
A DUALITY THEOREM FOR THE REPRESENTATION RING OF A
COMPACT CONNECTED LIE GROUP

BY

JCK M. SHAPIRO

Let G be a compact connected Lie group. One may define R (G), the com-
plex representation ring of G, as in [1], [9]. If H isasubgroup of maximalrank
we may consider R (G) as a subring of R (H) [6], making R (H) an R (G)-
module.
An extension of the Weyl character formula found in [3] allows us to define

an R (G)-module homomorphism from R (H) --. HomR (R (H), R (G)) in a
very natural way. It is conjectured that if 1 (G) and 1 (H) have no 2-tor-
sion then this map provides a duality isomorphism between R (H) and its
dual.

This result together with [8] will yield a new proof of the conjecture of
Atiyah-Hirzebruch that : R(H) -, K (G/H) is onto [2] (see 9). In this
paper the duality isomorphism is proven for G any classical group and H, a
suitable subgroup of maximal rank. Furthermore R (H) is shown to be a
free R (G)-module. Though this result already appears in [8] our proof will
provide an explicit basis. This together with the duality isomorphism will
provide a basis for the free abelian group K (G/H) (see 9).
For those more familiar with the equivariant K-theory of [10], we know that

R (H) . g(G/H) and R (G) g(point).

The duality isomorphism is then a map from

K(G/H) Hompoin (K(G/H), g(point)),

and provides a "Poincare duality" result for this cohomology theory.

1. Preliminaries

Let G be a compact Lie group. We consider R (G), the complex representa-
tion ring of G, defined in the following manner. Form the free abelian group
on the set of equivalence classes of finite dimensional complex representations
of G. Tensor product of representations induces a ring structure and the
ring thus formed is R (G) (see [1], [6], [9]). If H is a closed subgroup of G
we can consider R (H). The restriction of representations induces a ring
homomorphism R (G) --* R (H).
A compact connected Lie group G always contains a maximal connected

abelian subgroup (unique up to conjugation) called a maximal torus. Its
dimension is called the ran of G. If T is a maximal torus we get a mono-
morphism R (G) R (T) (see [6]). Let N (T) denote the normalizer of T.
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The quotient group N (T)/T is denoted W (G) and is called the Weyl group
of G. It is a finite group. It acts in an obvious way as a group of auto-
morphisms of T and hence of the ring R (T). It is a basic fact that via the
above monomorphism R (G) can be identified with the subring of R(T) left
fixed by W (G). In symbols R (G)

Let L (T) denote the Lie algebra of T and exp L (T) --, T, the exponential
homomorphism. The integer lattice is then exp-1 (identity). Since exp is
onto [1] we get

T L (T)/exp-1 (id.).

If w is a linear form, w L (T) --* R, which takes integer values on the in-
teger lattice, we call w a weight of G. We will also think of a weight, w, as a
1-dimensional representation, where the representation maps T to mul-
tiplication by ei().
As usual we need to consider the adjoint representation, Ad, of G. When G

is assumed compact and connected, we may view it as a homomorphism
Ad" G ---, SO (n), n dimension of G. (See e.g. [1].) The restriction of
Ad to T acts trivially on T; the quotient space g/t may be decomposed into a
number (denoted m) of 2-dimensional T invariant subspaces. The com-
plexificatio of each of these 2-dimensional representations of T splits into
mutually dual 1-dimensional complex representations; the two corresponding
weights are thus negatives of each other (a 1-dimensional representation is
multiplication by e() for some weight w [1]). The collection of 2m weights
thus obtained are the roots of G. The hyperplanes of on which the roots
vanish are the walls of the Stiefel Diagram [1]. Any component of the com-
plement of the walls can be selected as the fundamental Weyl chamber and
this, in turn, determines a set, R+, of m positive roots of G.
Each element, , of W (G) N (T)/T gives an automorphism of T. We

set (- 1) 1 if a reverses the orientation of T and (- 1) -1 otherwise.
An element of x e R (T) is called symmetric if a(x) x for all a W (G), and
anti-symmetric if a(x) (-1)x for all e W (G).
Given any xeR(T), let A (x) ,w(a) (-1)’a(x). A(x) is called the

elementary alternating sum of x. It is clear that A (x) is anti-symmetric for
all x e R (T). If w is a weight then by A (w) we mean A (e).

If (G) 0 (i.e. G is 1-connected) then "one half the sum of the positive
roots", denoted by a, is a weight (see [1]). Ia this case, A (a), denoted by, relates the symmetric and anti-symmetric elements in the following proposi-
tion.

PROPOSITION 1 [1; 6.6, 6.16, 6.18]. Suppose r (G) O. Then if we let
denote A (fla) we get the following results.

(a) If x e R (T) is symmetric, then x ---, x. gives an isomorphism onto
from the additive group of symmetric elements to the additive group of anti-
symmetric elements.
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(b) Let x be an irreducible representation of G, and think of R (G) <_ R (T);
then x A (y) for some weight y.

(c) Conversely, every A(y), y a weight, is equal to =x . for some irre-
ducible x in R (G).

Remarks. If (G) has no 2-torsion then there exists a weight , related
to fl, such that Proposition 1 remains true if we. let A ’). For the
cases considered in this paper we will be able to explicitly provide such a f’
(see Proposition 2). A general proof that ’ exists provided v (G) has ao
2-torsion appears in [11]. In [3] Bott makes a slightly less powerful assertion
but does not give a proof.

PROPOSITION 2. Suppose fla is a weight, or if fl is not a weight suppose
there exists a one-dimensional complex representation, p, of G, pit ’, with
a q- (1/2)w =-- a weight. Then the conclusions of Proposition 1 stand with
equal to A (a) and A (’), respectively.

Proof. The proof in [1] of Proposition 1 only uses the fact that fla is a
weight. Therefore the first case follows trivially. The second case is not
much harder. We only need note that if we replace by A (fl) in [1] the proof
is still correct line for line.
We close this section with some observations about the "algebraic" struc-

ture of R (G) and R (T).
If T is an n-torus and if we pick a Euclidean coordinate system for

L(T)
_

R" we can represent T as (y, ..., y,,)/y R/ZI. Ifp denotes pro-
jection onto the i factor, then p is a weight and by x we will mean the one-
dimensional representation associated to p. R(T,,) is then isomorphic to

Z[x x,, x
(see [1]).
Comments. Since R (G) is the fixed ring of R (T) under the action of the

finite group W (G) it is trivial that each element of R(T) is integral over
R (G), for r is a zero of the monic polynomial

II,(a) (x a (r)) e R (T) (a)[X] R (G)[X].

