
BORDISM J’-HOMOMORPHISMS

1. Introduction
In these notes we introduce various generalizations of the bordism J-homo-

morphisms of [3] and [6]. We compute ImJ in a few of the easier cases, and
discuss the geometrical implications of our results. For all notation, see [7].

In 2, we set up a diagram of the form

],(MG),
/J

(MG),(G/G+)

for each triple of stable subgroups G _< G. < G of Top. The case G F,
homotopy equivalences of the sphere, may often be incorporated. Both
’,(G/G) and (MG) ,(G/G+) admit geometrical interpretations, and we
also discuss the J-homomorphisms from this angle. A host of examples is
given in 3.
We set up in 4 a homological formula. This eases our calculations with the

MU, J-homomorphisms, the cases we shall muinly deal with. Rationally,
the sums are easy, so we do them in 5. Their simplicity notwithstanding,
they do in many cases give good insight into the structure of ImJ.
Thus fortified, in 6 and 7 we compute completely the images of

J:r,(SO/U) -, MU, and J:MU,(SO/U) --> MU, In neither case is the
image a direct summand. In 8, we explain our results in terms of unitary
structures on manifolds.
The development of the ideas herein was much influenced by many enjoya-

ble discussions with Bob Switzer and Reg Wood. Idar Hansen was also very
helpful.

2. Constructions

Let us first consider a triple of stable subgroups G _< G. < G of the or-
thogonal group O. We shall later, with due care, extend many of our con-
structions to include the cases PL, Top and F.
Choose integers e and e such that G(e n) and G(n) act on R (e.g. if

G UandGj Spthenc 4ande 2). Then as explained in [6],
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the null homotopic composition

G(. n)/G(n) BG(n) ---, BG(c n)

gives rise to a map of Thorn complexes

Se" ^ G(c n)/G(n)+ MG(n).

Letting n --+ and adiointing, this may be written as

j: G/G+ .---> 2"MG( ).

Then j,:r,(GdG) (MG), is our relative J-homomorphism: if G 0
and G 1 it reduces to the classical case.
Now consider the commutative diagram

G,IG+ J. "MG( --
fl’o(Ma,( ) A G/O+) p

Here f is ghe eomposition

 4G;+ c__, a (S ^ ) ^
(if G 1 this second inclusion is the identiy) whilst f is induced by the
smash product of the inclusion M( ) < MG( with the map j.
arises from the sum operation on G-bundles; we shall resgrieg ourselves go
considering groups for wtfieh this operations exists.

Applying the funetor -,, we arrive at

J (MG)
/

,.

As an alternative approach for those suspicious of infinite loop spaces, this
diagram may be induced from a corresponding diagram of spectra.

Furthermore, note that

(MG) ,(G,/G+) (MG) ,(G/G)$(MG) ,
and r,(G/G) maps into the summand (MG),(G/G). Also, J on the
summand (MG), is the standard homomorphism induced by G < G.



292 Nm RV

Thus we have the diagram

r, G/G

(2.1) (MG) ,(G:/G) J ", (MG) ,
A //J

(MG,),(G/G+)
As indicated, we shall simply write J for all our homomorphisms, and trust

the context makes clear the meaning in each case. All the author’s attempts
to incorporate the G, G and G labels have failed to avoid hopelessly com-
plex notation.
Now let us interpret our groups and homomorphisms geometrically. Sup-

pose f" S G/G represents a class in v(G/G). Then f is equivalent to a

G-structure on the stable normal G-bundle of S, which is trivial. A homo-
topy of f-- g in turn yields a tube with G structure on its stable normal
G-bundle which restricts to the two given structures at its ends. So
,(G/G) may be thought of as the h-bordism group of G-spheres with G.-
structure imposed.
Then J’’,(G/G) (MG), simply considers such spheres as G.-mani-

folds" the h-bordism relation is compatible with the usual bordism relation in
(MG),
Next, define a (G ,G’G) manifold as one which admits independent G

and G. structures which agree as G structures. Such manifolds can be or-
ganized into a (G ,G.:G)-bordism group, which we shall briefly label
(,a.o:(o. Given a (G,G:G)-munifold M’, let and . respectively
represent the G and G. stable normal bundles. Then considered as a G-
bundle, the (virtual) G-bundle is trivial. So we have a map
f:M -- G/G.Similarly, given uny G manifold N with stable normal bundle
map g:N --> G/G, g represents a G-bundle ,. over N which is trivial as
G-bundle. Thus w and v , define a (G ,G." G) structure on N.

