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BY
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Abstract

The following well-known perturbation theorem is of fundamental impor-
tance in semigroup theory: Let A be m-dissipative (i.e., A generates a (Cy)
contraction semigroup). If P; is dissipative and A bounded with relative A
bound less than one, and if P, is bounded, then 4 + P; + P, generates a (Cy)
semigroup. This result is generalized to allow A, P, P, all to depend on a
real parameter {. Thus in many cases, establishing the well-posedness of the
Cauchy problem for

(1) = (A@®) + Pi(t) + Po(0))u(t) (' = d/db)

is reduced to proving the well-posedness of the Cauchy problem for u'(t) =
A(t)u(t). Applications are given to temporally inhomogeneous scattering
theory and to second order evolution equations of the form

uw”(t) + B(H)u'() + C(Hu(t) = 0;
here both B(¢) and C(¢) can be unbounded. Some concrete examples are
given, including mixed problems for
Uy = QUss + PUs + YUz + du; + cu + ¢

with time dependent boundary conditions; here all the coefficients are smooth
functions on {(¢, ) : —0 <t < »,0 < z < 1}, a is positive and v is suffi-
ciently small.

1. Introduction

One of the fundamental perturbation theorems in the theory of semigroups
of linear operators is the following result of Kato and Gustafson [11], [9],
which generalizes earlier work of Rellich.

TaEOREM 1. Let A be an m-dissipative operator on a Banach space X. Let
P, be a dissipative operator on X and let P, be a bounded operator on X. Suppose
that the domain of Py contains that of A and

IPfll <allAFl + 07|

for some constants a < 1, b > 0, and for all f in the domain of A. Then,
A + Py + P, — kI is m-dissipative for some real k.

In fact, k may be taken to be || Py ||. For a short proof see Goldstein [4,
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p. 32]. See Chernoff [3] for a related result and Kato [14] for a nonlinear
generalization.

According to the Lumer-Phillips form of the Hille-Yosida generation theorem
(cf. [16], [4]), A is the infinitesimal generator of a (Cy) contraction semigroup
iff A is m-dissipative. Thus Theorem 1 tells us that in many cases solving the
Cauchy problem for du/dt = (A + P; + P;)u reduces to solving the Cauchy
problem for du/dt = Au.

The purpose of this paper is to generalize Theorem 1 to the case where A,
Py, P; are all functions of a real variable and to give some applications. The
perturbed Cauchy problem that we shall treat is thus the Cauchy problem for
the time dependent evolution equation du/dt = (A(t) + Pi(t) + P2(1))wu.

The main results are stated in Section 2 and proved in Section 3. Applica-
tions to temporally inhomogeneous scattering theory and to second order
evolution equations are given in Sections 4 and 5.

2. The perturbation theorem

Let X be a Banach space. The domain of a (linear) operator A on X will
be denoted by D(A). ®(X) is the space of all bounded linear operators on X.
RT" =00, ©),R=(—w, ). Let

T(-) : RY = ®(X)

(or T(:) : R > ®(X)). Write T(-) e WM(X) iff there is a strongly measura-
ble function S(-) : R* (or R) — ®(X) such that

(1) T@®)f— TO)f = [o S(s)f ds wheneverteR™ (orR), fe X,
(ii) foreach 7 ¢ R™, there is a constant m, such that

I 8(s) || £m, for |s]| < .

For T(-) : RT (or R) — ®(X) write T(-) eLip (X) iff for each r eR*
there is a constant m. such that || T(t) — T(s) | £ m. |t — s| whenever

|s],|t] < 7. Itiswell known that 9(X) < Lip (X) with equality holding
when X is reflexive.

Concerning semigroups we shall use the standard terminology of Hille-
Phillips [10].

Our basic tool is the Kato existence theorem ([12], cf. also [7]).

THEOREM 2. Assume

(A1) For each 7 ¢ R™ there exists a Q(t) e ®(X) such that Q(t)™" ¢ ®B(X)
and Q(8) A(t)Q(t) ™" is m-dissipative; moreover Q(-) e M(X).

(A2) There is a function R(-) : RY — ®(X) having a strong derivative
R'(-) such that R'(+) e M(X), R(t)™" e ®(X) for each t e R, and

B(t) = RWAWMR®™
has domain independent of t. It follows that
C(-) = B(-)(I — B(0))™ : R" = ®&(X);

suppose C(-) e M(X).
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Then for any f € D (A (0) ) there exists a unigue function u (- ):R+t — X having
a strongly continuous strong derivative and satisfying
w(t) = A(u(t) (teRY), u(0) =71.
Our main result is the following perturbation theorem.

