
FINITE GROUPS WHOSE SYLOW 2-SUBGROUPS ARE THE DIRECT
PRODUCT OF A DIHEDRAL AND A SEMI-DIHEDRAL GROUP

:BY

FREDRICK L. SMITH

1. Introduction

The purpose of this pper is to classify tl finite fusion-simple groups which
hve Sylow 2-subgroup that is the direct product of
semi-dihedral group. (We sy that group G is fusion-simple if 0 (G) G
nd Z* (G) 1. A semi-dihedral group is lso known s quasi-dihedral
group.) Our min result is s follows"

THEOREM. Let G be a finite fusion-simple group with a Sylow 2-subgroup
that is the direct product of a dihedral group and a semi-dihedral group. Then G
has a normal subgroup of odd index of the form F }( Fs where

F A PSL (2, q ), q odd,
and

F. M, PSL (3, qs), qs 1 (mod 4), or PSU (3, q), q 1 (mod 4).

The essential ideas used in proof re to be found in [6]. In prticulr, we
ssume that group G is minimal counter-example to our theorem. We
then show that G hs n involution fusion pttern compatible with the con-
clusion of the theorem. Next, we select n rbitrry elementary belin sub-
group A of order 16 in G. Then for suitable four-groups X nd Y contained
in A such that A X Y, we establish the following ssertion"

If for a e A, one sets

0 (Ce (a)) (Ce (a) n 0 (Ce (x)) n 0 (Ce (y)) x e X, y e Y},
then 0 is n A-signalizer functor on G in the sense of Goldschmidt [4].

If 0 is nontrivil, we conclude that W. (O(Ce(a)) ]aeA} is group of odd
order nd this llows us to show that Ne (W) is strongly imbedded sub-
group of G. It then esily follows that 0 is trivial nd from this we prove that
G stisfies the conclusions of our theorem. This contradiction then proves
our theorem.
We use the following definitions which re slight restrictions of some defi-

nitions in [2]"
(i) A finite group G is sid to ben SD-group if

semi-dihedral group and G contains one coniugcy class of involutions nd one
conjugacy class of elements of order 4.

(ii) A finite group G is sid to be Q-group if Sylow 2-subgroup of G
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is a semi-dihedral group and if G has two conjugacy classes of involutions and
one conjugacy class of elements of order 4.

(iii) A finite group G is said to be a D-group if a Sylow 2-subgroup of G is a
semi-dihedrM group and G contains one conjugacy class of involutions and
two conjugacy classes of elements of order 4, or if Sylow 2-subgroup of G is a
dihedral group and G contains at most two conjugacy classes of involutions.

(iv) Let H be a group in which 0r (H) 1, r an odd prime and let R be an
r-subgroup of H such that:

(a) R n 0r’,r (H) is a Sylow r-subgroup of 0r,.r (H);
(b) either R is normal in a Sylow r-subgroup of H or RK/K contains

Or (H/K) for every normal subgroup K of H.
Under these conditions we say that H is r-stable with respect to R provided for
any nontrivial subgroup P of R such that 0r, (H). P is normal in H, we have

AC.(P)/C.(P) Or(N.(P)/C.(P))

for every subgroup A of R such that [P, A, A] 1.
We now list some properties of simple SD-groups which are a consequence of

results in [2] or [9]. If M is a simple SD-group, then by the main result in [2],
M Mll, L3 (q), q - --1 (mod 4), or U3 (q), q 1 (rood 4). If Y is four-
group contained in M, then NM (Y) contains a group S $4. Let D be some
dihedral group of order 8 in S. We then have the following properties:

(i) M
(a) If y e Y, then C (y) GL (2, 3).
(b) If P is a maximal nontrivial Y-invariant p-subgroup of M, p odd, then

P is a Sylow 3-subgroup of M and any two Y-invariant Sylow 3-subgroups of
M are conjugate in N (Y).

(ii) M La(q).
(a) if y e Y, then C(y) . GL (2, q)/Z where Z is a subgroup of order

d (3, q 1) in the center of GL (2, q).
(b) If p is an odd prime and p does not divide q 1, then any two maximal

Y-invariant p-subgroups of M are conjugate in N(Y); if p does not divide q,
then any two maximal D-invariant p-subgroups of M are conjugate inN(D);
if p divides q 1, if P and Q are two maximal Y-invariant p-subgroups of M,
and if [P, Y] 1, [Q, Y] 1, then P Q in N(Y). There is a unique
maximal Y-invariant p-subgroup P such that [P, Y] 1.

(iii) M ._ U (q ).
(a) If y e Y, then C(y) ._ GU(2, q)/Z where Z is a subgroup of order

d (3, q -t- 1) in the center of GU (2, q).
(b) Let p be an odd prime. If p divides q, then Y does not normalize any

nontrivial p-subgroup of M. If p divides q 1 and if P and Q are maximal
Y-invariant p-subgroups of M, then P Q in N(Y). If p divides q - 1
an difP and Q are maximal Y-invariant p-subgroups ofM such that [P, YI 1,
[Q, Y] 1, then P Q in NM(Y). There is a unique maximal Y-invariant
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p-subgroup P such that [P, Y] 1. Finally, any two D-invariant p-sub-
groups which are maximal are conjugate in NM (D).
Our notation is standard (see [5]) and includes the "bar" convention for

homomorphic images.

2. Preliminary lemmas
We now prove some results concerning the structures of SD-groups,

Q-groups, and D-groups.

LEMMA 2.1. Let H be a group in which 0 (H 1 and which contains a
normal simple SD-group M of odd index. Let Y be afour-group contained in M
and let p be an odd prime. Then the following statements are true:

(i) IfP is a maximal Y-invariant p-subgroup of H, then P n M is a maximal
Y-invariant p-subgroup of M.

(ii) If p does not divide the order of CM(Y) and if P1 and P are maximal
Y-invariant p-subgroups of H, then P P in N(Y).

(iii) If p divides the order of CM(Y) and if P and P are maximal Y-in-
variant p-subgroups such that [PI Y] 1, [P Y] 1, thenP PinN,(Y).

Proof. We may assume that there exist nontrivial Y-invariant p-subgroups
in H, or else the lemma is trivially true. Set Q P n M and suppose, by
way of contradiction, thut Q is properly contained in a Y-invariant p-subgroup
of M. Since [P, Y]

___
M, P QC.(Y).

We first consider the case that Q 1. Then P Ce (Y) and for y e Y, P
normalizes CM (y). If M M, then p 3 and C (y) contains exactly two
Y-invariant 3-subgroups of order 3, each of which must be normalized by P.
However this contradicts the mximality of P, and so we can assume that
M M.

If p divides the order of CM (Y), then a Sylow p-subgroup U of CM (Y) is
nontrivial and characteristic. Then P normalizes U and again we hve a
contradiction. Thus we can assume that p does not divide the order of
C(Y).
Then p does not divide the order of C(y) N(Y), y e Y and so P nor-

malizes a Sylow 2-subgroup D of C(y) n N(Y). Since D --- Ds, P cen-
tralizes D. .Let be an element of order 4 in D and suppose that p divides
the order of CM(V). Then a Sylow p-subgroup of C(v) is nontrivial and
characteristic and this leads to contradiction as above. The remaining
possibility is that M L (q) and p divides q. Then CM (y) contains exactly
two Y-invariant subgroups of order q and so ech is normalized by P, con-
trdiction. Thus we can assume that Q 1.

Set K N(Q) and J C(Q). If Y

_
J, then Q is properly contained

in a Sylow p-subgroup of C (Y) which is normalized by R Cp (Y), con-
tradiction since P QR. Suppose p divides the order of C(Y). Then Q
is abelian, Q is Sylow p-subgroup of 0 (J), but not of J. Also Q is central-
ized by a four-group and since Y J, a Sylow 2-subgroup of J is a dihedral
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group. Since Z (J) contains an involution, J has a normal 2-complement and
this is a contradiction. Thus p does not divide the order of CM(Y). Since
Q must be a Sylow p-subgroup of both O(K) and O(JQ), this forces
M L3 (q) and p divides q. Since a Sylow 2-subgroup of J is cyclic, Q is a
Sylow p-subgroup of JQ. In particular, Z (Q) Z (U) for some Sylow p-sub-
group U of M. It follows from the structure of U that Q < U and so U

___
K.

Since U 4 K, there is a second Sylow p-subgroup V of M contained in K and
by the structure of M, Z (U) r Z(V) 1. It follows that Z (Q) contains an
abelian subgroup of order q. Such subgroups of M are self-centralizing
and so Q Z(Q) and has order q. This now forces K/Q --- CM(y), y
Y. In particular, K contains exactly two Y-invariant Sylow p-subgroups
and this leads to a contradiction since each is normalized by P. This com-
pletes the proof of (i). We now prove (ii) and (iii).

Set Q P n M and R Cp (Y), i 1, 2. It follows by (i) that Q is a
maximal Y-invariant p-subgroup of M, and by the maximality of P, we
have that R is a Sylow p-subgroup of NM(Q) n CH(Y), i 1, 2. If Y does
not centralize P, then Y does not centralize Q. Hence, by the properties of
simple SD-groups listed in the introduction, Q Q. for some m N(Y).
Then R is a Sylow p-subgroup of NM(Q2) n C(Y) and so for some
h e NM(Q:) n CM(Y), R’; R. Then P P2 and mh N(Y) and
this proves (ii) and (iii).

LEMMA 2.2. Let H be a Q-group in which 0 (H 1. Set L 0’ (H and
let Y be a four-group in L. If p is an odd prime, then the following statements
hold:

(i) If P is a maximal Y-invariant p-subgroup of H, then P L is a maximal
Y-invariant p-subgroup of L.

(ii) If p does not divide the order of C (Y and if P P: are maximal Y-in-
variant p-subgroups of H, then P P. in N,(Y).

(iii) If p divides the order of C (Y) and if P and P2 are maximal Y-invari-
ant p-subgroups of H such that [P, Y] 1, [P., Y] 1, then P P in
N,(Y).

Proof. Since a Sylow 2-subgroup of L is a semi-dihedral group, it follows
by the results in Chapter 2 of [2] that L --- SLY-(2, q), q -1 (rood 4) or
SU (2, q), q - 1 (rood 4). The proof of this lemma is then similar in nature
to that of the preceding lemma; only in this case it is easier and it is omitted

LEMA 2.3. Let H be a D-group in which 0 (H 1 and let Y be a four-
group in H. If P1 and P. are maximal Y-invariant p subgroups of H for some
odd prime p, then P P in N,(Y).

Proof. If L 02’ (H), then L A, PSL (2, q), PGL (2, q), or PGL* (2, q),
q odd (where PGL* (2, q) is a group with semi-dihedral Sylow 2-subgroups
and is described in Chapter 2 of [2]). A maximal Y-invariant p-subgroup of
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L is a Sylow p-subgroup of CL (y) for some y e Y and it is characteristic.
The lemma follows easily from these facts.

LEMMA 2.4. Let M be a group and assume that M --- L3 (q), q 1 (rood 4),
U3 (q), q 1 (mod 4), or Mll. If Y is a four-group in M, then

M (Y, C(y)’ly Y).
Proof. Set Mo (Y, Cu(y)’I y Ya}. Select y e yr. Then Y.Cr(y)

contains a Sylow 2-subgroup of C (y) and hence, Y.C (y) contains a Sylow
2-subgroup of M. We conclude that M0 is an SD-group. Since no proper
section of M contains an SD-group, we have that M0 M if M MI.
Thus we can assume that this is not the case. Similarly, we can assume that
M L(3). We then have that C(y)’ - SL(2, q), q >_ 5 and so C(y)’ is
perfect. Set C C (y)’.

If/r0 Mo/O(Mo), then 21r0 contains a normal subgroup L of odd index
where L is simple SD-group. Since 0 (C) 1 and 0’ (C) C, we have
that ( C and (7

_
L. We then conclude that Cx ()’ . It follows now

by the results in [2] that L ----- M and hence, M M0.

