ON GROUPS WITH A QUATERNION SYLOW 2-SUBGROUP

BY
GEORGE GLAUBERMAN

A theorem of Brauer and Suzuki states:

Let G be a group with a generalized quaternion Sylow 2-subgroup S. Then
the center of G/0y (@) s of order 2.

The case in which | S| > 8 has been proved by the theory of ordinary
characters (e.g., in Chapter 12 of [2]). The published proofs of the case in
which | 8| = 8 require the theory of blocks of characters (e.g. [1, pages 321-
324]). In this paper, we prove the latter case without using blocks.

This paper was written during a year’s visit to the University of Oxford
on a National Science Foundation Senior Postdoctoral Fellowship and a
grant from the Science Research Council. We are very grateful to these in-
stitutions for making this visit possible. We also thank P. Martineau and
J. MeLaughlin for correcting a number of errors in the original manuseript.

We shall adapt the proof for the case in which | 8 | > 8, as given in Chapter
12 of [2]. Hence we adopt some of the notation of [2] and add some further
notation.

Assume that G is a counterexample to the theorem of minimal order.
Since we assume the case in which | S| > 8, we will suppose that | S| = 8.
Let « be an element of order fourin 8. Let X = (z), T = (&*), C* = Ce(X),
N* = No(X), and H* = 0,(C*).

Let A™ be the subset C* — TH™ of C*. Let B be the set of all conjugates of
elements of A* in G.

Denote the principal characters of C* and G by 1¢xand 1¢.

(1) (a) N* = SH*and C* = XH* = X X H*,
(b) A™ s disjoint from its conjugates in G and N* = Ng(A*).

Proof. These results are analogues of Lemmas 12.1.2 and 12.1.3 of [2].
Note that XH* = X X H* because H* centralizes X and intersects it in the
identity group.

By (la), TH* < C* and | C*/TH* | = 2.

Let A be the unique linear character of C* with kernel TH™. Let v and X
be the characters of N* induced by 1¢« and A, and let ¢ = 1o — X. Let  be
the generalized character of G induced by ¢.

(2 (a) &Hv=4;
(b) £(1) = Oand {(y) = 0jor every y e N* — A™;
(¢) there exist distinct nonprincipal trreductble characters x1, Xz, Xs
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of G and signs ¢; = +1 (¢ = 1, 2, 3) such that
1= 1l¢+ Dicic £iXi -

Proof. These results are analogues of Lemmas 12.1.4 and 12.1.5 of [2].
Note that X is not an irreducible character of N*, but is the sum of two distinct
linear characters of N*.

(3) (a8) #(y) =1+ 2 exi(y) =0 ifyeG— B;
(b) ¢(y) =4, ifyed®;
() n(y) =14+ 2 exi(y) =4 ifyeB;
(d) for every inwolution u of G,

1+ 2 ei(xi(w)’/xi(1) = 0.

Note. Here and in later results, in a summation involving an index <, we
will take ¢ to run over the values 1, 2, 3.

Proof. (a) Thisis obvious from (2b), since » is induced by ¢.
(b) By the definition of an induced character,

t(y) = Ia(y) — My) = 2(Lex(y) — M¥)) = 4.

(¢) We can assume that y e A*. By (b) and (1b), 7(y) = ¢(y) = 4.

(d) By the definitions of A* and B, every element of B is of even order.
Hence no element of B is the product of two involutions of G. (This is
Lemma 12.1.7 of [2], and its proof does not require any restriction on the
order of S.) This yields (d), which is the analogue of Lemma 12.1.8 of [2].

(4) (a) Fori=1,2,3,a* does not lie in the kernel of x: ;
(b) all the elements of order four in G are conjugate.

Proof. Let K = 0y(G). Since G is a minimal counterexample to the
theorem for the case in which | S| = 8, | Z(G/K)| = 2.

Now, 0,(G/K) = K/K = 1, and 8 is isomorphic to a Sylow 2-subgroup
of G/K. If K 5 1,then | G/K | < | @ | and, consequently,

2 = | Z(G/K)/0»(G/K)| = | Z(G/K)|.

