A NON-NORMAL HEREDITARILY-SEPARABLE SPACE

BY

MARY ELLEN RUDIN

Let us for the purposes of this paper use S-space to mean a hereditarilyseparable regular Hausdorff space.

If an S-space is not normal, it is clearly not Lindelöf. Although both unfortunately depend on special set-theoretic assumptions, recently [1], [2] examples have been given of non-Lindelöf S-spaces; both happen to be normal.

So there is current vogue for the question, which Jones [3] says is an old one: Is every S-space normal? We prove here that the answer is at least conditionally no. Jones [3] shows a non-normal S-space can be used to construct a non-completely regular S-space. Thus it is consistent with the usual axioms of set theory that there be a non-completely regular S-space.

Let us call Σ an S^* -space provided Σ is an uncountable S-space with a basis for its topology consisting of sets which are open, closed, and countable. Clearly no S^* -space is Lindelöf.

The space described in [1] is an S^* -space and this space exists if there is a Souslin line.

In recent correspondence I. Juhász and J. Gerlits point out the following.

THEOREM 1. If there is a Souslin line (which is consistent with the axioms of set theory), then there is a non-normal S-space.

Proof. Let Σ be the S-space described in [1]. Let I be the closed unit interval. Using the precise technique given in [5] construct from Σ a normal space T such that $T \times I$ is not normal. Then $T \times I$ will be a non-normal S-space.

A perhaps more general construction gives the following.

THEOREM 2. Assume that there is an S^* -space and $2^{\aleph_0} < 2^{\aleph_1}$. (This combination is consistent with the usual axioms of set theory, being true, for instance, in V = L, Gödel's constructible model of the universe.) Then there is a non-normal S-space.

Proof. We use the following pretty lemma of F. B. Jones [4]. This whole paper is an excuse to restate this lemma.

LEMMA. There exists a cardinality \aleph_1 subset A of the real numbers such that each countable subset B of A is a relative G_{δ} set. Observe that B countable implies A - B is a G_{δ} but $2^{\aleph_0} < 2^{\aleph_1}$ implies there is a subset C of A which is not a G_{δ} .

Received April 16, 1973.

In order to construct a non-normal S-space, which we call X as desired for Theorem 2, we assume the existence of an S^* -space Σ and subsets A and C of the reals as guaranteed by the lemma. Then our plan is to construct X by taking the disjoint union of two copies H and K of Σ and adding a discrete countable set Q to this union in such a way that H and K cannot be separated by disjoint open sets which do not meet in Q.

Since every uncountable subset of an S^* -space is an S^* -space, we assume without loss of generality that Σ has cardinality \aleph_1 . Assume Y is the disjoint union of two copies H and K of Σ . Let N be the set of all positive integers. Let Q be the set of all open intervals of real numbers whose end points are rational; and, for $n \in N$, let Q_n be the set of all members of Q of length less than 1/n. For $n \in N$ and $x \in A$, let $Q_n(x) = \{I \in Q_n \mid x \in I\}$.

Since H, K, C, and A - C all have cardinality \aleph_1 , there is a one to one function $f: Y \to A$ such that f(H) = C and f(K) = A - C.

Topologize $X = Y \cup Q$ by defining U to be open in X provided both $U \cap Y$ is open in Y and $y \in Y \cap U$ implies there is an $n \in N$ such that $U \supset Q_n(f(y))$. Clearly $U \subset Q$ implies U is open.

(1) Let us check that X is non-normal.

Suppose there are disjoint open in X sets U and V containing H and K, respectively. For $n \in N$, define U_n to be the union of all the members of $Q_n \cap U$; clearly $\bigcap_{n \in N} U_n$ is a G_δ set. But f(H) = C and f(K) = A - C, and U and V disjoint and open yields $\bigcap_{n \in N} U_n \cap A = C$. Thus C is a relative G_δ which is a contradiction.

(2) Let us check that X is an S-space.

Since Q is countable and H and K are each hereditarily-separable, Y is hereditarily-separable.

Clearly points are closed in X. To see that X is regular assume U is open in X and $x \in U$; we prove there is an open and closed subset of U containing x. This is clearly true if $x \in Q$ since $\{x\}$ is then open; so assume $x \in H$; the case $x \in K$ is symmetric.

Since *H* is an S^* -space there is a countable set *V* which is both open and closed in *H* such that $x \in V \subset U$. By the Lemma, f(V) is a G_{δ} subset of *A* as is A - f(V). So, for each $n \in N$, there exist open sets M_n and L_n in the reals such that $A \cap \bigcap_{n \in N} M_n = f(V)$ and $A \cap \bigcap_{n \in N} L_n = A - f(V)$. Assume $M_1 \supset M_2 \supset \cdots$ and $L_1 \supset L_2 \supset \cdots$. Define

 $M = \{I \in Q \mid \text{ for some } n, I \subset M_n \text{ and } I \cap (A - L_n) \neq \emptyset \}$

and

 $L = \{I \in Q \mid \text{ for some } m, I \subset L_m \text{ and } I \cap (A - M_m) \neq \emptyset\}.$

Clearly $L \cap M = \emptyset$ for $n \leq m$ contradicts $I \cap (A - L_n) \neq \emptyset$ and $I \subset L_m$, and $m \leq n$ contradicts $I \subset M_n$ and $I \cap (A - M_m) \neq \emptyset$.

We finally prove $V \cup (M \cap U)$ is both open and closed in X and thus has the properties we seek.

If $v \in V$ there is an $n \in N$ such that $f(v) \notin L_n$; so $v \in M_n$; thus there is a $k \in N$ such that $Q_k(v) \subset M$. Since $v \in U$ there is an $i \in N$ such that $Q_i(v) \subset U$. Thus j = i + k implies $Q_j(v) \subset U \cap M$ and $V \cup (U \cap M)$ is open in X. If $y \in Y - V$ there is an $n \in N$ such that $f(y) \notin M_n$; so $y \in L_n$; thus there is a $k \in N$ such that $Q_k(y) \subset L$. Since $L \cap M = \emptyset$, $X - (V \cup (U \cap M))$ is thus open.

References

- 1. M. E. RUDIN, A normal hereditarily separable non-Lindelöf space, Illinois J. Math., vol. 16 (1972), pp. 621–626.
- 2. A. HAJNAL AND I. JUHÁSZ, A consistency result concerning hereditarily α -separable spaces, Indagationes Mathematicae, vol. 35 (1973), p. 301.
- 3. F. B. JONES, *Hereditarily separable, non-completely regular spaces,* Proceedings of the Blacksburg Virginia Topology Conference, March, 1973.
- Concerning normal and completely normal spaces, Bull. Amer. Math. Soc., vol. 43 (1937), pp. 671-677.
- 5. M. E. RUDIN, Countable paracompactness and Souslin's problem, Canad. J. Math., vol. 7 (1955), pp. 543-547.

UNIVERSITY OF WISCONSIN MADISON WISCONSIN