LEMMA 2.5. Let the group M be isomorphic to M and p 3 or let M be
isomorphic to L (q), q --1 (rood 4) and p be the odd prime that divides q.
Let Y be a four-group in M and let S N, (Y) with S S If P is a maxi-
real Y invariant p subgroup of M, then M (P, S).

Proof. Set L (P, S}. Choose y e Y and let C C(y)’. We shall
show that C L. Conjugating P by a suitable element in S if necessary,
we can assume thatQ C.(y) # 1. IfM---Ml,then(Q,D} C(y)
where D is a Sylow 2-subgroup of Cs(y). It follows in this case that C L.
If M L (3), u similar argument shows that C L. We can assume that
M L (q), q >_ 7 next. Now by a classical result of L. Dickson (Theorem
2.8.4 of [5]), we conclude that (Q, D} C. Thus in all cases C

___
L. Since

the involutions in Y are all conjugate in S, we can apply the preceding lemma
to obtain our result.

LEMMA 2.6. Let H be an SD-group in which Oe (H) 1, p an odd prime,
and let iI be the normal simple SD-group of odd index in IZI H/O (H). As-
sume that the following conditions are satisfied:

(i) H RM where M is the preimage in H of and R is a maximal Y-in-
variant p-subgroup of H for some four-group Y in M.

(ii) Y does not centralize any Sylow p-subgroup of 0 (H ).
(iii) IfM M then p 3 and if M La (q), then p does not divide q.

Then H is p-stable with respect to R and H Nu (Z (J (R )0 (H ).

Proof. By [2] we have that M _. M, L(q), q -1 (rood 4), or U(q),
q -= 1 (rood 4). We proceed to verify conditions (a) and (b) in the defini-
tion of relative p-stability given in the introduction.
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By the maximality of R, R n 0 (H) is a Sylow p-subgroup of 0 (H) and
by our assumptions, Y does not centralize R n 0 (H). If 0, (H) 0 (H),
then Y 0, (H) because H has only one eonjugaey class of involutions.
But then we have [R n O(H), Y]

___
R n 0,, (H) 1, a contradiction. Thus

we see that 0, (H) 0 (H) and by the maximality of R, R n 0,, (H) is a
Sylow p-subgroup of 0,, (H). This verifies condition (a).
Now suppose that K is a normal subgroup of H. If K O(H), then

O,(H/K) O(H)/K and so O,(H/K)

_
RK/K beeause R n O(H) is a

Sylow p-subgroup of 0 (H). If K 0 (H), then K covers M and so H
RKO (H). In this ease RK/K is a Sylow p-subgroup of H/K and it follows
that O(H/K) RK/K. This verifies condition (b).

Next, we show that H is p-constrained. Set Rj R n O,,p(H). We
must show that C(R1) O,,,,(H). If C(Rj) O(H), this follows because
0 (H) is p-constrained. If C(R1) 0 (H), then CH (R1)0p, (H) is a normal
subgroup of even order in H and so contains Y. It follows that Y centralizes
R1 and so Y acts nontriviMly on CR (R1) n 0 (H) which is contained in R, a
contradiction. Therefore H is p-constrained.

Since H will be p-stable with respect to R if and only if H/O,, (H) is
p-stable with respect to RO,, (H)/O, (H), we can assume to begin with that
O,,(H) 1.

Let P be a nontrivial normal subgroup of H contained in R. Suppose that
A is a subgroup of R such that [P, A, A] 1, but that

AC(P)/CH(P) O,(H/’C(P).

Then as in the proof of Proposition 2.6.1 of [2], we can find an H-invariant
section Pi of P which is an elementary abelian p-group on which H acts irre-
ducibly and A f CI(Pi).

If H/Cn(Pi), then 0(/) 1. Since [Pi, A, A] 1, Wehave that
/ involves SL (2, p) by Theorem 3.8.3 of [5]. It follows that C(P) is of
odd order and so/ /2r where/ is a maximal F-invariant p-subgroup of
/. Also we see that 21r/0 (21)) 2. Since we are interested in the action
of/ on P, we shall drop the ’"" for convenience. Also we shall consider
V Pi as a vector space over GF (p) on which H acts faithfully and irre-
ducibly. Thus we shall obtain a contradiction to the following situation"

(i) H RM where M/O (H) is a simple SD-group, Y is a four-group in
M and R is a maximal Y-invariant p-subgroup of H.

(ii) O,(H) 1 and H acts faithfully and irreducibly on the vector
space V over GF (p).

(iii) A is a nontrivial subgroup of R and [V, A, A] 1.
(iv) If M/0 (H) --- L, (q), then p does not divide q.
(v) O,,(H)

_
O(H).



358 FREDRICK L. SMITH

By the proof of Theorem 3.8.3 of [5], if a e A, b a in H, and F (a, b) is
not a p-group, then F has a normal subgroup F0 such that FIFo SL (2, pro)
orp 3andF/F0 SL(2,5).
We must have A n 0 (H) 1. Else we can find a e A n 0 (H) and b a

in H such that (a, b) is not a p-group and is contained in O(H), because
0 (H) 1, a contradiction.

Set fiI H/O (H). By our restrictions on p, R is centralized by an involu-
tion in I. Also ] L3 (3), otherwise the centralizers of involutions would
be solvable, a contradiction because p 3.
Also/ Mll or U3 (5). Otherwise p 3, 2: is of order 3 and every sub-

group of order 3 in/ is conjugate to . Since/ contains a subgroup iso-
morphic to A4, the alternating group on 4 letters, we have a contradiction.
If

_ --- U(5), then we can assume I:I (MA)- " PGU (3, 52). In this
case all subgroups of order 3 in/ (R M )- are conjugate and so 2: normal-
izes but does not centralize a Sylow 5-subgroup of , a contradiction.
Let/ 02’ (C () so that/ SL+(2, q) if/1 L (q) or/ --- SU-(2, q)

if ] U (q) and we also have in either case that q > 5. Let E be the pre-
image in H of/, set C RE, and let K be the semi-direct product of C and
V where the action of C on V is a restriction of the action of H on V to C.
Then RV is a maximal Y-invariant p-subgroup of K and K is a Q-group. We
also have that C (V) V and 0 (K) C RO (H).

If p does not divide q, then RV is a Sylow p-subgroup of K. If p divides q,
then our assumptions force/ SU(2, q), ]t --- U(q), and centralizes
/. In this case/ centralizes a dihedral group/) of order 8 in N (1). Thus
we can find a dihedral group of order 8 in E which normalizes RV and if this
group is denoted by D*, we have that RV is a maximal D*-nvarmnt" p-sub-
group of K. Since q > 5, we are now in a position to apply Proposition 2.6.1
of [2]. By this result we have that K is p-stable with respect to RV. It
then follows that

AC(V)/C(V) O(K/C(V))

and so A

_
0 (K) C RO (H). We see that [/, 2:] is normal subgroup

of odd order in/ nd so 2: centralizes/ nd in prticulr, A centralizes l.
Choose z e Y (y} nd let F be the preimge in H of 0’ (C ()). Working

in AFV nd using n rgument similar to that in the preceding two par-
graphs, we conclude that centralizes . Now by Lemm 2.4 we cn con-
clude that A centralizes , nd so 1 since A is group of odd order.
Since A is not contained in 0 (H), we hve contradiction. This completes
the first prt of the lemm nd it remains to show that H
N(Z (J (R)))0 (H). But this is direct consequence of the extended form
of Glubermn’s ZJ-Theorem (Theorem 2.7.2 of [2]).

LEMMA 2.7. Let L be a simple SD-group and let Y be a four-group contained
in L. If W is a subgroup of L of odd order such that N(Y) N (W), then
W C(Y).
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Proof. Let S NL(Y) such that S ----- $4. Since O(S) 1, we have
SnW 1. SetX WS.

If L Mll then the order of W is l or 3. Then Y Cs(W) andsowe
can assume that L ; MI.

Suppose that 02 (X) 1. Then F (X) F (W). Let R be a Sylow p-sub-
group of F (X) and assume that [R, Y] 1. If p divides the order of the
centralizer of Y in L, then R is abelian. Set Q 1 (R). Then S acts faith-
fully on [Q, Y] which is cyclic, a contradiction. Next, suppose that p divides
q where L L (q) or U (q) and let Q t (Z (R)). Denote the involutions
in Ybyy, y, andy. Since C(Y) 1, wehavethat Q C(y) X
C (y:). Since the involutions in Y are conjugate in S, we have that C (y)
1, i 1, 2, 3. Let D be a Sylow 2-subgroup of Cs(y ). From the structure
of C (y) we have that D/Z (D) acts regularly on C (y), a contradiction.
Thus we can assume that p does not divide q and this forces R to be cyclic.
Since S acts faithfully on R, we have a contradiction again. We have shown
timtO(X) 1. ThenY0(X)andso[W,Y]Wn0(X) 1. This
completes our proof.
We shall now state two results of [6] on which our proof relies heavily. But

first we introduce a definition. Let A be an elementary abelian group of
order 16 acting on a group K of odd order. Suppose that A X X Y where
X and Y are four-groups. We then say that K is (X, Y)-generated if

K (K,xeZ,yeY}

where K, is a normal subgroup in C((x, y}) for x e X*, y e Y*. An A-in-
variant subgroup F of K ll said to be (X, Y)-generated if

F (FK,xeX,yeY}.

We now have the following result which gives sufficient conditions for every
A-invariant subgroup of K to be (X, Y)-generated.

PnOOSTON (2.1 of [6]). Suppose that A and K are given as above and
x’ y Yassume that the following conditions hold for all x, X, y, e

(a) C, (x’ K, , and C. (y’ K,, ;
(b) every element in C((x, y}) inverted by the involutions in both X (x}

and Y (y} lies in K, ;
(c) ever element in [C(x ), Y]’ C(y inverted by the involutions in Y

(y} lies in K, and every element in [C(y), X]’ a C(x) inverted by the involu-
tions in X (x} lies in K, ;

(d) if P is an (X, Y)-generated p-subgroup of K where p is an odd prime
then every A-invariant subgroup of P is (X, Y)-generated. Then under these
conditions every A-invariant subgroup of K is (X, Y)-generated.

We also have the following main result of [6].
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THEOREM A*. Let G be a group with a nonabelian Sylow 2-subgroup which
is the direct product of two dihedral groups. If G is fusion-simple then:

(i) G’ Lj X L2 where L1 A7 or L2(ql) with ql odd aad ql 5 and
L2 - Z. X Z2 AT, or L2 (q.) with q odd and q. >_ 5;

(ii) G/G’ is of odd order and of rank at most 2.

3. Fusion of involutions

In this and in all succeeding sections we shall assume that G is a minimal
counter-example to our theorem. We let S S X S be a Sylow 2-subgroup
of G where S is a dihedral group and $2 is a semi-dihedral group. We let
z be an involution in the center of Si, i 1, 2. We also let r and s be two
involutions which generate $1 and if $1 is abelian, we set zj r. We let
be an involution in S Z (S:) and we choose v: to be an element of maximal
order in $2 such that v2 v. z. and hence,

If we set

S (rl e s e. e, e e Z (S)), S (se,

then S S S and S -- St for i 1, 2. Also every decomposition of S
as a direct product of a dihedral group with a semi-dihedrM group is of this
form for suitable e, i 1, 2, 3, 4.
We have that $2 has one conjugacy class of four-groups and that $1 has

one class if it is abelian and two otherwise. If A is an elementary abelian
subgroup of S of order16, then A (AS) X (AS)andA Z(S).
also S has one or two conjugacy classes of elementary abelian subgroups of
order 16, according as S is abelian or nonabclian.
We shall say that G has product fusion if it is possible to choose the factors

S*, S in such a way that the following conditions hold"

(a) the involutions in S are conjugate in G for i 1, 2;
(b) the involutions in S (S u S*) are conjugate in G;
(e) the elements of order four in S* are conjugate in G;
(d) G has exactly three eonjugaey classes of involutions.