THEOREM 3. Let the hypotheses of Theorem 2 hold. Further assume:

(A3) ForeachteR™, Q(¢)Py(t)Q(t) ™ is dissipative, D(Pi(t)) D D(A(t)),
and there are constants a(t) < 1, b(t) > 0 such that

| QEVPL(S || < a(2) [| QEAMDS ] + () || £l

for each f e D(A(t)) ; moreover, Py(+)R(+) (I — B(0Q))™" e M(X).

(A4) Py(-) em(X).
Then for any f e D(A(0)) there exists a unique function

u(*) :RT> X
having a strongly continuous strong derivative and satisfying
w(t) = (A(t) + Pu(t) + Pa(t))u(t) (teRY), u(0) = f.

Some results similar to Theorem 3 occur in the literature; cf. Phillips [18],
Goldstein [5], [6], Kato [13]. However, all these authors treat the case when
Py(t) = 0, so that the perturbation (Pg(¢)) is a one parameter family of
bounded operators; the point of the present paper is to consider unbounded
perturbations.

We shall call P a Kato perturbation of A iff D(P) D D(A) and for each
a > 0 there exists a b, > 0 such that

[ PAIl <all Afll + bal[fI| foreach feD(A4).

COROLLARY 4. In the hypotheses of Theorem 3 let (A3) be replaced by:
(A3') For each teR™, Q(¢)Pi(t)Q(t)™" 4s dissipative, Pi(t) is a Kato
perturbation of A(t), and

Py(-)RT(-)(I — B(0))™ e m(X).
Then the conclusion of Theorem 3 holds.

CoROLLARY 5. For each t € R let H(t) be a self-adjoint operator on a complex
Hilbert space X having domain D independent of t, and suppose

H(-)(iI — H(0))™ eLip (X).

For each t eR let V(1) be a symmetric operator satisfying D(V(t)) D D and
there exist constants a(t) < 1, b(t) > 0 such that

I VOSI < al) | HOF + ) [Ifl
for each feD. Finally suppose V(-)(4I — H(0))™ eLip (X). Then for
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each f € D, 7 ¢ R™, there is a unique function u(-) : R — X having a strongly
continuous strong derivative and satisfying

w(t) = i(H() + V()u®) (teR), u(r) = .
Moreover, the operator U(1, ) sending f into u(t) is unitary, for all t, r ¢ R.

3. Proofs
Proof of Theorem 3. To solve

(1) du/dt = (A(8) + Pu(8) + Pu())u(t)u(0) = feD(A(0))

uniquely for ¢ e R*, it suffices to solve it uniquely for ¢ [0, 7] with » > 0
fixed but otherwise arbitrary. For 0 < t < 7, (Al), (A3), (A4) and The-
orem 1 together imply that

Q) (A() + Pu() + Pa(t) — kDQD™
is m-dissipative, where
k= max {|| Q) | | P2() | | Q)™ (| : 0 < ¢ < 7} R™.
Let A1(t) = A(t) + Pi(t) + Pa(t) — kI.
D(R(t)Ax(t)R()™") = D(R(HA(RR(D)™)
does not depend on ¢ by (A2), and if

By(t) = R(t) A:1()R(t)™",
then

By(t) (I — By(0))™
= B(#)(I — B(0))7'[(I — B(0))(I — Bx(0))7]
+ R(O)PAORH)™(I — B(0))7[(Z — B(0))(I — B1(0))7]
+ R() (Py(t) — kDR() (I — By(0)) ™"

Consequently Biy(-)(I — Bi(0))™ e (X) by (A2), (A3), (A4), since
R(-)'em(X), and since M (X) is closed under linear combinations and
composition.

Thus (A1), (A2) hold for 4,(+) on [0, 7] with the same Q(-), R(-) as for
A(+). Thus

dv/dt = Ay(t)v (0 < t < 1), v(0) = feD(A(0))

has a unique solution on [0, 7]; u(f) = €*v(¢) is thus the unique solution of
(1) on [0, 7]. This completes the proof of Theorem 3.

Proof of Corollary 4. Let (A3') hold and let £ e R*. Then for anya > 0
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there is a b, > 0 such that
Q)P < all Q) I Il ADS I + ba [l Q) [ I £1]

<alle@) IO I QOAMS + ball QW) IS,

and a || Q(®) || | Q)™ || < 1if a is chosen sufficiently small. Hence (A3)
holds, and Corollary 4 follows from Theorem 3.

