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Abstract
The following well-known perturbation theorem is of fundamental impor-

tance in semigroup theory" Let A be -dissipative (i.e., A generates a (Co)
contraction semigroup). If P is dissipative and A bounded with relative A
bound less than one, and if P is bounded, then A W P + P generates a (C0)
semigroup. This result is generalized to allow A, P, P. all to depend on a
real parameter . Thus in many cases, establishing the well-posedness of the
Cauchy problem for

u’(t) (A(t) -k- P(t) + P(t))u(t) (’ d/dt)

is reduced to proving the well-posedness of the Cauehy problem for u’(t)
A (t)u(t). Applications are given to temporally inhomogeneous scattering
theory and to second order evolution equations of the form

u"(t) + B(t)u’(t) + C(t)u(t) O;

here both B(t) and C(t) can be unbounded. Some concrete examples are
given, including mixed problems for

with time dependent boundary conditions; here all the coefficients are smooth
functions on (t, x) < < , 0 _< x _< 1}, a is positive and y is suffi-
ciently small.

1. Introduction
One of the fundamental perturbation theorems in the theory of semigroups

of linear operators is the following result of Kato and Gustafson [11], [9],
which generalizes earlier work of Rellich.

THEOREM 1. Let A be an m-dissipative operator on a Banach space X. Let
P be a dissipative operator on X and let P. be a bounded operator on X. Suppose
that the domain of P contains that of A and

for some constants a < 1, b >_ 0, and for all f in the domain of A. Then,
A PI P2- ]I is m-dissipative for some real k.

In fact, k may be taken to be P. ]1. For a short proof see Goldstein [4,
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p. 32]. See Chernoff [3] for a related result and Kato [14] for a nonlinear
generalization.

According to the Lumer-Phillips form of the Hille-Yosida generation theorem
(cf. [16], [4]), A is the infinitesimal generator of a (C0) contraction semigroup
iff A is m-dissipative. Thus Theorem I tells us that in many cases solving the
Cauchy problem for du/dt (A + P1 + P.)u reduces to solving the Cauchy
problem for du/dt Au.
The purpose of this paper is to generalize Theorem 1 to the case where A,

P1, P. are all functions of a real variable and to give some applications. The
perturbed Cauchy problem that we shall treat is thus the Cauchy problem for
the time dependent evolution equation du/dt (A(t) + Pl(t) + P.(t) )u.
The main results are stated in Section 2 and proved in Section 3. Applica-

tions to temporally inhomogeneous scattering theory and to second order
evolution equations are given in Sections 4 and 5.

2. The perturbation theorem
Let X be a Banach space. The domain of a (linear) operator A on X will

be denoted by D(A). (B(X) is the space of all bounded linear operators on X.
R+= [0, ),R-- (--, ). Let

T(.) :R+ -, (X)

(or T(. 1 -- (B(X)). Write T(. e 9(X) iff there is a strongly measura-
ble function S(. R+ (or R) -. (B(X) such that

(ii)
T(t)f T(O)f fo* S(s)f ds whenever e 1+ (or l),f X,
for each r e R+, there is a constant m, such that

S(s) II -- m, for Isle_ ..
For T(.) R+ (or R) -o (B(X) write T(.) Lip (X) iff for each 1+

there is a constant m, such that T(t) T(s) [! <- m, It s whenever
Is I, -< r. It is well known that 9(X) c Lip (X) with equality holding
when X is reflexive.

Concerning semigroups we shall use the standard terminology of Hille-
Phillips [10].
Our basic tool is the Kato existence theorem ([12], cf. also [7]).

THEOREM 2. Assume
(A1) For each r eR+ there exists a Q(t) (B(X) such that Q(t)-e (B(X)

and Q( t)A t) Q( t)- is m-dissipative; moreover Q( e 9(X)
(A2) There is a function R(.) :R+ --. ((X) having a strong derivative

R (.) such that R (.) (X), R(t)- e (X) for each R+, and

B(t) R(t)A(t)R(t)-has domain independent of t. It follows that

C( ) n( ) (I B(0))-I:R+--, (B(X);
suppose C( e 9(X).
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Thenfor any$ D (A (0)) there exists a unique function u (.) :R+ --, X having
a strongly continuous strong derivative and satisfying

u’(t) A(t)u(t) (t R+), u(0) f.
Our main result is the following perturbation theorem.