Since R (T) is isomorphic to Z[x,, x., x x. it is a unique fac-
torization domain (essentially [5, p. 128] plus localiaation). Hence it is
integrally closed in K, the quotient field of R (T) [5, p. 240]. It follows that
R (T) is the integral closure in K of R (G). Clearly (since R (T) is finitely
generated) K is a finite extension of k, the quotient field of R(G), hence
algebraic. It is an easy consequence of these last two comments that each
element of K can be written as the quotient of an element of R(T) by an
element of R (G) (p. 238 of [5]). Hence/ is the subfield of K left fixed by
W (G); thus K is a Galois extension of k with W (G) its Galois group [5, p.
194].
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2. The main theorem
If H is a closed connected subgroup of G then H is said o be of maximal

rank if t a torus T which is maximal for both G and H. In this case we get
R (G) <_ R (H) _< R (T), where each inclusion is induced by the restriction of
representations [6]. We also have R (G) R (T) ’), R (H) R (T) (m

where W (G) and W (H) are the respective Weyl groups.
Suppose x R (T) is anti-symmetric with respect to W (H). Then we can

define
(x) (- (x),

where varies over a set of representatives for the left cosets of W(G)/W (H).
This sum is well defined.

Let us now assume that (G) and (H) exist (as in Proposition 2), generators
for the respective anti-symmetric elements over the appropriate rings. (As
we noted already this will occur provided (G) and (H) have no two tor-
sion.) To keep our notation straight we will let Aa, A, denote "alternat-
ing with respect to" W(G), W(H), respectively. For x e R(H), (H).x is
anti-symmetric under the action of W(H). Therefore A((H).x) is well
defined. As in 1, (H) A(’). Thus 2: ((H).x) Aa(’.x) which
is anti-symmetric under W (G).

PROPOSITION 3. f" R(H) R(G) defined by f(x) . ((H).x)/(G) is
an R (G)-module homomorphism.

Proof. Propositions 1 and 2 together with the previous assertions.
If H T, a maximal torus, then f(x) A (x)/, and $ is related to the

classical Weyl character formula (see [1], [3]).
Given f, as in proposition 3, we can define

F" R (H) --* Hom(a) (R (H), R (G))
by

F(x)(y) f(x.y) for x, yR(H).

Conjecture. If v (G) and v(H) have no 2 torsion then F is an R(G)-
module isomorphism (i.e.- we have a "duality theorem" for the R(G)-
module, R (H)).

In this paper we will follow a computational approach and prove a slightly
stronger statement for some of the classical groups. Besides being a stronger
statement our theorem will give us, as a corollary, a specific set of generators
for K (G/H), for the G and H considered. (K (X) represents the cohomology
theory of Atiyah-Hirzebruch based on vector bundles over X; see [4].)
For our purposes we will think of F as a bilinear map from

R(H) X R(H) ---. R(G)

defined by F (x, y) f (x y
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MAN THEOREM. Suppose T <_ H <_ G where H is a subgroup of maximal
rank and T is a maximal torus for H and G. Then if (H) and (G) exist as
in Proposition 2"

(1) R (H) is a free R (G)-module of rank N W(G)/W (H) I.
H T,W(T) 1.)

(2) There exist two sets of bases {a}-, {b.}- such that

(For

F(a, b) -,-1 for i j
=0

(i.e. det ( (F (a, b) ) .4-1, a unit in R (G)).

We will prove this theorem for G, a classical group and H a suitable sub-
group of maximal rank.

Remarks. (a) Condition (2) implies that an inverse for ((F (a, b.)))
exists in the ring of N N matrices with coefficients in R (G). Therefore
this condition implies that F is an isomorphism when viewed as a map

R (H) --. Hom( (R (H), R (G)).

(b) In [8], Pittie shows that R(T) is a free R(G)-module provided
I(G) is torsion free. Inherent in our condition (1) is an explicit set of
generators for the cases discussed.

(c) If condition (b) is satisfied we say that F is strongly non-singular
(often abbreviated s.n.s.).

We have previously noted that both R (T) and R (G) are integrally closed
rings and that R (T) is the integral closure of R (G) in K, the quotient field of
R (T). Furthermore k is the fixed subfield of K under the induced action of
W (G). It follows that (K/k) is a Galois extension of rank W (G) I. Since
the same follows for (K/L), where L is the quotient field of R (H), we get
[K:L] IW(H) and [L:k] IW(G)/W(H) I.
PROPOSITION 4. Suppose we have {a}-_l, {b.}_-, a, beR(T) such that

F (a bj) N W (G) I.
Then R(T) is a free R(G)-module, freely generated over R(G) by either {a}
or {b.}1.
Remark. For

F" R(H) R(H) R(G)

and {c,}-1, {d}, F(c, d) with M W(G)/W(H) I, we get
R (H) as a free R (G)-module, analogously.

Proof. Since we have an induced action of W (G) on K, with the fixed
subfield, F induces a bilinear form on the N-dimensional k-vector space, K.
F (a, b.) 5. implies that {a} _- is a basis for K over k. Let r be in R (T),
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R(T) c K in the usual way; r --laa,aek. F(r,b.) ais an
element of R(G) which implies that N{a}-i generates R(T), freely, over
R (G) and similarly for {b.} N-----I

Remarks. In view of these results we make the following observation.
We need not prove part 1 of Theorem 4 explicitly, since if we have a collec-
tion of elements of the "right" number satisfying the previous proposition,
then R (H) is automatically a free R (G)-module with an explicit set of free
generators. We will indicate, though, how these bases come about and also
assert that using these strong indications together with some well known re-
sults of commutative algebra [12; V] it is not hard to prove directly that R (H)
is R (G)-free with these explicit elements as bases. Let us note, of course,
that if {a}= and {bj}-- exist satisfying the second condition of the main
theorem then it is a triviality to find a and be such that F (a, b) j.

3. Inductive lemma
In Section 2 we stated the main theorem of this paper. Assuming that

thatR (H) isa freeR (G)-module, we wish to find two sets of bases {a} and {b}
such that

F(a,b.) +/-1 for i=j
0 for i < j.

We have previously noted that if a bilinear form has this property, it implies
the "duality isomorphism" (see 2).
We also noted that if such bases exist, it implies the existence of {a} and

{b.}, two other sets of bases such that F (a’, b.) ,-. Using this fact, we
will be able to prove the following strong inductive tool"
Suppose we have T <_ H <_ G. Then we can define

El" R (T) X R (T) -- R (H), F2" R (H) X R (H) --* R (G)
and

F" R (T) R (T) --. R (G).

Although the domain of definition of these forms will not allow us to claim
that F F2.F1, in some sense this is the case. For, recall we defined
f" R (T) --* R (G) such that F (x, y) f(x.y) for x, y e R (T). Similarly,
we can define

fl" R (T) -- R (H) and f2" R (H) --, R (G).

For these functions it follows trivially from the definitions that f $.f.

TH INDUCTIVE LEMMA. If F1 R (T) X R (T) R (H) and F
R(H) X R(H) ---, R(G) are both strongly non-singular, then so is F"
R (T) X R (T) R (G).

