NOTE ON A CRITERION OF SCHEERER

BY
Perer Hivton, Guipo Mistin, AND JosEPH ROITBERG

1. Introduction
In [4] Scheerer considered principal G-bundles over S"
(1.1) G¢—E, 1, g
classified by a e 7,—1(G@), and proved the following theorem.
TarorEM 1.1. Suppose the diagram

wla x 1)

S"rx G —— 7, @
(1.2) 1xk k

Sty @ plka x 1)

is (homotopy) commutative, where k: G — G s the k™ power map and
u : G X G — G s the multiplication. Then

(1.3) koo fu = 0
where oy : 8™ — Bg s adjoint to a.

Now consider the pull-back diagram

E—""“"“" Eka

(1.4) fra

Eai" Sn

Then, of course, (1.3) guarantees that

(1.5) E=E, XQG,

so that Theorem 1.1 is highly relevant to the study of non-cancellation phe-
nomena’ in [1], [2], [3], [4]. Indeed in [2] it is shown that the hypothesis of
Theorem 1.1 above is equivalent, in the case G = §°, to the key condition

(1.6) 1k(k — 1woZla = 0 emnia(S)

Received February 3, 1972.

1 A different, but related, approach to non-cancellation phenomena is due to A.
Sieradski.
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appearing in Theorem 2.4 of [3], where w ems(S®) is the Blakers-Massey
element generating ms(S%).

In this note we give a different proof of Theorem 1.1, which leads to a new
insight into the nature of the relation (1.3); we are also able to generalize
the theorem. Roughly speaking, we show that, in the presence of the homot-
opy commutative square (1.2), we may replace a k-fold ‘rolling’ of the base
S™ by a k-fold ‘rolling’ of the fibre in the opposite direction. More precisely,
instead of the diagram

(1.7) Eka _— Ea

we may construct a diagram

(1 .8) Ea ,'-'_—'"’ Eka

Sn I Sn

It is, of course, trivial to deduce (1.3) from the diagram (1.8). Thus our
aim in this note is to show that the Scheerer condition (1.2) guarantees the
existence of a diagram (1.8). Our argument rests on a technical lemma whose
statement and proof occupy Section 2. In Section 3 we state our main
theorem, which is a corollary of the lemma, and offer some commentary.

The authors are indebted to Paul Olum for very helpful discussions in
connection with the technical lemma.

2. A technical lemma

We work in the category T of based spaces and based maps; homotopies
will also be supposed to be based. We have cofibrations in this category and
we represent a cofibration by

a>— ¢



682 PETER HILTON, GUIDO MISLIN AND JOSEPH ROITBERG

We also have push-outs in this category and the following proposition is
well known.

ProposiTioN 2.1. If

¢

_—

¥

——

a b
“ L
c
18 @ push-out in Ty and if u is a cofibration, so s .

Moreover, every morphism ¢ : @ — b factorizes canonically, via the (based)
mapping cylinder, as

[ p

a——b—b,

where & is a cofibration and p is a homotopy equivalence. Now suppose
given a push-out square

a _?L_, b
(2.1) 7 I I v

c _L d .
We may then construct the diagram

¢ p

a —s b — b
(2.2) ﬂ] If' ]v
c~—‘£——>&———»d ,

factorizing (2.1), where the top row is the canonical factorization of ¢ and
the left-hand square is again a push-out, so that ¢ is determined by the push-
out property. Again we quote a well-known proposition.

ProrosiTioN 2.2. In the diagram (2.2), o is a homotopy equivalence.

We note that it is very easy to see that o is a homology equivalence. How-
ever, with the help of the standard homotopy inverse, 5, to p, one may con-
struct an explicit homotopy inverse, &, to o.

With this preparation we announce the technical lemma. We consider
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the diagram (2.1) augmented by a map 8 : d — e such that §» = 0,
¢

a——— 5 b

(2.3) M v v =0.

\0

Trurther, we consider a commutative diagram

; ¢’

a — % b
(2.4) ﬂ'l v 0 = 0.
vV

y

!

]

We suppose given maps
aia—a, B:b—ob, yic—oc, ele—od,
such that
(2.5) Bp ~d'a, vp = o, et = 0Py
Lemma 2.3.  Under these circumstances, there exists & : d — d’ such that
oy~ '8, &b~ 6.
Proof. Using (2.2), replace (2.3) by

a ,.__‘E___, A

(2.6) ul 1:7
. v d

\6

e

where § = 6o, and set 8 = 8p: b — b’. Then §7 = 0 and
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(2.7) B =Bp~d¢'a, vu=p'a, bf = cp=0yr.

Since ¢ is a cofibration, § z_E with §$ = ¢’a. Since the square in (2.6)
is a push-out, there exists § : d — d’, characterized by

(2.8) 55 = VB, 5% = ¢'v.
We claim that
(2.9) 05 = 0.

To prove this, it is sufficient to show that
0’1/5 = ebp, @'Yy = €6y,
(see (2.8)). But the first relation in (2.10) follows since each side is zero,

and the second is part of (2.7). Thus (2.9) holds. Now set § = 7, where
& is a homotopy inverse to ¢. Then, with 3 homotopy inverse to p,

oy = §av ~ §vp = u’Ep ~ JBp~ B, 06 = 08 = efz ~ &0.
This completes the proof of the lemma.

Remark. The lemma clearly admits a dual formulation, in the sense of
Eckmann-Hilton.