Proof of Corollary 5. This is based on the analog of Theorem 1 for self-
adjoint operators, due to Rellich (ef. [11, p. 187]), which states that if 4 is
self-adjoint, P symmetric, D(P) D D(A), and | Pf|| < a||Af| + 0| fIl
for constants ¢ < 1, b > 0 and all feD(4), then 4 + P is self-adjoint.
Corollary 5 follows from this result, Stone’s theorem (cf. e.g. [4, p. 22], [10,
p. 598]), Theorem 2 (with Q(¢t) = I, R(t) = I), and some routine computa-
tions which we omit.

4, Temporary inhomogeneous scattering

THEOREM 6. Let X be a complex Hilbert space. For each t e [— o, o] let
Hy(t) be a self-adjoint operator with domain D independent of t satisfying
Ho(-)(3sI — Ho(0)) " eLip (X). For each te[— o, »] let V(t) be a sym-
metric operator with D(V (£)) D D and suppose

| VOS I < a(®) | Ho(OF | + () [ £l

for constants a(t) < 1,b(t) > 0,andallf ¢ D. Suppose
V(-)(I — H(0))™ e Lip (X).

Let Hi(t) = Ho(t) + V(t). Forj = 0, 1 suppose that the subspace G ; of abso-
lute continuity for H ;(t) does not depend on t (cf. [11, p, 516]). Let

Uj = {Uj(t, 8) . t,seR}

be the family of evolution operators governing H;(-), i.e., u(t) = Uj(t, s)f is
the unique strongly continuously differentiable solution at time t of the time de-
pendent Schridinger equation du/dt = iH ;(t)u, u(s) = feD. Suppose there
exists @ > 0 such that for t > 7,

Hy(+t) — Hy(£x), V(xt) — V(o) e ®B(X)
and
ff | Ho(t) — Ho(£ o) || dt + f:’ | V(xt) — V(zw) | dt < .

Finally suppose that [V(£®)*V (£ o)A\ T — Ho(£»))™" is a Hilbert-
Schmidt operator for some non-real complex number Ni. Then for s eR the
temporally tnhomogeneous wave operators

Wi(s) = strong lim;_.., Ui(s, t) Us(t, 8) Po
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exist, where Pq is the orthogonal protection onto Qs and the temporally inhomoge-
neous scattering operators
8(s) = W4(8)"W(s)

are unitary operators on Qq.

Proof. That U, exists as a family of unitary evolution operators follows
from Corollary 5. The temporally homogeneous wave operators

Q* = strong lim,_,,. exp { —itH (£ o)} exp {itHo( =)}

exist and are complete by our Hilbert-Schmidt hypothesis, according to a re-
sult of Kuroda [15]. The theorem now follows from results of Monlezun
[17]. Note that the Hilbert-Schmidt hypothesis holds if V(&) is in the
trace class.

5. Second order evolution equations

Of concern here is the Cauchy problem
(2) w(t) + (Pi(t) + Po())w'(t) + (A(t) + Po(t))u(t) = 0 (teR),
(3) w(0) =fi, w(0) =fi

in a Hilbert space. Below we present a general existence theorem for (2),
(3) together with some examples.

For W, X Banach spaces, ®(W, X) is the space of all bounded linear opera-
tors from W to X. Write T'(:) e Lip (W, X) iff

T(:) :R—®&W, X)
and for each 7 ¢ RT there is a constant m, such that
| T(t) — T(s) || L m. |t —s| for [¢], |s|<Z

TarEorEM 7. Let X be a Hilbert space with inner product (-,-). Assume:
(B1) ForeachteR, A(t) is a self-adjoint operator on X satisfying

(AW 2 a®(,f) forall feD = D(A(D)),

independent of t, where ¢1(+) : R — (0, «) is bounded away from 0 on bounded
intervals; A(-)A(0)™ e Lip (X).

(B2) Py(-) eLip (X); Po(+) eLip (W, X), where W = D(A(0)'®) is
given the norm || f || w = || A(0)**f .