Proof. By the previous observations we may assume that

there exist {x, x,} and {yl, y},
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two sets of bases for R (T) as an R(H)-module, such that fl (x.y) .
Similarly,

there exist {zl, z} and {w, w},
two sets of bases for R (H) as an R (G)-module, such that
Clearly

{x, z} " .to== and {yy }y=

are bases for R (T) as an R (G)-mode. Furthermore
f (x,.z., yy’w) f(x,.yy.z.w) f.(x yy.z.w) f (z.w# (f (x,.yy)))

f (z..w) . .
Q.E.D.. SU(n) a.d (n)

We can clude i U (n) SU (n + 1) the usual way by

where A U() and 1/deg . gnder gNs eeion ghe subgroup of
agonN marieies, wNeh is a maximal oms for U (), is mapped isomor-

pNeay onto a maximal oms for SU( + 1). Ns makes U() a subgroup
of mimal ra of SU( + 1). Ns usual gNs induces

(s( + 1)) (() (f) [, ...,
W(U()) aes on R(T) as he group of permugaions on

IN(U())i = and R(U())Z[r,...,r,

where r are he elementary symmegrie funegions on {, } [1].
W(SU( + 1)) aes on R() as he group of permugaions of

N(SU(+))I= (+1) and R(SU(+I))Z[o,...

where he o are ghe elementary symmetric funegions on he aboe seg [1].
Leg W’ be ghe subgroup of W(SU( + 1)) wNeh ;

’ (s( + ))

and R (U ()) is ghe fixed subring of R (T) under W’ (i.e., W’ W(U ()) ).

o 1. R() i free module over R (U ()) 4 rk .
eerorfor R () over R (U () i e{ 1 reO

o2. R (T) i free module over R (SU( + 1) 4rk ( + 1) !.
+ -+)1 whereO < a < n land n < j < O.A set ofgerators is x,
_
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Lv,M 1. R (U (n)) is a free R (SU (n 1) )-module of ra 1, th

a set of enerators.
oe. Lemma 1 and Theorem 1 imply Theorem 2.

For the proof of Lena 1 we note that (S( 1))[], the n
generated by (( 1) ) and , is (()). has ( 1)-mages
under the action of W(S( 1)) and therefore ()+ the mode
generated by () over (S( 1)). These are a free bass for
(()) became the Mmal integral polynoal for over (S( 1) )

is of degree 1.
The proof of Theorem 1 involves an duction arment on . Let us

coider () X (1) as a subgroup of ( 1) by tang matrcies wMch
have 1 the upper left hand corner. Then () X (1) is a subgroup of
maximal rank and

R(U(n) X U(1))R(U(n))@ R(U(1))

(see [1]) wch is

] < z[,Z[r, r, r:, x, +] R (T+)

where the re coidered s elements of

z[, .., x+,] R (T) R (V (n)).

It follows easily tt if {a, a} generates R (T) freely over R (U (n))
then a,}, considered s elemeats of R (T+) in the obous wy, generate
R (T+) freely over R (U (n) X U (1)). The induction rment therefore
iavolves prong that {x}-,= generates R (U (n) X U (1)) freely over
R(U(n)). the cse of Lemm 1 it is esy to see that R(U (n))[x] is
R (U (n) X U (1)). (Siace x is integral over R (U (n)) for 11 i, d]oing
ny x lso ad]oi x [7, I, 10].) The fct that ml integral poly-
nol for x over R (U (n)) is of deee n (e.g. P (Y) H (Y (x)),
rnging over W(U (n)) implies the rest.
To start the induction note that for n 2, the first non-tribal cse

R (V (2)) Z[z, + z, ,.z, ’.’] Z[, l R (T),

and R (T) cn be generated by {1, x} over R (U (2)).
We 1 now show that the biliner forms

and

are s.n.s.

F" R (T) R (T) --. R (U (n))

F" R(U(n)) R(U(n)) R(SU(n + 1))

As we hve seen (3), this will imply that

F" R(T,,) X R(T,,) R(SU(n + 1))



DUALITY THEOREM 87

is also s.n.s. (Let us note that this theorem as well as the analogous ones
which follow are much stronger than just a statement of duality, for in each
case a specific pair of dual bases is exhibited.) Before we can calculate these
forms, we must first know the elements 5 (SU (n - 1) ) and (U (n)).

rl (SU (n + 1)) 0 [1; 5.49], therefore is a weight ( 1/2 the sum of
the positive roots) 5(SU( -}- 1)) ,4 (). In [1] it is shown that the roots
of SU( + 1) are the

(x-- x.), i j, l_<i, j_<n-t-1,

where by x,+l we mean (xl - -t- x.). If we choose the Fundamental
Weyl Chamber to be x > x > x > x.+, then the positive roots are the
(x- x) withi <j. tisthenjustnx+ (n- 1)x.-t- + x. We
will abuse notation and let also stand for e’a, the representation of T
"associated" to the weight . x x., where, as previously noted x
stands for the representation

..., -, e

1 (U (n)) is Z, (see [1]) therefore we do not expect to be a weight. The
roots of U (n) are the (x x) (i j, 1 _< i, j <_ n). Let the Fundamental
Weyl Chamber be described by x > x > x. then the positive roots are
the (x x.) with i < j. It is easy to see that is equal to

(1/2)[ (n 1)x, + (n 3)x . + (n 1)x.].

Therefore t will be a weight if and only if n is odd.

Case (i) (n 2k + 1). kxl+ kx, (note that x+lhasco-
efficient zero). is a weight, and the associated representation is

Case (ii) (n 2k). fl (k- 1/2)xl-t- (k- 1/2)x,andisnota
weight. Recallin$ Proposition 2, we want to find a one-dimension representa-
tion of U (n), p, such that p T e’ and such that fl -t- (1/2)w fl’ is a
weight. It will then follow that A (fl’) 5(U(n)).

T. is a one-dimensional representation of U (n) and r. T.
Let

W --Xl Xa

then t’ -{- (1/2)w is equal to (]c 1)xl -t- (b 2)x -t- kx,,, a
weight. The associated representation is -1

Xl x:, and by Proposi-
tion 2, A (fl) 5 (U (n)).

THEOREM 3. F R (T) X R (T,,) ---* R (U (n) ) is strongly non-singular.

Proof. (induction on n). Suppose the theorem is true for n < r.
-1 Z 1 x] R (T_I),R(U(r 1)) g[, -.., -1, -] <_ tx "’,
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where the are the elementary symmetric functions on the set {x,., xr}.
By the induction hypothesis we have {m} and {be}, two bases for R(T_t)
over R (U (r 1)) such that F (a, bi) .
We again consider U (r 1) X U (1) _< U (r), with

grx:l -t_l] < R (T,)R’ R(U(r 1) X U(1)) t,e,-.., r-t,

R (Tr-t) can be isomorphically inbedded as a subring of R(T) by sending
z --, x, i > 2, and we can therefore consider the elements a, bi as being in
R (T). This isomorphism commutes with the action of

W(U(r- 1))_--__ W(U(r- 1) X U(1)),

and it follows that for

F" R (T,) X R (T,) -, R’, F (a,, b.) *o’.
(Under the isomorphism, (U (r 1) (U (r 1) X U (1)).) The
inductive lemma implies that if

F" R’ X R’--- R(U(r))
is s.n.s, then the result will follow for F" R (T) X R (T) --. R (U (r)).
As previously noted R’ can be generated over R (U (r)) by

{1, xl, ...,xt }.

Let this basis, in the order written, be denoted by {a}. It is equally clear that

x-i -(r-i){1, 1," ",xl

will generate R’, and we denote this bsis by {b}. Let us recall that

F" R’ x R’-, R(V(r))

is defined by F (z, w) A ’zw)/A 03), where A(/9’) (U (r 1) ), A
denoting ’%lternting with respect to W(U (r 1) )", and A 09) (U (r)).