It is routine to check that the two functions so defined respect each bordism
relation and give rise to mutually inverse homomorphisms between
and (MG),(G/G+). This yields our geometrical description of the latter
group. Similar observations have been made by Stong [9].
Note that the summand (MG),(G/G) corresponds to the subgroup of

2(,a,v’:o) consisting of those classes representable by a manifold G-bordant
to zero. In either case, the J-homomorphism tukes a (G ,G" G)-manifold
and considers its class in (MG), again the bordism relations are compatible.
The proof that these descriptions agree with our earlier homotopy construc-

tions is a simple exercise in understanding the Pontrjagin-Thom construction.
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Thus Im J:,(G/G) ---, (MG), consists of those G-bordism classes
representable by G-spheres. ImJ is a subgroup.

Similarly, Im J: (MGk) ,(G/G+) .--> (MG) ,} consists of those G-bordism
classes representable by a G.-manifold M which can be given a new Gk-structure
so as to agree with the original up to G. ImJ is a subring. Note that if
G G then J is epic.
Im {J: (MG),(GJG) (MG),} is the subring of the above inwhich each
M is G-bordant to zero when invested with its new G-structure. Note
that if Gk G, then ImJ is an ideal in (MG) ,.

Finally, let us mention the exotic cases. Since fibre homotopically trivial
bundles have trivial Thom complexes, if G F we still have

j:F/G+ ----> 2MG( ).

Further, both Top and PL bundles can be invested with a sum operation, so
either is admissible as G. Hence diagram (2.1) also exists for these choices:
the extra problems are those of interpretation, and differ from case to case.
Since many of our examples in 3 are of this nature, we shall discuss each one
there. Not only do PL, Top and F give rise to some of the most interesting
examples of J, but also they are amongst the most difficult to compute.

3. Some examples
(3.1) G F, G G PL or Top. r,(F/PL) represents the bordism

group of almost framed PL-manifolds, and is well known to be periodic of
order 4 (see [11]). J:r,(F/PL) MPL, simply inserts such classes into
the PL bordism ring, and Im J has recently been implicitly computed by
Brumfiel, Madsen and Milgram [1]. It consists of a Z. in dimensions 4n 2,
n , 2, and in dimensions 4n, n > 1.
r,(F/Top) represents the bordism group of almost framed topological

manifolds, and has the same structure as r,(F/PL). Interpreting J in low
dimensions needs care, since v,(2 Top( )) is converted to the topological
bordism ring by transversality. However, the results for imJ coincide with
the PL case [1].
MPL,(F/PL+) is, according to Sullivan, the correct setting in which to

regard surgery problems [11]. A representative f:M" ---> F/PL (or surgery
problem) gives rise to a normal map of PL manifolds L" --+ M", and
J:MPL,(F/PL+) ----> MPL, sends [f]p to [L"]p. Note f may also be
thought of as giving rise to a manifold with two distinct PL structures which
agree as spherical fibrations. In fact

Im {J:MPL,(F/PL) ----> MPL,}

consists of the ideal of those PL bordism classes representable by a PL mani-
fold L" admitting a degree 1 normal map to a PL boundary M.

Similar remarks, made with care, hold in the topological case.
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(3.2) G O, G- G 1. In the diagram

,(O)

N S,

S,(O)

the upper J is the classical J homomorphism, and the lower is the standard
stable J-homomorphism. Stable J has been discussed, for example, in [8],
and is shown to be epic on the 2-primary component. It is conjectured, with
supporting evidence, that this is true for all primes p. If this is correct it
means that each framed bordism class contains a manifold reframable to zero.
S,(O+) is the biframed bordism ring.

(3.3) G O, G. G SO. This example is at the other end of the
smooth bordism scale from (3.2). Corresponding to the stable J of (3.2) is
J: MSO,(O/SO) -+ MSO,. This j has as image those oriented bordism
classes representable by a manifold which can be re-oriented so as to be an
oriented boundary. Clearly J is zero. Such a basic difference between (3.2)
and (3.3) prompts the question as to what happens in between these two
extreme cases, and attempting to give an answer will be the main function of
the following sections.