THEOREM 3. Let the hypotheses of Theorem 2 hold. Further assume:
(A3) For each tt+, Q(t)p,(t)Q(t)-* is dissipative, D(Px(t) D D(A(t) ),

and there are constants a(t) < 1, b(t) >_ 0 such that

[[ Q(t)P(t)$ II <- a(t) [1 Q(t)A(t)f l[ + b(t) $

for eachf o(a(t) moreover, Px( )R( )-(I B(O) )- (X).
(A4) P,(.) r(X).

Then for any f , D(A (0)) there exists a unique function
u(.) R+ --, X

having a strongly continuous strong derivative and satisfying

u’(t) (A(t) + Px(t) + P,(t))u(t) (t ,R+), u(o) y.
Some results similar to Theorem 3 occur in the literature; of. Phillips [18],

Goldstein [5], [6], Kato [13]. However, all these authors treat the case when
P(t) O, so that the perturbation (P(t)) is a one parameter family of
bounded operators; the point of the present paper is to consider unbounded
perturbations.
We shall call P a Kato perturbation of A iff D(P) D(A) and for each

a > 0 there exists a ba >_ 0 such that

Pf <- a Af + ba f ll for each f D(A).
COROLLARY 4. In the hypotheses of Theorem 3 let (A3) be replaced by:
(A3’) For each tR+, Q(t)P,(t)Q(t) -x is dissipative, Px(t) is a Kato

perturbation of A t) and

Pt( )R-l( (I B(O) )- 9Z(X).

Then the conclusion of Theorem 3 holds.

COROLL&RY 5. For each R let H t) be a self-adjoint operator on a complex
Hilbert space X having domain D independent of t, and suppose

H( (iI H(O) )-* Lip (X).
For each R et V(t) be a symmetric operator satisfying D(V(t)) D D and
there exist constants a( t) < 1, b( t) >_ 0 such that

II v(t)’ - a(t) I! H(t)f I1 + b(t) Y lI
for each f D. Finally suppose V( (iI H(0))- e Lip (X). Then for
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each f e D, r e R+, there is a unique function u(. R -. X having a strongly
continuous strong derivative and satisfying

u’(t) i(H(O + V(O)u(t) (teR), u(r) =f.
Moreover, the operator U( t, r) sending f into u( t) is unitary, for all t, r R.

3. Proofs

Proof o.f Theorem . ’To solve

(1) du/dt (A(t) + Pa(t) + P(t))u(t)u(O) ]D(A(O))

uniquely for e R+, it suffices to solve it uniquely for [0, r] with r > 0
fixed but otherwise nrbitrnry. For 0 _< _< r, (A1), (A3), (A4) and The-
orem 1 together imply that

Q(t)(A(O + Pl(O + P.(O kI)Q(t) -1

is m-dissipative, where

k max {ll Q(t) I! I! P.(t) II Ii Q(t)-’ [I 0 <_ <_ ,’} e R+.
Let A (t) A(t) + P(t) + P,.(t) kI.

D(R(t)A(t)R(t)-) D(R(t)A(t)R(t)-)
does not depend on by (A2), and if

Ba(t) R(t)Aa(t)R(t)-,
then

Ba(t) (I Ba(O) )-1

B(t) (I B(0))-I[(I B(O))(I B(0))-11

+ R(t)Px(t)R(t)-(I B(O))-[(I B(0))(I B(0))-]

+ R(t)(P,(t) kI)R(t)-(I Bx(O))-.

Consequently Ba (I Ba(0))- e Or(X) by (A2), (A3), (A4), since
/( )- (X), and since r(X) is closed under linear combinations and
composition.
Thus (A1), (A2) hold for Ax(.) on [0, r] with the same Q(.), R(. as for

A(.). Thus

dv/dt A(t)v (0 <_ <_ r), v(0) feD(A(0))

has a unique solution on [0, ]; u(t) etv(t) is thus the unique solution of
(1) on [0, ]. This completes the proof of Theorem 3.

Proof of Corollary 4. Let (A3’) hold and let R+. Then for any a > 0
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there is a b >_ 0 such that

_< a II Q(t) Q(t)- II Q(t)A (t)f + b. Q(t) II II Y II,
and a Ii Q(t) Q($)- < 1 if a is chosen sufficiently small. Hence (A3)
holds, and Corollary 4 follows from Theorem 3.