Case 1 (r 2k + 1). We haveB =x x-and/9’ x-1 xT.
x x is a unit in R’, there-Let a be as described and let bi be b. 1.

fore {b x} {b} is also a basis for R’ over R (U (r))

F (a,, b) A (9’ai b)/A 09) A (jga, b)/A 09).

Case 2 (r 2k + 2). Then, x x-(+1) and#’ x... x-. Let a
be as described and let

b. be b x (x x-).
x (x’ xTx) x eT- is a unit in R’, therefore {b.} is a basis.

F (as, b.) A (fl’a, b.)/A () A (Ba, bi)/A 09).
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It therefore follows that in either case, r even or odd, that we must calculate

A (/a b)/A ().

If i j, then a b and we have A ()/A (fl) 1.
If i < j, then we have A (flx)/A (8), where (r 1)

_
< 0. In either

case, r even or odd, we can see that there is some xa, s 1, where in/.x,
xl and xa are raised to the same power. Let be the element of W (U (r))

X xpermuting xl and x,, then sgn () -1 and (fl 1) 1. This implies
that A x) 0 (see [1]). We must now start the induction.
n 2 (U (1) is just a torus).

R(U(2)) Z[xl q- x. xl x. (xl x)-1] _< Z[x, x+1 R (T).

Two bases for R (T) over R (U (2)) are {1, x} and {1, xl}. In this case
--1is x7. Let us change the first basis above by multiplying by x. a unit.

We then get
Xl X2 }.

Let {1, xl} be denoted by {a} and {x, by {bj}; then

F(a,b) 1 for i =j
0 for i < j.

F(a, b) A (fl)/A ) 1, proving the diagonal part of the statement.
If i < j, we have

F (x, x-) A (x-x7)/A ().

(xl x)- is fixed under , the element of W (U (2)) permuting xl and x
rxTlx,-thereforeA ) 0.

This concludes the proof of Theorem 3.

THEOREM 4.
non-singular.

F’R(U(n)) X R(U(n)) ---. R(SU(n + 1)) is strongly

Proof. We have shown that R(U(n))
R (SU (n q- 1) by the set

{1, rl,

is freely generated over

It can be easily seen that {1, r., r,} is also a basis. Let the first basis
be denoted by {b.} and the second by {a}.
The element , for SU (n -F 1), is x" x.. The corresponding t’ for

U (n) depends on whether n is even or odd. In either case, we look for u, a
u . If we can find such a u, let b. b. u.unit in R (U (n) such that ’.

Then F (a, bj) just

A (’a b.)/A () A (fla, b)/A ().

For n 2k, ’ x- x, so we let u be k+lr. For n 2/0 q- 1,
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t’ x x and let u be r. In either case, to compute F (as, b) we
must really compute A (a bs)/A ().

If i j, a b-1 and we get A ()/A () which equals 1.
Suppose i < j; then we have A (5r-r)/A () where 1 r n. If r < n,

(x ) ( )-
is a monomial where for some pair (i, i + 1), x appears to the first power and
x+ to the zero power. Let in W(SU (n + 1) be that element permutg
x and x x. Then in the monomial (r’), x and x+ both appear
raed to the power -1. Therefore A(r) -A(()) 0,
since &r) is fixed by a in W(SU (n + 1)), where a permutes x and x+
(see [1; 6.12]). (r n follows silarly).
This concludes the proof of Theorem 4, and implies the follong:

THEOREM 5. F R (T) X R (T) R (SU (n + 1)) is strongly non-
ngular.

Proof. The theorem follows from Theorems 3, 4, and the inductive lemma.

5. Sp(n) and SO(2n + 1)
Sp (n) and SO (2n W 1) are both of rank n. (See [1] for a description of

mimal tori for these groups.) The Weyl groups of Sp (n) and SO (2n + 1)
act on R(T,) as a subgroup of the group of permutations on the set
{x, ...,x,x, }. Since

R(Sp(n) R(T)= R(SO(2n + 1)),

both representation rings are isomorphic. (This is the reason we consider
both cases simultaneously.) In either case R (T.) Z[rl, r.] where

is the it elementary symmetric function on the set (x -t- x71)}--1 [6].
We state the following theorem for Sp (n) and the result will follow for

SO(2n + 1).

THEORE 6. R (T,) is a free R (Sp (n))-module of rank 2"n!. A set of
generators is {x’ xn} where 0 <_ a <_ 2 (n i) - 1.

Proof. As in the case of U (n), we need consider the subgroup

Sp(n) ( U(1) _< Sp(n + 1)

by placing -t- 1 in the upper left hand corner of the matrix and the induction
argument follows as in the previous case.

In an analogous fashion we can copy the induction argument in U (n) used
to proved the non-singularity of F. This leads to the following result.

THEOREM 7. F R (T,, X R T,,) R Sp (n ) is strongly non-singular.
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Let us also note that the bases {a} and Ibm} of the main theorem can be
chosen to be the generators of Theorem 6 together with the inverse set, i.e.

--an{xl" x. }0 < a < 2(n-- i) - 1.

A complete description of this case can be found in [11].

5. zo(2n)
We will not prove a theorem about the freeness of R (Tn) over R (SO (2n))

because n(SO(2n))

_
Z. and our main theorem will not apply. (For a

counter-example see [11].) The only reason we introduce this case is because
of its usefulness in the discussion of Spin(2n).
We can include SO (2n) in SO (2n - 1), as a subgroup of maximal rank in

the following manner: If A e SO(2n) map

x then we could have described the action ofIfR(T,) Z[x ...,
W(SO(2n - 1))

as follows. It first permutes the n subscripts, as an element of .S,, and then
makes an arbitrary number of sign changes of the form x - x1. We can
now describe W (SO (2n)) as the subgroup of W (SO (2n -t- 1) where only an
even number of sign changes are allowed.

Let p be the ith elementary symmetric function on the set

{Xl, X"1, X2, X-1, Xn, XI}, i 1, 2, n.

R(SO(2n)) is then equal to ZIp1, ..., p-l, p+, p] where p,+ and p: are
defined as follows. Recalling the elements r of the previous section, p rl
and p, i > 1, can be written as - nl r-i + -t- n where the n e Z.
If we write rn as

Z--4-1 Xl Xn

then we call r+ the subsum where l-I e +1 and analogously r: the subsum
where II e -1. With this notation

+ + +
p, r, - , p, r -, a eR(SO(2n)) and p, + p, p,

(i.e. 2a p, T,). See [1] for the entire assertion.

Note. If we let p be ith elementary symmetric function on the set
-1 x;1, x.Xl Xl X2

then analogous to R(SO(2n)), R(SO(2n - 1) can be described by
Zips, p,]. As in the previous assertion each p can be written as a linear
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combinations of the r, 1

_
j i and 1. This fact will be useful in the dis-

cussion of Spin (2n - 1).