(3.4) G F, G G O. r,(F/O) represents the bordism ring of
almost framed smooth manifolds. MO,(F/O+) is the bordism ring of mani-
folds with distinct smooth structures which agree up to fibre homotopy
equivalence. More recognisably, f:M -+ F/O gives rise to a smooth normal
map of degree 1, say fr:N’ -+ M’, i.e. a smooth surgery problem.
Thus Im {J:MO,(F/O) -+ MO,} is the ideal of those smooth bordism

classes representable by a manifold N" which admits a smooth, normal map
fr into a smooth boundary M".

(3.5) LM. ImJ=0.

Proof. Let us compute a Stiefel-Whitney number of such an N". For
o, e HZ.I BO),

(y) ([t1, .(.))
where vN is the stable normal bundle of N and [N’] is the fundamental Z class.
Then we have f’,[N’] [M’] and f’*vN vM SO

,(N’) (IN’], oaa(f’*VM) ) ([M’], 0a(VM) ) o,(M’) O.

So N is itself a boundary, as sought, r-1

Thus both J’s are zero in
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(3.6) G U.
(i) G U, G F.

" MO,.

MO,(F/O)

We have the diagram

,(F/U)

MU,

MU,(F/U)
Neither of the J-homomorphisms is zero, since they factor through others
known to be non-trivial (see (ii) below). However, computation seems most
awkward, v,(F/U) can be described as the bordism group of almost framed
U-manifolds, whilst MU,(F/U+) represents surgery problems of U-manifolds.

(ii) G 0 (or SO), G U, G 1 or U. These choices furnish many
of our computable cases. We have

 r,(SO/U)

S,( /U) j
.%, MU,.

MU,(SO/U)
,(SO/U) is the h-bordism group of oriented smooth spheres with U structure,
and ImJ measures which U-bordism classes are so representable. It trans-
pires that [CP]v e ImJ, so J is not zero.
S,(SO/U+) is the bordism group of (framed, U:SO)-manifolds, whilst

MU,(SO/U+) is the bordism ring of oriented smooth manifolds with two dis-
tinct U-structures. Thus Im{J:MU,(SO/U) MU,} is the ideal of
bordism classes representable by a U-manifold which can be given a second
U-structure so as to be U bordant to zero. It is this J-map in particular which
falls midway between (3’.2) and (3.3). If J is epic (as seems likely in the
case (3.2))it means that in some sense the underlying manifolds are of
minor importance in MU, whilst the U-structures capture most of the in-
formation. If ImJ is small, as in the oriented case, then the converse is true.
In fact, ImJ turns out to be an interesting proper ideal, as explained in 7.
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(3.7) G Sp; G and G as in (3.6). We have

r,(SO/Sp)

MS.,(SO/Sp)
as our main sources of interest. The upper J was investigated in [6], and
turned out to have image an interesting Z-summand. The lower ImJ is
more mysterious, being the ideal of those Sp bordism classes represented by a
manifold which can be given a new Sp structure so as to be an Sp-boundary.
Note that in all such cases it is not necessarily sufficient to choose some

G-manifold representing an element of MG, and check whether it admits a
second and bounding G-structure. Even though it does not, some other G
bordant manifold might admit such a change, whence the bordism class will
still be in ImJ.

4. A homology formula
In this section we derive a formula relating to

J"MU,( SO/ U) MU,
(and implicitly to J’r,(SO/U) MU,) which will be vital for our subse-
quent sums.
For any x e MU(SO/U), choose N sufficiently large such that x is in the

image of MU(SO(2N)/U(N)). We have the Thorn complex diagram

Sv/k SO(2N)/U(N)+ .M(i) MU(N)

SO(2N)/U(N) BU(N).

Then as explained in 2, J(x) M(i),(g (R) x), where g is the canonical
generator of MU(S) and

t:MU+(MU(N) --, MU
is induced by the product in lYIU.
Now let H, denote the integral homology functor, and write _h for the asso-

ciated hurewicz homomorphism. In our case,

h_’MU,( SO(2N)/U(N)+) -- H,(MU) (R)H,( SO(2N)/U(N)+).

Remember also that

H,(BU+) Z[bl, b.., ...] and H,(lYIU) Z[b b, ...],
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with ’b b the accompanying (multiplicative) Thorn isomorphism.
Then we have

(4.1) PaOOSTON. h_J(x) ,(1 (R) -i,)h_(x) in H(MU).

Proof. Consider the commutative diagram

MU,(S2N /k SO(2N)/U(N)+) M(i), MU,(MU(N))

H,(MU) (R)H,(MU(N))H,(MU) (R) H,(S2r/ SO(2N)/U(N)+ I(R)M(0,
Then _h(g. (R)x) b (R)h (R)d,, where b ranges over all products of
the b’s in dimensions <_/, h2 is the usual generator for H.(SN), and the
d’s are certain elements in H-I,I(SO(2N)/U(N) +)" so

h_M(i),(g (R)x) b’,, (R)M(i),(h2 (R)d,).