Since G satisiies the hypotheses of our theorem, we have that 0 (G) G
and Z* (G) 1. Our first goal in this section will be to show that G must
have product fusion.

LEMM 3.1. If S is nonabelian, then No (S) SCo (S). If St is abelian,
then there is a 3-element in No(S) which acts nontrivially on Z(S) and
[No(S)’SCo(S)] 3.

Proof. We first assume that $1 is nonabelian. Then a (S) is the direct
product of two nonabelian dihedral groups and is of index 2 in S. It follows
that every element of odd order in No (S) stabilizes the chain S D__ fh (S)

___
1

and hence, every element of odd order must centralize S. This proves the
first part of the lemma.
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Next, assume that S, is abelian. Then S/Z (S) is a dihedral group and by
considering the chain S Z (S) Z (S) n S’ 1, we see that S admits a
single nontrivial odd order automorphism which is of order 3. If [No(S)"
SCo(S)] 1, then no element in G acts nontrivially on Z (S). In this case
Glauberman’s *Z -Theorem gives a contradiction. The second part of the
lemma now follows directly from this.

LEMMA 3.2. Suppose that $1 is nonabelian and let A and B be representa-
tives of the two conjugacy classes of elementary abelian subgroups of order 16 in
S. We than have that A is not conjugate to B in G.

Proof. Suppose, by way of contradiction, that A is conjugate to B in G.
Then by Alperin’s Fusion Theorem [1] we cn find C and D in S such that
C A, D B in S and such that C nd D are contained in a Sylow 2-sub-
group T of G and N(S T) is a Sylow 2-subgroup of No(S T) with C D
for some y Na(S T). Let W be the normal closure of C in N(S T).
Since

C= (CnS,)X (CnS),

we haveW (WnSI) X (WnS) where W n S is a dihedral group for
i I, 2. If g is of odd order in No(S n T), we have from the structure of W
that C C. It follows that

Na(S n T) Na(snr)(C)Ns(S n T).

But then D C is conjugate to C in S, a contradiction. This proves the
lemma.

LEMMA 3.3. If S is nonabelian, then, relabeling if necessary, we have:
(i) The involutions in S. are conjugate in Ca(z).
(ii) The involutions in S are conjugate in Na(, (S.)’).
(iii) The elements of order four in S are conjugate in Co(z,).
(iv) If A is an elementary abelian subgroup of order 16 in S and if

X A n S,, Y A n S, then No(A)/Ca(A) Sa X Sa (where Sa is the
symmetric group on 3 letters], both X and Y are normal in Na (A ), and the involu-
tions in X, in Y, and in A (X t Y) are conjugate in Na (A ).

Proof. By Burnside’s result and by Lemma 3.1 we have that the involutions
in Z (S) are mutually non-conjugate in G.

Let y be an involution in S Z (S). By Thompson’s lemma, y is con-
jugate in G to some involution in Slv>. Choose such that a Sylow 2-sub-
group of Co(t) has maximal order. Then Cs(y) is a Sylow 2-subgroup of
Co(y) or Cs(t) is a Sylow 2-subgroup of Ca(t). Suppose that is not con-
tained in Z(S). Then for some g eG, we have Cs(t)

_
Cz(y) or

Cs(y)

_
Cs(t). In either case it follows that z z2, a contradiction.

Thus we have that y is conjugate to an involution in Z (S). But then (y, Zl)
is the center of some Sylow 2-subgroup of G and so either y z or yz z,,..
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Replacing S by (s2 zl, v2} if necessary, we have the involutions in S. are con-
jugate in Co (zl).

Next, let x be an involution in S Z (S). Again, by Thompson’s lemma
we have that x is conjugate to an involution in (rl s}S.. In particular, x is
conjugate to an involution in Z (S). But then (u, z} is the center of some
Sylow 2-subgroup of G and so u zl or uz. z. Replacing $1 by
(rl el, sl e2) for suitable e, e in Z ($2) if necessary, we have that the involutions
in S are conjugate in Co(z).
Now letA X X Ybeasin (iv). Ifa, beA anda--binG, thenby

Lemma 3.2 it follows that a b in No (A). If xy e A with x e X, y e Y,
then by Thompson’s lemma it follows that xy is conjugate to an involution in
Z (S) if xy Z (S). We have already shown that the involutions in X, in Y,
and in Xz. u Yzl are conjugate in G and hence, in No (A). Since the iavolu-
tions in Z (S) are mutually non-conjugate and since No(A )/Co(A is iso-
morphic to a subgroup of GL (4, 2), it follows that (iv) holds.
By the preceding paragraph we conclude that no involution in S is con-

jugate to an involution in S S. Again let u be an involution in S Z (S)
and let T be a Sylow 2-subgroup of Co(u) containing Cs(U) (u, z) )< $2.
Then for some g e G, we have that 21 (S)O

_
T. Since no involution in S is

conjugate to an involution in S S., it follows that g eNo(a(S)’). To
complete the proof of the lemma we need to show (iii). Let (w) be the cyclic
group of order 4 in gt (S.)’ and let v be an element of order 4 in S (v2).
By Harada’s Extended Transfer Theorem we have that v is coniugate to an
element of order 4 in S.2 (S). It follows that v wu where u e $1 and
u 1. If u 1, then we are done and so we can assume that this is notthe
case. By the preceding paragraph we can assume that u z, since
(w) char 21(S)’. If T is a Sylow 2-subgroup of Co(v) containing Cs(v),
we hve that (z} Z (T) T’. It follows that v wz in Co(z). Thus we
hve that vz w in Co (z). Replacing S by (s, v. zl} if necessary, we con-
clude that the elements of order 4 in $2 are conjugate in Co(z). This com-
pletes the proof of the lemm.

LEMMA 3.4. If Sx is abelian, then, relabeling if necessary, we have:
(i) The involutions in S are conjugate in Co(S ).
(ii) The involutions in S. are conjugate in Co(S).
(iii) The elements of order 4 in S are conjugate in Co(S).
(iv) If A is an elementary abelian subgroup of order 16 in S and if

X A S, Y A n S, then No(A)/Co(A) Ss X Z, both X and Y
are normal in No(A ), and the involutions in X, in Y, and in A (X J Y)
are conjugate in No (A ).

Proof. Let g be a 3-element in No(S) which acts nontrivially on Z(S)
and which exists by Lemma 3.1. We may then relabel so that S [Z (S), g]
and S. C (g) and so (i) holds.
By Thompson’s lemma every involution in S is conjugate to an involution
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in Z (S). Also by Burnside’s lemma we have that zl, z2, and z: z. are mutually
non-conjugate inG. LetA X X Ybeasin (iv). Ifa, beAanda--b
in G, then a b in Na (A) since S has but one conjugacy class of elementary
abelian subgroups of order 16 when $1 is abelian. We also have that g e Na (A)
and that Y C (g) and since Na(A )/Ca(A is isomorphic to a subgroup of
GL(4, 2), we conclude that the involutions in Y are conjugate in Cq()(X)
and that both (ii) and (iv) hold.

Next, let v be an element of order 4 in $2 tl (S). By Harada’s theorem
v wx where w is an element of order 4 in 2 (S.) and x e $1. By the above
we can find a 3-element g in Ca (v) which acts nontrivially on Cs (v). It follows
that there exists a 3-element in Ca (wx) which acts nontrivially on $1 X (wx}.
This forces x to be 1 and we have v w in Na (S). Since Ca(s)(S) covers
Na (S1)/Ca (S), we conclude that v w in Ca(S). This completes the proof
of the lemma.

PROPOSITION 3.5. The group G has product fusion. The involutions in S
are conjugate in Na((S2)’), and hence, in Ca(Z(S)). The involutions inS
are conjugate in Ca(Z (St)) and the elements of order 4 in $2 are conjugate in
c(z(,)).

Proof. This lemma is a direct consequence of Lemmas 3.3 and 3.4.
Our next goal is to determine the structures of the centralizers of involu-

tions in G. We first prove

LEMA3.6. Let C Ca(z). If O C/O(C), then O= X O where
]tas a normal subgroup o of odd index such that . o and o -. M La (q2),
q2 - --1 (mod 4), or U(q2), q2 ----- 1 (mod 4).

Proof. Set ( 0 (). We claim that 2 is a Sylow 2-subgroup of (.
It follows by Proposition 3.5 that 32

_ . Set P o (. Then X
2 is a Sylow 2-subgroup of . Suppose that 1 is non-cyclic and let be
an involution in (}. By Thompson’s lemma is conjugate in ( to an
involution in (}2 It follows that [ is conjugate in C to 1, a contradiction.
Next suppose that is cyclic and nontrivial. Let ([} . By Haradu’s theo-
rem is conjugate to an element in (}2 But this forces z to be conjugate to
an involution in Z (S) (z}, a contradiction. Therefore S. is a Sylow 2-sub-
group of ( as asserted.

If we now set (0 0’ (), then 0 is a simple SD-group. The lemma is
now a direct consequence of the main result of [2], once we huve shown that
centralizes . To see this let be an arbitrary involution in S and let C be
the preimage of in C. Then (t} X S. is a Sylow 2-subgroup of (t)C and
since G has product fusion, we huve that is isolated in (t}C. Now Glauber-
man’s theorem yields that centralizes (. Since S h ($1), we conclude
that S centralizes (.
We shall retain the notation of this lemma. Henceforth, we let C Ca (z)

and we let C denote the preimage in C of (, i 0, 1.
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LEMMA 3.7. If D Co (z2) and D D/O (D), then D has a normal sub-
group Do of odd index of the form D1 X D2 where D1 and D2 have the following
structures:

(i) 1 /)1 and D1 AT, PSL (2, ql), ql odd, ql >_ 5, or Z2 X
(ii) 2 I)2 and D2 ._ SL+/-(2, 3) if Co/O(C) Mll, SL+/-(2, q2) if

Co L3 (q2 ), or SU+/- (2, q2 if Co Us (q ).
Also both D1 and D are normal in D.

Proof. Set V (s v2, v2}, so that the index of V in $2 equals 2 and V is a
generalized quaternion group. Then we have that s2 is not conjugate in D
to any involution in $1 X V. From the structure of Co the elements of order
4 in V are conjugate in Co n D. By Proposition 3.5 the involutions in $1 are
conjugate in D. It follows that D contains a subgroup E of index 2 such that
$1 X V is a Sylow 2-subgroup of E.

Set D/Z* (D). Then/ is a fusion-simple group and 1 X I7 is a direct
product of two dihedral groups. Furthermore, ]Y is nonabelian and thus we
can apply Theorem A* of [6] to conclude that has a normal subgroup of odd
index of the form/,1 /,2 where

(i) 1 /1 and/-1 AT, L (ql), ql odd, ql >_ 5, or Z2 X Z2
(ii) IY L and/. AT, L (q), q2 odd, q 5.

Also both/-1 and / are normal in /. By considering the preimage in D
of (2}, we see that/, AT.
Now let L1 and L2 be the preimages in/) of/-1 and/ respectively. We have

that 1 X (2} is a Sylow 2-subgroup of L1 and so L1 has a normal subgroup/)1
of index 2 such that 1 /)1. If 1 /1, then $1 is a four-group and since
G has product fusion,/)1 <3/). If/)1 is simple, then/)1 /,1 nd/)1 char
Again, we have/)1 <3 D. By result of Schur [8] we have thatL SL (2, q. ).
Moreover, 1 centralizes L. and so L (L2 n C0)-. From this it follows that
as 3 if Co/O(C) . Mll or q q2 if Co/O(C) L3(q) or U(q2).
We have 1 X (2} is a Sylow 2-subgroup of (}/)1 and since G has product

fusion, . is isolated in {2}/)1. It follows by Glauberman’s theorem that
centralizes/)1. Set/)2 (}L2. Then/) centralizes/)1 nd/)1 /) 1.
Also/) SL+(2, 3) if Co/O(C) M, SL-(2,q) if Co/O(C) L(q),
or SU+/-(2, q.) if Co/O(C)

_
U(q2). Moreover, /) char C(/)l) and so

/)2 <:]/). Set Do /)1 X /).. This completes the proof of the lemma.
Henceforth we let D C (zl) and we let D denote the preimage in D of

/), i 0, 1, 2. We also find it convenient to fix some further notation. We
let A denote a fixed elementary belian subgroup of order 16 in S. Set
X A a $1 and Y A $2. Also let x denote the involutions in X and
y denote the involutions in Y, i 1, 2, 3. Finally, we let xl and zl and yl

We now have

PROPOSITION 3.8. If
(Co(X))-= C(X)/O(C(X)), (C(Y))- C(Y)/O(C(Y)),
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M 02 (Ca(X)), and N 02 (Ca(Y)), then (Ca(X))- 2 X 2I, (Ca(Y))-
( , and f/I and contain characteristic subgroups of odd index, rio and

o respectively such that
(i) . _

0 co/o (c);
(ii) 1

___
fi0 and o -- DI/O (D ).

Proof. This proposition is a direct consequence of Lemmas 3.6 and 3.7.