Proof of Corollary 5. This is based on the analog of Theorem 1 for self-
adjoint operators, due to Rellieh (ef. [11, p. 187]), which states that if A is
self-adjoint, P symmetric, D(P) D(A), and Pf < a A Ii + b Y I1
for constants a < 1, b >_ 0 and all f eD(A), then A -F P is self-adjoint.
Corollary 5 follows from this result, Stone’s theorem (el. e.g. [4, p. 22], [10,
p. 598]), Theorem 2 (with Q(t) =- I, R(t) =- I), and some routine computa-
tions which we omit.

4. Temporary inhomogeneous scattering
THEOREM 6. Let X be a complex Hilbert space. For each e [--oo, let

Ho(t) be a self-adjoint operator with domain D independent of satisfying
Ho( (iI Ho(0) )- e Lip (X). For each e [-- o c let V(t) be a sym-
metric operator with D(V(t) D and suppose

V(t)f II <- a(t) I[ Ho(t)Y + b(t) f [[

for constants a( t) < 1, b( t) >_ O, and allf e D. Suppose

V( )(iI H(0))- , Lip (X).

Let H(t) Ho(t) + V(t). For j O, I suppose that the subspace ( of abso-
lute continuity for Hy(t) does not depend on (cf. [11, p, 516]). Let

U. {U.(t, s) t, s R/

be the family of evolution operators governing H(.), i.e., u(t) U(t, s)f is
the unique strongly continuously differentiable solution at time of the time de-
pendent 8chrOdinger equation du/dt iH(t)u, u(s) f D. Suppose there
exists a r > 0 such that for > r,

Ho( :l:t) Ho( 4- c ), V(:d:t) V( +/- oo e (B(X)
and

H0(-c-t) H0(q- oo dt q- V( q,t) V(-4- oo l[ dt < o.

Finally suppose that IV( =!= *V( -4- ]l/4(kq_ [ Ho( : )-1 is a Hilbert-
Schmidt operator for some non-real complex number X:e. Then for s e R the
temporally inhomogeneous wave operators

W:(s) srong lim_. U(s, t)U0(t, s)Po
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exist, where Po is the orthogonal protection onto (o; and the temporally inhomoge-
neous scattering operators

(s) W+()*W_(s)
are unitary operators on

Proof. That U1 exists as a family of unitary evolution operators follows
from Corollary 5. The temporally homogeneous wave operators

t strong limt_. exp -itHl( :h exp {itHo( +

exist and are complete by our Hilbert-Schmidt hypothesis, according to a re-
sult of Kuroda [15]. The theorem now follows from results of Monlezun
[17]. Note that the Hilbert-Schmidt hypothesis holds if V(:h is in the
trace class.

5.-.Second order evolution equations

Of concern here is the Cauchy problem

(2) u’(t) -t-(Px(t) -k- P(t))u’(t) -t- (A(t) "t- Po(t))u(t) 0 (t R),

(3) u(0) =f, u’(0) =f.
in a Hilbert space. Below we present a general existence theorem for (2),
(3) together with some examples.
For W, X Banach spaces, (B(W, X) is the space of all bounded linear opera-

tors from W to X. Write T(. e Lip (W, X) iff

T(.) -, (W, X)

and for each r e R+ there is a constant m such that

T(t) T(s) !1 - mlt- 1 for Itl, Isl _< .
THEOREM 7. Let X be a Hilbert space with inner product (.,.). Assume:
B1) For each e R, A t) is a self-adjoint operator on X satisfying

(A(t)f,f) >_ c(t)(f,f) for all fed D(A(t)),

independent of t, where c( ) R --> (0, o is bounded away from 0 on bounded
intervals; A (.)A (0) -1 e Lip (X).

(B2) P2(’) clip (X); P0(’) clip (W, X), where W D(A(O)
given the norm Ii f

(B3) For each e R, --P(t) is dissipative, D(P(t) D W,

P(t)]

for constants a(t) < 1, b(t) >_ O, and all f W; and P(. e Lip (W, X).

