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1. Introduction

In [1], we defined the analytic spaces ff., the universal analytic spaces of
special divisors. We derived the equations which define the tangent space at a
point of (, (,+ 1. Let X be a compact Teichmuller surface of genus # and
suppose So is the module point of X on To, the Teichmuller space. Let D be a
divisor on X of degree n and dimension r and let denote the index of specialty
of D. With the notation of [1], the tangent space to (, at (So, D) is defined by
ir equations Ej,k, where j 1,..., r and k 1,..., i, in the 3e 3 + n
unknowns sl,..., s,, b,..., bao_ 3. The coefficient ofb,, in Ej,k is given by
evaluating ,k, a certain quadratic differential depending on D, at a point
on X, which is chosen to satisfy certain requirements.

PROPOSITION 1. Suppose (So, D) is in (#,- aj,+l and suppose that ir <_

3e 3. Put z (r + 1)(n r) re. Then if all the "a,k are linearly inde-
pendent, the dimension of the tangent space to (g at (So, D) is 3e 3 + z + r
and (So, D) is a smooth point of

Proof. [1].
In [1], we showed that (q, 2, if nonempty, is smooth of pure dimension

3e 3 + z + 1. In this paper, by explicit computations, we show that
(resp. ffa) has a component of dimension 3e 3 + z + 2 (resp. 3e 3 +
z + 3) if z is nonnegative. Our computations are based on examples given by
Meis [2].

2. Meis’s work

In [2], Meis demonstrates the existence of special divisors for the case r l.
Since this monograph is rather difficult to obtain, we will review his method in
some detail.

His proof proceeds by considering the universal analytic space of special
divisors (Ca, over the Teichmuller space To and explicitly exhibiting a special
fiber of dimension z + in the case in which n is the minimum integer such that
z is nonnegative. He may then conclude that a component of (t, has dimension
3e- 3 + z + and that this component maps surjectively down to To.
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Hence he shows that for an arbitrary Riemann surface X and n any integer such
that v is nonnegative, the analytic subspace Gx, of the nth symmetric product of
X is nonempty of dimension at least z + 1. His methods also show that for a
generic surface, G, has a component of dimension z + if n is the minimum
integer such that is nonnegative.
We present Meis’s examples below, and will use them in the following

sections. Suppose g is given and r 1. Then the minimum n such that is
nonnegative is

9+2 if 9 is even
2

n
9+3 if 9 is odd.

2

So, the r case breaks up naturally into even and odd genus subcases. Meis
gives one class of even genus surfaces and one class of odd genus surfaces.

Even genus case. Suppose g 2m. Consider the Riemann surface of the
algebraic function

ym+l (X 1)(X 2)(X 3)(X 4)’(X 5)m(x 6)m.
This surface has rn + sheets and ramification points of order rn over the

points x 1, 2,..., 6. By the Riemann-Hurwitz formula, the surface thus
has genus 2m. Meis shows that a basis for the holomorphic differentials on
this surface is given by

d, (x 4)*-l(x 5)*-(x 6)*- dx
yk

k 1,...,m,

d(k+m X d(k, k 1, m.

One can easily compute the order of vanishing of the differentials at the
ramification points and at the points over x 0 and x m (and these are the
only points where the differentials might vanish). To do this, notice that a local
parameter at the point x j, for j 1, 2,..., 6 is (x -j)1/,+1); a local
parameter at the points over x 0 is x; and a local parameter at the points
over x is 1/x. Then express d(tasft(t) dt, where t is a local parameter at
the point of interest, and see what the order of vanishing off,(t) is at 0.
Meis obtains the following table for the order of vanishing of the differentials
at the point(s) over the given value of x:

x= 2 3 4 5 6 0

m-k m-k m-k k- k- k- 0

m-k m-k m-k k-1 k-1 k-1 1 0

fork 1,2,..., m.
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Odd#enus case. Suppose # 2m + 1. Consider the Riemann surface of

the algebraic function
m+2

1-I (x-i)
y3 i=1

2m+2

[l (x-j)
j=m+3

This surface has 3 sheets and ramification points of order 2 over x 1, 2,...,
2m + 2 and over x oo. Thus this surface has genus 2m + 1. Meis shows
that a basis for the holomorphic differentials is given by"

xk- dx
d(k 2,,,+2

k 1,...,m + 1,
y2 I-I (x-j)

d(k+m+ Y d(k, k 1,..., m.