But in homology, .M(i),(h (R)d,) i, d,, since there is essentially a
unique Thom class.
Thus

h_M(i),(g (R)x) b @-i, d
(1 (R)-i,) b (R)d

1
Finally,

h_(Jx) h_M(i),(g2 (R)x)

#, h_M(i) ,(g. @x)

,((R)-’i,)_h(x).

In fact, if E denotes KU or MU the above diagram still exists, and we might
compute a formula for e_J(x) e Ek(MU). However, the non-uniqueness of
the Thorn class in these cases makes the results far less easy to work with.
We could also arrive at (4,1) by geometrical considerations. For given that

x is represented by f:M -- SO(2N)/U(N), computing h_J(x) amounts to
finding the chern numbers of M equipped with the stable normal bundle
M i, . This method is equally simple to the above.

Since h_’MU, -+ H,(MU) is well understood (and monic), we have now
reduced our task to evaluating _h on MU,(SO/U+) (and ,(S0/U+)), and
calculating i," H,(SO/U) -- H,(BU)

5. Rational calculations

Before getting embroiled in the precise details of our computations, it is
both easy and illuminating to tensor various of our problems with the ra-
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tionals Q.
cases.

Let us first consider

Indeed, these are the best results we are able to obtain in certain

,,,(so/u) (R)Q

s,(zo/u)(R)Q

[

(R)1

J(R)l
MU,@Q.

j(R)l//
//

In the light of (4.1), to compute the lower map wemust know how i,(R) 1:
H,( SO/U) (R)Q -- H,(BU) @Q works.

From Cartan [2] we learn the following:

(5.1) THEOREM. i*@ 1 :H*(BU) @Q H*(SO/U) @Q is epic, and
H*( SO/ U+) is polynomial over Z, generated by classes y+:

(5.2) COROLLARY. MU,(SO/U+) --- MU, (R)H,(S0/U+), which is
also true rationally.

Proof. The associated Atiyah-ttirzebruch-Whitehead spectral sequence
collapses.

(5.3) COROLLARY. i,:H,(SO/U) ---* H,(BU) is monic. Rationally
Ira(i, @1) is the polynomial subalgebra of H,(BU) generated by {bl b
b,,+ ...}. We shall write this as [b b b+ ...].

Regard the commutative diagram

_h@l
r,(SO/U)(R)Q S,(SO/U)(R)Q H,(SO/U)(R)Q

J H,(MU)@H,(BU)(R)Q

(.,(R) I) (I(R)-:(R) 1)

MU,@Q, _h(R)l
H,(MU) @Q

where each of the hurewicz homomorphisms is well known to be a rational
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isomorphism. So to compute Im(J@ 1), it suffices to know

<
(5.4) PROOSON. We can choose generators {x x x,, ...} for

MU, such that
Im {J(R)I’MU,(SO/U)(R)Q ---, MU, (R)Q}

is the ideal (xx xa x,,+ ...).

Proof. By (5.3),

Im(,(R)l)(l(R)i,-@l) Q[b b b, ](R)Q[ ,b

(b, b, ..., b+x,.-.) <:l H,(MU)(R)Q.

Then choosing, for example, Cohen’s generators for MU, (see Stong [10])
yields our result.

(5.5) CoaoY. Im{J(R)l’S,(SO/U)(R)Q MU, (R)Q} is the sub-
algebra ([Xl, x, x, ...].

(5.6) Coao,xRv. Im {J(R)I:r,(SO/U)(R)Q---* MU, (R)Q} isasubgroup
Q in each d,mension 2, 6 (8) with generators x+x, x+a rood decamposables.

Proof. We have the commutative diagram

r,(SO/U) (R)Q
i,(R)1

H,(SO/U)(R)Q i,(R)i H,(BU)(R)Q.

v,(BU)(R)Q is Q in even dimensions, and i, (R) 1 is an isomorphism in dimen-
sions--2,6(8). Also, _h@l maps the generator of v.(BU)@Q into
p,, @ 1 e H,,(BU) (R)Q, where p is the n-th primitive b(0 0a) and is dual to c..

p. (R)1 (-1)’nb. (R)1

mod decomposables, so applying (_h(R) 1)- into MU,, we get our result.
Let us now briefly mention some symplectic cases. Firstly, observe that

the Sp analogue to (4.1) still holds good, and for x e MSp(SO/Sp),

bJ(x) ,(1 (R)q-i,)b(x) in H(MSp).
This time

i’SO/Sp ---, BSp, ’H,(MSp) H,(BSp+)

and is induced by the product in MSp.
Now r,(SO/Sp) is 2-primary (see [6]), and CO/Sp is simply connected.