Qo(t) will be defined in the course of the proof. It is an operator on W which is de-
termined by A (0) and A (t).
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Then for any fl D, f W there exists a unique function u(. R ---} X
having a strongly continuous second strong derivative and satisfying (2) and (3).

Proof. First assume P.(.) 0, j 0, 1, 2. Then the theorem follows
from the main result in [6]. We recall the outline of the proof. Consider the
Hilbert space Y W X X where the norm in Y is given by

Let

(oB(t) -A(t)
with domain D(B(t) D W.

In [6] we constructed Q(. tt (B(Y) of the form

such that (A1), (A2) of Theorem 2’hold with R(.) I. Q(t) was con-
structed as follows. A(t)A(O) -x, considered as a member of (B(W), is an
invertible positive self-adjoint operator; Qo(t) is its (unique) positive square
root. (This is the Qo(t) appearing in (B3).) The desired conclusion of
Theorem 7 with P. -= 0, j 0, 1, 2, follows from Theorem 2.
Now we can prove Theorem 7 as a consequence of Theorem 3. Let

0G,(t) Po(t)
Then G(.) e Lip (Y) by (B2). Let

G,(,) (0o o)--P(t)
with domain D(GI(t)) W X D(PI(t)). For R,

() D(G(t) ),

Re (l()f,.f) r Re (-Pl()fi, f) N 0 by (Ba), whence () dsipaie
heg ()()()- is dissipagie follows easily. Nexg,

P(t)
nnd Gx( )(I B(0) -a

e Lip (Y) follows esily from P( .) e Lip (W, X)
(by (B3)).
FinMly

E a(t) 11 Q(t)B(t)(:)r+ b(t)11 (:)]Iv
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for each

Theorem 7 now follows from Theorem 3.

Remark 8. Suppose that for each 1, P(t) is dissipative, D(P(t))
W, and P(.) Lip (W, X). Then by the closed graph theorem there are
constants c(t), d(t) such that

for each :f W. Consequently there is an a0($)( (c(t))-) > 0 such that
(. )P(. ) safeties (B3) whenever 0 B(t) < a0(t) for each R, and B(’)
is Lipsczian. If we oy want to solve (2), (3) for in a compact teal
J, then it is easily shown that a0(t) may be chosen to be dependent of
for e J, dwe may consider sply BPx(. ), where 0
Examp 9. Let be a bed region in R wih mooth bary 0. F

i, j {1, .-., n} t a, B, , , e be smooth (i.e., C) compx-valued
on R X with the matrix (a(t, X)) being hermitn and positive defini
each t, x) R X . Let , R+. Tn there exists a c > 0 ch tt given
f, f C(fl), t probm

o o Ou Ou o Ou

(5) u(O, ) (), (ou/Ot) (o, )

sa undue stro solution on [--v, r] ]or each real c with c < c.
Before sketcng the proof we remark that the smoothness hypotheses on

the coefficients a, ..., e can be substantially weakened; we ot the state-
ment of the mal smoothness requements on the coefficients. Ao,
usg results of Browder [2], certa unbounded domas can be coidered
(cf. [61).
We are now ready to sketch the proof of the assertion of Example 9. Some

of the otted details can be found in [5], [6]. Let X be the complex Hilbe
space L(). Let A (t) be the distributional erentiM operator

with do,in D(A(t)) ((e) n (fl)) X
We are usg the Sobolev space notation described in [5]. Let

(P0(t)/)() ,(t, ) () + (t, )](),

D(Po(t)) (fl). Forf C(fl), integration by parts shows that

o/(x)](z) dz (,
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hence if

(Pl(t)f)(x) ,,(t, x) - ,-1

D(P(t) 5C(), then :t= P(t) is dissipative on X. Finally let

(P(t)/)() - ,,
D(P,.(t) X. Then Theorem 7 and Remark 8 imply that the problem (4),
(5), (6) has a unique strong solution if

fleD C(fl) n C(2), f2e W 3C(e)
and if cl is sufficiently small; (6) follows from u(. R --* D, which also
follows from Theorem 7.
A version of Theorem 7 can be given in which the domain of A ($) varies

with t. The resulting theorem, whose statement we omit, generalizes the
main result of [8]. The idea of the proof, as in [8], is to let u(. be the solution
described in Theorem 7 and to let v(t) T()u(t), where

T(.) R --. (Z), T"(.),T(.)-ILip(X).