We shall retain the notation of this proposition and also we shall let M0
and No denote the preimages in Ca(X) and Ca(Y) of/0 and 0 respectively.
WenotethatO(C(X)) O(M) O(Mo)andO(C(Y)) O(N) O(No).

LEMMA 3.9. If B Ca(zz2) and [ B/O(B), then [ X [ where
[ has a normal subgroup [o of odd index such that 2 [o and [o - D2/O (D ).

Proof. We first show that zl is isolated in B. Suppose, on the contrary,
that z in B where e S (zl}. Since G has product fusion, we have

e S. But then z2 Zl z. z2 tz z zl z, a contradiction. It follows that
/ (Ca (zl))- (Ca (z))- and this lemma is now a direct consequence of
Lemmas 3.6 and 3.7.

Henceforth, we shall let B Ca (z z) and Bi shall denote the preimage in B
ofBi,i 0, 1.

4. Subgroup structure of G

In this section we study the subgroup structure of G to the extent needed to
enable us to construct a suitable signalizer functor on G. In this section H
will denote a proper subgroup of G. Moreover, since we are primarily con-
cerned with the subgroups of G which contain A X X Y, we shall assume
that A H. In order to study the abstract structure of H, we can assume
without loss of generality that H n S is a Sylow 2-subgroup of H.
We first prove

LEMMA 4.1. If H has an isolated involution, then either CH(x) or CH(y)
covers H/O (H for some x e X or y e Y.

Proof. SetT HnS. Then we must haveZ(T) A. Thus ifzisan
isolated involution in H, we can assume that z e A. By Glauberman’s theorem
C (z) covers H/O (H). Suppose that z X u Y. Then z xy with x e X,
y e Y. By Lemma 3.9 both x and y are isolated in C((z). In particular,
they are isolated in C(z) and it follows that both Cn(x) and C(y) cover
H/O (H) in this case.

:LEMMA 4.2. If H contains no isolated involution and I H/O(H), then
0 (IZI) has a normal subgroup of odd index of the form L, X Ls where both L, and
L are normal in H and have the following structures:

(i) , n L is a Sylow 2-subgroup ofL and L A L (r,), r, odd, r,

_
5,

or Z2 Z.
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(ii) L. is a Sylow 2-subgroup of L and L. -- M, La(r.),
r -1 (rood 4), U(r.), r 1 (mod 4), A, L(r.), r odd, r >_ 5, or
Z2 Z..

Proof. SetK 02(H) andT SnKsothat/ 02(/) and Tis
Sylow 2-subgroup of K. Also set T T n S, i 1, 2.
Suppose first that T1 X 1. Then we must have T1 1. But H S

covers H/K and it foIlows that z is isolated in H, contrary to our assumptions.
Thus we have T X 1. A similar argument gives that T2 Y 1.

If T is cyclic, i 1, 2, or if T. is generalized quaternion, then it follows that
K contains an isolated involution which is not the case. Thus T is a dihedral
group and T. is a dihedral or a semi-dihedral group.

Suppose that T T X T:. Since T < T and [Ns(T.)’T.Cs(T)] <_ 2,
we conclude that TI X T2 T. Cr(T.) is of index 1 or 2 in T. Thus this
index must be 2.

If there are involutions in T T X T2, let h t. be one where t is an
involution in S, i 1, 2. If there are none, let tl t be an element of
order 4 in T T X T. where t is an involution in $1 and t is an element of
order 4 in $2. Either by Thompson’s 1emma or by Harada’s theorem is con-
jugate in K to some element u in T1 T.
We have that E Cr(t) is abelian of type (2, 2, 2) or (2, 4) and Cr(u)

contains an abelian subgroup of type (2, 2, 2, 2) or (2, 2, 4). It follows that E
is contained in abelian subgroup of K of type (2, 2, 2, 2) or (2, 2, 4). We can
then conclude hat for some k e C((zl, z)), we have is contained in T
By Section 3 we see that C((z, z.}) has a normal subgroup of index 2 which
contains T T and this is a contradiction. Therefore T T1 T. is a
Sylow 2-subgroup of K.

If T is abelian, then the structure of K is determined by [10]. Since G has
product fusion, K 2 L. (16) and consequently,/’ is of odd order and has the
asserted structure. Suppose that T is nonabelian. Then we are in a position
to apply either Theorem A* of [6] or we utilize the fact that we are working in
minimal counter-example to our theorem. In either case : is fusion-simple
and our lemma is proved.

LEMMA 4.3. If H contains no isolated involutions, if J 0 (H)A, and if
IZI H/O(H), then ] contains a normal subgroup of odd index of the form
X where and 2 have the following structures:
(i) n/ is a Sylow 2-subgroup of and 1 A L2 (rl), PGL (2, r),

rl odd, or Z2 X Z.
(ii) 2 is a Sylow 2-subgroup of 2 and . - Mn, L(r.),

r2 1 (mod 4), Ua (r), r 1 (mod 4), Av, L. (r2), PGL (2, r2), r. odd, or
Z. X Z.
Also both and 2 are normal in .

Proof. By the preceding 1emma/ 0 (/) has a normal subgroup of
odd index of the form L X L2 where L is a Sylow 2-subgroup of L and
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Li has the structure specified in that lemma, i 1, 2. Since G has product
fusion, Glauberman’s theorem yields that J? centralizes L. and l? centralizes
L1. Set/71 L1 J and/02 L2 I. Then/7i has the structure asserted in the
conclusion of this lemma and S n/ is a Sylow 2-subgroup of/, i 1, 2.
iVIoreover, i01 and/2 centralize each other and/i n/2 1. In order to obtain
the conclusion of the lemma it is sufficient to show that/ < 2, i 1, 2.
If J? L1 and I7 L., then this follows from the fact that L < 0, i 1, 2.
Suppose then that J L1. If L2 ----- Z. X Z2, then W K n S. is a four-

group and If" L2. It follows that 07 (Nj (W))-. From Proposition 3.8
we conclude that 1 char Cj (If’) <:1 ] and so fl <1 07. If ,. is a simple group,
then Cj (L.) n L2 1. Since Cz (L.) is a D-group, we have 1 char C (L.)
and that/1 <:1 J.

Suppose now that I7 L.. Then 2 L2 is a dihedral group and so
l (2 n L.) is also a dihedral group. Arguing as in the preceding paragraph
we can conclude that/2 <:1 ] as well. This completes the proof.
We now find it convenient to fix some more notation. We set p. 3 if

Mo/O (M) ._ Mll, we set p. to be the prime which divides q2 if Mo/O (M) --L (q.), and we do not define p2 if Mo/O (M) --- Us (q2). Also we let $2 denote
the set of all odd primes which divide the order of ColO()(Y).
Our next goal is to prove some results on the transitivity of maximal A-in-

variant p-subgroups under conjugation by the elements in No (A) where p is an
odd prime.

LEMMA 4.4. Suppose that p is an odd prime and that p $.. If Pi and P.
are maximal A-invariant p-subgroups of H, then P1 P2 in NI (A ).

Proof. Any maximal A-invariant p-subgroup of H contains a Sylow p-sub-
group of 0 (H) and any two A-invariant Sylow p-subgroups of 0 (H) are con-
jugate in Co(,) (A). It is immediate from this that it will suffice to prove that
Pl /52 inN(2) where I:I H/O (H).

If H has no isolated involution and if J 0 (H)A, then by the preceding
lemmaJ has a normal subgroup of odd index of the form i01 /O. where i/
is a Sylow 2-subgroup of/O and i0 has the structure asserted in the conclusion
of that lemma, i 1, 2.

If F denotes the preimage in J of/, i 1, 2, then/? (F1 N0)- and
/2 (F. M0)-. Since p n, we have that p does not divide the order
of C,. (Y).

Set i =/5 n/P, f =/5 n/., and/i Cp (fi-). Then byLemmas 2.1,
2.2, or 2.3 and by the structures of/1 and f., U1 V U2 V. in N(2:).
Also by the maximality of P we have that R is a Sylow p-subgroup of
N(Til?)nC(fi),i 1,2. Since/5 ?/,i 1,2, wecancon-
clude as in the proof of Lemma 2.1 that/51 /5. in Nj (2:).
Next we consider the case that H contains an isolated involution. Suppose

first that some x e Xa is isolated. For definiteness, let x x. Then we have
0 J X (J n C)-. Set/? )< 0’ (J n C1)-. Then . n/ is a Sylow 2-sub-
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group of and since p e $2, p does not divide the order of C (I). Since is
an SD-group, a Q-group, a D-group, or a 2-group, we have by Lemmas 2.1,
2.2, and 2.3 that Pl P. in N(.rf181)-() and hence, in N(2 ).

If no involution in X is isolated in H, then by Lemma 4.1 we have that some
yeY is isolated inH. For definiteness, let y yl. Set J1 J n D1,
J. JnD2,andE 0(Cj(A)). Since2 (J a D )-, we have 21and 22
are normal in 2. Also J1 n J2 has odd order and so 21] J1 X 22. Now
letK J1J2EO(H) and2 K/O(K). Also set/i 02’(2i), i 1, 2.
As above we have that p does not divide C2 (Y). Since

Pi- (Pnl X PinF2)(Pn/), i 1,2,

we conclude that t51 N/. in N (fi). This completes the proof of the lemma.

PROPOSITION 4.5. Suppose that p is an odd prime and that p $2. If Pl
and P. are maximal A-inuariant p-subgroups of G, then P1 P2 in Na (A ).

Proof. Suppose that the proposition is false and choose P1 and P2 such that
they violate it and such that the order of R P1 P is maximal subject to
this. Set K Na (R). Without loss we can assume that K S is a Sylow
S-subgroup of K. If R 1, then K is a proper subgroup of G and the pre-
ceding lemm is applicable. This leads to a contradiction by u standard
argument.

In any case, we have P 1, i 1, 2. Considering the action of A on P,
we see then that C (Ti) 1 for some maximal subgroup T of A, i 1, 2.
Setting H Ca(T) where T T T. 1 and hence, Ce (T) 1, i 1, 2,
we can assume without loss that S H is a Sylow 2-subgroup of H. Again,
the preceding lemma is applicable. We let Q be a maximal A-invariant
p-subgroup of G containing Ce (T) as well as a maximal A-invariant p-sub-
group R of H, i 1, 2. Then Q n P 1, i 1, 2 and Q contains R2 for
some u e N,(A by the preceding lemma. These conditions together with
our maximal choice of P1 n P. R now force R 1 and the lemma is proved.

LEMMA 4.6. If p e $ and if P is a maximal A-invariant p-subgroup of G,
then P Mo covers a maximal Y-invariant p-subgroup of Mo/O (M ).

Proof. Let 1 be the set of all maximal A-invariant p-subgroups P* of G
such that P* covers a maximal Y-invariant p-subgroup of Mo/O (M). Sup-
pose, by way of contradiction, that there exist maximal A-invariant p-sub-
groups of G not contained in F. Among those not in F, select the subset
consisting of all subgroups P1 such that the order of P1 M0 is maximal. For
each group P e 5, let r (P1) denote the subset of 1 which consists of all groups
P such that P2 P1 n M0. It is clear that F (P1) for each P1 5. We
now consider the set of all pairs of groups (P1, P2 where P1 e 5 and P2 e 1 (P1)
and among these we choose a pair (P1, P2) such that the order of R P n
is maximal.