7. Spin(n)
As we have just mentioned, v (SO (n)) Z., n > 2, and therefore SO (n)

has a simply connected double cover. This double cover is called Spin (n),
the Spinor group.
We will take as a maximal torus for Spin (n) the cover of a maximal torus

for SO (n). L () and L (T) are isomorphic as vector spaces, where and
T are the maximal tori of Spin(n) and SO(n), respectively, but the integer
lattices of each differ (see [1]). The integer lattice of is the subinteger lat-
tice of T made up of (y, y) such that y -k -k y 2N, for some
integer N.

Let Spin (n) -, SO (n) be the double cover and let e be the non-identity
element in the kernel of v. Then. vith the previous interpretation, e can be
represented by any

(y,...,y) L() with y- +y 2N+ 1.

The walls of he Weyl Chambers of L (T), considered as hyperplanes in
L(), yield the Weyl Chambers of Spin(n). In particular, W(Spin(n)) -W (SO(n)), because both groups are generated by reflections in the same
hyperplanes.

Let x x be the element of R () defined as follows" send

(y, y) -, e-(+...+.

Because y -t- y 2N whenever (y, y) is in the integer lattice,

is welldefined. Furthermore,R()Z[x,-- ,x,x x]. (See [6].)
Let p SO (n) - Aut (V), be a representation of SO (n); then

p o " Spin(n) --. Aut (V)

is a Spinor representation. In particular, the p,

(recall" R (SO (2k - 1)) g[p p])

are elements of R (Spin (n). Because of the projection map, in any representa-
tion induced from SO (n) e acts as the identity. There is a special Spinor
representation, A, under which v does not act as the identity"

+
(See [19].)
As in the case of SO(n) it makes a difference whether n is of the form

2k or 2k W 1.
R (Spin (2k - 1)) Zips, ..., p_, A]
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where the generators are algebraically independent. For the case Spin (2k), A
is not irreducible, but it splits into two irreducible representations A+ and A-.

A+[ ,-+lx, x and A-I ’,,--, x, x
R (Spin (2k)) is the polynomial ring Z[p, p_,

In either ce, we have the follong important relations"

(a) h++=p+p_+...
(b) A+A- p_ + p +
(c) -A- ; + p_ +

Note. For (a), (b) and (c), let us understand p0 as equal to -t-1.

Since SO (2k) is contained in SO (2k -t- 1) as a subgroup of maximal rank’
Spin(2k) is of maximal rank in Spin(2k -[- 1). This yields

R(Spin(2k -b 1)) <_ R(Spin(2k)) <_ R(,).
Our approach will be to first prove that R (,) is free over R (Spin(2k)) and
then prove that R(Spin(2k)) is free over R(Spin(2k -b 1)). (See [6] for
entire previous assertion.)

It is the presentation of R (,) in this complicated form (the only form
which will allow a reasonable description of the action of W (Spin (n))) that
makes the computations in this case highly non-trivial. Although the genera-
tors will look familiar (see [2]) one may rightfully ask why they show up in
just the form they do.

Discussion. In the ring R (,) (described above) there are two types of
monomials. One type is a monomial consisting of a product of x with integral
powers (e.g., xl x); in the second type all the x have 1/2 integral powers (e.g.,
x* x*). We will call these the "integral" and "non-integral" monomials,
respectively. A polynomial in R (,) is said to be homogeneous if it is a
sum of monomials, all of which are either integral or non-integral. It is
clear that as an abelian group R (,) I N, where I and N represent the
homogeneous integral and homogeneous non-integral polynomials, respec-
tively. This also gives us a Z graded ring related to the ring R (,). Since,
if p is in I and q. is in N then p q. e N, PI P2 I and q. qy2 e I.

THEOREM 8. R (P,) is a free module over R (Spin(2k) ), freely generated by
W 2-k! homogeneous polynomials.

The proof will be by induction on k.

LEMMA 2. Suppose R (-1) Z[x +/-1 x xl/x-i - is generated
ot)r

+ -l]R (Spin(2k 2)) Zip’l, ..., p A-I
by the set {al a} where the a are homogeneous polynomials in R (T_).
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Let R’ < R ) be the following subring"

Z[Xk p Pk- k ,--

Let a R() be ned by a a if a is integral and a x/a iJ a is
R"non-inSegral. Then R () is gerated by a}= over

Expla$ion. The notation p is used to derentiate these elements from
the p, where

R (Spin (2k)) Zip,, ..., p_, A, A].

Secondly, any homogeneous imegral element in R (_) can be considered
as an element of R (). Ts explains why the p are elements of R ()-
and the definition of a.

Proof. We ll show that any monoal, m, of R() can be generated by
the a, and ts will imply the lemma.

Case 1 (M is imegral and has no factor of x). In ts case m is in R (_)
and m r a, where r R(Spin(2k 2)). By homogeneity we may
assume that each r a must be integral. This implies that both r and a
are in I or they both are in N. Let r e R (Spin(2k)) be equal to r if r is
integral and let it be equal to r. if r is non-integral. It is then clear that

Case 2 (m is integral and contains a factor of x). m x where
p e Z, p 0. By Case 1, ra. But x is in R’, therefore

Case 3 (m is non-imegral). By the reasoning of Case 2, we need oy con-
sider m, where x appears to the } power.
m x, where r a is a non-integral monoal in R (_).

By homogeneity we may assume that each r a is in N. This implies that
for each i, r and a are in derent parts of the Z grading. Let r r if
r is in I, and let r x/2r if r e N. Then ’ "
LMx 3. Let W’ be t subgroup of W (Spin (2b) which fixes x. Then

R’ R() w,
is the ring R’ described in the previous lemma.

Proof. Let us first note that W’ W (Spin(2k 2)), and both have the
same action on the set

Xl Xk--1 Xl

It is therefore clear that R’ < R() ’.
Let p e R() and suppose that (p) p for all e p x,

where the are elements of R(_l) and -N/2 j M/2, N, M e Z.
Since W’ fixes x, ts implies that e R(_) ’ for all j. Therefore

R’pe
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Proof of Theorem 8 (induction on k). (1) k 2.

R (Spin 4) Z[A+ A] <_ Z[x z x . R ().
R (Spin 4)x x has 2 images under W (Spin 4); therefore, R" [x.x]

/2 /2is free over R (Spin 4), generated by 1 x
where , are the elementary symmetric functions in {x, x}. This im-

R"plies that {1 x} generate R () over Putting these steps together gives
usk= 2.

(2) Assume the theorem is true for k < s. Let a, ..., a, be the
homogeneous elements wch generate R(,_) over R(Spin(2s 2)),
where

r w (Spin(2s 2)) 2’- (s 1).

If W’ is the subgroup of W(Spin(2s)) fixing {x,} and R’ is R(,) ’, then by
Lemmas 2 and 3, we have R(Spin(2s)) R’ R(,) and R(,) is

R cangenerated over by {a} _. The proof will be complete prodded R’
be generated over R (Spin(2s)) by 2. s homogeneous elements.

LEMMA 4. R is generated over R (Spin(2s) by the set

--1 --(--2) l/2A+ l]2A--{1, x,,

(Note" these are exactly 2. s homogeneous elements.)

Proof. Let us first note that R (Spin(2s))[S], the smallest ring containing
R (Spin(2s)) and the set S, is equal to R’. Let us recall that

Rp 1 ,l/2A-b _1/2--Z[x p Ps--a 8 -1, x8 tas-l

and

R (Spin (2s)) Zips, p,_, A,+, A’].