Then v is the unique solution of the Cauchy problem for an equation of the
form

v"(t) + P(t)v’(t) + Y(t)v(t) O,

and D(ff (t)) can vary with t.
As a consequence of this theorem we can generalize Example 5.2 of [8]

(which corresponds to Example 10 below with q 0).

Example 10. The following mixed problem is well posed.

Ou Ou Ou Ou Ou
ot a-g + + c,- + + eu

(t, [-, -], 0 < x < 1),
u(O, ) ],(x), (Ou/Ot) (0, x) (),

(Ou/Ox)(t, O) a(t)u(t, 0), (Ou/Ox)(t, 1) b(t)u(t, 1).
Here a, , % , e, are smooth real-valued functions on R X [0, 1] with a posi-
tive; a, b are smooth real-valued functions on R; fx, f. are smooth complex-valued
functions on [0, 1] with

fl’(O) a(O)fl(O), fl’(1) b(O)fl(1),
f2’(0) a(0)f(0) -{-

19.’(1) b(O)f.(1) d- b’(O)fx(1);
, r >_ 0; and c is real with c < cs, where c3 is a positive constant depending
only on a, % (r, r.

The proof is omitted.
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6. Concluding remarks
Remar 11. Let > 0. Theorem 7 enables one to solve a class of initial

value problems of the form

(7) u,’(t) - L(t)uP(t) zr M(t)u(t) 0 (t e J),

(8) u(0) u’(0) =/,.,

where J is an interval in 1;[ containing 0 and L(t), M(t) are suitable unbounded
operators on X. Denoting the unique solution of (7), (8) by u, it would be
of interest to show that Uo(t) lim_.0 u(t) exists and satisfies the (time
dependent) Sobolev equation

L(t)u’(t) + i(t)uo(t) 0 (t e J), u(O) f.
(See Showalter [19] for an extensive bibliography on the Sobolev equation.)
We believe that the singular perturbation technique suggested above is
capable of yielding significant new results for the Sobolev equation; however,
this program remains to be carried out.
We note that using existing singular perturbation results, some special cases

of the above program can be carried out. For instance, using results of
Bobisud and Hersh [1], one can treat the case where L(t), M(t) are suitable
polynomials in a finite number of commuting (Co) group generators, with
coefficients depending on t.

Remark 12. This is a remark on condition (A1). Recall that the duality
map for a Banach space X is defined as follows" for e X*, f X, f
iff Re (f) f . A section of is a map J" X --. X* such that
Jf f for each f e X. An operator A on X is dissipative iff (I A)f >-
Ilfl] for each ), > 0 and eachf eD(A) iff Re (Jf)(Af)

_
0 for some section

J of 09 and all f e D(A). In the latter case one says A is dissipative with re-
spect to J. A dissipative operator A is m-dissipative iff D( (I A)-I) X.
Any m-dissipative operator A is dissipative with respect to J for each sec-
tion J of .

Let Q 5(X) be such that Q-1 5(X), and let J be a section of the duality
map of X. If A is dissipative with respect to J [resp. m-dissipative] and if
Q.j jQ-1, then QAQ-1 is dissipative with respect to J [resp. m-dissipative].

X*.Proof. Write , ) for (f) where f e X, For each f D(QAQ-1),
Re (QAQ-lf, Jr) Re (AQ .j

Re (A (Q-if), j(Q-lf)

_
O,

whence QAQ- is dissipative with respect to J. Given g e X let h Q-lg.
If A is m-dissipative, there is an fl D(A) such that fl All h. Let
f Qfl. Then

f- QAQ-lf Q(f- All) Qh g,

and so A is m-dissipative.
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Note that if X is a Hilbert space, then J I, and Q*J jQ-1 means
that Q is unitary.

linally, vce note that the assertion of Remark 12 .holds even if A is nonlinear
and multi-valued; see [14] the notion of dissipative in this case.

Added in proof. Example 10 is not a hyperbolic problem if c 0. It is
closely related to a "parabolic regularization" of a hyperbolic problem in the
sense of Lions-Magenes [20, pp. 280-282].
A result of the type discussed in Remark 11 has been obtained by J. L. Lions

[21].
It is a pleasure to thank Professor Lions for his kind comments and for in-

forming me about [21].
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