{J}_{0}=J_{0} / O\left(J_{0}\right)$, then X centralizes $O^{2}\left(\bar{J}_{0}\right)$ and since $V \subseteq O(M)$, we conclude that $V \subseteq O\left(J_{0}\right)$. We claim that V is a Sylow p-subgroup of $O\left(J_{0}\right)$. Suppose V is contained in an A-invariant p-subgroup V_{1} of $O\left(J_{0}\right)$. Since X centralizes P, we conclude that X centralizes every A-invariant p-subgroup of G and in particular, X centralizes V_{1}. We then have that V_{1} centralizes

$$
\left(J_{0} \cap M_{0}\right) O(M) / O(M)=M_{0} / O(M)
$$

and hence, $V_{1} \subseteq O(M)$. It follows that $V_{1}=V$ and that V is a Sylow p-subgroup of $O\left(J_{0}\right)$. We then conclude that V is permutable with a conjugate T_{2}^{j} of T_{2} containing T_{1} where $j \in N_{J_{0}}(A)$ and by our maximal choice of T_{1} we have $T_{1}=T_{2}^{j}=T_{2}$. It follows that T_{1} is a maximal A-invariant t-subgroup of J as asserted. We can now assume without loss that $J=L_{2} T_{1} V A$.

Suppose that T_{1} is contained in an A-invariant t-subgroup U of G. We shall show that U must equal T_{1} and this will then show that T_{1} is a maximal A-invariant t-subgroup of G and complete the proof of (i). Assume, by way of contradiction, that T_{1} is properly contained in U; we may choose U such that $T_{1} \triangleleft U$. Then $C_{U}(x) \$ T_{1}$ for some $x \in X^{*}$. Since $T_{0} \subseteq T_{1}$ and T_{0} is a maximal A-invariant t-subgroup of C, we conclude that $x \neq x_{1}$. Since X centralizes $J=J / O(J)$, we see that $I \subseteq O(J)$. Set $I_{0}=T_{1} \cap O(J)$ and set $I_{1}=\left[I_{0}, x\right]$. Since $I \subseteq I_{1}$, we have $I_{1} \neq 1$. By the Frattini argument $N_{J}\left(I_{0}\right)$ covers J and so $N_{M_{0}}\left(I_{0}\right)$ covers $M_{0} / O(M)$. We also have $\left[T_{1} V, x\right]=\left[T_{1}, x\right]=\left[I_{0}, x\right]=I_{0}$ and so V normalizes I_{1}. Since $I_{1}=\left[T_{1} C_{U}(x), x\right]$, we have $I_{1} \triangleleft T_{1} C_{U}(x)$. Finally, we have $I_{1} \triangleleft N_{M_{0}}\left(I_{0}\right)$ and since $T_{1} \subset T_{1} C_{U}(x)$, we have contradicted our original choice of J. This contradiction completes the proof of (i).
(j) There is a maximal A-invariant t-subgroup U of G containing I and permutable with V such that $N_{G}(Z(J(U)))$ contains $U V A$ and covers $N_{0} / O(N)$ and such that UVA is contained in a t-local subgroup J of G which covers $M_{0} / O(M)$.

Proof. By (h) we see that X does not centralize any Sylow t-subgroup of $O(D)$ and so by Lemma 4.10 we can find a t-local subgroup H_{0} of G containing A and a maximal A-invariant t-subgroup U_{0} of G. Without loss we can assume that $H_{0}=F_{0} U_{0} A$ where $F_{0} \triangleleft H_{0}$ and $F_{0} \supseteq X O\left(H_{0}\right)$ and $\bar{F}_{0}=\left(F_{0} \cap N_{0}\right)^{-} \cong$ $N_{0} / O(N)$ in $\bar{H}_{0}=H_{0} / O\left(H_{0}\right)$. By Propositions 4.5 and 4.8, a conjugate U of U_{0} by an element in $N_{G}(A)$ satisfies the conclusions of (i). Without loss of generality we can assume that $U=U_{0}$. If $I=I_{0} I_{1}^{\prime} I_{2}^{\prime} I_{3}^{\prime}$ is the Y-decomposition of I, we have by (h) that $I_{i}^{\prime} \subseteq O\left(C_{G}\left(y_{i}\right)\right)$ and hence, $I_{i}^{\prime} \subseteq O\left(H_{0}\right)$. Also by (h) we conclude that H_{0} is (X, t)-constrained. Argueing as in Lemma 6.3, we conclude that $N_{H_{0}}(Z(J(U)))$ covers \bar{H}_{0} and hence, covers $M_{0} / O(M)$. To complete the proof it remains to show that V normalizes $Z(J(U))$. Since $I \subseteq U$ and $C_{V}(I)=1, O_{p}(U V)=1$. By Glauberman's $Z J$-theorem we have $Z(J(U))$ is normal in UV and this completes the proof.