(B3) ForeachteR, —Py(t) is dissipative, D(Py(t)) D W,

| Puo)f || < a®) || A(0)Qu()f || + b(2) | £
for constants a(t) < 1, b(t) > 0, and all f e W; and Py(+) e Lip (W, X).2

2 Qo(t) will be defined in the course of the proof. It is an operator on W which is de-
termined by A (0) and A (t).
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Then for any fieD, foe W there exists a unique function u(:) :R — X
having a strongly continuous second strong derivative and satisfying (2) and (3).

Proof. First assume P;(¢) = 0,7 = 0,1,2. Then the theorem follows
from the main result in [6]. We recall the outline of the proof. Consider the
Hilbert space Y = W X X where the norm in Y is given by

" G) ” = {1 A" A" + [ £

0 I
B = (—A(t) o>
with domain D(B(t)) = D X W.
In [6] we constructed Q(-) : R — ®(Y) of the form

o = (%" 9)

such that (Al), (A2) of Theorem 2 'hold with R(:) = I. Q,(t) was con-
structed as follows. A(£)A(0)7", considered as a member of (W), is an
invertible positive self-adjoint operator; Qo(¢) is its (unique) positive square
root. (This is the Q,(¢) appearing in (B3).) The desired conclusion of
Theorem 7 with P; = 0,5 = 0, 1, 2, follows from Theorem 2.

Now we can prove Theorem 7 as a consequence of Theorem 3. Let

0 0
G(t) = <Po(t) —Pz(t)> ’
Then Go(-) eLip (Y) by (B2). Let

0 0
with domain D(Gy(t)) = W X D(Py(t)). ForteR,

£=(3) D@,

Re (Gi(0)f, f) v = Re (—Pa(t)f2, fo) < 0by (B3), whence Gy(¢?) is dissipative;
that Q(t)Gi(¢) Q(t) " is dissipative follows easily. Next,

awso™ (1) =a0 G ) (1) = (L 4)

and Gy(-)(I — B(0)™ eLip (Y) follows easily from Py(-) eLip (W, X)
(by (B3)).
Finally

h _
”Q(t)Gl(t) <f2)”1' = || Pi(t)fe]l
< a(t) | A0)"Qu(1)f|| + b() | ]l by (B3)

< a0 [ewsw (£)], +sw|(%)],

Let
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for each

(@eD X W.

Theorem 7 now follows from Theorem 3.

Remark 8. Suppose that for each ¢ ¢ R, — P;(t) is dissipative, D(Pi(t)) D
W, and Py(-) eLip (W, X). Then by the closed graph theorem there are
constants ¢(t), d(¢) such that

I Pf || < e(®) || A0)™Qf || + a(®) | £

for each f ¢ W. Consequently there is an ao(t) (= (¢(£))™) > 0 such that
B(-)Py(-) satisfies (B3) whenever 0 < 8(t) < ao(t) for each ¢ ¢ R, and 8(-)
is Lipschitzian. If we only want to solve (2), (3) for ¢ in a compact interval
J, then it is easily shown that ao(f) may be chosen to be independent of ¢
for t e J, and we may consider simply 8P;(+), where 0 < 8 < ay.

Example 9. Let Q be a bounded region in R" with smooth boundary 6Q. For
1,7 €{l, « -+, n} let o, Bs, i, 8, € be smooth (i.e., C*) complex-valued functions
on R X @ with the matriz (a:;(t, x)) betng hermitian and positive definite for
each (1, ) eR X 8. Let o, 7 e RY. Then there exists a ca > 0 such that given
f1, f2 € C5(R), the problem

) 2 n
(4) %g Za<aqaxj)+26. Fodimiol +a%‘{+eu

Tyj=1 0x; =1 t=1 89:. at
(5) u(ox x) = fl(x), (au/at) (0; x) = f2(z),
(6) u(t, x) =0 for xe0Q

has a unique strong solution on [— o, ) for eachreal cwith | ¢ | < ca.

Before sketching the proof we remark that the smoothness hypotheses on
the coefficients ayj, - -+, € can be substantially weakened; we omit the state-
ment of the minimal smoothness requirements on the coefficients. Also,
using results of Browder [2], certain unbounded domains © can be considered
(cf. [6]).

