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In an earlier paper [1] the authors treated the following problem. Let f be
an open Riemann surface with (A, B) a regular partition of its boundary into
nonvoid sets. Letfbe a regular function on f. Let {fv} be a canonical exhaus-
tion off with the boundary of fv composed of cycles a, negatively oriented on
f, and fly, positively oriented on fv, respectively bounding the complementary
sets bearing A and B. Let Pro(a0 consist of those points of the sphere about
which the index off(a,) is at least m, Q,(fl,) those points about which the index
off(fl) is at most n (m > n). Let (bar denotes closure)

Pro(A) 0 Pm(Ov)-, Qn(B) 0 On(v)-
v=l

be both nonvoid. Let F(A, B) denote the family of cycles on f separating A
and B. Let A denote the complement of Pro(A) w (2,(B) and let Fro, denote the
family of cycles on A separating Pro(A) and ,(B). We proved that between the
module M(F(A, B)) of F(A, B) and the module M(Fm,) of Fro, subsists
the inequality

(m n)M(r(A, B)) < M(r,).

However we did not provide a complete description of the possibility of equality.
The object of the present paper is to elucidate this matter. The result obtained
is given in the following theorem.

THEOREM. In the notation of Section suppose that M(F(A, B)) is finite and
that

(m n)M(F(A, B)) M(Fm,). (1)

Then A is a domain andf is a (m n, 1) mapping of onto A apart possibly
from a relatively closed set oflogarithmic capacity zero in A. Further the indexes
off(a), f(BO with respect to each point of Pro(A), ,(B) are respectively equal to
rn and n for each v.

The proof of this statement is broken down into a series of steps.
Let A’ denote the subset of A made up of those components of A which have

points both of Pro(A) and ),(B) on their boundaries. There are only a finite
number of such components since Pro(A)c ,,(B) is void. Let Av denote the
complement of P,.(O- w Q.(flO- and AS its subset made up of those compon-
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ents which have points both of P,,(v)- and Q,(flv)- on their boundaries.
Clearly A’ c A.

(i) The Riemann image off underf covers no point of A’ more than m n
times.

If some pointp in A’ were covered at least m n + times, for v sufficiently
large, p would lie in A and be covered at least m n + times by the Riemann
image of f underf. F(, fl) denotes the family of cycles on fv separating
and fl and M(F(, fl0) denotes its module. We recall that as v tends to infinity
M(F(v, fl0) increases to M(F(A, B)). We may suppose that the image of f]
covers a disc 6 with closure in A with m n + simple discs 6j, j 1,...,
m n / 1, and that the harmonic measure o of B with respect to f (non-
degenerate under our assumptions) has no critical point in the closures of the
preimages of these discs. The extremal metric pldzl for M(F(A, B)) is given by
(D(o))- lgrad o1 Idz I. (D(o) denotes Dirichlet integral.) Let p,,Idzl be the
corresponding extremal metric for M(F(, fl0). Evidently, expressed in terms
ofa local uniformizing parameter, p tends pointwise to p, uniformly on compact
subsets, as v tends to infinity. Thus if we use the plane variable as local uniform-
izing parameter in eachf- x(6j) we will have p bounded from zero on these sets,
p > r/ > 0, for v sufficiently large.

In [1, Section 5-1 we constructed by the covering method an admissible metric
for M(F(, fly)) which we denote now by rldzl and for which we have by the
considerations given there

M(r(, IL)) <- r

where F. denotes the family of cycles on A, separating P(e)- and Q.(flO-.
We have the familiar identity

lff 2 ; 2dA.-z Pv dAz + 1/2 ,,
(3)

Now since av is zero on a subset of f- (6) of measure, in terms of the local
uniformizing parameters, equal to A(6), the plane area of 6 (not necessarily
confined to one component) and since 1/2(p,, + av)ldzl is an admissible metric
for M(F(, fly)) we have, using (2) and (3), for v sufficiently large

1/2M(r’( v’ #v)) <- 1/2 ff ’r v ff (Pv av’)2
fly Oj f

< 1/2(m- n)-M(F,)) -1/4qZa(6).

Letting v tend to infinity this contradicts (1).
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(ii) Let be the harmonic measure of .(B) with respect to A’. There exists
a set of orthoyonal trajectories of the level curves of dense in A’ each of which
has respective limiting end points on m(A), n(B) with limitiny values of
respectively 0 and and such thatfor each orthoyonal trajectory 1, f- (1) consists

ofrn n open arcs () each homeomorphic to 1, j 1,..., m n.