(k) We have $t=p_{2}$.

Proof. Let U and J be as in the conclusion of (j). We assume, by way of contradiction, that $t \neq p_{2}$. As we have seen before, J has a normal subgroup L_{2} containing $Y O(J)$ such that $\bar{L}_{2}=\left(L_{2} \cap M_{0}\right)^{-} \cong M_{0} / O(M)$ in $\bar{J}=J / O(J)$. Without loss of generality we can assume that $J=L_{2} U V A$. Since $I \subseteq O(C)$, we conclude that $I \subseteq O(J)$. In the proof of (h) we have seen that Y does not centralize I and it follows that J is (Y, t)-constrained. Since we are
assuming that $t \neq p_{2}$, we can now argue as in Lemma 6.3 to conclude that $N_{J}(Z(J(U)))$ covers J and hence, covers $M_{0} / O(M)$. Since V normalizes $Z(J(U))$ and $R \subseteq V$, we have contradicted (a). This proves (k).

Again, let U and J be as in the conclusion of (j) and set

$$
J^{*}=N_{\boldsymbol{M}}(Z(J(U))) A
$$

so that J^{*} covers $M_{0} / O(M)$. Set $Z=O(J) \cap O\left(J^{*}\right)$ and so by Lemma 5.2, R is a Sylow p-subgroup of Z. Let U_{0} be an A-invariant Sylow t-subgroup of $N_{U Z}(R)$ so that $U Z=U_{0} Z$. Since U covers a maximal Y-invariant t-subgroup of $M_{0} / O(M)$ and $\bar{U}_{0}=\bar{U}$ in \bar{J}, we conclude that U_{0} covers a maximal Y-invariant t-subgroup of $M_{0} / O(M)$. Set $\bar{M}_{0}=M_{0} / O(M)$ and recall that $E=N_{M_{0}}(R)$. As in the proof of (a) we see that \bar{E} contains a subgroup $\bar{S} \cong S_{4}$. Since $t=p_{2}$ and $\left(U_{0} \cap M_{0}\right)^{-}$is a Y-invariant Sylow t-subgroup of \bar{M}_{0}, we have by Lemma 2.7 that $\bar{E}=\bar{M}_{0}$, contrary to our original assumption. This contradiction proves our proposition.

Lemma 6.5. We have $G^{*}=N_{G}(W)$ contains $C_{G}(X)$.
Proof. We have $C_{G}(X)=X \times M$ and $M=N_{M}(A) M_{0}$. By Lemma 6.1 we see that $N_{M}(A)$ and $O(M)$ are contained in G^{*}. Let R be an A-invariant Sylow p-subgroup of W. By the preceding proposition we have $M_{0}=N_{M_{0}}(R) O(M)$. It follows that $R^{m} \subseteq W$ for all $m \in M_{0}$ and this implies that $M_{0} \subseteq G^{*}$. This proves the lemma.

Lemma 6.6. We have $O\left(C_{G}(y)\right) \subseteq O\left(G^{*}\right) O\left(C_{G}(A)\right)$ for all $y \in Y^{*}$.
Proof. Since $N_{G}(A) \subseteq G^{*}$, it will be sufficient to show that