3. The main theorem
Let

Ft,g_J .54

be a G-bundle classified by » : A — G and let

r:GXF—F
be the action of G on F. Similarly let
,L‘l ’

FF— B < 34’
be a G’-bundle classified by ' : A’ — G’ with action
71 G@ XF —>F.
Letk: F— F',\: A — A’ be maps.

TaeoreM 3.1. Ifkr(u X 1) >~ 7 (u'\N X k) : A X F — F’, there is a map
8 : E — E’ such that the diagram

j F
il 1r
E_°% L E
fl 11"
sa 2N, sa

homotopy commutes.
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Proof. Consider the maps
r(uX1):AXF—>F jX1:AXF—CAXF.
Then E is the push-out of these two maps, thus

7w x 1)

AxF F

ix1 i

¥

CA x F E .

Moreover the fibre projection f : E — ZA is characterized by the conditions
fi = 0,f¢ = p, where p : CA X F — ZA first projects onto CA and then
passes to the quotient CA/4 = ZA. We also remark that j X 1 is a co-
fibration. Thus we have

AxF__T_(i.ziE)__)F

jx1
CA x F
and similarly,
A X F 't x 1)
Jx1
CA' x F v

We are thus in a position to apply the technical lemma of Section 2, with
a=AXkB=1x8=0C\NXcxk &¢=2\ Thefirst condition in (2.5) is then
precisely the hypothesis of the theorem, and the other two conditions are
automatically satisfied. Thus we find § : E — E’ with 62 >~ ', f'6 =~ (Z\)f.
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Remark. With the fibration F — E — ZA is associated amapv : A — F
in the usual way; in fact, v = 74y u, where y embeds G in G X F. Similarly
we associate v’ : A’ — F’ with F/ — E' — ZA’. Then we note that the
hypothesis of Theorem 3.1 implies the homotopy commutativity of the
square

(3.1) v v’

K

F— F .

Let us consider, in particular, principal bundles over £4, with A = 1.
Thus F = G, F' = (', r = u, the multiplication on @, 7 = y/, the multipli-
cation on @’. Then we have the following corollary.

COROLLARY 3.2. Suppose given principal bundles
2 f 7 , '
G——FE =534, ¢ —FE —— ZA,
classified by u : A — G, u' : A — @ respectively, and a map x : @ — G'. If
ku(w X 1) ~ (v X &),

there is @ map & : E — E’ such that the diagram

G-X, @

A =34

homotopy commutes. Consequently wyf ~ 0, where ug : SA — Bg is adjoint
tou'.

ProrosiTiOoN 3.3. If the hypothesis of Corollary 3.2 holds, then xu ~ w/'.
Conversely, if xu ~ v’ and x : G — G’ is an H-map, then the hypothesis of
Corollary 3.2 holds.

Proof. The first statement is a special case of the Remark following the
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proof of Theorem 3.1 (see (3.1)). Conversely, consider the diagram

AxG 125 Axe

uxl1 u' x1

A\

GxG *** ¢xa

’

n ©

L

G —" G
The homotopy-commutativity of the top square is the condition xu =~ w’,
and that of the bottom square is the condition that ¥ be an H-map. The
homotopy commutativity of the composite square is the hypothesis of
Corollary 3.2.

Now the hypothesis of Theorem 1.1 is just the hypothesis of Corollary 3.2
inthe case A = 8", @ = @, x = k™ power map, u = o, ¥ = ku = ka.
(Note that the hypothesis of Corollary 3.2 implies, in this case, v’ = ku.)
Thus the conclusion we wish to draw—the existence of (1.8) and hence the
truth of (1.3)—is a special case of Corollary 3.2. Proposition 3.3 is relevant
in drawing explicit attention to the fact that (1.3) holds if ¥ : G — G is an
H-map (as observed by Scheerer).

Remark 1. Since, if @ = §°, the Scheerer condition is equivalent to (1.6),
we have, in that case, a complete grasp of the values of k& for which the Scheerer
condition holds, modulo knowledge of homotopy groups of spheres. Thus,
in particular, if we take n = 7, a = mw, 0 < m < 6, we find that the appro-
priate values of k are the following

k arbitrary if m = 0 mod 3

(3.3) k=0or1mod3 if m # 0 mod 3.

Thus, for the values of k listed in (3.3), we have maps
k

S ——» §°

|

(34) Emw Ekmw

|

g7 =g
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in addition to the maps

S3 S#

~ 4

(3.5) Ekmw —_— Emm

v v
g s

which we have for all values of m, k. It is possible that the maps (3.4),
perhaps in conjunction with the maps (3.5), could yield further information,
or a new insight into existing information, on the manifolds E,,. For
example, one gets immediate information on the attaching map for the top
cell. A similar program is in principle possible for the total spaces of arbi-
trary sphere bundles over spheres.

Remark 2. Corollary 3.2 shows that, under the given hypothesis, the
principal bundles G — E — ZA4, G’ — E' — ZA are p-fibre-homotopy-equiva-
lent for any prime p for which «, is a homotopy equivalence (assuming p-
fibre homotopy-equivalence makes sense for these bundles). Thus if we
suppose 4 connected and assume u : A — @ to be of finite order n; and if we
further suppose that G = G’ is 1-connected and «, : G, — G, belongs to
H(G,) if p | n, then the hypothesis of Corollary 3.2 implies that the bundles
belong to the same genus in the sense of [2] and hence, by [1, Theorem 3.4],
E X G= E' X G. The same result would follow directly from arguments
in [2], but here we have the additional information that there is a map
8 : E — E’ yielding a localized equivalence 8, for p | n.
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