Thus H,( SO/Sp) (R)Q O, so we have S,( SO/Sp) @Q 0 also. Further,



h_(R)I:MSp,(SO/Sp)(R)Q H,(MSp)(R)H,(SO/Sp)(R)Q

whence MSp,(SO/Sp) (R)Q 0.
We deduce

(5.7) POPOSITON. Both J-homomorphisms

S,(SO/Sp)

J

// MSp,

MSp,(SO/Sp)/J
have images contained in TorsMSp,.

In a way this is a surprise. It means that MSp, does not sit pleasantly
between S, and MSO, for these purposes in the same way that MU, does.
Maybe MSp, is such a problem because Sp-manifolds admit so few alterna-
tive Sp structures.

5. J:,SO/U ----) MU,

In this section we determine the image of the above J-homomorphism. We
know already from (5.6) that it consists of a copy of Z in each dimension
2, 6 (8). The only problem is: does ImJ constitute a direct summand?
By virtue of (4.1), we wish to evaluate

r,(SO/V) H,(SO/U) ---* H,(BU).
h i*

Now there is the commutative diagram

r(SO/V) i* (BU)

H(BU)H(SO/U) i,

where r.j(BU) Z on zj, say, and v+I(BU) O.

(6.1) LEMMA. 4k+2(S0/U) Z, and denoting the generator by a.j+

then i,a4+ 2z4j+1, i,a4i+8 z+ describes completely Imi, < r,(BU).

Proof. Consider thehomotopy exact sequence of SO/U

(6.2) COROLLARY. _h ImJ Z on 2(4j)!p4.+, in Hs+,(MU) and Z on
(4j T 2)!p41+ in
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h_Jai+l -li,h_a41+l _h(2zi+1) 2(4j)1

whilst h_Jai+8 -(4j -t- 2)!P’i+8 similarly. []

We now have to test the corresponding bordism classes for divisibility in
MU,. The standard procedure is to check the KU hurewicz images in
KU,(MU). By courtesy of the Hattori-Stong theorem (see, e.g. [4])
J(ai+) is divisible by an integer n iff _Jai+ is also. In order to evaluate
_ku_ ImJ < KU,(MU), we shall prove a modified version of (4.1).

Let f: Si+ SO/U represent a+l. Write i+ for S’+ invested with
its non-trivial U-structure, so that v is induced by i.f: Si+ BU. Then

Also, there is a standard orientation class tve KU(MU) as described by
Atiyah, Bott and Shapiro. This gives rise to a Thorn isomorphism
b KU,(MU) -KU, BU+)

(6.3) THEOREM. _1 Ja21+l -l(i, _ai+l " td( $+)z2i+1) in
KUi+(MU) where d denotes he Todd genus.

Proof. Consider the diagram of Thom complexes

S,,+i+ c M ,) S’ /k S"+ M(,) MU(n

+ i.f
B U(n).

Here c collapses S"+i+ onto the Thom complex of the normal bundle of the
embedded sphere. Write 9 and for the respective generators of KU(S).
and KU(SO. Then by definition

_u_(Ja21/l) M(), c, 2n/4j/2 --1(y$ 1(C$ ff2n-l-4j/2))

where bx’KU,+2,(S2’ ^ S"+2) KU,(S"+2) is the Thorn isomorphism
induced by M( v) *tv e KU2(S2’*

^ S’+2).
Now c, g4+2 g2 @ g+2, whilst

M y2.@1+2 2,@ 1
for some integer

--4i+2Since c’M(
Thus

,(c, g’+2) g.+ n (4+

In fact this is the KU orientation class of ’+, so we have

and

as sought. []
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(6.4) COROLLARY.

_js+ -{t(qs+s)z+ + 2_(z4+)

_Js+ -It(/)/ / _(/)I
Proof.. Combine (6.1) and (6.3).
So now we are reduced to evaluating t(4#+s) and describing

_:,(u) --, KU,().
({}.5) LEMMA.

td(+) 0 for j > 0

in KUs+.(MU),

in KUs’+(MU).