Meis obtains the following table for the order of vanishing of the differentials"

x= m+3 0

<k<m+ dk
<_ k < m

0 k- 3(m + -k)

0 k- 3(m + -k)-2

For examples of special divisors with r and n the minimum integer such
that z is nonnegative, Meis takes for even # the (# + 2)/2 points over x 0
and for odd g the (# + 3)/2 ramification points over x 1, 2,..., m + 2
(note that m + 2 (# + 3)/2).

3. The r 2 case

In this section, given # and n such that 3(n 2) 2# is nonnegative, we will
construct a divisor D on Meis’s surface of genus # such that D is of degree n
and dimension 2 and such that the quadratic differentials j,k associated to D
are linearly independent.

Even genus case. Suppose that # 2m and that n is given such that
3(n 2) 2g is nonnegative. Consider Meis’s Riemann surface of genus #,
as described in the previous section. Our divisor D will consist of the following
points"

(1) the (g + 2)/2 (=m + 1) points over x 0, denoted P1, P2,..., P,+I,
(2) the (ramification) point over x 6, denoted Pro+2, with multiplicity

m i, wherei= 2 +g-n, and

(3) the point over x 5, denoted P,+ 3.

Note that the assumption that 3(n 2) 2# is nonnegative implies that
must be less than m. Let d(k, k 1, 2,..., #, be Meis’s basis of differentials.
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It is easy to see from the table of vanishing of the d(k in Section 2 that our
divisor D is of index specialty and hence of dimension 2.
One may also see from this table that the matrix d///of [1, Section 4] which

is associated to D has the form

m rows

m rows

columns

where is nonzero and " may be nonzero. The last row arises from Pro+ 3 and
the next to the last row arises from P+ :, after a possible renumbering of
P,..., Pm+x so as to insure that the leading minor of order m of d//, which
arises from P,..., P, is nonzero. This is possible since, as Meis shows, the
divisor P +...+ Pro+ is of (projective)dimension 1.
Note that the m differentials which vanish at P+ vanish only simply there.

Thus the quadratic differentials &e=+,o d(n+k-2 (see [1]), for k l,..., i,
will each have a simple pole at Pro+ (since dze,,+ ,o has a pole of order 2 there).
Now suppose there existed a linear dependence relation among the g,k, say

alzl,1 + a2al,2 +’’’+ aal, + ai+ltx2,1 +’’’+ a2, O. (*)

By definition of the g,k we have

Xl’k d(n+k-2 (j=l j d-rPJ’
m-i-1

+ Y t d,,.,+.
v=O

+ (- 1)"- 2# d’re,.+,,o)
where &i, Try are 4- minors of order n 2 of d//and # is the nonzero leading
minor of order n 2 of d//. The al,k, for k 1,..., i, will each have a
simple pole at Pro+l, since they contain d(n+k-2 d-rl,,,/l,o with nonzero co-
efficient and all other terms are regular at Pro+ 1. But the a2,k will all be finite
at Pro+ 1, since they don’t contain d-re,,/,o at all.

Therefore, the relation (*) will imply the existence of a linear dependence
relation among the l,k, k 1,..., i, and a linear dependence relation among
the 2,k, k 1,..., i. If (*) is nontrivial, then at least one of these relations
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will be nontrivial. But the Oj, k for fixedj are linearly independent by the remark
preceding Theorem 3 of [1]. Hence all the j,k are linearly independent.

Odd genus case. This case is quite similar. Suppose that g 2m + and
that n is given such that 3(n- 2)- 29 is nonnegative. Consider Meis’s
surface of genus g. Let Po and P denote two of the three points over x 0.
Our divisor D will consist of the following points"

(1) the m + 2 ramification points over x 1, 2,..., m + 2, which we
will denote by P1,..., P,,+2,

(2) the point Po with multiplicity m i, and

(3)
The divisor P1 + + Pro+ 2 was Meis’s example of a member of a #m+ 2"

Similarly to the even genus case, we may assume that the next to the last row
in the matrix //arises from P,+ 2. The last row in arises from
Now, the last m differentials in Meis’s basis vanish simply at P,,+2, hence

the quadratic differentials dZl,,./.o d(,+k-2, for k 1,..., i, will each have
a pole at Pro+ 2. We may apply the same reasoning as in the even genus case to
conclude that a linear dependence relation among all the e,k would imply the
existence of a linear dependency among those arising from a fixed row (i.e.,
fixed j), but these are linearly independent.

THEOREM 1. (#2, has a component of dimension 3g 3 + z + 2 for any n
and 9 such that z is nonnegative.