By I-2; Theorem 2.32] almost all (in the sense there indicated) orthogonal
trajectories of 3 have limiting end points on m(A), Qn(B) with limiting values
of 3 respectively 0 and 1. Let such orthogonal trajectories be denoted by 1,
where 2 is indexed by a set A. We can apply the argument of [1 Section 5] to
the orthogonal trajectories of 3 rather than those of o9 on A and see that over
lx in the Riemann image off byfthere will be m n open arcs which are the

l(J)images of arcs -4,, J 1,..., rn n, v 1, 2,..., joining v and fir Let
"cldzl now denote the metric corresponding to pxldzl in [1; Section 5-1 on f.
Then

ff 2dAz and (m n)ff 2dAz<_M(Fmn).M(r(, )) <_

UA,j/.a,,v(J) UA,j

Since M(I"mn) (D(3))-1 we must have by (1) that for almost all 14 there will
be rn n covering arcs in the Riemann image of fv on which the variation of
3 tends to as v becomes large. Thus by (i) there can be only rn n covering
arcs altogether and each of them is homeomorphic to

(iii) For every choice of (fl,), f()(f(fl)) has index exactly m(n), about
each point ofPm(A)(Qn(B)), providing this index is defined.

Let q be a point of Pro(A) not onf(0. Then in the notation of [ Section 2],
I(; q) m’, m’ >_ m. f(,) divides the sphere into a finite number of domains
one of which, D, will contain q so that f() will have index m’ about every
point ofD. Some orthogonal trajectory I of the set described in (ii) will penetrate
into D. Followed in a suitable sense it will tend to a point r of Q(B). f([3)
divides the sphere into a finite number of domains and r lies in one such domain
or on the boundary of several such domains and the index off(fly) about the
points of any such domain is at most n. Thus we can apply the argument of
[1; Section 5] to a subarc I of with endpoints Wo and w where I(; Wo) m’
and I(fl; w) n’, n’ <_ n. In the notation employed there

I(; Wo) I(fl; w) >_ 12 l.
Taking I and the l() sensed by & increasing and the subarcs I() on lty) covering
I we see that 12 is the number of arcs of intersection of the 1 (y) with f, which run
from to fl, l is the number of such arcs which run from fl to . On a given
1) these occur alternately thus its contribution to 12 l is at most 1 and
12 l _< m n. On the other hand 12 l _> m’ n’. Thus m’= m. The
result for Q(B) is proved analogously.
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(iv) f(f) contains no point of m(A) or _.n(B). A’ is a domain. A’ coincides
with A.

Iff(f) contained a point of Pro(A) or Qn(B) by choosing ,, or fly suitably we
would obtain a contradiction to (iii). Furtherf(f) is connected so it can contain
no point in the complement of A’ since it contains points in A’ and no points
of its boundary. Since f(f) contains points in each component of A’, A’ is a
domain. If A contained a component E not in A’, the boundary of E would lie
in Pro(A) or Qn(B) thus by the definition of the latter sets E itself would lie in
Pro(A) or Qn(B), a contradiction.

(v) Let V be a cycle on f represented by a finite number of disjoint Jordan
curvesforming the common boundary of two open sets bearing respectively A and
B neither containing any relatively compact component, V sensed with A to its left.
Let c be a cycle on A represented by a finite number of disjoint Jordan curves
forming the common boundary of two open subsets of the sphere containing
respectively Pro(A) and n(B) neither containing any component disjoint from
Pro(.4) k3 Qn(B), c sensed with Pm(4) tO its left. Then f(v) is homologous to
(m n)c in A.

Suppose that Pro(A) and Q(B) are both compact plane sets. Then necessarily
m > 0 > n. Let cl be a separating cycle for Pro(A), Q,(B) represented by a
finite number of disjoint Jordan curves such that Pro(A) lies in their collective
(disjoint) interiors and Q,(B) is exterior to all, sensed as above. Let c2 be a
separating cycle for Pm(A), Qn(B) represented by a finite number of disjoint
Jordan curves such that Qn(B) lies in their collective (disjoint) interiors and
Pro(A) is exterior to all, sensed as above. Then f(v) and mcl nc2 have the
same index about every boundary point of A, thus are homologous in A while

mcl nc2 is homologous to (m n)c.
If Pro(A) contains the point at infinity, m 0, n < 0. If Q,(B) contains the

point at infinity, m > 0, n 0. The result in these cases is proved as above,
indeed even more simply.

(vi) If hn(v) denotes the harmonic length of V on f and ha(f(V)) denotes the
harmonic length off(y) on A, we have

ha(y) ha(f(V)).

In terms of the harmonic measures defined above we have ha(y) D(co),
ha(c) D(&), M(F(A, B)) (D(co))- 1, M(Fm,) (D(t3))- 1. By (v), ha(f(V))
(m n)D(&). Thus by (1), ha(y) h(f(v)).

(vii) fmaps f in a (m n, 1) manner onto A with the possible exception ofa
relatively closed set of (logarithmic) capacity zero on A.

This follows at once from (vi) and !-3; Theorem 2].
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