ON THE WEYL SPECTRUM

BY

Kirti K. Oberai¹

Abstract

In this paper we give some continuity properties of the Weyl spectrum of a continuous linear operator on a Banach space and show that the Weyl's theorem holds for a spectral operator of finite type although the theorem fails for a spectral operator in general.

1. Preliminaries

Throughout this paper X will denote a complex Banach space and $\mathfrak{L}(X)$ the space of continuous linear operators on X considered with the norm topology. For $T \in \mathfrak{L}(X)$ let $\sigma(T)$, $\rho(T)$ and $\pi_{00}(T)$ be respectively the spectrum, the resolvent set and the isolated points of $\sigma(T)$ which are eigenvalues of finite multiplicity. Let $\mathfrak{N}(T)$ and $\mathfrak{R}(T)$ be respectively the null space and the range space of T. Let \mathfrak{F} be the class of Fredholm operators on X $(T \in \mathfrak{F} \text{ if and only if } \mathfrak{R}(T) \text{ is closed and dimension } \mathfrak{N}(T)$ and co-dimension $\mathfrak{R}(T)$ are both finite) and let \mathfrak{F}_0 be the class of Fredholm operators of index 0 (i.e., dimension $\mathfrak{N}(T) = \text{co-dimension } \mathfrak{R}(T)$). Let $\mathfrak{C}(X)$ be the ideal of compact operators on X and let \hat{T} be the image of T under the canonical mapping of $\mathfrak{L}(X)$ into the quotient algebra $\mathfrak{L}(X)/\mathfrak{C}(X)$. Finally, let \mathfrak{C} be the set of complex numbers.

DEFINITION 1. The Weyl spectrum $\omega(T)$ of $T \in \mathfrak{L}(X)$ is defined by

$$\omega(T) = \{\lambda \in \mathfrak{C} : \lambda I - T \notin \mathfrak{F}_0\}.$$

It is well known (see e.g., [1]) that

(i) $T \in \mathfrak{F}$ if and only if $0 \in \rho(\hat{T})$, and

(ii) $\sigma(\hat{T}) \subset \omega(T) \subset \sigma(T)$.

In particular if X is infinite dimensional then $\omega(T)$ is a non-empty compact subset of \mathfrak{C} .

2. Continuity of $\omega(T)$

In this section we define upper and lower semi-continuity of the mapping $T \rightarrow \omega(T)$ and show that this mapping is upper semi-continuous while it may not be lower semi-continuous.

DEFINITION 2. Let (G_n) be a sequence of compact subsets of C. The *limit inferior*, lim inf G_n is the set of all λ in C such that every neighbourhood

Received July 28, 1972.

¹ This research was partially supported by an NRC grant.

of λ has a non-empty intersection with all but finitely many G_n . The *limit* superior, lim sup G_n , is the set of all λ in C such that every neighbourhood of λ intersects infinitely many G_n . If *lim inf* G_n = lim sup G_n then lim G_n is said to exist and is equal to this common limit.

A mapping τ defined on $\mathfrak{L}(X)$ whose values are compact subsets of \mathfrak{C} is said to be *upper semi-continuous* at T when if $T_n \to T$ then $\limsup \tau(T_n) \subset \tau(T)$. τ is *lower semi-continuous* at T if $\tau(T) \subset \liminf \tau(T_n)$. If τ is both upper and lower semi-continuous at T then it is said to be *continuous* at Tand in this case $\lim \tau(T_n) = \tau(T)$.

THEOREM 1. The mapping $T \rightarrow \omega(T)$ is upper semi-continuous at T.

Proof. Let $\lambda \notin \omega(T)$ so that $\lambda I - T$ is a Fredholm operator of index 0. By [4; Theorem 4.5.17] there exists an $\eta > 0$ such that if $S \notin \mathfrak{L}(X)$ and $\|\lambda I - T - S\| < \eta$ then $S \notin \mathfrak{F}_0$.

There exists an integer N such that

$$\|\lambda I - T - (\lambda I - T_n)\| < \eta/2 \quad \text{for } n \ge N.$$

Let V be an open $(\eta/2)$ neighbourhood of λ . We have, for $\mu \in V$ and $n \geq N$

$$\|\lambda I - T - (\mu I - T_n)\| < \eta$$

so that $(\mu I - T_n) \in \mathfrak{F}_0$. This implies that $\lambda \notin \limsup \omega(T_n)$. Thus

$$\limsup \omega(T_n) \subset \omega(T)$$

and the theorem is proved.

The standard example (see e.g., [6; p. 282]) to show that the mapping $T \to \sigma(T)$ is in general not lower semicontinuous may be used to show that the mapping $T \to \omega(T)$ need not be lower semi-continuous.