We are now ready to sketch the proof of the assertion of Example 9. Some
of the omitted details can be found in [5], [6]. Let X be the complex Hilbert
space L*(2). Let A(t) be the distributional differential operator

@ON@ = 3L (st &L @)

with domain D(A(#)) = (3e(2) n 33(2)) X 53(Q).
We are using the Sobolev space notation described in [5]. Let

(PN (@) = 2 8ult, ) 2L (2) + elt, 2)f(a),
D(Po(t)) = 33(Q). ForfeCs(Q), integration by parts shows that
2 [ wit,9) & @i do = = [ 3¢, )1 (0) P i



204 JEROME A, GOLDSTEIN

hence if

(PON@ = L nlt,9) 2L @) + 53 2 (4, 2)5(a),

D(Py(t)) = 33(Q), then & Py(¢) is dlsmpatlve on X. Finally let

(P:(1)f) (z) = [—§ .‘i:i %’ (t, z) + a(t, x)] f(z),

D(Py(t)) = X. Then Theorem 7 and Remark 8 imply that the problem (4),
(5), (6) has a unique strong solution if
fieD = 36(Q) n33(Q), foeW = 33(Q)

and if | ¢ | is sufficiently small; (6) follows from w(-) : R — D, which also
follows from Theorem 7.

A version of Theorem 7 can be given in which the domain of A(¢) varies
with ¢{. The resulting theorem, whose statement we omit, generalizes the
main result of [8]. The idea of the proof, as in [8], is to let »(-) be the solution
described in Theorem 7 and to let v(t) = T'(¢)u(f), where

T(-) :R->®&X), T"(:), T(:)™ eLip (X).

Then v is the unique solution of the Cauchy problem for an equation of the
form

v (1) + By () + A(t)o(t) =0,

and D(A(t)) can vary with ¢.
As a consequence of this theorem we can generalize Example 5.2 of [8]
(which corresponds to Example 10 below with y = 0).

Example 10. The following mazxed problem 18 well posed.
62u
Fr a:c2+ﬁ_+ 6t0x+6 Y+ e + ¢
(té [—O', T]y 0 S x _<_ 1)?
u(oy z) = Ju(z), (au/at) (0, ) = fi(2),
(du/dx) (¢, 0) = a(t)u(t, 0), (0u/dx) (t, 1) = b(t)u(s, 1).

Here a, 8, v, 8, &, ¢ are smooth real-valued functions on R X [0, 1] with « posi-
tive; a, b are smooth real-valued functions on R; fi, f» are smooth complex-valued
SFunctions on [0, 1] with

f(0) = a(0)£1(0), (1) = b(0)f:(1),
£(0) = a(0)£:(0) + a’(0)£1(0),
£ (1) = b(0)f(1) + b'(0)f2(1);

o, 7 > 0; and c 1s real with | ¢ | < cs, where cs is a positive constant depending
onlyon a, v, o, 7.

The proof is omitted.
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6. Concluding remarks

Remark 11. Let ¢ > 0. Theorem 7 enables one to solve a class of initial
value problems of the form

@) euw’ (1) + L()w'(t) + MDu(t) =0 (ted),
(8) u(O) = fl) u’(O) = f2)

where J is an interval in R containing 0 and L(t), M (%) are suitable unbounded
operators on X. Denoting the unique solution of (7), (8) by wu., it would be
of interest to show that ue(f) = lim..ou.(t) exists and satisfies the (time
dependent) Sobolev equation

L(t)uo(t) + M(Duo(t) =0 (ted), u(0) = fu.

(See Showalter [19] for an extensive bibliography on the Sobolev equation.)
We believe that the singular perturbation technique suggested above is
capable of yielding significant new results for the Sobolev equation; however,
this program remains to be carried out.

We note that using existing singular perturbation results, some special cases
of the above program can be carried out. For instance, using results of
Bobisud and Hersh [1], one can treat the case where L(%), M (t) are suitable
polynomials in a finite number of commuting (C,) group generators, with
coefficients depending on ¢.

Remark 12. This is a remark on condition (Al). Recall that the duality
map g for a Banach space X is defined as follows: for ¢ ¢ X*, fe X, ¢ € gf
iff Reo(f) = || FI° = Ilo > A section of gis amap J : X — X* such that
Jf e gf for each f ¢ X. An operator A on X is dissipative iff || (I — N)f|| >
|| 1| for each N > 0 and each f e D(A) iff Re (Jf) (A4f) < 0 for some section
Jof gand all fe D(A). In the latter case one says A is dissipative with re-
spect to J. A dissipative operator A is m-dissipative iff D((I — A)™) = X.
Any m-dissipative operator 4 is dissipative with respect to J for each sec-
tion J of g.

Let Q ¢ ®(X) be such that Q" ¢ ®(X), and let J be a section of the duality
map § of X. If A s dissipative with respect to J [resp. m-dissipative] and if
Q*J = JQ7, then QAQ™ is dissipative with respect to J [resp. m-dissipative).