]or

Proof. The only dimension 4j W 2 in which the Todd polynomial in
H*(BU) (R)Q contains the term c’+ is when j 0. In that case, the coeffi-
cient is 1/2, and

td() (-0/2, h_aQ-- (-c/2,-2b) 1. [

Finally, we need

(6.6) LEMMA. _U(Z’+1) is indivisible in KUai+2(BU).

Proof. Write _kU(z+) z+-’’f, where eZ and {}
denotes the usual basis for KU,(BU) dual to the Atiyah-Chern classes

e KU.".(BU). Then

I Z4i
_2+I Z2i+I, ,)=

SO 1 1 and .kU(z2i+1) is indivisible. El

(6.7) COROLLARY. Jaai+a is indivisible in MUs+
Proof. From (6.4), (6.5) and (6.6), k_Ja+ b-k_(z+) is indivisi-

ble. El

6.8) CoaoxaY.
iS indivisible.

Ja4+l is divisible by 2 in MUst+2, except when j O.

Proof. From (6.4) and (6.5),

_u_Ja+x 2b-l_u_(zi+) when j > 0,
whilst k_uJa b-(z + 2_/cu_(z)). Then apply (6.6). El

Thus our final result is that ImJ is a direct summand Z in dimensions 2,
8j -t- 6, and is a Z divisible by 2 in dimensions 8j -t- 2, j > 0. We could
with some trouble express the generators of ImJ in terms of MU, this seems
both complicated and unrewarding. The philosophy should be that these
U-spheres represent simple and natural bordism classes in their own right.
As a tail-piece, let us remark that from the relation between MSU, and

MU, (see, e.g. [10]), we can deduce

Im J" ,(SO/SU) ---, MSU,}
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is also a Z direct summand in dimensions 8j -b 6, and a Z divisible by 2 in di-
mensions 8j + 2 (r.(SO/SU) 0).

7. J’MU,(SO/U) ---, MU,

In this section we determine the image of the above J-homomorphism. We
know already from (5.4) that we cn choose generators

{x, x., x, ...}
for MU, such that ImJ is a subideal of (x, xa, x+, ).

Before refining (5.4) further, we need to establish a hold on MU,(SO/U).
The following theorem is due to Floyd and Stong [private communication].

(7.1) TIOllVi. Let f:BU ----> SO/U denote the lift of the classifying map
of . Then f, :MU,(BU) MU,(SO/U) is epic.

Proof. Recall from (5.1) how i*’H*(BU) ---> H*(SO/U) works. With
the same notation

f*y.+ *’* 1/2c+(i" :) in H+(BU)! C2i+l

But c( :) c().c(:)-, where c is the total chern class. So

C(" ) (]. -" el "- C2 - ")(1 el "- C2 )--1
1+2c+2c2+ +2c+

mod decomposables. Therefore c+(i" :) 2c2+ and f*y2+ c2+1
both mod decomposables. Thus f* is monic onto a certain direct summand of
H*(BU). Thus

f, g,(sv) ---, H,(SO/U)

is epic. But MU,(BU) and MU,(SO/U) are free over MU, (see (5.2)), so

f, "MU,(BU) -- MU,(SO/U)is epic also.

(7.2) COIOLLXlV. Le bfeMU2(BU) be he usual generator (see [7]),
and write cp e MU2(BU) for he class [CP ---, BU]u-[CP]u. Then MU,
(SO/U) is generated as an algebra over MU, either by he elements {f, bf} or
by he elements {f, cp}.

It is purely a matter of convenience which generating set we choose, and
we shall work with the f, cp’s because they allow easier algebraic manipula-
tion and admit better geometric interpretation. Let us relabel f, cp as dp.

So we have

(7.3) COIOLLIV. ImJ Jdpl Jdp2 Jdp ...) as an ideal in
MU,

(7.4) LEMM. In H(MU),
h_(Jdp) {(_b’)-(’)-}- (_b’)Z-
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where

and

in H,(BU).

b 1 +b+ +b+

Proof. Following (4.1),

h_ Jdpi) ,(1 (R)-l_h(i, dpi) ),
so we must first evaluate

h_(i, dp) e H,(MU) (R)H,(BU).