THEOREM 2. Let $T_n \to T$. Then if $\lim \sigma(\hat{T}_n) = \sigma(\hat{T})$ then $\lim \omega(T_n) = \omega(T)$.

Proof. In the presence of Theorem 1 it is enough to show that $\omega(T) \subset \lim \inf \omega(T_n)$.

Suppose $\lambda \notin \lim \inf \omega(T_n)$ so that there is a neighbourhood V of λ that does not intersect infinitely many $\omega(T_n)$. Since $\sigma(\hat{T}_n) \subset \omega(T_n)$, V does not intersect infinitely many $\sigma(\hat{T}_n)$, i.e., $\lambda \notin \lim \sigma(\hat{T}_n) = \sigma(\hat{T})$. This shows that $(\lambda I - T) \in \mathfrak{F}$. By using [4; Theorem 4.5.17] it is easy to see that index $(\lambda I - T) = 0$ so that $\lambda \notin \omega(T)$.

COROLLARY. Let $T_n \to T$. Then $\lim \omega(T_n) = \omega(T)$ in each one of the following cases.

- (i) $T_nT = TT_n$ for all n.
- (ii) $\sigma(T)$ is totally disconnected.
- (iii) X is a Hilbert space and T, T_n are normal operators.

Proof. Each one of the above conditions implies $\lim \sigma(\hat{T}_n) = \sigma(\hat{T})$ (see [5] for details).

3. Weyl's theorem

Let $T \in \mathfrak{L}(X)$. If (*) $\omega(T) = \sigma(T) \sim \pi_{00}(T)$

then we say that Weyl's theorem holds for T. If X is finite dimensional then, of course, Weyl's theorem holds for each $T \in \mathcal{L}(X)$. There are several classes of operators including normal and hyponormal operators on a Hilbert space (see e.g., [1] and [2]) for which Weyl's theorem holds. In this section we show that if T is a spectral operator, in the sense of Dunford, of finite type (for definitions we refer to [3: Chapter XV]), then Weyl's theorem holds for T.

The following simple example shows that Weyl's theorem need not hold for a spectral operator.

Example. Let $X = l_2$. Define T by $T(x_1, x_2, \cdots) = (\frac{1}{2}x_2, \frac{1}{3}x_3, \cdots).$

T is a quasi-nilpotent operator and hence a spectral operator. $0 \in \pi_{00}(T)$ and also $0 \in \omega(T)$. Thus T does not satisfy the relation (*).

In what follows T will denote a spectral operator on X, S and N will denote its scalar and radical parts respectively, and $E(\cdot)$ will denote its resolution of the identity. The following results which will be used in the proof of Theorems 3 and 4 are given in [3] as Theorems XV.8.2 and XV.7.14.

LEMMA 1. For an $x \in X$ and a non-negative integer n, $(\lambda I - T)^n x = 0$ if and only if $E({\lambda})x = x$ and $N^n x = 0$.

LEMMA 2. The operator T has a closed range if and only if

(i) the point $\lambda = 0$ is either in $\rho(T)$ or is an isolated point of $\sigma(T)$, and

(ii) the operator $TE(\{0\})$ has a closed range.

Remark. Lemma 1 shows that $\Re(S) = E(\{0\})X$ and if T is replaced by S in Lemma 2 then (i) implies (ii) (since, in this case $SE(\{0\}) = 0$) so that the condition (ii) is superfluous for a scalar type operator.

THEOREM 3. Let S be a scalar type operator on X. Then Weyl's theorem holds for S.

Proof. We have to show that $\lambda \in \pi_{00}(S)$ if and only if $\lambda \in \sigma(S) \sim \omega(S)$. Without loss of generality we may assume that $\lambda = 0$.

Let $0 \in \pi_{00}(S)$ so that $\mathfrak{N}(S)$ is finite dimensional and by Lemma 2, $\mathfrak{R}(S)$ is closed. Lemma 1 shows that $S^2x = 0$ if and only if Sx = 0. Hence

$$\mathfrak{R}(S) \cap \mathfrak{N}(S) = \{0\}.$$

Also, from the relation $\sigma(S | E(\Delta)X) \subset \overline{\Delta}$ for a Borel subset Δ of \mathfrak{C} it is easy to see that

$$\mathfrak{R}(S) \oplus \mathfrak{N}(S) = X.$$

Thus dimension $\mathfrak{N}(S) =$ codimension $\mathfrak{R}(S)$ so that $S \in \mathfrak{F}_0$ i.e., $0 \notin \omega(S)$.

Conversely suppose $0 \epsilon \sigma(S) \sim \omega(S)$. Since $\Re(S)$ is closed, 0 is an isolated point of $\sigma(S)$. Also $\Re(S)$ is finite dimensional and non-zero so that $0 \epsilon \pi_{00}(S)$.