Suppose thatR 1. SincePlnM0 R,PnM0 1. SinceP 1,
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Cvl (x) re 1 for some x e X. But a maximal A-invariant p-subgroup of
Co(x) covers a maximal Y-invariant p-subgroup of Mo/O(M) and so we
can find some P e I’ containing Cvl(x). Since P1 n M0 1, we have
P3 e F (P1). Since P1 n P3 1, we have contradicted the maximality of R.
Thus we have that R re 1.

Set H No (R). Without loss we can assume S H is a Sylow 2-subgroup
of H. Also set K 02 (H)A. Now let Qi Ne (R) and let V be a maximal
A-invariant p-subgroup of G containing Q and a maximal A-invariant p-sub-
group Ui of H, i 1, 2.

Suppose that V F; since V

___
R P M0, we have V F (P1). Since,

V1 P Q1 R, we have a contradiction. It follows that V1 F. Since
V1 n M0 P n M0, we see that V 5.
Suppose next that V2 F. Since V.

_
R P1 n M0, it follows that V e 5

and also that V2 n M0 P n M0. From this it follows that P e F (V)
and since P. n V2 R, we again have a contradiction. Thus we have that
Ver.
Now suppose that H has no isolated involution and set K 0 (H)A and

t H/O (H). Also let/ X /. be the normal subgroup of odd index
in/ which satisfies the conclusion of Lemma 4.3 and retain the notation of
that lemma. Finally, let Fi denote the preimage in H of/, i 1, 2. Then
we see that/2 (F. Mo)-.
By the maximality of U we have (U1 n F )- is a maximal Y-invariant p-sub-

group of/:. Since U n M0

_
R n M0 and the order of U n M0 equals the

order of P n M0, we conclude that

UnM0___R 0(H).

Since (U n F. )- (U1 n F n M0)-, it follows that (U1 n F2)- 1. But now
the structure of f2 forces (U2 n F2)- 1 also. It follows then that

(U n F)-Co (I) for i 1, 2 and we also have that (U F)- is a
maximal X-invariant p-subgroup of f. As in previous arguments we then
have that U2 U for some k eNr:(A). Since normalizes M0 and
V

___
R

_
P n M0, it follows that V2 e I’ (P). This again contradicts the

maximality of R, since V n P :::) R.
We can assume then that H contains an isolated involution. First sup-

pose that x is isolated in H for some x e X. Then we have that
/ 2 X (K n M)- and that ) is a maximal y-invariant p-subgroup of
(K n M)-, i 1, 2. Since (K n M0)- <3 (K n M)-, we see that

) (U n K n Mo)-Cv, (fI ), i 1,2.

But as above we conclude that (U1 n K n M0)- 1 and hence, that
(U2 n K n Mo)- 1 also. Then is a Sylow p-subgroup of C (fi_), i 1, 2
and it follows easily that U U inN (A). But this leads to the same con-
tradiction as above.

Finally, we consider the case that an involution y in Y is isolated in H.
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For definiteness, we let y yl. Set K K n D, i 1, 2 and let
E O(C(A)). Also setL K1K2EO(H) andletL L/O(L). Then
we have that U L and that L (R:I /.)/. Finally, let 02’ (/)
and let F denote the preimage in L of, i 1, 2. Then 2 (F. n M0)-
and we conclude as above that (U F.)- 1, i 1, 2. Again, we see that
U1 U2 in NL (A) and this leads to the same contradiction as above. This
however forces our lemma to be true.

LEMMA 4.7. Suppose that p e S2 and that P is a maximal A-invariant p-sub-
group of G, i 1, 2. If PIn P. Mo covers a maximal Y-invariant p-subgroup
of Mo/O (M), then P P2 in Na(A ).

Proof. Suppose that the lemma is false and among all pairs of subgroups
violating the lemma choose P1 and P such that the order of R P a P2 is
maximal. Then we see that R covers a maximal Y-invariant p-subgroup of
Mo/O (M) and in particular, R 1.

Set H Na(R) and let U be a maximal A-invariant p-subgroup of H
containing Np (R), i 1, 2. Since R covers a maximal Y-invariant p-sub-
group of Mo/O (M) and argueing as in the previous lemma, we can conclude
that U U in N(A). This leads to a contradiction by a standard argu-
ment and proves the lemma.

PROPOSITION 4.8. Suppose that p e $2. Then there exist maximal A-in-
ariant p-subgroups P and P2 of G such that P Mo is a maximal A-invariant
p-subgroup of Mo and [P Mo Y] 0 (M and [P2 Mo Y] 0 (M ). Let
P be any maximal A-inariant p-subgroup of G. If [P M0, Y] 0 (M),
then P P and if [P Mo Y] 0 (M), then P P2 in N(A ).

Proof. Let Q be a maximal A-invariant p-subgroup of M0, i 1, 2
such that [Q, Y] ---- 0 (M) and [Q2, Y] 0 (M) and let P be a maximal
A-invariant p-subgroup of G containing Q, i 1, 2.

Suppose that P is a maximal A-invariant p-subgroup of G and that

[P i0, Y] 0 (M).

Since P n Mo covers a maximal Y-invariant p-subgroup of Mo/O(M) by
Lemma 4.6, we have

(PM0)PnM0 for somemeNMo(A).

ThenP P1 n M0 (P Mo) covers a maximal Y-invariant p-subgroup of
Mo/O (M). By the preceding lemma P P in Na (A) and hence, P P
in Na(A ).

If [P M0, Y] 0 (M), we can apply a similar argument to conclude that
P P2 in Na (A).
We shall say that a proper subgroup H of G covers Mo/O (M) if H Mo

covers Mo/O (M). Similarly, we shall say that H covers NolO (N) if H No
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covers No/O (N). We now prove some results concerning p-local subgroups
of G which cover Mo/O (M) and No/O (N).

LEMMA 4.9. Suppose that a Sylow p-subgroup of O(C) is nontrivial. If
P is a maximal A-invariant p-subgroup of G, then there is a p-local subgroup K
of G containing PA and covering Mo/0 (M ).

Proof. Let Q be an A-invariant Sylow p-subgroup of 0 (C). Then Nc (Q)
contains A and covers Co/O(C) and hence, covers Mo/O(M). Let R be
a maximal A-invariant p-subgroup of No(Q) so that R covers a maximal
Y-invariant p-subgroup of Mo/O(M). If p e $, we choose R such that
/ (M0 n P)- in N0 (]) where io Mo/O(M).

Now among all p-local subgroups of G containing RA and covering
Mo/O (M) choose K such that an A-invariant p-subgroup U of K has maxi-
mal order subject to containing R. Suppose that U is not a maximal A-in-
variant p-subgroup of G. Then there exists an A-invariant p-subgroup of G
which properly contains and normalizes U. We denote this subgroup by
V.
By Lemmas 4.1, 4.2, and 4.3, 0 (K)A has a normal subgroup L containing

O(K) such that L (L Mo)- io/O(i) in / K/O(K). Set
F LUA and let/ F/O(F). By the maximality of U we have that
V0 U n 0 (F) is a Sylow p-subgroup of 0 (F). Also/ (L n M0)- X
and Nno (V0) covers L n M0 by the Frattini argument and hence, covers
io/O(M).
Now C,(x) : U for some x X. Suppose x centralizes V0. Then

C(x) U and we can find a maximal A-invariant p-subgroup of Co(x)
containing C,(x) such that this subgroup and A are contained in a p-local
subgroup of Ca(x) which covers Mo/O(M). However, this contradicts the
maximality of U and our choice of K. Thus we can assume that [V0, x] 1.
Set V [V0, x]. Then V is normalized by UC(x), by A, and by
Nno (V0). But then N((V) contradicts our choice of K. This contra-
diction then proves our lemma since U must be a maximal A-invariant p-sub-
group of G and U P in No (A).

LEMMA 4.10 Suppose that a Sylow p-subgroup of 0 (D is nontrivial. Then
there exists a p-local subgroup H of G containing A and a maximal A-invariant
p-subgroup P of G such that H covers No/O (N ).

Proof. Let V be an A-invariant Sylow p-subgroup of 0 (D). Then ND (V)
contains A and covers D1/O (D) and hence, covers NolO (N). Now among
all p-local subgroups of G containing A and covering NolO(N) choose H
such that an A-invariant p-subgroup of H has maximal order. Suppose
that P’ is not a maximal A-invariant p-subgroup of G. Then there is an
A-invariant p-subgroup U of G containing P properly and normalizing P.
Then Cv (y) P for some y e Y. We can now argue as in the preceding
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lemma to obtain a contradiction to our choice of H. It follows that P is
maximal A-invariant p-subgroup of G and the lemma is proved.

We conclude this section with a result needed in the next.

LEMMA 4.11. Suppose p e $2 and R is an A-invariant p-subgroup such that

R (R 0

Then R is contained in maximal A-invariant p-subgroups P and Q of G such that

[P n Mo, Y] O (M and [Q n Mo, Y] O (M ).

Proof. Let U be a maximal A-invariant p-subgroup of G containing R.
By the preceding Lemma 4.9 there is a p-local subgroup K of G containing
UA and covering Mo/O (M). Then 02 (K)A has a normal subgroup L con-
taining 0 (K) such that

L (LnMo)--Mo/O(M) in/ K/O(K).

LetJ LUA andset] J/O(J). Then] (LnM0)-Xandfor
x e X we have that

(R n 0 (Ca (x)) ),- (L n M0)-I

is a normal subgroup of odd order in L (L n M0)-. It follows that (R n 0
(Ca(x)))-centralizes L and so we conclude that R n 0 (Ca(x)) O(J).
It follows that R 0 (J). Since J covers Mo/O (M), we have that maximal
A-invariant p-subgroups of J cover maximal Y-invariant p-subgroups of
Mo/O (M). Moreover, we can find maximal A-invariant p-subgroups Q1 and
Q2 of J such that 0 (J) n U Q1 n Q2 and such that

[QlnM0, Y] 0(M) and [Q2nM0, Y] 0(M).

It is now only necessary to choose P to be a maximal A-invariant p-subgroup
of G containing Q, i 1, 2 in order to obtain the conclusion of our lemma.

5. An A-signalizer functor
Our main goal in this section is to show that if for a e A we set

O(Ca(a)) (Ca(a) n (Ca(x)) n O(Ca(y)) x e X, y e Y},

then 0 is an A-signalizer functor on G. In order to do this we must show that
0 (Ca (a)) has odd order for all a e A and that 0 satisfies the balance condition

O(Ca(a))nOCa(b) O(Ca(b)), a, beA.
We shall use Proposition 2.1 of [6] to show this.
We are retaining the following notation of the preceding sections: B, C, D,

B, C1, Do, D1, D2, M, M0, N, No, Co, B0.
We first prove the following useful lemma.



CLASSIFYING FINITE GROUPS 373

I2EMMA 5.1. The following conditions hold for all x, x’ X, y, y’ e Y:
(i) Co(x) n o(co(x’)) o(c(x)).
(ii) Co(y) n O(Ca(x)) n O(Ca(y’)) O(Ca(y)).
(iii) Co(xy) n O(Ca(x’)) O(Ca(zy)).
(iv) [D n 0 (Ca (x ), D.] 0 (D and in particular, (D n 0 (Ca (x )-

centralizes in D D/O (D

Proof. Choosex eX (xl} andsetR C n O(Ca(x)). If ( C/O(C),
then [/, 1] is a normal subgroup of odd order in (21 since 121 (C1 n M)-. It
follows that R centralizes C and so R O(C). Now (i) follows easily
from this.