$$
O(D) \subseteq O\left(G^{*}\right) O\left(C_{G}(A)\right)
$$

Set $G_{0}=O^{2}\left(G^{*}\right) A$ and $\bar{G}_{0}=G_{0} / O\left(G_{0}\right)$. Then by Lemmas 4.1, 4.2, and 4.3, G_{0} has normal subgroups L_{1} and L_{2} such that $X O\left(G_{0}\right) \subseteq L_{1}, Y O\left(G_{0}\right) \subseteq L_{2}$, $\bar{L}_{1}=\left(L_{1} \cap N_{0}\right)^{-}$and \bar{L}_{1} is a 2 -group or $\bar{L}_{1} \cong A_{7}, L_{2}(q)$, or PGL(2,q),q odd and $\bar{L}_{2}=\left(L_{2} \cap M_{0}\right)^{-} \cong M_{0} / O(M)$. Then $(O(D))^{-}$centralizes \bar{L}_{1} and $\left(O(D) \cap L_{2}\right)^{-} \subseteq Z\left(C_{\bar{L}_{2}}\left(\bar{y}_{1}\right)\right)$ so that $(O(\mathrm{D}))^{-}$also centralizes \bar{Y}. Since $X \subseteq L_{1}$, we conclude that $C_{O(D)}(A)$ covers $(O(D))^{-}$and the lemma follows from this.

Lemma 6.7. If $g \in C_{G}(Y)$, then $W^{g} \subseteq O\left(G^{*}\right) O\left(C_{G}(A)\right)$. Also we have $O\left(G^{*}\right)=W C_{o\left(a^{*}\right)}(Y)$.

Proof. Since $W=\left\langle W \cap O\left(C_{G}(y)\right) \mid y \in Y^{*}\right\rangle$, we see that

$$
W^{g} \subseteq\left\langle O\left(C_{G}(y)\right) \mid y \in Y^{*}\right\rangle
$$

and so $W^{g} \subseteq O\left(G^{*}\right) O\left(C_{G}(A)\right)$ by the preceding lemma.
Let E be an A-invariant Sylow p-subgroup of W. Since $M \subseteq G^{*}$, we have

$$
C_{E}(x) \subseteq O\left(C_{G}(x)\right) \quad \text { for all } x \in X^{\#}
$$

Let $F=C_{E}(\langle x, y\rangle)$ for some $x \in X^{*}, y \in Y^{*}$. Also let F^{*} denote the set of elements in F which are inverted by the involutions in $Y-\langle y\rangle$. By Lemma 5.1 we have $F^{*} \subseteq O\left(C_{G}(y)\right)$ and hence, $F^{*} \subseteq W$. We then have $F \subseteq W C_{o\left(G^{*}\right)}(Y)$ and it follows that $E \subseteq W C_{o\left(G^{*}\right)}(Y)$. The lemma follows immediately from this.

Lemma 6.8. If $y \in Y^{*}$, then $C_{G}(y) W$ is a group and

$$
O\left(C_{G}(y) W\right)=O\left(C_{G}(y)\right) W
$$

Proof. For definiteness let $y=y_{1}$. Using Lemma 3.7 we see that

$$
D=N_{D}(A)\left(D_{2} \cap M_{0}\right) O(D)\left(D_{1} \cap N_{0}\right)
$$

and so if $d \epsilon D$, then $W^{d} \subseteq O\left(G^{*}\right) O\left(C_{G}(A)\right)$. Thus we have

$$
[W, D] \subseteq O\left(G^{*}\right) O\left(C_{G}(A)\right)=W C_{o\left(G^{*}\right)}(Y) O\left(C_{G}(A)\right)
$$

by the preceding lemma. It follows that $[W, D]$ is of odd order and is contained in $W D$. Since $W[W, D] D=W D$, we conclude that $W D$ is a group. We then see that $W \triangleleft W D$ and so $W \subseteq O(W D)$. Since $O(D)$ is also contained in $O(W D)$, we have $D \cap O(W D)=O(D)$ and it follows that $O(W D)=W O(D)$. This completes the proof.

Lemma 6.9. If $g \in C_{G}(Y)$, then $W^{g} \subseteq O\left(G^{*}\right)$.
Proof. Let $G_{0}, \bar{G}_{0}, L_{1}$, and L_{2} be as in the proof of Lemma 6.6 and let O denote the intersection of the groups $W O\left(C_{G}\left(y_{i}\right)\right), i=1,2,3$. Then O is of odd order in G_{0} and \bar{O} centralizes $\left(L_{1} \cap N_{0}\right)^{-}=\bar{L}_{1}$.