LEMMA 3. Let T be a spectral operator of finite type so that for some nonnegative integer $m, N^m = 0$. Then $\pi_{00}(S) = \pi_{00}(T)$.

Proof. We need only to show that $0 \in \pi_{00}(S)$ if and only if $0 \in \pi_{00}(T)$.

Let $0 \in \pi_{00}(S)$. It is immediate that if Sx = 0 then $T^m x = 0$. Thus 0 is an eigenvalue of T. From the relation $\mathfrak{N}(T) \subset \mathfrak{N}(S)$ it follows that $0 \in \pi_{00}(T)$.

Conversely let $0 \in \pi_{00}(T)$ so that 0 is also an eigenvalue of S. Since $\mathfrak{N}(T)$ is a finite-dimensional subspace of $\mathfrak{N}(S)$ we may write

$$\mathfrak{N}(S) = \mathfrak{N}(T) \oplus Y.$$

If $y \in Y$ then Sy = 0 so that $T^m y = 0$ i.e., $T^{m-1}y \in \mathfrak{N}(T)$. This implies that Y and hence $\mathfrak{N}(S)$ is finite dimensional showing thereby that $0 \in \pi_{00}(S)$.

THEOREM 4. Let T be a spectral operator of finite type. Then Weyl's theorem holds for T.

Proof. We have

$$\omega(S) = \sigma(S) \sim \pi_{00}(S) = \sigma(T) \sim \pi_{00}(T).$$

Hence the theorem follows if we show that $\omega(S) = \omega(T)$. It is enough to show that $0 \epsilon \omega(S)$ if and only if $0 \epsilon \omega(T)$.

Let $0 \notin \omega(S)$ so that $S \notin \mathfrak{F}_0$. Since $\mathfrak{R}(S)$ is closed, either $0 \notin \rho(S) = \rho(T)$, or 0 is an isolated point of $\sigma(S) = \sigma(T)$ and $\mathfrak{R}(S) = E(\{0\})X$ is finite dimensional. Therefore $TE(\{0\})X$ is finite dimensional and hence a closed subspace of X. By Lemma 2, $\mathfrak{R}(T)$ is closed. Let

(1)
$$X = \mathfrak{N}(S) \oplus Y$$
 where $Y = \mathfrak{R}(S) = E(\mathfrak{C} \sim \{0\})X$.

Also, let

(2)
$$\mathfrak{N}(S) = \mathfrak{N}(T) \oplus \operatorname{span} \{x_1, x_2, \cdots x_r\}.$$

where x_1, \dots, x_r are linearly independent. It is easy to verify that Tx_1, \dots, Tx_r are linearly independent. We assert that

(3)
$$\Re(T) = Y \oplus \operatorname{span} \{Tx_1, \cdots, Tx_r\}.$$

Since $0 \notin \sigma(T \mid Y)$, TY = Y. If possible let $Tx_1 = y \notin Y$ for some $i \ (1 \le i \le r)$. Since S is injective on Y we have

$$0 \neq Sy = STx_i = TSx_i = 0$$

which is a contradiction. In fact no non-zero linear combination of Tx_i can belong to Y.

This proves our assertion. Relations (1), (2) and (3) together with the fact that $S \in \mathcal{F}_0$ show that $T \in \mathcal{F}_0$ i.e., $0 \notin \omega(T)$.

The converse assertion viz., if $0 \notin \omega(T)$ then $0 \notin \omega(S)$ follows in exactly the same fashion.

We conclude this paper with the following conjecture.

Let $T \in \mathfrak{L}(X)$ and let N be a nilpotent operator commuting with T. Then if Weyl's Theorem holds for T it also holds for T + N.

Added in proof. The above conjecture is true. However, if N is not assumed to commute with T then the conjecture is false. The proofs will appear elsewhere.

References

- 1. S. K. BERBERIAN, The Weyl Spectrum of an operator, Indiana Univ. Math. J., vol. 20 (1970), pp. 529-544.
- L. A. COBURN, Weyl's theorem for non-normal operators, Mich. Math. J., vol. 13 (1966), pp. 285-288.

3. N. DUNFORD AND J. T. SCHWARTZ, Linear operators, Part III, Wiley, New York, 1971.

- 4. T. KATO, Perturbation theory for linear operators, Springer, Berlin, 1966.
- 5. J. D. NEWBERG, The variation of spectra, Duke Math. J., vol. 18 (1951), pp. 165-176.
- 6. C. E. RICKART, General theory of Banach algebras, Van Nostrand, Princeton, N.J., 1960.

QUEEN'S UNIVERSITY, KINGSTON, ONTARIO