Choose y e Y (y} and set Q D n 0 (C) n 0 (Ca(y)). If/) D/O (D),
then [(,/)] is a normal subgroup of odd order in/)i, i 1, 2 since/)1
(D1 n N)- and/)2 (D. n M)-. From this it follows that ( centralizes
both/)1 and/)2 and hence, R 0 (D). Then (ii) follows easily from this.

Next, choose x inX (Xl) and set P B n O(Ca(x)). If B B/O(B),
then [/5,/1] is a normal subgroup of odd order in/)1 since/ (B n M)-.
We conclude that R 0 (B) and (iii) follows easily from this.

If/) D/O(D ), then [(D n O(C))-,/).] is a normal subgroup of odd order
in/)2. It follows that (D n 0 (C))- centralizes/), and (iv) is a consequence
of this.

LEMMA 5.2. Let E be an A-invariant subgroup of G of odd order such that
AE H n K where H is a proper subgroup of G covering NolO (N) and K is a
proper subgroup of G covering Mo/O (M). Then E 0 (H) n 0 (K) if and
only if

E (E n O(Co(x)) n O(C(y))l x e Z, y e Y}.

Proof. Without loss of generality we can assume that H 02 (H)A and
K 02(K)A. Set/ H/O(H)and/ K/O(K). By Lemmas 4.1,
4.2, and 4.3 we have that/ has a normal subgroup of odd index of the form
/Pl X 02 where J

___
/?1, l /2, and/--- No/O(N)and/ has a normal

subgroup of odd index of the form L1 >( L2 where 27

___
L1, I7

_
L., and

L2 - Mo/O (M). Let F be the preimage in H of P, i 1, 2 and let L. be
the preimage in K of L-, j 1, 2. We then have F (F n No)-, F2
(F. n M0)-, L (L n N0)-, and L2 (L2 n Mo)-.
First assume thatE 0(H) n0(K)andletR EnCnD. SetO

C/O(C). Since (Co n M0)- (Co n M0 n L2)-, it follows that [/, 0] is
a normal subgroup of odd order in (0 and thus, that/ centralizes (0. We
conclude that R O(C). Now set D D/O(D). Then D
(D n No n F1)- and/)2 (D. n C)- and so we see as above that/ centralizes
both/)1 and/)2. It follows that R 0 (D). From this we easily conclude
that

C.((x, y}) O(Ca(x)) n O(Ca(y)) for all x e X, y e Y.
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Since E (CE ((x, y} x e X, y e Y}, the "only if" part of the lemma is
proved.

Next, assume that E (E n O(Ca(x) n O(Ca(y) )}. Set

R O(C) O(D) r E.

We then see that/ centralizes fl and/2 in/ and that/ centrali,es ,1 and
L. in K. It follows that R 0 (H) 0 (K) and easily conclude that E

___
0 (H) n 0 (K). This completes the proof of the lemma.

We now select an arbitrary a e A and set K 0 (Ca (a)). By Lemma 5.1
K has odd order. If for x e X and y e Y we set

g,, K O(Ca(x) O(Ca(y) ),

then K, <3 CK (x, y) and K (K. Ix e X, y e Y}. We shall show that
every A-invariant subgroup of K is (X, Y)-generated with respect to the
subgroups K,.

LEMMA 5.3. For all x, x’ e X, y, ye e Y we have

CKx. (x’) K,, and Ccx. (y’) K,,.

Proof. ByLemma5.1, C,:,(x’] O(Ca(x’) and CK.(y’)

_
O(Ca(y’)

and the lemma follows easily from this.

LEMMA 5.4 Every element in C((x, y} inverted by the involutions in both
X (x} and Y (y} lies in K,.

Proof. Suppose that ]c e C (x, y) and that k is inverted by the involutions
in both X (x} and Y (y}. By (i) of Lemma 5.1, k e 0 (Ca(x)) and then
by (iv) of the same lemma, k e 0 (Ca(y)). It follows that k e K,.

LEMMA 5.5. The elements in [C(xK), Y]’ n C(x) inverted by the involu-
tions in Y y} lie in K,. The elements in [C(y), x]’ n C:(x) inverted by
the involutions in X (x} lie in K,.

Proof. For definiteness let x x and y y. We then have that

(K n C)-, 11 (C0 n 0 (Ca (a))- 0 (Co (a))

which is abelian in C/O(C). It follows that

[K r C, Y]’ O(C).

If g [K C, Y]’ r D nd g is inverted by y,, then g e 0 (D) by (iv) of Lemm
5.1. Thus we have g e K,.

We also see that [K D )-, J] is an X-invariant subgroup of b of odd order
and so it is abelian by the structure of bl in D D/O (D). It follows that
[K D, X]’ O(D ). Ifge[KaD, X]’nCandgisinvertedbyx,.,then
g e 0 (C) since g is of odd order and so g e K ,,.
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LEMMA 5.6. If R is an (X, Y)-generated p-subgroup of K for some prime p,
then every A-invariant subgroup of R is (X, Y )-generated.

Proof. We assume that R 1, otherwise the lemma is trivial. By
Lemmas 4.9, 4.10, and 4.11 we can find a maximal A-invariant p-subgroup P
of G containing R and we can find p-local subgroups H and K of G containing
PA such that H covers No/O (N) and K covers Mo/O (M). Now by Lemma
5.2 we have R 0 (H) n 0 (K) and by the same lemma we conclude that
every A-invariant subgroup of R is (X, Y)-generated.

PROPOSITION 5.7. We have that 0 is an A-signalizer functor on G and that
the group W ( (Ca(a)) a e A} is of odd order.

Proof. Since O(Ca(a)), a e A, is of odd order, we need only verify the
balance condition. Choose a, b e A and set K 0 (Ca (a)). Then Lemmas
5.3-5.6 show that K satisfies conditions (a)-(d) of Proposition 2.1 of [6]. It
follows by that proposition that every A-invariant subgroup of K is (X, Y)-
generated. Since K n Ca(b) is A-invariant, we conclude that

K n Ca(b) (K, n Ca(b) z e X, y e Y} O(Ca(b)).

Thus 0 is an A-signalizer functor on G and the second part of the lemma is a
consequence of the main result of Goldschmidt’s paper [4].

6. A strongly imbedded subgroup
In this section we will show that Na(W) is a strongly imbedded subgroup

of G if W 1 where W is the group defined in Proposition 5.7. We retain
the notation of the preceding sections and we set G* Na(W).

If H is a proper subgroup of G containing A and covering NolO (N), then
by Lemmas 4.1, 4.2, and 4.3 we conclude that H has a normal subgroup F
containing 0 (H) such that X F and (F n No)- - NolO(N) in
I:I H/O (H). Similarly, if K is a proper subgroup of G containing A and
covering Mo/O (M), then K has a normal subgroup L containing 0 (K) such
that Y

___
L and L (L n Mo)- Mo/O (M). We shall use these facts

several times in this section. We also note here that W (O(Ca(x)) n
O (Ca(y x e Za, y e y}.

LEMMA 6.1. We have that

(Na (A ), 0 (M), 0 (N), 0 (Ca (y) Y e Y} G*.
Proof. Since the subgroups 0 (Ca(x)) n 0 (Ca (y ), x X and y e Ya, are

permuted among themselves by Na(A ), we see that Na(A G*.
Let E be an A-invariant Sylow p-subgroup of 0 (M) and let E E0E E E

be the Y-decomposition of E. If g e E then centralizes l in D D/O (D).
Since g is inverted by y, we see that g e 0 (D) and it follows that g e W. We
then see that E G*, i 1, 2, 3. Since Eo Na(A), we conclude that
E G*. It follows that 0 (M)

_
G*. Recalling that if g e 0 (N) n 0 (Ca (x))
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where x e X, then g e 0 (Ca (y) for all y e Y, we may use a similar argument
to show that 0 (N) G*.
Now let R be an A-invariant Sylow p-subgroup of 0 (D). This time we

let R RoB;RR be the X-decomposition of R. Suppose that g e R.
Since g is of odd order and is inverted by x2, we see that g e 0 (C). It follows
that R W G*, i 1, 2, 3. Now suppose that g e R0 and is inverted by
y2. If I M/O(M), then we see that 7 e (M0 n O(D))- Z(Co(21)).
Since y inverts g, we conclude that g e 0 (M). It now follows that R0

___
G*

and thus, that R G*. It then follows that 0 (Ca (y)) G*, y e Y.
Now set W,, 0 (Ca (x r 0 (C( (y x X, y Y. Then

W (Wx,. [xe X*, y e Y)
and so W is (X, Y)-generated. We then have

LEMMA 6.2. Every A-invariant subgroup of W is (X, Y)-generated.

Proof. We again use Proposition 2.1 of [6]. Condition (iv) follows by the
proof of Lemma 5.6 and conditions (i) and (ii) follow by the proofs of Lem-
mas 5.3 and 5.4. Thus we need only verify condition (iii) to prove our
lemma.

Suppose that u e [C(x), Y]’ n Ca(y) where x e Xa, y e Y and suppose
that u is inverted by the involutions in Y (y}. For definiteness let x xl

and y y. We then have [C n W, Y] is a subgroup of odd order iu Co which
is normalized by No0 (A). It follows by Lemma 2.7 that

[(C n W)-, Y]

___
C0(Y)

and so is abelian in C/O(C) and thus [C n W, Y]’ O(C). Since y
inverts u, we have by Lemma 5.1 that u 0 (D) and so u e Wx,.
Now suppose that u [D n W, X]’ n C and that u is inverted by the involu-

tions in X (x}. Since the order of u is odd, u e 0 (C). Since (D n W)-, X]
is an X-invariant subgroup of D of odd order in D D/O (D), it is abelian.
It follows that [D n W, X]’ 0 (D) and that u e WI, Thus condition
(iii) of Proposition 2.1 of [6] is verified and this lemma is a direct consequence
of that proposition.
We now introduce a concept defined in [6]. We then prove a result which

gives a sufficient condition for the existence of a p-local subgroup J of G
which covers both NolO (N) and Mo/O (M) and which contains A. Let H
be a subgroup of G which contains A. We say that H is (X, p)-constrained
if X does not centralize any Sylow p-subgroup of 0 (H) and we say that H is
(Y, p)-constrained if Y does not centralize any Sylow p-subgroup of 0 (H).
We recall that p divides q if Mo/O (M) --- L (q.). We then have

LEMMA 6.3. Let p be an odd prime such that p p2. If C is (Y, p )-con-
strained and if D is (X, p )-constrained, then for some maximal A-invariant
p-subgroup P of G we have N((Z (J (P) covers both Mo/O(M) and NolO(N).
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Proof. By our assumptions Sylow p-subgroups of both 0 (C) and 0 (D)
are nontrivial. By Lemma 4.10 we can find a p-local subgroup H of G con-
taining A and covering NolO (N) such that H also contains a maximal A-in-
variant p-subgroup P of G. By the proof of that lemma we can assume that
P contains an A-invariant Sylow p-subgroup R1 of 0 (D). Then H contains
a normal subgroup F such that XO (H)

_
F and (F n N0)- in/

H/O (H) and/ No/O (N). Without loss we can assume that H FPA.
Let H1 FP and let Q P n 0 (Ht). Since R Q, we conclude that H is
(X, p)-constrained and so 0, (H) 0 (H). As in section 5 of [6], we have
that H is p-stable with respect to P and by the extended form of Glauber-
man’s ZJ-theorem we have that N, (Z (J (P) covers H/O (H) and hence,
covers No/O (N ).
By Lemma 4.9 we can find a p-local subgroup K of G containing PA and

covering Mo/O (M). Then K has a normal subgroup L containing YO (K)
such that L (L n M0)-

_
Mo/O (M) in K/O (K). Without loss of

generality we can assume that K LPA. Since P is a maximal A-invariant
p-subgroup of G, we can also assume that P contains an A-invariant Sylow
p-subgroup R of 0 (C). Let V P n 0 (K) P n 0 (LP). Then R. V.
Suppose that 0, (LP) : 0 (LP). Then 0, (LP) has even order and so we
can assume that Y 0, (LP). But then [Y, R] R n 0, (LP) 1 and
this contradicts our assumption that C is (Y, p)-constrained. We may now
apply Lemma 2.6 to conclude that Ne (Z (J (P)) covers LP/O (LP) and
hence covers Mo/O (M). This then completes the proof of the lemma.
The next proposition incorporates many ideas found in Section 5 of [6].
PROPOSITION 6.4. Let p be a prime divisor of the order of W. If R is an

A-invariant Sylow p-subgroup of W, then No(R) covers Mo/O(M).