Now $C_{L_{2}}\left(y_{i}\right)$ contains a subgroup J_{i} such that $\bar{J}_{i} \cong S L^{ \pm}(2,3)$ if $\bar{L}_{2} \cong M_{11}$, $\bar{J}_{i} \cong S L^{ \pm}\left(2, q_{2}\right)$ if $\bar{L}_{2} \cong L_{3}\left(q_{2}\right)$, or $\bar{J}_{i} \cong S U^{ \pm}\left(2, q_{2}\right)$ if $\bar{L}_{2} \cong U_{3}\left(q_{2}\right), i=1,2,3$. We then have $\left[\bar{J}_{i}, \bar{O}\right]$ is a normal subgroup of odd order in \bar{J}_{i}, because \bar{J}_{i} char $C_{\bar{L}_{2}}\left(\bar{y}_{i}\right)$ and it follows that \bar{O} centralizes $\bar{J}_{i}, i=1,2,3$. Since $\bar{L}_{2}=\left\langle\bar{J}_{i} \mid i=1,2,3\right\rangle$ by Lemma 2.4 , we conclude that \bar{O} centralizes \bar{L}_{2}. It follows that $O \subseteq O\left(G^{*}\right)$ and since $W^{g} \subseteq O$ by the preceding lemma, this lemma is proved.

Lemma 6.10. If $N^{*}=N W$, then N^{*} is a group and $O\left(N^{*}\right)=W O(N)$.
Proof. By the previous lemma we have $[W, N] \subseteq O\left(G^{*}\right)$ and by Lemma 6.7, $O\left(G^{*}\right)=W\left(O\left(G^{*}\right) \cap N\right)$. This lemma then follows by a proof similar to that of Lemma 6.8.

Lemma 6.11. If $Z=O\left(N^{*}\right) \cap O\left(G^{*}\right)$, then Z contains W and Z is normal in N^{*}.

Proof. We first show that $O\left(N^{*}\right)=W C_{o(N)}(X)$. Let E be an A-invariant Sylow p-subgroup of $O(N)$. If $E=E_{0} E_{1}^{\prime} E_{2}^{\prime} E_{3}^{\prime}$ is the X-decomposition of E, then E_{i}^{\prime} has odd order and so $E_{i}^{\prime} \subseteq O\left(C_{G}\left(x_{i}\right)\right), i=1,2,3$. We then see that E_{i}^{\prime} centralizes \bar{D}_{0} in $\bar{D}=D / O(D)$ and so $E_{i}^{\prime} \subseteq O(D), i=1,2,3$.

It follows that $E_{i}^{\prime} \subseteq W, i=1,2,3$. Thus $O(N) \subseteq W C_{o(N)}(X)$ and so $O\left(N^{*}\right)=W C_{o(N)}(X)$.

Let W^{*} be the normal closure of W in N^{*} and set $\bar{N}^{*}=N^{*} / W^{*}$. Also set $J_{0}=N_{0} O\left(N^{*}\right)$. We then have $O\left(\bar{J}_{0}\right)=\left(O\left(N^{*}\right)\right)^{-}$and $J_{0} / O\left(J_{0}\right) \cong$ $N_{0} / O(N)$. But $\left(O\left(N^{*}\right)\right)^{-}=\left(W C_{O(N)}(x)\right)^{-}=\left(C_{O(N)}(X)\right)^{-}$and so $C_{J_{0}}\left(O\left(N^{*}\right)\right)^{-}$covers $J_{0} / O\left(J_{0}\right)$. It follows that $C_{J_{0}}(\bar{Z})$ also covers $J_{0} / O\left(J_{0}\right)$ and since $Z \triangleleft O\left(N^{*}\right)$, we conclude that $\bar{Z} \triangleleft \bar{J}_{0}$. Since $W^{*} \subseteq Z$, we have $Z \triangleleft J_{0}$. Since $N^{*}=N_{N}^{*}(A) N_{0} O\left(N^{*}\right)$, we have $Z \triangleleft N^{*}$ and the lemma is proved.