Hence K = 1, that is, G is “core-free” in the sense of Brauer [1]. So,
| Z(G)| = | Z(G/K)| # 2. Therefore, G satisfies the hypothesis for Brauer’s
proof, and, as Brauer shows (pages 321-322 of [1]), (a) and (b) are easy to
obtain. (If (b) fails, then Ng(P)/Cq(P) is a 2-group for every P of S. So
then G has a normal 2-complement and | Z(G)| = | Z(G/K)| = | Z(8)| =
2, by a theorem of Frobenius [2, page 253]. If (a) fails, for some ¢, let G* be
the kernel of x;. Then

G*c G and 0x(G*) S 0,(G) = 1.

By (b), either (%) or S is a Sylow 2-subgroup of G*. In either case, we find
that (&) = Z(G™) and then that (z*) = Z(@)).
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We introduce some further notation. Let
2 = x:(1), i = xi(a?), 2i=ai—ys, fori=1,2 3.
Since 2* has order two, the numbers z; , y; , 2; are rational integers.
5) (a) z>0 fori=1,2,3;
(b) 14 X eiawi= D ei2i = 2, e(23/x) = 0.

Proof. (a) This follows from (4a).
(b) From the definitions of 4* and B, we note that neither of them con-
tains the identity element or an involution. Hence, by (3a),

T+ 2em=14+ 2 ex(l) =0=1+ 2 eixi(z) =14 2 9.

Therefore, D, &;2; = 0.
For each 7,

vi/w: = (2 — @)’ /wi = (2ifm:) — 225 + @
Thus (3d) yields
0 =14 2 eti/e) =14+ 2 eldi/a) — 20 eszi + O eias
= 2 e/ ).
(6) For every generalized character x of G,
(Mo = (/1 H* ) Luers x(20).

Proof. By (3b), ¢(y) = 4 for every y e A*. Since 9 is induced from ¢,
the Frobenius Reciprocity Theorem and (2b) yield

(% Me = (X |asr &) wx
= (/IN*]) Zear 4x(v)
= (1/|N*]) Zuems(dx(2u) + 4x(z7)).

Now, |N*| = 8 |H*|. Take yeS — (z). Then y normalizes H* and
¢’ = z'. Hence y maps the set 2H™ onto the set 2 *H* by conjugation.
Thus

Zuea* X(x.—l'u) = ZueH* X((x_lu)u) = Zueﬂ* X(W);
(1) e = (1/8|H*|) 2uems 8x(au) = (1/| H*|) Luems x(au).

(7) Fori=1,2,3,
(a) the values of x; are rational integers;
(b) xi(au) = x:(xu™) for every u e H*.

Proof. Recall that the values of the characters of G are algebraic integers
in the cyclotomic field, K, of the | G |-th roots of unity.

(a) Suppose that 1 < 7 < 3 and the values of x; are not rational integers.
We may assume that ¢ = 1. Then some value of x; is irrational. Since K
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is a normal extension of the rational field, there exists an automorphism o of
K that moves some value of x1 . Since « permutes the irreducible characters
of G by the definition

x(y) = (x(®))° yeG,
x1 is an irreducible character of G distinct from x; . As 9 is rational-valued,

(Xix,‘ﬂ)o = (Xl;’?)o = &.

By (2¢), x1' is x; for some j such that ¢, = &. We may and will assume
that j = 2.
Since x1(2*) is rational,

Y2 = XZ($2) = ()(1(372))m = Xl(xz) =Y.
Similarly, #, = 1. Thusz = z;. By (5b),
0 =2e121 + a2 = 2e1(2i/m) + es(23/2s).
Hence z; = —2¢; & 2; and so
0 = 2e1(21/my) + 4es(2i/zs).
By (5a), 21 7 0,800 = (2&1/21) + (4es/x3) and
& X3 = —26 21 .

But, by (5b), 1 + 2& 21 + &3 = 0, a contradiction.

(b) By (la), xu = ux for every u e H *.  Let 8 be an automorphism of K
that fixes a primitive fourth root of unity and takes every root of unity of
odd order into its inverse. Then, by (a),

xi(zu) = (xi(zw))? = x:(au™).
(8) Suppose 1 < i < 3. Then xi(z) and (i, 1) ¢ are odd.
Proof. Letx = xi. By (6),

ei=(6ne= 1/|H*|) Zuers x(au).