Proof Let 9 and n be given such that z is nonnegative. Let X denote Meis’s
surface of genus 9 and let So To denote the module point of X. Consider the
divisor D on X exhibited above. We have shown that the quadratic differentials
e,k, for j 1, 2, and k 1, 2,..., 2 + 9 n, associated to D are linearly
independent. It follows from Proposition that the tangent space to (92, at
(So, D) has dimension 39 3 + z + 2. Since every component of (#2, has
dimension at least this number [1], we may conclude that c2, has a component
of dimension 39 3 + z + 2.

4. The case r 3

Given 9 and n such that 4(n 3) 39 is nonnegative, we will construct a
divisor D on Meis’s surface of genus 9 such that D is of degree n and dimension
3 and such that the quadratic differentials e,k associated to D are linearly
independent.

Even genus case. Suppose 9 2m and suppose n is given such that
4(n 3) 39 is nonnegative. Consider Meis’s Riemann surface of genus 9.
Our divisor D will consist of the following points"

(1) PI,"., P,,,+I,
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(2) Pro+ 2 with multiplicity m i, where now 3 + g n,

(3) Pm+a and the point over x 4, denoted Pro+4.
It is easy to see that D is of degree n and index of specialty i.
To insure that the leading minor # of order n 3 of the matrix g is non-

zero, we take for the last three rows of g those arising from Pro/ 1, Pro/ a and
Pro+4" (/has a form analogous to that described in the preceding section.)
Now suppose there exists a linear relation of the form

all, +" "+ ail, d- at+ 12,1 -t-’’’-at- a33, 0. (*)

We will show that all the coefficients in this relation are zero by considering the
order of the j,k at Pro+ 1, Pro+ a and Pm+.
Only those j,k with j will contain dzer,+l, o d(n+k_ 3 and the coefficient

of this term in each l,k will be nonzero (namely (-1)"-1/). Hence the l,k
will each have a pole at Pro+ 1, while the (z2, k and the 3,k will all be regular
there. By (*), this implies that we must have

a11,1 + + al, 0.

But the ,k are linearly independent for a fixed j, so al a2 at 0.
It is quite a bit more complicated to show that the other coefficients in (*)

are zero. Recallthatthe order ofd(n+k-a atPm+a andPm+ ism (i k + 1),
for k 1,...,i. Now, the 2,k will each contain dze,,,/3,o d(n+k-3 with
coefficient (-1)n-l#, hence will each have order m- (i- k + 1)- 2 at

Pm+a (all differentials of the second kind except for dzpm/3,o are regular at

Pm+ 3). The a,k will each have order at least m (i k + 1) at Pro/ a, since
they do not contain dzpm/,o. The converse situation will hold at

Consider the following table of order of vanishing of the ,k at the points
P+3 and P+:

at Pm+ 3 Pm+, Pm+ 3 Pm+,

(Z2, m 2 >m 3,1 >_m m 2
(Z2, 2 m 1 >_m + 3,2 >_m + 1 m

(Z2, 3 m _>m + 2 03, 3 >_m + 2 m

2,4 m i+ _>m i+ 3 3,4 _>m + 3 m +

(Z2, m 3 >m 3,i >_m 1 m 3

Recall that (*) has become

as+ 12, + + a2io2, + a2i+ 13, q- q- aaia, 0. (*)
Observing the orders at Pm+a, we see that we must have a+ ai+ 2 O,

since e2, and e2, 2 have lower order at Pm+3 than any of the other e,k" We
needn’t have that as+ a 0 though, since we may have that the order of ca,
is m at Pm/ a and ca, and e2, a may "cancel" each other.
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However, now considering the orders at P,+,, we see that we must have
a2i+ a2i+2 0. But, going back to the situation at P,+3, this implies that
ai+3 as+, 0. And this in turn implies that a2+3 a2+, 0 (going
back to P,+ ,). By continuing to go back and forth in this manner, we can show
that all the coefficients in (*) must be 0, establishing the linear independence
of the (Xj, k.

Odd #enus case. Suppose # 2m + and suppose n is given such that
4(n- 3)- 3# is nonnegative. Consider Meis’s surface of genus #. Our
divisor D will consist of the following points"

(1) P1,..., P,+2,
(2) Po with multiplicity m i, where 3 + # n, and

(3) the other two points over x 0.

By a completely analogous argument to that in the even genus case, one can
show that the j,k associated to D are linearly independent.
Applying Proposition as before, we have

THEOREM 2. (a3 has a component of dimension 3# 3 + z + 3 for any n
and # such that z is nonne#ative.

We were unable to use Meis’s examples to construct special divisors of higher
dimension such that we could show that the associated quadratic differentials
were linearly independent. We were also unable to provide other examples of
surfaces to deal with higher dimension divisors.
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