This follows because p can be generated over Z[pl, p] by the set

(x, + x:)}-
Since R (Spin (2s)) IS] contains .-, we get that pl, ..., ps-z are
in R(Spin(2s)[S]. The other generators of R’ over Z are already in S;
therefore R(Spin(2s))[S] R’. To complete the proof of the lemma, we
have to show that the module generated by S over R (Spin(2s)) is closed
under ring multiplication. A proof of this fact involves cumbersome com-
binatorics and can be found in [11]. In this paper we will rely upon Proposi-
tion 4 and note that the result will follow as soon as we prove the non-singu-
larity condition using this basis (see proof of Theorem 11).

This then completes the proof that R (Pn) is free over R (Spin(2n)) of rank

Spin (2n) 2’-. n
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Tv.om 9. R (Spin (2n)) is freely generated over R (Spin (2n -t- 1)) by
the set 1, A+}.

Proof.
R (Spin (2n + 1) )

Zips, ..., p,,_, ]

_
Z[p, ..., p,,_, /+, A-] R(Spin(2n)).

It is therefore clear that R (Spin (2n + 1) [A+] R (Spin (2n)). A+ hs two
images under W (Spin (2n W 1) therefore 1, A+} is set of generators.

TEo 10. R() is free oer R (Spin (2n -t- 1)) of rank

2".n! W(Spin(2n + 1))I.

Proof. This follows from Theorems 8 nd 9. It is furthermore clear
exactly wht will constitute bsis.

8. Duality for the cases Spin(n) and Spin(n)
Let us recall that we hve R(Spin(2k + 1) _< R(Spin(2k)) <_ R().

We noted in 7 that R (Spin(2k)) is freely generated over R (Spin(2k - 1))
by the set {1, A+}. To compute the mtrix of

F" R(Spin(2k)) X R(Spin(21)) ---. R(Spin(2k - 1)

will therefore only involve 2 by 2 mtrix, nd will be quite easy. Our main
tsk will therefore be to prove the strong non-singularity of

F R() R() ---. R (Spin(2k)).

Spin(2k) is the simply connected double cover of SO (2k) nd we hve
previously noted that W (Spin(2k)) " W(SO (2k)). (See 7.) Further-
more L (T) L (), as Euclidean spaces, nd the wlls of the Weyl Chambers
re defined by the "sme" linear forms. If the Fundamental Weyl Chamber
is chosen such that x > x_ > > x, then the positive roots ae

{(x- x)},i>j and {(xWx)}, i j.- (See [1].)is weight (r (Spin (2k)) 0) nd is equal to x..., x
If we view SO (2/ 2) SO (2) s a subgroup of SO (2k) in the obvious

wy, then we cn think of Spin (2k 2) s the subgroup of Spin(2k) double
covering SO (2k 2) SO (2). It then follows that Spin (2k) is subgroup
of mximl rnk nd that its Weyl group, as subgroup of W (Spin(2k)),
is the subgroup fixing x. In 7 we clled this subgroup W’ nd denoted
R(Spin(2k)) ’ by R’. We now see that

R’ R (Spin (2/ 2)).

The roots of Spin (2k 2) re lust the roots of SO (2k 2). In prticulr,
one-half the sum of the positive roots, , is equal to (k 2)x_ + + x.,
weight.
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In 7 we proved that if al, aN was a basis for R (P_I) over

R(Spin(2k- 2)), N W(Spin(2k- 2)) I,
then the set {a} generates R (T) over (Recall that the a are the images
of a under the map fixing an integral monomial and sending a non-integral
monomial m, to mxl.)
We will now show that information about the bilinear form for the case

G Spin(2k 2), will yield information for the case Spin" (2k 2).
Let us suppose that F R (,_1) X R (.) .- R (Spin (2k 2) is strongly

non-singular. Then there exist {a} and {b} such that

F(a,b) +/-1 for i =j
0 for i < j.

Let us furthermore assume that these a and b are homogeneous elements.
By Lemma 2, the sets {a} and {b} are a basis for R() over
R (Spin (2k 2)). By inspecting the proof of Lemma 2, we can see that if
we multiply the non-integral b by x/, the proof works just well. Let us
call this new basis {b}.

Let us now inspect R() X R() R (Spin (2k 2) ).

V (a, b) A’ (a’,.b )/A’ (’), x
Notice that a.b a.b, since we multiplied one by x/ and the other by
--1/2x Since a .b a.b is an element of R (), and since no factor of
x appears, this implies that a. b a.b is a homogeneous integral element
of R (). Let us note that there is an isomorphism onto from

Z[xl, .., x-,] < R (_,) to Z Z[x, ..., x2,1 R ()
dcribed by sending x x, i E k 1, and that this isomorphism commutes
th the action of W (Spin (2k 2) on S and the action of W’ on $. By the
assumption on F, A (a.b) A (’), where A is alternation under W (Spin
(2k 2)) and a b and ’ are in S. Under the above isomorphism, we then
have

A’ (a’.b) A’ (a.b) A’ ’),
where these elements fie in S. This implies that F (a’, b) 1.
Now let us consider F (a’, b for i < j, where

We pass to , the ring extension of R() th x adjoined, and let W’ act
on by its usual action on {x, "x }. Then A (a’. b is an element of
and in we can factor out the x term.
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with the actions of W (Spin(2k 2) and W’, respectively. By the assump-
tion on F, A (ai.b) O, i < j. By the above identification of
with a subring of/, we have that A’ (ai.b) 0 in/. Therefore

" "/’(ai.b) 0 inA (a b
But A (a’. b is an element of R () and therefore A’ (a. b 0 in
R (). This finally implies that f (a, b) 0 and yields the following
lemma.

LEMM 5. Suppose F R (_) X R (_) R (Spin (2k 2) is strongly
non-singular. Then the same is true for

f R() X R() R(Spin(2- 2)),

where, as usual, we assume tt there exists homogeneous bases {a} and {b}
such that

F (a, b) 1 for i j
=0 fori<j.

TEonE 11. F R (,) X R() R (Spin(2n) is strongly non-
singular for all n Z, n 2. Furthermore, the bases [ai} and {b} which make
F s.n.s, are homogeneous elements of R (,).

Proof (induction on n). Inductive Step. Suppose the theorem is true
for n < k. By Lemma 7, this implies that

R () X R() R (Spin (2k 2)

is strongly non-singular. To complete the inductive step we must show that

F" R (Spin (2k 2)) X R (Spin (2 2) R (Spin(2k))

is strongly non.singular.
Let us recall that a basis for R(Spin(2k)) over R(Spin(2k 2)) is

the set
1/2A% 1/2-- --(k--l)x(-) - 1
_ _

x xXk

Let us refer to this basis as {a} where the ordering is as written. These rings
are completely symmetric in the x, x7. Therefore if we take the image of
this basis under

’xx7 for alli,

we will get a second basis {b}. To be explicit

x(kk--2) --1/2+ --1/2-- --1 x(k--1){b} ..., x, 1, -,x -, x,

in the order written. represents the image of A under the action of
Unless otherwise stated A will stand for

k--1The associated to Spin(2k) is x x and the associated to
Spin (2k 2) is ’ -x x_. As in the preous cases, there exists
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unit in R(SpinC(2k 2)), x-1, such that g xk . Therefore, let {b.}
k--1be a new basis, where b b:. xk We will show that

F(a,b.) +/-1 for i =j
=0 for/ <j.

k--1F (a, b:.) A (’a b)/A () A ( a bx )/A () A (a b)/A (),
^! k--1because x . So we have to compute A (fla b)/A (), where A is

alternation over W(Spin(2k)). By the choice of the two bases, we can
see that for almost all i, a b 1. This will imply that for all those i’s,

A (a b)/A (fl) +1.