Lemma 6.12. We have $Z=W$ and so both M and N normalize W.
Proof. Let G_{0} and L_{2} be as in the proof of Lemma 6.6. Set $\bar{L}_{2}=L_{2} / W$. Then

$$
O\left(\bar{L}_{2}\right)=\left(O\left(G^{*}\right)\right)^{-}=\left(W C_{o\left(Q^{*}\right)}(Y)\right)^{-}=\left(C_{o\left(Q^{*}\right)}(Y)\right)^{-}
$$

and

$$
L_{2} / O\left(L_{2}\right) \cong M_{0} / O(M)
$$

Then $C_{\bar{L}_{2}}\left(O\left(G^{*}\right)\right)^{-}$covers $L_{2} / O\left(L_{2}\right)$ and so $C_{\bar{L}_{2}}(\bar{Z})$ also covers $L_{2} / O\left(L_{2}\right)$. Since $Z \triangleleft O\left(G^{*}\right)$ and $W \subseteq Z$, we conclude that $Z \triangleleft L_{2}$. Now $N_{G}(Z)$ contains L_{2} which covers $M_{0} / O(M)$, contains N^{*} which covers $N_{0} / O(N)$, and contains A and so by Lemma 5.2 we conclude that $Z \subseteq W$. Thus $Z=W$ and the lemma follows from this.

Proposition 6.13. We have $W=1$ and so for all $x \in X^{*}, y \in Y^{*}$ we have

$$
O\left(C_{G}(x)\right) \cap O\left(C_{G}(y)\right)=1 .
$$

Proof. Suppose $W \neq 1$. Since $D=N_{D}(A)\left(D_{2} \cap M_{0}\right) N_{0} O(D)$, we have $D \subseteq G^{*}$ and so $C_{G}(y) \subseteq G^{*}$ for all $y \in Y^{*}$. We also see that $C_{o(C)}(y) \subseteq G^{*}$ for all $y \in Y^{*}$ and thus, $O(C) \subseteq G^{*}$. Since $S \subseteq D$ and since $C=S M O(C)$, we have $C \subseteq G^{*}$ and it follows that $C_{G}(x) \subseteq G^{*}$ for all $x \in X^{*}$. Acting on $O(B)$ with Y, we conclude that $O(B) \equiv G^{*}$ and it follows that $B \subseteq G^{*}$. We now see that $C_{G}(a) \subseteq G^{*}$ for all $a \in A^{*}$ and since every involution in S is conjugate in G^{*} to an involution in A, we conclude that $G^{*} \subseteq C_{G}(z)$ for every involution $z \epsilon G^{*}$. Thus G^{*} is a strongly imbedded subgroup of G and by a well known argument it follows that G has only one conjugacy class of involutions, a contradiction. Therefore $W=1$ and the proposition is proved.

7. The proof of the main theorem

In this section we show that our minimal counter-example G satisfies the conclusion of our main theorem. This contradiction then proves that theorem. We retain the notation of the preceding sections.

Lemma 7.1. We have $B=C \cap D$.
Proof. By Lemma 3.9, it is sufficient to show that $x_{1}=z_{1}$ centralizes
$O(B)$. Suppose that this is not the case. Since

$$
O(B)=\left\langle C_{o(B)}(\langle x, y\rangle) \mid x \in X^{*}, y \in Y^{*}\right\rangle \text { for some } x \in X^{*}, y \in Y^{*}
$$

there is an element g in $C_{O(B)}(\langle x, y\rangle)$ such that $g \neq 1$ and g is inverted by x_{1} and hence, by y_{1} also. Since g is of odd order, $g \in O\left(C_{G}(x)\right)$ and so by Lemma 5.1, $g \in O\left(C_{G}(y)\right)$ because g is inverted by y_{1}. This contradicts Proposition 6.13. Thus $B \subseteq C$ and it follows that $B=C \cap D$.