Proof. We assume, by way of contradiction, that the proposition is false.
The proof is then broken into a number of steps.
By Lemma 6.2, R is (X, Y)-generated and so by Lemmas 4.9, 4.10, and

4.11 we can find a maximal A-invariant p-subgroup P of G containing R and
we can find p-local subgroups H and K of G containing PA such that H
covers NolO(N) and K covers Mo/O (M). As we have seen previously, H
contains a normal subgroup F such that XO (H) F and F (F n N0)-
No/O (N) in/ H/O (H) and K contains a normal subgroup L such that
YO (K)

_
L and L (L io)- - io/O (M) in K/O (K). Without

loss of generality we can assume that H FPA and that K LPA. We
may also choose H andK such that the orders of 0 (H) and 0 (K) are maxi-
mal. If Q P a 0 (H) and V P 0 (K), then we have Q is a Sylow p-sub-
group of O(H) and by the maximality of O(H), Q < H, and we hve V is a
Sylow p-subgroup of 0 (K) and also V <3 K. By Lemma 5.2 we conclude
that R Q n V is a Sylow p-subgroup of 0 (H) n 0 (K).

(a We have RA is not contained in any proper subgroup J of G such that J
covers both Mo/O (M) and NolO (N).
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Proof. Suppose there is such a J. Then by Lemm 5.2 we have R O (J)
and 0 (J) W and so R is a Sylow p-subgroup of 0 (J). It follows that
N0 (R) covers (J Mo)O (J)/O (J) by the Frattini argument and hence,
covers Mo/O (M), contrary to our assumption.

(b) We have that p p:.

Proof. Set E NMo (R). If p p, then E contains a maximal Y-in-
variant p-subgroup P M0 of M0 since R <3 P. By the Frattini argument
No (W)W EW and so in f/lo Mo/O (M ), contains a subaroup S -- S.
By Lemma 2.5 we conclude that /0 /, a contradiction. This proves
(b). We shall retain the notation E N0 (R).

(c) We have that Y does not centralize V.

Proof. If Y centralizes V, then Credo(V) covers L/O(K) and hence’
covers Mo/O (M). Since R V, this is a contradiction.

(d) We have that X centralizes Q and that V Q.

Proof. Suppose that X does not centralize Q. Then H is (X, p)-con-
strained and as in the proof of Lemma 6.3, we conclude that N (Z (J (P)))
covers F/O (H) and hence, covers No/O (N). Since Y does not centralize V
by (c), we see that K is (Y, p)-constrained and since p p by (b), we also
conclude that N(Z (J (P)) covers L/O (K) and hence, covers Mo/O (M).
Since RA N(Z (J (P)) ), this contradicts (a). Thus X centralizes Q.

If V

___
Q, then R V and so R <3 K, a contradiction.

(e We have that X centralizes V and P.

Proof. Suppose that V [V, X] 1. Since X centralizes Q, we have
that C,(Q) covers F/O(H) and also that V C,(Q). Moreover, we have
V

_
Q. Since Ce (X) covers/5 in , we have that [P, X] V and so 1 is

a Sylow p-subgroup of C() for some x e Xa in /. Then C (X) Q.
Since V <3 P and R centralizes X, we see that R normalizes C1 (X). But
L a M0 and C,(Q) both normulize Ci(X) and this contradicts (a), if
Ci(X) 1. It follows thatVQ 1.

SetP C(X)ndsoP PV. SinceV 1, we haveF L.(q),
qoddandq >_ 5. Itfollowsthat/a/ 1. If/ 1, thenP Q
and R C (X) is normal in L a M0, contradiction. Thus/5 1 and so
C (2(P)) -- L (q) where q q and C1 (?1) 1 by the proof of (v) of
Lemma 2.4.2 of [2]. It follows that Ce (V) Q.

Set V* C.ae(V). Then wehveV* <3 VP P. Also we have
V ----- P since V Q 1. We claim that V* 1. Now Y centralizes V
and since V C? (X)V, we conclude that for all y e Y, y does not cen-
tralize C(X). We can also find a 3-element u e L a M0 which permutes the
involutions in Y cyclically and so (u}Y acts on C. (X). Now as in the proof
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of Lemma 5.10 in [6] we conclude that Cv (X) contains an elementary abelian
subgroup of order p3. Since C.(X) normalizes V1 and V1 is cyclic, we see
that V* Ccv(x) (V1) 1 as asserted. Now L n M0 normalizes V* and since
V* Q, CH(Q) centralizes V*, and R normalizes V*, we have contradicted
(a). This forces V 1 and (e) is proved.

(f) We have F . L2 (ql), ql odd, qj >__ 5 and P r I in fI H/O (H ).

Proof. To prove (f) it is sufficient to show that F AT, since we already
have thatFZ2 X Z. Suppose then thatF--AT. Then? /5 is of
order 3 in F. Without loss of generality we can assume that S C(Q)
and we also have that S Ds. It follows that S normalizes Ca(X) and
centralizes M/O (M). We can also assume that S acts on/5 in and thus
that $1 normalizes P. By our maximal choice of O(K) we must have that V
is a Sylow p-subgroup of 0 (M) and so S also normalizes V P 0 (M).
We then have C(S)

_
Q r V

_
C,(SI) and so R C.(SI). Since

Ca(S) r NMo(V) covers Mo/O(M) and normalizes R, we have a contradic-
tion. This proves (.f).

Now as in the proof of Lemma 5.13 of [6], we can find an A-invariant t-sub-
group T* where is an odd prime distinct from p such that T*

_
C (QY(x))

for some x X, T* is permutable with P, and IT*, X] T*. For definite-
ness let x x. We also have C (P*) I in/ and so Ce (T*) Q. Since
T* IT*, X], T* C, (Q) and so Q C (T*).
As we have seen above, V is a Sylow p-subgroup of 0 (M) and for the same

reason we have V is a Sylow p-subgroup of 0 (Co(x)) for all x e X. Since
T* IT*, X], we hve T*

_
0 (C) and so we can find an A-invariant Sylow

t-subgroup T of 0 (C) containing T* and permutable with P. Then T is also
permutable with V since VT PT 0 (C). Thus we see that VT is a Hall-
subgroup of 0 (C). We set I IT, X] and see that I [TV, X] < TV and
I lsinceT* I.

(g) We have that C (I 1.

Proof. Set V Cv (I) and assume that VI 1. Since Nc (VT) covers
Co/O(C), we have J No(VT) covers Mo/O(M). Also we have I <:l J
and V J and since V is a Sylow p-subgroup of 0 (M), V is a Sylow p-sub-
group of 0 (J). By the Frattini argument J N(V) covers J/O (J) and
hence, covers Mo/O(M). We also have V1 <:] J. Since T* I and
Q Ce(T*), we have V1 Q and so C,(V) covers NolO(N). SinceR
normalizes I, this contradicts (a). Thus V 1 and this proves (g).

(h) If I Io I I I is the Y-decomposition of I, then I 0 (Ca (y))
and X does not centralize I for each i 1, 2, 3.

Proof. First we show that Y does not centralize I. Set J IVY. If
Y C(I), then IV, Y] C(I) because C(I) < J. Since [V, Y] 1,
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this contradicts (g). Thus Y does not centralize I. Since No (i) covers
Mo/O (M) we can find a 3-element which cyclically permutes the involutions
in Y and which is contained in N0 (I). This element then cyclically permutes
I, i 1, 2, 3. Since I

___
0 (C), we conclude that I 0 (Ca(y)), i 1, 2, 3

by Lemma 5.1. If X centralizes Ii, i 1, 2, 3, then [I, X] Io Cr(Y).
Since I [I, X], this is a contradiction. It follows that X does not centralize
I for each i 1, 2, 3.

(i) There is a maximal A-invariant t-subgroup U of G permutable with V
and containing I and there is a t-local subgroup J of G covering Mo/O (M and
containing UVA. If e $2, and if U* is any maximal A-invariant t-subgroup of
G, then a conjugate of U* by a suitable element in Na(A has the properties of
the preceding sentence.

Proof. Let To be a maximal A-invariant t-subgroup of C containing T
such that To is permutable with V. If e $2, we can choose T0 such that
[To, Y] O(C) or we can choose To such that [To, Y] O(C). Sinc To
covers a maximal Y-invariant t-subgroup of Mo/O (M), we see by Proposition
4.8 that in order to prove (i) it is sufficient to show that V is permutable with
a maximal A-invariant t-subgroup U of G containing To such that UVA is
contained in a t-local subgroup of G which covers Mo/O (M).

Now No(I) contains ToVA and covers Mo/O (M). Among all t-local sub-
groups of G containing ToVA and covering Mo/O (M) choose J such that an
A-invariant t-subgroup T1 of J containing To and permutable with V has
maximal order and relative to this, choose J such that an A-invariant t-sub-
group of J containing T1 has maximal order.
We first show that T1 is a maximal A-invariant t-subgroup of J. Without

loss of generality we can assume that J 0 (J)A. By Lemmas 4.1, 4.2,
and 4.3 J has normal subgroups L1 and L. such that XO(J)

_
L,

YO (J)

_
L2, and in] J/O (J) we have L L2 L L2 is of odd index and

L2 (L2 Mo)- -- Mo/O (M). Since V 0 (M), we see that centralizes
L2 and so (C(A))-. Let T2 T where T2 is a maximal A-invariant
t-subgroup of J. Since L is a 2-group or L -- L2(q) or PGL(2, q), q odd, we
conclude that [’, ] is a characteristic subgroup of C (2) for some x e Xa.
It follows that P normalizes [5P2, ] and so V

___
J0 where

J0 L T. 0 (Cz (A) )A.

If 2o Jo/O (Jo), then X centralizes 02 (20) and since V 0 (M), we
conclude that V

___
0 (J0). We claim that V is a Sylow p-subgroup of 0 (Jo).

Suppose V is contained in an A-invariant p-subgroup V1 of 0 (J0). Since X
centralizes P, we conclude that X centralizes every A-invariant p-subgroup of
G and in particular, X centralizes V. We then have that V centralizes

(Jo Mo)O (M)/0 (M) Mo/O (M)
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and hence, V1 0 (M). It follows that V1 V and that V is a Sylow p-sub-
group of O (J0). We then conclude that V is permutable with a conjugate T
of T2 containing T1 wherej e NJ0 (A) and by our maximal choice of T we have
T T T2. It follows that T is a maximal A-invariant t-subgroup of J
as asserted. We can now assume without loss that J L2 T1 VA.
Suppose that T is contained in an A-invariant t-subgroup U of G. We shall

show that U must equal T1 and this will then show that T1 is a maximal
A-invariant t-subgroup of G and complete the proof of (i). Assume, by
way of contradiction, that T1 is properly contained in U; we may choose U
such that T <3 U. Then C:(x) = TI for some xeX*. Since To __C T
and To is a maximal A-invariant t-subgroup of C, we conclude that x # x.
Since X centralizes J J/O (J), we see that I O (J). Set I0 T1 n 0 (J)
and set I1 [I0, x]. Since I I, we have I1 # 1. By the Frattini argu-
ment N.,(Io) covers J and so NM0 (I0) covers Mo/O(M). We also have
[TV, x] [T, x] [I0, x] I0 and so V normalizes I. Since
I [TI Cv(x), x], we have I <3 T1Cr:(x). FinMly, we have I <3 NM0 (I0)
and since T T Cv (x), we have contradicted our original choice of J. This
contradiction completes the proof of (i).

(j) There is a maximal A-invariant t-subgroup U of G containing I and
permutable with V such that N(Z (J (U) contains UVA and covers No/O (N)
and such that UVA is contained in a t-local subgroup J of G which covers
Mo/O(M).