The only two diagonal terms which give any trouble are the A terms.
Let us recall that

We must now differentiate between two cases.
(i) k 1 is an even integer. Then

,+ A+ and - A-

(ii) k 1 is an odd integer. Then

+= A- and - A+.
In Section 7 we introduced the following formulas"

A+A+ +p_ + p_ + ..., A-A- p_ + p_ + +- p_ + ....
In these relations, determining which sums end with the term -t-1 depends

on whether (k 1) is an even or odd integer. In either case, the terms
++ and --will be of the form 1% m + p4 -t- "".

To conclude the proof that the diagonal is +/-1, we will show that
A (m) A (p-l) is zero. This will imply that the diagonal terms,

F (x/A+, x-l/+) and F (x/2A-, x-l/-),
are equal to 1 since

A x2A+xl+)
A(OA+A+) A(1 + m. + "")] A(fl) + ,A(tm) A(O).

A similar computation shows that A (Ox/A-x-m5-) A (a). (Note" As
we have done previously, the factoring actually takes place in an extension
ring which contains x and in which we can imbed R (_x).)

LEMA 6. A (p_) and A (Ore) for 1 <_ i <_ tc 2 both equal zero.

Proof. Suppose m is a monomial in Z[x
m x x Suppose a +/-a for some i, j. Then m is fixed under
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some in W(Spin(2])). For suppose a a; then let be the element
permuting x, x and fixing the other variables. If a -a., let be the
element permuting x and x71. This has an even number of sign changes and
is therefore in W(Spin(2]c)). Call such a monomial symmetric in (i, j)
(i.e., either a a or a -a). As we have noted before, A (m) 0
if m is "symmetric in (i, j)".
Through an abuse of language, we will call the following m a "monoal".

m is of the form x x, e 1 and 1 j j j k- 1
with the follong derstanding. If j, j,+, then e, W1, e,+ -1,
and no other j, is equal to j, (i.e., we allow terms like x x to appear and we
do not cancel).

k--1 ak.m (x x )(m) is therefore a monomial of the form x’ x
where the 0 a g k 1. (Just note that the can only raise or lower
the exponent by (1).) By the Pigeon Hole principle we have one of two
possibilities.

(1) Each a is different, and the {] a ]} fill the range between zero and

(2) At least two of the a agree, in absolute value, in which case m is
symmetric in some (,j)
Let us write p as p’T p where p is made up of monomials of the first type

and p is made up of monoals of the second type. A (p’) 0 because
each m in p is of type 2. Therefore A (p) A (p).

akm is equal to x’ x where the { a } fill outSince for each m in p,
the range zero to k 1, it follows thatm () for some in W (Spin(2k)).

k--1(Just permute the indices and change signs, until you get x x If, in
the process, you make an odd number of sign changes, just follow the process
by x x and we have added an extra sign change which does not alter the
term .) It follows that for any m in p, A (m) A ( ()) A (),
the plus or minus depending on whether sign is positive or negative. We
will show that p has an even number of terms,

such that fm () with sgn () - 1 and f. () with sgn () 1.
This will imply that A (p) 0, completing the proof.

Let us suppose that m is a monomial in p (i.e., A(m) 0).
m x x, with the previous conditions on the xr Suppose jl j2 and
furthermore suppose that either j jl + 1 or that j jl W 1 but
(We will not consider the case j 1 and e -1.) Then (m) is
symmetric in (j 1, j) if -1, and is symmetric in (jl, j + 1) if
e -1. This would imply A (m) 0 contradicting our assumption.
Therefore we must have jl j2 (implying e -2), or j jl + 1 and

1, 1. (The only exception is that if j 1 we can have e 1,
v2 -1.) Now, if j: j-t- 1, we must have j j. For, ifj j.
(implying e ), we again have symmetry in (j, j + 1) (except in the
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case jl 1 and 1 e2 1, in which case we would get symmetry in (1, 2)).
The same line of reasoning applied to (jl, j.) applies to (js, j4) and we must
have either j3 j4 or j j3 -t- 1 and e8 1, e -1.

Following this line of reasoning we see that m must be a monomial of the
following type. m has an even number of terms (i.e., i 2r), and they come

’_.in "pairs" (i.e., for any 1 _< j

_
r, x2-l .. is of the form xax- or of the

form xax-l, with -1 -1the usual exception regarding xl x ). The first conclusion
of this assertion is that for p, 2r - 1, p is empty and therefore A (tips) 0.
For the case i 2r, we will set up a one-to-one correspondence among the

m.’s in p as previously described. In each case, note that multiplying t by
m. and -, respectively, give images of under elements of W (Spin(2k)) of
opposite sign.

Correspondence 1. Let m be a monomial of the form x x where j is
>_ 2. Let be equal to xj_l x:1 where the rest of the monomial is exactly
the same as the rest of m. (Note" For any possible end for m, we have the
same possibility for ff.) If we take m and add the extra reflection x._l - x
we get . Therefore m (f) where sgn () --1. This sets up
our first correspondence. This case covers all possibilities except monomials
beginning with x x or with - -Xl X2

Correspondence 2 (Monomials beginning with xl x). Suppose m is of
the form

Xl xlx -1
x.+l... (j > 2).

--1Then let be x xlx+l x+ where, as in Case 1, the dots imply, that
otherwise, the corresponding monomials have the same terms. (Note that
m and t yield images of t with "opposite signs".) This will cover all
cases except monimials beginning with xl x-x -1x. For this set use the
following correspondence.

-I -I -Ixxlxl xxlx" (j > 3) *- xxl :xlx’+lxTlXy+I

This will cover all cases except monomials beginning with

--1 --1
Xl Xl X2 X2 X8 X-1.

Following this line of reasoning we can "match up" all monomials beginning
-1 -1 -1with Xl x1, except Xl Xl x2 x2 x x, We will deal with this "exception"

in Case 4.

Correspondence 3 (Monomials beginning with xlxl). We use analogous
correspondences to those used in Case 2, but we substitute -1 -1

Xl x2 in place
of Xl x e.g.,

-1 -1 XT_(a) xl-lx2-1xj xT-I (j >_. 3) - Xl x2 xj_bl

(b) zl x-lx xz x-l (j >_ 4) x-lxlx xlx’+1 z71 etc.
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This will cover all cases except x-xx x7 x+l xTl, which will be
covered in Case 4.