Lemma 7.2. The order of G equals the order of $C D$ and so $G=C D$.
Proof. For $z=x_{1}, y_{1}$, and $x_{1} y_{1}$ let $J(z)$ be the set of all ordered pairs (u, v) such that $u \sim x_{1}$ and $c \sim y_{1}$ in G and $z \epsilon\langle u v\rangle$. By a result of Thompson (proven in [7]) we have

$$
[G: C][G: D]=[G: C] n\left(x_{1}\right)+[G: D] n\left(y_{1}\right)+[G: B] n\left(x_{1} y_{1}\right]
$$

where $n(z)$ denotes the order of $J(z), z=x_{1}, y_{1}, x_{1} y_{1}$.
We claim that $n\left(x_{1}\right)=n\left(y_{1}\right)=0$. Suppose first that $u \sim x_{1}, v \sim y_{1}$ in G and that $x_{1} \in\langle u v\rangle$. Then both u and v are contained in C. If $\bar{C}=C / O(C)$, then $\bar{C}=\bar{S}_{1} \times \bar{C}_{1}$ where \bar{C}_{1} is as in Lemma 3.6. We then see that $\bar{u} \epsilon \bar{S}_{1}$ and $\bar{v} \in \bar{C}_{1}$. Since $(\bar{u} \bar{v})^{k}=\bar{x}_{1}$ for some integer k, we must have k odd and it follows that $\bar{u} \bar{v}=\bar{x}_{1}$. It follows that $\bar{v} \epsilon \hat{S}_{1}$ and this is a contradiction. Thus $n\left(x_{1}\right)=0$. Next, suppose that $u \sim x_{1}$ and $v \sim y_{1}$ in G and that $y_{1} \epsilon\langle u v\rangle$. If $\bar{D}=D / O(D)$, then $\bar{u} \in \bar{D}_{1}$ and $\bar{v} \in \bar{D}_{2}$ and it follows that $\bar{u} \epsilon \bar{D}_{2}$, a contradiction. Thus $n\left(y_{1}\right)=0$.

Now suppose that $u \sim x_{1}$ and $v \sim y_{1}$ in G and that $x_{1} y_{1} \in\langle u v\rangle$. We claim that $u=x_{1}$ and $v=y_{1}$. If $\bar{B}=B / O(B)$, then argueing as above we have $\bar{u} \in \dot{S}_{1}$ and $\bar{v} \in \bar{B}_{1}$ and it follows that $\bar{u} \bar{v}=\bar{x}_{1} \bar{y}_{1}$. We then see that $\bar{u}=\bar{x}_{1}$ and $\bar{v}=\bar{y}_{1}$. Since $B=C \cap D$, we conclude that $u=x_{1}$ and $v=y_{1}$. It follows that $n\left(x_{1} y_{1}\right)=1$ and that $|G|=|C||D| /|B|=|C D|$.

We are now in a position to complete the proof of our main theorem. Let F be the normal closure in G of x_{1} and let L be the normal closure in G of y_{1}. By the preceding lemma, $F \subseteq D$ and $L \subseteq C$. It follows that $F \subseteq D_{1}$ and that $F / O(F) \cong D_{1} / O(D)$. We also have $L \subseteq C_{0}$ and $L / O(L) \cong C_{0} / O(C)$. Since $O(G)=1$, we have $O(F)=O(L)=1$ and since $F \cap L$ has odd order we see that $F L=F \times L$. Since the index of $F L$ in G is odd, we conclude that G satisfies the conclusions of our theorem and this is contrary to our choice of G. This then proves our main theorem.

References

1. J. Alperin, Sylow intersections and fusion. J. Algebra, vol. 6 (1967), pp. 222-241.
2. J. Alperin, R. Brauer and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc., vol. 151 (1970), pp. 1-261.
3. G. Glauberman, Central elements in core-free groups, J. Algebra, vol. 4 (1966), pp. 403-420.
4. D. Goldschmidt, Solvable signalizer functors on finite groups, J. Algebra, to appear.
5. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
6. D. Gorenstein and K. Harada, Finite groups whose Sylow 2-subgroups are the direct product of two dihedral groups, to appear.
7. Z. Janko and S. K. Wong, A characterization of the Higman-Sims simple group, J. Algebra, vol. 13 (1969), pp. 517-534.
8. I. Schur, Untersuchen uber die Darstellung der endlichen Gruppen durch gebrochenen linearen Substitutionen, Crelle J. vol. 132 (1907), pp. 85-137.
9. M. SUZuki, A characterization of the 3-dimensional projective unitary group over a finite field of odd characteristic, J. Algebra, vol. 2 (1965), pp. 1-14.
10. J. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. Math., vol. 89 (1969), pp. 405-514.
The Ohio State University
Columbus, Ohio