Proof. Write (f, ¢) for ¢(f) where f ¢ X, ¢ ¢ X*. For each f e D(QAQ™),
Re (QAQ7Y, Jf) = Re (AQT'fQ"Jf)
= Re (4(Q7Y), J(@7N) L0,

whence QAQ™ is dissipative with respect to J. Given ge X let h = Q'g.
If A is m-dissipative, there is an f; e D(A) such that f, — Afi = h. Let
f = Qfi. Then

f— QAQ7Yf = Q(fi — Afi) = Qh =g,

and so A is m-dissipative.
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Note that if X is a Hilbert space, then § = J = I, and Q*J = JQ " means
that Q is unitary.

Finally, we note that the assertion of Remark 12 holds even if A is nonlinear
and multi-valued ; see [14] the notion of dissipative in this case.

Added in proof. Example 10 is not a hyperbolic problem if ¢y == 0. Itis
closely related to a “parabolic regularization” of a hyperbolic problem in the
sense of Lions-Magenes [20, pp. 280-282].

A result of the type discussed in Remark 11 has been obtained by J. L. Lions
[21].

It is a pleasure to thank Professor Lions for his kind comments and for in-
forming me about [21].

REFERENCES

1. Bosisup AND R. HersH, Perturbation and approximation theory for higher-order ab-
stract Cauchy problems, Rocky Mtn. J. Math., vol. 2 (1972), pp. §7-73.

2. F. E. BROWDER, On the speciral theory of elliptic differential operators I, Math. Ann.,
vol. 142 (1961), pp. 22-130.

3. P. R. CHERNOFF, Perturbations of dissipative operators with relative bound one, Proc.
Amer. Math. Soc., vol. 33 (1972), pp. 72-74.

4. J. A. GOLDSTEIN, Semigroups of operators and abstract Cauchy problems, Tulane Uni-
versity Lecture Notes, New Orleans, 1970.

5. , Semigroups and second-order differential equations, J. Functional Anal., vol.
4 (1969), pp. 50-70.

6. , Time dependent hyperbolic equations, J. Functional Anal., vol. 4 (1969), pp.
31-49.

7. , Corrigendam on “Time dependent hyperbolic equations’’, J. Functional Anal.,
vol. 6 (1970), p. 347.

8. , Variable domain second order evolution equations, Applicable Anal., to appear.

9. K. GusTAFSON, A perturbation lemma, Bull. Amer. Math. Soc., vol. 72 (1966), pp.

334-338.

10. E. HiLie anp R. S. Puiruips, Functional analysis and semi-groups, Amer. Math.
Soc., Providence, 1957.

11. T. KaTo, Perturbation theory for linear operators, Springer, New York, 1966.

12. , On linear differential equations in Banach spaces, Comm. Pure Appl. Math.,
vol. 9 (1956), pp. 479-486.

13, ———, Linear evolution equations of hyperbolic type, J. Fac. Sci. Univ. Tokyo Sect.

I, vol. 17 (1970), pp. 241-258.

, Accretive operators and nonlinear evolution equations in Banach spaces, Proe.

Symp. Pure Math., vol. 18, Part I, Amer. Math. Soc., Providence (1970), pp.

138-161.

15. S. T. Kuroba, Perturbation of continuous spectra by unbounded operators, I, J. Math.
Soc. Japan, vol. 11 (1959), pp. 247-262.

16. G. Lumer AND R. S. PairLrips, Dissipative operators in a Banach space, Pacific J.
Math., vol. 11 (1961), pp. 679-698.

17. C. J. MonLEzZUN, Temporally inhomogeneous scattering theory, Ph.D. Thesis, Tulane
University, 1972.

14.




A PERTURBATION THEOREM 207

18. R. 8. PuiLLips, Perturbation theory for semi-groups of linear operators, Trans. Amer.
Math. Soc., vol. 74 (1953), pp. 199-221.

19. R. E. SHowALTER, The Sobolev equation, I, II, Applicable Anal., to appear.

20. J. L. Lions anp E. MaGeNEs, Non-homogeneous boundary value problems and appli-
cattons, vol. 1, Springer, Berlin, 1972.

21. J. L. Lions, Lecture notes on singular perturbations, Springer-Verlag, Berlin, to appear.

TuLANE UNIVERSITY
NEw ORLEANS, LoulsianNa