Well, h_(cp) _-.1 (_b’)7-7(R)b, (see [7]), whence

h(i, dp) h(i, f, cp) b_’ 7.’-[ .-1t-l( )- (R)i,f,b (_b’)

But i.f:BU ---, BU classifies f I:, so i, f,(,_b) (_b)()-1. Therefore

h_(i, dp) -1 (_b’)7--:(R){_b()-} (_b’)7-
p.,( 1 (R)-’h(i, dp,) ’ -’-’,-, (_b’),_, _,, )-’l,- (b’)

{(b’)"(’)-’} (b’):-’.
(7.5) Cooav. In H,(MU),

Proof. TNs follows from (7.4) plus the obseation that

(’) (b’) and + -(b’),+.

Our remaining task is to choose generators for MU, in such a way that
ImJ may be itten as simply as possible as an ideM. We need a few pre-
liminaryresults and some notation.

(7.6) TNEOREM (Milnor [5]). For each n there exists y e MU with y,
(n)b: rood decposables in H(MU), where

(n) 1 if n+ l is not a prime per

p if n+ lisaperofaprimep.

These y’s may be taken as algebra generators of MU,, but are not canonically
defined.

(7.7) CorollaRY. Jdp_ is a generator of MU, whenever i 2-,
m>l.

Proof. Inspecting (7.5) shows that h(dp-) -2b_ mod decomposa-
bles. Then apply (7.6).

and
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This result, along with (5.4), suggests that (7.8) is indeed the correct
theorem.

Next, let e be defined on positive odd numbers by

e(2n- 1) 1 if n---- 2"-1

2 otherwise.
Then we have

(7.8) THEOREM. We can choose generators {y e MU. i e Z+} such that

ImJ (yl, ys, 2y5, s(2n 1)y2_1, ...).

Proof. Choose y."-i to be Jdp"_l for m > 0, by courtesy of (7.7). Fix
some other choice for the remaining y’s according to the recipe of (7.6).
Stong [10] is a good source for such generators.
Now define the following ideals in MU,

Im. J (Jdpl, Jdp Jdp,)

I, (Yl Ys, "", e(n)y,), n odd

.’ s(n-- 1)y._l), neven.yl ya

Note that I,, I2,-1, Im, J ImJ and I, I, our conjectured ideal.
Since Jdpl yl, we have that Iml J I1 and we can embark on an induc-

tive proof.
Suppose Im J I,. There are two cases to consider.
Case A. Assume n is even, say n 21. Then

Imp,+1J (Im2 J, Jdp.,+l) and I,+1 (I, e(2/-b 1)y.,+l).

If 2l + 2 2", Jdp,+l y2,+l and (2l - 1)= 1. In this case we have
at once that Im,+l J

Otherwise, consider Jdp.,+l. There must be an expression

Jdp2+l E]a]-21-bl }ka Y,

where a (al, "’, a,) is some sequence of non-negative integers,
y yl y ...y andkeZ.
We now interrupt our proof for a lemma.

(7.9) LEMMA. If a contains no non-zero terms of the form a2"-1, then 2

Proof. We shall proceed by induction on z(a) al -- -t- Ot (which
attains a maximum of 2l -I- 1). If a(a) 1, a (0, ..’, 0, 1)
and y. y,+l. Also, _h(y.,+l) b,+l rood decomposables in Ha+.(MU),
whence

_h( k, y,) X(0 0,1) b2+l
-2b2,+1 mod decomposables, somod decomposables. But h_(Jdp21+l)

(0,...,0.1) --2. Let induction commence!



Suppose our result is true whenever (a) k, and find an

a’ (a, ...,a) with (a’) k+ 1.

(If there is no such a, the following argument will still apply to the first
(a’) > ]). Consider the equation h_(Jdpz+l) _, h_(y,). Then in
the right hand side,

II.’, ((,)b + decomp0sables)""

higher decomposables,

where II2m-1 (i) and is odd. But b’, will not occur in X _h(y)
for any other a with (a) _> /. However, it might arise in ),,, _h(y,,,) where
(a") _< ]. Then if a" contains no non-zero terms of the form a._", ,,,
is divisible by 2 by induction.

" then y,, in-On the other hand, if a" does contain some non-zero
volves y._ where z a2_. Hence 2 _hy,, So whenever b’, occurs in

_h(y,) outside of _h(y,), it has an even coefficient.
Finally, 2 h_(Jdp2+), so the coefficients of b’, are even in h_(Jdp2+), and

an even integer W , in _h(y). But is odd, so 2
Utilizing. this, we can write

Jdp+ -2y+ - 2(0 0a) Y -t- X y
where the first sum is over those with no non-zero f._, and the second is
over those with at least one non-zero ,._1. Notice each must contain
some non-zero +, k < 1. So Jdp+ 2y+ e I. and we have shown

(Im2 J, Jdp2+) (I2, (2/+ 1)y2+1).
Therefore Im+ J I+.