Correspondence 4.
-I -I -I -I -I

Xl X x x2 XrX. Xl X2 X X- X+lX-I.
(Note" In all cases, the corresponding monomials yield images of of "dif-
ferent signs".) For the case A (p_) 0, let us first note that by our pre-
vious arguments, if k 1 is odd, the result is trivial.
To check the proof for p_, where k 1 2r, just note the following.

A (flp_) 0 by the preceding argument.
+

Pk--1 Zre,--+l X
where a is a sum of monomials, in the usual sense, with/ 3 or fewer X S.

Similarly,

where is the same polynomial. (See Section 6.) Furthermore,
+p- p- -F pi’-

Let us also note that in p_ there are only two monomials which appear in
p_. They ure

--i --i --Im xx xx7 x_x--, and m. x x xx7 x_x-_l,
one appearing p+_ and the other in p-_ (depending on whether (k 1)/2
is even or odd).
We now have that

0 A (p) A (/[p+ + p]) A p+) -t-. A (p-)
A (flmi) + A (m) + 2A (fl).

Note that if mi ol (/3) andm o (fl), then sgn (1) sgn (o). There-
fore

0 A (p) 2 sgn ()A () + 2A (.) 2[sgn ()A (fl) - A (.)] 0.

Therefore A (flp+_) A (flp-_) sgn ()A () + A (fla) 0. This
completes the proof that A (flp_) 0.

This completes the proof of the Lemma 6, and as we noted previously, this
implies that F(a, b) 1. Therefore we now know that the diagonal
terms are 1, and we will proceed to show that the terms above the diagonal
are zero.

b. x s < r). ThereforeCase 1 (a x

/ab. x, where -2/c-{-3_< s- r_< -1.

For some l, x is symmetric in. (1, k). Therefore A (a b) 0.
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Case2 (a xk, -(k- 2)

_
s <: 0, ). Therefore#s

equal to

The terms of are of the form x -x_ We then have that a b
is a sum of terms of the form xx+ x-+-. The range of the
absolute value of e exponents are integers between and (2k 3)/2.
By the Pigeon Hole principle we have that each term is symmetric in some
(i, j). This implies A (a b) 0 for Case 2.

Case 3 (a b x, 1 < s < (k 1)) Exactly as in the
preous case, we use the Pigeon Hole principle on terms of the form
2 +(,+)/2 to get A (a b) 0.Xl k

Case 4 (a 12+ b x2-). A (ab) A (A+-). As in the
case of the diagonal element, whether k 1 is even or odd,

A*5- p + p + ....
Therefore by the preous 1emma, A (A+-) 0.
Ts completes the inductive step of the theorem. We must now start our

induction with the case n 2.

Case. G Spin(4). xeR() and two bases for R() over
R (Spin (4)) are

-2(xla {1, 2 (x712), x] (x]2), x}, b {1, x72 (x]2), 2 ), x71}.
The terms in the bracket take on the role of A. Let b b x2 then

F (a, b:.) A (a b)/A ().

Suppose i j; then a b and

F(a b) A ()/A () +1.

Suppose i < j; then each of the six terms above the diagonal is symmetric
in some (r, s) and are therefore zero.

This completes the proof of Theorem 11. Furthermore, as a consequence
of the proof, we get the following additional theorem.

THEOaEM 12. F R() X R() R (Spin (2 2)) is strongly
non-singular for 2k- 2 4.

We remarked at the beginning of this section that

R (Spin(2k + 1) R (Spin(2k))

and that R(Spin(2k)) is generated by 1, A+ over R(Spin(2k + 1)).

THEOnEM 13. F" R(Spin(2k)) X R(Spin(2k)) R(Spin(2k + 1)) is
strongly non-singular.
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Proof. The roots of Spin (2k - 1) are the same as the roots of SO (2k - 1).
They are +/-x,x x.and :i:(x- x.),i j, 1 _< i,j,r k. Let the
Fundamental Weyl Chamber be described by 0 x x then the
postitive roots are x, x x for i > j and x W x for i j. Therefore

is (x +,3x W )/2 and as a representation x x-, an ele-
ment of R ().

Let the set {1, +} be called {a}=, and let {b}= be the set {+, 1}.
F (a, b) A (’a b)/A (). The first thing to note is that A ’) 0,

which implies that the term above the diagonal is zero. Ts follows because

v k--1
X2 Xk

is fixed under p W (Spin(2k 1)) where p is the element permuting x
and x.
To complete the poof we just have to note that A (’A+) A ). This

follows because

with x x , and for any other summand, of A+, is symmetric
in some (i, j).
By the inductive lemma we also have the following"

THEOREM 14. F" R() X R() R(Spin(2k + 1)) is strongly non-
singular.

Remark. For the case G Spin (2k 1) we have

Spin (2k) Spi (2k T 1)

induced from the monomorphic inclusion of SO (2k) in SO (2k 1). This
induces

R (Spin (2k W 1) R (Spin" (2k)).

As in the case of Spi (2k) it is easy to see that

W(Spin(2k + 1)) W(SO(2k W 1)),
and that - ] < R(+)R (Spin (2k + 1)) = Z[x+ p ..., p_ x+

Noticing also that the roots of Spin (2k 1) are the "same" as the roots of
SO (2k W 1) will yield the following theorem.

TEOaM 15. F R (Spin (2k)) X R (Spn (2k)) R (Spin" (2k W 1)
is strongly non-singular.

Proof. Analogous to the case Spin (2k) Spin (2k + 1).

Theorem 16 together with the inductive lemma yields the following con-
cluding theorem.
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THEORV.M 16. F R(+) R(+) -* R (Spin (2k - 1) is strongly
non-singular.

9. Applications
/ks remarked in the beginning of the paper, the main theorem gives another

proof of the famous conjecture of Atiyah-Hirzebruch. The assertion is that

R (H) --, g (G/H)

is onto for suitable compact connected Lie groups H _< G. (See [2] for
notation and a proof of the conjecture for a large class of Lie groups; see [8]
for a general proof where (G) has no torsion.) Theproof of the conjecture,
for the G and H discussed in this paper, will imply that {a(a)} is a basis for
the free abelian group K (G/H), with {a} being one of the dual bases. (See
the main theorem.)

I learned this argument from A. Vasquez in the name of D. Anderson,
though apparently Atiyah and Hirzebruch were aware of the approach even
at the time of [2]. As pointed out in [2] it suffices to consider the case where
H is a maximal torus, T.

COROLLARY. Let G be any of he classical groups considered in this paper.
Then

a" R (T) -, g (G/T)
is onto.

Proof. Let {a} v__ and {b} -- be a pair of dual bases satisfying the condi-
tions of the main theorem (i.e., F (a, b) ). By 8.2 of [3],

(r ch ((a, b), [G/T]) ,
where ch denotes the Chern character and r is the generalized Todd genus of
the Spin-structure on G/T. By [4], (r ch (xy), [G/T]) is an integer for
any x, y K (G/T). Now it is known [2] that K (G/T) is a free abelian group
of rank N. Let

c c K (G!T)

be a basis. Let a(a) n c and a(b) m c. We deduce that
the N N identity matrix is the product of 3 matricies with integer entries,
viz.

n-][, (r ca (c, c), [G/T])]1 and [I m. ]].
Thus they are all invertible matricies. In particular {a(a)} is a basis
for K (G/T).
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