Let I be a subset of H* — {1} that contains precisely one element from each
pair {u, u™'} of elements of H* — {1}. By (7), x is integer-valued and

X(x) + 2 ZMI X(xu) = X(x) + Zue[ (X(w) + X(xu*l))
= 2uems x(zu) = | H*| &;.

Since | H* | and &; are odd, x(z) is odd.
Applying (6) and (7) again, we have

lH*i (X2, 7)e = Zueﬂ* Xz(w) = Zmn* x(zu) = 8,'|H*| =1

(modulo 2).
So (%, 1) ¢ is odd.

(9) Supposel <7< 3. Then xi(x) = €.
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Proof. Suppose xi(x) = ¢;. Let x = xi. By (7a), the values of x are
rational integers. By (8), x(x) is odd. Hence | x(z)| > 1l or x(z) = —&;
In either case, x(2)® > e x(z). Similarly, x(y)® > & x(y) for all y eG.

Hence, by (6),
(xz’ "I)G = <l/l H* I) Zucﬂ* X(W)2
> (1/| H* | Zuen* & x(wu)

= &i(x,Me =1
By (8)’ (Xz, 77)0 Z 3'
Now by (4a), 2° is not in the kernel of x; since 2’ is in the derived group of
S, x(1) >1. By (8),n(y) =4ifyeBand n(y) = 0if yeG@ — B. As
(x, 1¢) ¢ = 0, an argument like that of the previous paragraph yields

Zuea—s X(y)2 > Zvea—n (—e)x(y) = Zma e x(y)
= 3) Zueeix@ay™) = (1G1/4)(e&sx, Mo = (|G/4).

Hence
1G] = Zuwesx®)’ + Zusx®)’> (|G 1/4) + 3) Zueax®)’ny™
=(@1/4) + (GI/HKme> 1G],

a contradiction.

(10) Supposel <7< 3. Then

(a) z;1s divistble by 4;

(b) ;s odd;

(¢) f 2; 18 divisible by 8, then x; — &; is divisible by 4.

Proof. Let x = x:. Let 15 be the principal character of 8 and let ¢ be
the unique irreducible character of S of degree two. Then

¥(1) =2, Y(2*) = —2, and ¢(y) =0 forallyeS — ().
By (4b) and (9), x(y) = e;iforally e S — (2*). Since (x |s, ¥) sis an integer,
0=38(x|s¥)s = 2uesx(N¥(™) = 2x(1) — 2x(a")

= 2x; — 2y; = 22; (modulo 8).
This proves (a). Similarly,

0= 8(x IS’ lg)s = Zues x(y) = & + yi + 6
= 2r; — 2; — 2&; = 2(x; — &) — 2; (modulo 8).

By (a), 4 divides z; and therefore divides 2(z; — €;). So #; — &;is even, and
z; is odd. Finally, suppose 8 divides z;. Then 8 divides 2(x; — &;), which
yields (¢).

(11) There exists © such that 1 < © < 3, 2z; ts divisible by 8, and z; + &;
18 diwistble by 4.
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Proof. Let 2° be the highest power of 2 that divides every z;. By (10),
k> 2 Letw; = 2/2"fori =1,2,3. Then some w; is odd, say, ws. By

(5b),
2 el /m) =0 = 2 ei(wi/),
S0
0= ez zwi + &1 2 wWs + & 1 T2 Ws .
By (10), each z; is odd. As 0 is not a sum of three odd numbers, w; is even
for some 1, say, for ¢ = 1. Tt follows that w, is odd. Since z; = 2*w; and
k > 2, z is divisible by 8.
From the above equation,

0= —anuwl = ot aW + S0 LW = 60l + &0
= g g a(eas + e222) (modulo 4).
Therefore 4 divides & 25 + & 2. By (5),1 4+ 2 &;2; = 0. Hence
O=gu+ a=—(14&an) = —a(en + &) (modulo 4),

which yields that 4 divides 21 + & .
Since (10) and (11) contradict one another, this completes the proof of the
theorem for the case in which | S| = 8.
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