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1. Introduction
Bean [3] has asked whether a monotone decomposition of E into points and

a null sequence of strongly cellular sets yields E as decomposition space.
This has been answered positively by M. Gerlach [9]. We may now ask
whether Bean’s question has a positive answer when "null sequence" is re-
placed by "countably many". Armentrout [1] has posed this problem for
tame 3-cells. This paper shows that these questions are equivalent.
Bing and Kirkor introduced the notion of strong cellularity in [5] and

proved that strongly cellular arcs in E are tame. Other results concerning
strong cellularity can be found in [4], [6], and [7]. In particular, in [7] it
is shown that a one-dimensional strongly cellular set in E is a tame dendrite.
A recent result of Shay [8] is that decompositions of E into points and count-
ably many tame dendrites yields E as decomposition space. Thus among
Armentrout’s questions 1, 2 and 3 in [1] and the generalization of Bean’s in
[3], the most crucial one yet open is that concerning tame 3-cells.

2. Preliminaries and statement of results
We first recall the original definition of strong cellularity given in [5] s

modified in [6]. I denotes the real interval [0, 1]. /k homotopy of S in T is a
continuous function H from S X I into T, and H denotes the function given
by H(x) H (x, ). Also, if C is a cell, then Bd C, int C denote its com-
binatorial boundary and interior respectively.
A set Z in E is strongly cellular if there is an n-cell C in E and a homotopy

H of C in C such that, if S Bd C, then

(1) H0 is the identity map, andH Z is the identity for all ,
(2) H S is a homeomorphism and H (S) n Z 0 for < 1,
(3) H(S) n H,(S) for u, and
(4) H(C) Z.

The following proposition is obvious.

Pnooswo 1. If Z is a strongly cellular subse of E’* and h is a hotneo-
rnorphistn of an open subset of E containing Z into E’, then h (Z) is strongly
cellular.

Using conditions (2) and (3) in the definition of strong cellularity and
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well-known results from the topology of E we easily obtain the following
proposition.

PROPOSITION 2. Let Z be a strongly cellular subset of E and e a positive
number. Then there is a tane 3-cell C in E and a homotopy H of C into itself
such tha

(1) Ho is the identity map and H Z is the identity for all t,
(2) H IBd C X [0, 1) is a homeoorphism onto C\Z
(3) H is a homeomorphism and H(C) is tae for < 1,
(4) H (C) Z, and
(5) H (p X [0, 1]) has diameter less than for each p in C.

Recall that an upper semi-continuous decomposition of a topological space
X is a collection G of pair-wise disjoint subsets of X such that (JG X and
whenever U is an open subset of X containing an element g of G, then there
is an open subset V of X with g V U and such that V is the union of
elements of G. It is well known that G is an upper semi-continuous decom-
position of X if and only if there is a closed continuous mapping f of X onto
a space Y such that G {f- (y) y e Y}. If G is an upper semi-continuous
decomposition of X, then Ha will denote the set of nondegenerate elements
of G. Also, Pa will denote the projection map from X onto the decomposition
space X/G associated with G.

/k notion of equivalent decompositions was introduced in [2] for the case
in which CI(Pa((JHa)) is compact and zero-dimensional. (C1 denotes
closure.) We extend this notion to the general case and in so doing make it
more restrictive, in that two decompositions may be equivalent in the sense
of [2] but not in our sense.

Let F and G be upper semi-continuous decompositions of a space X. Then
we say that F and G are equivalent if there is. a homeomorphism h of X/G
onto X/F such that h lPa(Ha) is a homeomorphism onto P(H). We
may now state our main theorem as follows.

TEOaEM. Let G be an upper semi-continuous decomposition of E such that
Ha consists of countably many strongly cellular sets. Then G is equivalent to
an upper semi-continuous decomposition F of E such that H, consists of tame
3-cells.

Since tame ceils in E are strongly cellular, this result shows that the gen-
eralized question of Bean [3] and Armentrout [1, p. 5, Question 1] are equiva-
lent. It also shows that if all decompositions into points and tame 3-cells
yield E [1, p. 5, Question 1] then so do all decompositions into points and
countably many tame disks [1, p. 5, Question 2]. Further, an application of
Theorem 9 of [2] yields the following result.

CoaoRv 1. Let G be an upper semi-continuous decomposition of E
such that Ha consists of countably many strongly cellular sets. Then G is equiva-



162 ARLO W. SCHURLE

lent to an upper semi-continuous decomposition F of E such that H consists
polyhedral 3-cells.

Since a point is a strongly cellular set, we can apply Theorem 9 of [2] and
the procedures used in the proof of our main theorem to obtain the following.

COROLLARY 2. Let G be an upper semi-continuous decomposition of E
such that Ha is countable and Ea/G is topologically E. Then G is equivalent
to an upper semi-continuous decomposition F of E such that H is a null se-
quence of polyhedral 3-cells.