Proof. By (h) we see that X does not centralize any Sylow t-subgroup of
0 (D) and so by Lemma 4.10 we can find a t-local subgroup H0 of G containing
A and a maximal A -invariant t-subgroup U0 of G. Without loss we can assume
that H0 F0 U0 A where F0 <3 Ho and Fo XO (Ho) and b0 (Fo n No)- -----NolO (N) in/:-I0 Ho/O (Ho). By Propositions 4.5 and 4.8, a conjugate U of
Uo by an element in No (A) satisfies the conclusions of (i). Without loss of
generality we can assume that U U0. If I I0 I I I is the Y-decom-
position of I, we have by (h) that I’ O(Co(y))and hence, I O(Ho)
Also by (h) we conclude that H0 is (X, t)-constrained. Argueing as in
Lemma 6.3, we conclude that Nno (Z (J (U))) covers/0 and hence, covers
Mo/O(M). To complete the proof it remains to show that V normalizes
Z(J(U)). Since I

_
U and C,(I) 1, O(UV) 1. By Glauberman’s

ZJ-theorem we have Z (J (U)) is normal in UV and this completes the proof.

(k) We have p.

Proof. Let U and J be as in the conclusion of (j). We assume, by way of
contradiction, that # p. As we have seen before, J has a normal subgroup
L containing YO (J such that L (L Mo)- --- Mo/O (M in] J/O (J
Without loss of generality we can assume that J L2 UVA. Since I _c 0 (C),
we conclude that 1 O (J). In the proof of (h) we have seen that Y does
not centralize I and it follows that J is (Y, t)-constrMned. Since we are
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assuming that p2, we CaD_ IIOW argue as in Lemma 6.3 to conclude that
N(Z (J (U))) covers J and hence, covers Mo/O(M). Since V aormalizes
Z (J (U)) and R V, we have contradicted (a). This proves (k).

Again, let U and J be as in the conclusion of (j) and set

J* NM(Z (J (U) ) )A

so that J* covers Mo/O (M). Set Z 0 (J) n 0 (J*) and so by Lemma 5.2,
R is a Sylow p-subgroup of Z. Let U0 be an A-invariant Sylow t-subgroup of
Nvz(R) so that UZ Uo Z. Since U covers a maximal Y-invariant t-sub-
group of Mo/O (M) and 20 ) in , we conclude that U0 covers a maximal
Y-invariant t-subgroup of Mo/O (M). Set Mo Mo/O (M) and recall that
E No (R). As in the proof of (a) we see that/ contains a subgroup

$4. Since p2 and (U0 n M0)- is a Y-invariant Sylow t-subgroup of
0, we have by Lemma 2.7 that/ 0, contrary to our original assumption.
This contradiction proves our proposition.

LEMMA 6.5. We have G* No(W) contains Ca(X).

Proof. We have Co(X) X X M and M N(A)Mo. By Lemma 6.1
we see thatN(A) and 0 (M) are contained in G*. Let R be an A-invariant
Sylow p-subgroup of W. By the preceding proposition we have
M0 N0 (R)0 (M). It follows that R

_
W for all m e M0 and this implies

that M0

___
G*. This proves the lemma.

LEMMA 6.6. We have 0 (Ca (y)) 0 (G*)O (Co (A) for all y e Y.
Proof. Since N(A

_
G*, it will be sufficient to show that

0 (D) 0 (G*)O (Co (A) ).
Set Go 02(G*)A and (0 Go/O(Go). Then by Lemmas 4.1, 4.2, and 4.3,
Go has normal subgroups L1 and L2 such that XO (Go) LI, YO (Go) L2,
L (L n N0)-andL1 is a 2-group or L1

_
AT, L2(q), or PGL(2, q), q odd

and L (L2 Mo)- .. Mo/O (M). Then (0 (D))- centralizes L and
(0 (D) n L2)- Z(C ()) so that (0 (D))- also centralizes Y. Since
X L, we conclude that Co) (A) covers (0 (D) )- and the lemma follows
from this.

LEMMA 6.7. If g eCo(Y), then W O(G*)O(Ca(A)). Also we have
0 (G*) WCoa, (Y).

Proof. Since W (W n 0 (Ca (y)) Y e Y), we see that

W (O(Ca(y))ly e

and so W 0 (G*)O (Co(A by the preceding lemma.

Let E be an A-invarian Sylow p-subgroup of W. Since M G*, we have

C (x) 0 (Ca (x)) for all x e X.
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Let F CE((x, y)) for some x e X, y e Y. Also let F* denote the set of
elements in F which are inverted by the involutions in Y (y). By Lemma
5.1 we have F* O(Ca(y)) and hence, F* W. We then have
F WCo(a.)(Y) and it follows that E WCo(a.)(Y). The lemma follows
immediately from this.

LEMMA 6.8. If y Y, then Ca (y W is a group and

O(Ca(y)W) O(Ca(y) )W.

Proof. For definiteness let y yl. Using Lemma 3.7 we see that

D No (A) (D. n M0)0 (D)(D1 n N0)

and so if deD, then Wd

_
O (G* )O (Ca (A ). Thus we have

[W, D] O(G*)O(Ca(A )) WCo(a,)(Y)O(Ca(A ))

by the preceding lemma. It follows that [W, D] is of odd order and is con-
tained in WD. Since W[W, DID WD, we conclude that WD is a group.
We then see that W < WD and so W 0 (WD). Since 0 (D) is also con-
tained in 0(WD), we have D O(WD) O(D) and it follows that
0 (WD) WO (D). This completes the proof.

LEMMA 6.9. If g Ca(Y), then Wg O(G*).

Proof. Let Go, 0,51, and L. be as in the proof of Lemma 6.6 and let 0
denote the intersection of the groups WO(Ca(yi)), i 1, 2, 3. Then 0 is
of odd order in Go and 0 centralizes (51 n N0)- L1.
Now CL2 (Yi) contains a subgroup J such that2 SL: (2, 3 if L2 --- Mll,] SL+(2, q) if L-- L(q), orJ.SU+(2, q) ifL_ U(q.), i 1, 2, 3.

We then have [J, 0] is a normal subgroup of odd order in 2, because
2 char C2 () and it follows that 0 centralizes ]i, i 1, 2, 3. Since
L. (][i 1, 2, 3) by Lemma 2.4, we conclude that 0 centralizes L..
It follows that 0 0 (G*) and since Wg

_
0 by the preceding lemma, this

lemm is proved.

LEMMA 6.10. If N* NW, then N* is a group and 0 (N*) WO (N).

Proof. By the previous lemma we have [W, N] 0 (G*) and by Lemma
6.7, 0 (G*) W (0 (G*) N). This lemma then follows by a proof similar to
that of Lemma 6.8.

LEMMA 6.11.
real in N*.

If Z O(N*) O(G*), then Z contains W and Z is nor-

Proof. We first show that 0 (N*) WCo()(X). Let E be an A-in-
variant Sylow p-subgroup of 0 (N). If E E0EEE is the X-decomposi-
tmn of E, then E has odd order and so E 0 (Ca(x)), 1, 2, 3. We
then see that E centralizes 0 in D D/O (D) and so E 0 (D), i 1, 2, 3.
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It follows that E _c_ W, i 1, 2, 3. Thus 0(N) WCo()(X) and so
o (N*) WCo (x).

Let W* be the normal closure of W in N* and set fi* N*/W*. Also
set J0 No 0 (N*). We then have 0 (]0) (0 (N*))- and Jo/O (Jo)
No/O(N). But (O(N*))- (WCo()(x))- (Co()(X))- and so
Cz0 (0 (N*))- covers Jo/O (Jo). It follows that Cz0 () also covers Jo/O (Jo)
and since Z <3 0 (N*), we conclude that <3 ]0. Since W* Z, we have
Z <3 J0. Since N* N* (A)No O (N*), we have Z <3 N* and the lemma is
proved.

LEMMA 6.12. We have Z W and so both M and N normalize W.

Let Go and L2 be as in the proof of Lemma 6.6. Set L2 L./W.
Then

O(L) (0(G*))- (WCo(,)(Y))-= (Co(a,)(Y))-

L/’O (L Mo/O (M ).

Then C(O(G*))- covers L/O(L2) and so C(2) also covers L/O(L).
Since Z < 0 (G*) and W Z, we conclude that Z <:1 L. Now N(Z)
contains L which covers Mo/O(M), contains N* which covers NolO(N),
and contains A and so by Lemma 5.2 we conclude that Z

___
W. Thus Z W

and the lemma follows from this.

POOSITON 6.13. We have W 1 and so for all x X, y Y we have

O(Co(x)) n O(Co(y)) 1.

Proof. Suppose W 1. Since D N(A) (D. M0)N0 0 (D), we have
D G* and so Ca (y) G* for all y e Y. We also see that Co(c)(y) G*
for all y e Y and thus, 0 (C) G*. Since S D and since C SMO (C),
we have C G* and it ollows that Co(x) c_ G* for all x e X. Acting on
0 (B) with Y, we conclude that 0 (B) - G* and it follows that B G*. We
now see that Ca(a)

_
G* for all a e A and since every involution in S is

conjugate in G* to an involution in A, we conclude that G* Co (z) for every
G* G*involution z e Thus is a strongly imbedded subgroup of G and by a

well known argument it follows that G has only one conjugacy class of in-
volutions, a contradiction. Therefore W 1 and the proposition is proved.

7. The proof of the main theorem

In this section we show that our minimal counter-example G satisfies the
conclusion of our main theorem. This contradiction then proves that
theorem. We retain the notation of the preceding sections.

LEMMA 7.1. We have B C n D.

Proof. By Lemma 3.9, it is sufficient to show that xl zl centralizes
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0 (B). Suppose that this is not the case. Since

O(B) (Co()(<x,y>)lxeX,yY) for somexeX,yeY
there is an element g in Co(,)(<x, y>) such that g 1 and g is inverted by
and hence, by y also. Since g is of odd order, g e 0 (Ca (x)) and so by Lemma
5.1, g e 0 (Ca(y)) because g is inverted by y. This contradicts Proposition
6.13. Thus B

___
C and it follows that B CnD.

LEMMA 7.2. The order of G equals the order of CD and so G CD.

Proof. For z x, y,, and xy let J (z) be the set of all ordered pairs
(u, v) such that u x and c y in G and z e <uv>. By a result of Thompson
(proven in [7] we have

[G’C][G:D] [G’C]n(xl) + [G:D]n(yi) -f- [G’B]n(x,y,]

where n (z) denotes the order of J (z), z xl, yl, xl

We claim that n (xl) n (yl) 0. Suppose first that u xl, v yl in
G and that xl e (uv). Then both u and v are contained in C. If ( C/O (C),
then X (x where ( is as in Lemma 3.6. We then see that
and V e (1. Since () 1 for some integer k, we must have k odd and it
follows that 1. It follows that e $1 and this is a contradiction.
Thus n (xj) 0. Next, suppose that u x and v yl in G and that yl
If/) D/O (D), then e/)1 and e/)2 and it follows that e/, a contradic-
tion. Thusn(yx) 0.
Now suppose that u xl and v yl in G and that xl yl e (uv). We claim

that u x and v y. If B/O (B), then argueing as above we have
e S and e/1 and it follows that x. We then see that

and ?. SinceB Cn D, we conclude thatu xandv y. It
follows that n(xy,) 1 and that ]G] ]C il D [/I B ]CD i.
We are now in a position to complete the proof of our main theorem. Let

F be the normal closure in G of xl and let L be the normal closure in G of y.
By the preceding lemma, F D and L C. It follows that F D and that
F/O(F) D/O(D). We also have L Co and L/O(L) Co/O(C).
Since O(G) 1, we have O(F) O(L) 1 and since F n L has odd order
we see that FL F X L. Since the index of FL in G is odd, we conclude that
G satisfies the conclusions of our theorem and this is contrary to our choice of G.
This then proves our main theorem.
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