CaseB. Assume n is odd, sayn 2l- 1. Then

Im+ J (Im2_ J, Jdp2),

whilst I+1 i which in turn is Im J by assumption. So to complete our
induction we must show Jdp e Imz_ J.

Well, as before Jdp. _,1,1.-. ),, Y, for certain integers ),,. By repeat-
ing the methods of (7.9), we can write Jdp 2_, y - _, y where
and , are as before, Even though 2l, there can be no for which each
.+ is zero. For if there were such a , _h(y) would contain b, and by
inspection of (7.5) no such term can appear in h_(Jdp). This means each
ya involves some y+ with ] l, whence Jdp Im_ J. yl

(7.10) Conoav. 2MU,+. <_ ImJ.

Proof. 2MU. <_ IraJ, since 2[CP]veImJ. Suppose 2MU_. <_
ImJ] n. Then

2MU+. ’-.o 2y.+I(MU4,_u) ’-i y(2MU,_+.).
Hence 2MU4+e also is
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8. Geometrical interpretations

In conclusion, let us see wht our results sy bout changing U-structures
on manifolds. We lso offer a few comments on the symplectic cse. I m
prticulrly grateful for conversations with Jim Alexander, Pierre Conner,
Stun Kochmn and Bob Strong on these mtters.

Recall the interpretation of imJ MU, given in (3.6(ii)). Jdp is,
representable s [DP]v for certain U-mnifold DP. In fact DP
CP CP, where C denotes CP th the normal structure
suitably stbilised so s to preserve orientation" with the new structure
CP Cp, DP is clearly U-boundary. Note that (7.7) tells us that
[DP ]v is generator for MU,. Thus we cn write

ImJ ([DP]v,..., [DP+]v, ...).

A more geometrical proof of (7.8) cn now be given th the help of

(8.1) LEMMA. For each riple G G G he cpoe
(MG),(G/G) (MG), (MG,),

is zero..

Proof. Any mnifold ImJ dmits new G-structure with respect to
which it bounds. However, the G-structure remains unchanged, so the
mold is lso a G-boundary.

(8.2) Coov. ImJ MU, is a subideal ofKer {MU,
However, ccording to Stong [10] nd mking use of (7.5), this kernel I

my be expressed s

(y y 2y e(2n 1)y2_, ...)

where y_ [DP-]v nd the other y’s re suitably chosen. So we hve
only to show that ech 2y_ in fct exists in ImJ.

(8.3) LEMMA. A U-anifold M- admits a second U-structure, say
, such

_[M-][-]v v in MU_

Proo]. Choose to be the complex conjugate of , stbilised so to retain
the oginal oriemtion. Sce c() 1)c(), the new chern numbers
must be the negatives of the old.

(8.4) Coaoxv. ImJ =I.

Proof. [Man-2 ’-]v 2[M’-]v in MU,_, and M
can clearly be given a new and bounding U-structure. So 2y,_ e ImJ for
all n and I ImJ. But ImJ I from (8.2).

In many ways these geometrical ideas are unsatisfying. Rather than taking
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differences of known manifolds, we hoped more natural examples might arise
as generating ImJ. It still seems worth searching for some construction
which does the job more neatly, maybe using the basis {f, bf} of (7.2) for
MU,(SO/U).

Also, although the geometrical viewpoint is particularly concise in the uni-
tary case, it appears that the homological methods of 7 (using at least KO,)
will be needed to shed light on the more exotic cases such as

J:MSp,(G/Sp) --, MSp,,
where G SO or U.

Finally, recall from [0], J. Alexander’s family of indecomposables

{k e MSpsk-8 ] > 0}.

It is extremely interesting to observe

(8.5) PROPOSITION. For each k > O,

, e Im {J:MSps_8(SU/Sp) MSps_}

Proof. The construction of each proceeds precisely by taking a mani-
fold which is an Sp-boundary, and changing its Sp-structure so as to leave it
unaltered as an SU-bundle. El

This prompts

(8.6) CONZECTVRE. J:MSp,(SO/Sp) -- MSp, or (more attractively)

J :MSp.(U/Sp) ---. MSp.

is an epimorphism of 2-components.
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