3. Proof of the theorem
Let G be an upper semi-continuous decomposition of E such that Ho con-

sists of the strongly cellular sets g, g, .... Let V be an open subset of
E such that UHo c V and each component of V is bounded.
We inductively construct maps 0, , b, $0, $, f, tame 3-cells

C1, C, Cr and for each i a homotopy H of C into itself satisfying the
eleven conditions to follow. We let 0 and f0 be the identity map of Ea, and
for notational convenience we let

D, H’ (C X {1/2}), F, fl o f. o o.h and , b,4,-"’4,0.

is defined only on the set of points on which the composition is defined.
The first step of the induction, is omitted since it follows the inductive step
almost exactly. The conditions to be satisfied are as follows. (d denotes
the usual metric on ft.)

(1) C and H satisfy the conditions of Proposition 2 for Z

_
(g)

and an c to be chosen in the proof.
(2) C and D. are disjoint for i j.
(3) C is a subset of V.
(4) is a homeomorphism of E\_(g) onto E\D.
(5) d(ch,(p), p) < (1/2) for all p eE8.
(6) is the identity on E\C.
(7) f is a uniformly continuous closed mapping of E onto itself.
(8) d(fi(p), p) < (1/2) for all p
(9) fi (D,) ,_
(10) f, -1 on
(11) d(F,(p), F,_(p)) < (1/2)’ for all p E.
We assume that we have , f, C, and H for i 1, 2, r, and we

now produce Cr+, fi+, C+, and H+1. Conditions (3), (4), and (6)
imply that is a homeomorphism of E (Jffil g onto E (Jffi D which
is the identity on E V. Proposition I then states that (g+) is a strongly
cellular subset of V. By condition (7), Fr is uniformly continuous, so that
there is a positive number such that d(p, q) < implies d(F(p),

(q)) <
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An application of Proposition 2 with Z r(gr+l) and

rain {, (1/2)+, ((+), \(V u U;=D))I
delivers a ame 8-cell C.+ and a homogopy/-F+t sagisfying conditsions (1), (2)
and (8).

Define a funegion+ by

,+(p) p
H+1 (p’, t/2)

if p C"+1

if p H’+ (p’, t) with-p’ e Bd C’+ and < 1.

It is easy to check that+1 satisfies conditions (4), (5), and (6).
Now define a function f+t by

f,+ (P) P
H"+ (p’, min {2t, 1})

if p IntC+ or p e(g+,)
if p Hr+l(p’, t) for p’eBd C,+.

The conditions on H+1 imply that f,+ is a well-defined continuous function.
Since f,+ is the identity outside the compact set C+,, condition (7) is satis-
fied. Using our choice of e and the fact that

diamH+(p’X [0,1]) < c for p

we can easily show that conditions (8) and (11) are satisfied. Now

H"+’ (C,.+ X {1/2})

is the same as H’+1 (Bd C,+1 X [1/2, 1]) u qr (g,+l), so that

)’,+,(D,+,) ],+,(H’+’(C,+ X {1/2}))

by definition of fi+. Finally, it is easy to check that f+ and ,+, satisfy
condition (10).
Our induction is complete, so that we have sequences of maps, three-cells,

etc. satisfying the stated eleven conditions. Conditions (7) and (11) imply
that F, F2, is a uniformly convergent sequence of closed continuous
mappings of E onto itself. Hence the limit F lim, F is a closed con-
tinuous mapping of E onto itself. We will be done when we show that
F- (g) is a tame 3-cell for g e Ha and F-1 (p) is a point for p e Es\UHa, since
it is easy to check that the map taking F- (p) to the element of G containing
p is the desired homeomorphism between Ea/G and the decomposition space
induced by F.

Conditions (2), (6) and (10) imply that F fl f. o of on De. Thus
by conditions (1), (9), and (10) we have that F(D) g for all positive
integers j, so that F- (g) D..
We now show that if F (q) is a point of g, then q is a point of De. An

analysis like that in the preceding paragraph shows that if there is an integer
m such that q t C for i >_ m, then q must be in De. So we suppose that
there are integersrl < r. < ...suchthatqeC,,i 1, 2,.... Sincea
single component of V must contain all the C,’s and components of V are
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bounded, we may assume that the corresponding g’s converge to an element
g of G. Since F(D) g and

q e C, B(D,, (1/2)’),
F(q) is an element of g, so that g g. We may now suppose that
j < r < r < .... Then (g,) converges to D as i --* oo. By condition
(5), the C’s converge to D. as i --, , so that q must be an element of D.
Hence F- (g.) D, a tame 3-cell, for all positive integers j.

Finally, suppose that F(q) x [JHa. Then (x) is defined for all
positive integers i, and by condition (5), (x) converges to a point y as
z --* . Let e be a positive number. There is an integer N such that

ffi (1/2)’ < and d((x),y) < for i >_N.

By (10), F(n(x)) x, and since x (JHa, there is a neighborhood U of
x such that the restriction of F is a homeomorphism between/ (U) and
U. Since (x) is in B(y, e), we may suppose that F (U) is a subset of
U(y, ).
Now F. (q) converges to x as i --, , so that

F(fn+ f+. o f+, (q))

is eventually in/ (U) B (y, e). But

d (q, f+l o f+2 o o fv+r (q)) < ",- (1/2) <
by condition (8) and our choice of N, so that d(q, y) < 2e. Since is an
arbitrary positive number, we must have q y. Thus F- (x) is a single
point for each x in E\[JHa. This completes the proof.
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