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l. A differentiable (2n + 1)-dimensional manifold M is said to be a contact

manifold if it carries a 1-form r/ such that r/ A (dr/)" - 0. This condition,
roughly speaking, means that the 2n-dimensional "(tangent) subbundle" D
defined by r/ 0 is as far from being integrable as possible. In particular, the
maximum dimension of an integral submanifold of D is n [3]. However, not
much seems to be known about the immersion of such submanifolds into the
ambient space, especially from Riemannian point of view. Thus we consider
in this paper a normal contact metric (Sasakian) manifold, especially one with
constant 4-sectional curvature, and study the immersion of its n-dimensional
integral submanifolds.
The main result of this paper (Theorem 4.2) is that a compact minimal integral

submanifold of a Sasakian space form M is totally geodesic if the square of the
length of the second fundamental form is bounded by

n{n( + 3)+ - 1}
4(2n- 1)

where is the b-sectional curvature of M. In addition to giving other properties
of integral submanifolds, we give examples in Section 5 of totally geodesic and
minimal nontotally geodesic integral submanifolds.

2. Let M be a contact manifold with contact form r/. It is well known that
a contact manifold carries an associated almost contact metric structure
(b, , r/, G) where 4 is a tensor field of type (1, 1), a vector field, and G a
Riemannian metric satisfying

2 -I+ (R) r/, r/() 1, G(@X, Y) G(X, Y) r/(X)r/(Y) (2.1)

and

ff(X, Y)= G(X, dp Y) dr/(X, Y). (2.2)
The existence of tensors q, , r/, G on a differentiable manifold M satisfying
equations (2.1) is equivalent to a reduction of the structural group of the
tangent bundle to U(n) x I-2].
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Let 9 denote the Riemannian connection of G. Then M is a normal contact
metric (Sasakian) manifoM if

(xdp)Y G(X, Y) -tl(Y)X (2.3)
in which case we have

x -bX. (2.4)

A plane section of the tangent space TraM at m M is called a dp-section if it
is spanned by vectors X and bX orthogonal to .
The sectional curvature/ (X, 4X) of a b-section is called a dp-sectional curva-

ture. A Sasakian manifold is called a Sasakian space form and denoted M(-)
if it has constant b-sectional curvature equal to ; in this case the curvature
transformation xr [x, gr] gtx, r is given by

/xr 1/4( + 3){G(Y, Z)X G(X, Z) Y}

+ 1/4( 1)(r/(X)/(Z) Y rl(Y)l(Z)X (2.5)
+ G(X, Z)tl(r) G(Y, Z)tl(X)

+ ,(Z, Y)dpX- O(Z, X)dp Y + 2,(X, Y)dpZ}.

Let t" N M be an immersed submanifold of codimension p. If G denotes
the metric on M, the induced metric is given by #(X, Y) GO,X, t, Y).
For simplicity we shall henceforth not distinguish notationally between X and
t,X. Let V and 9 denote the Riemannian connections of and G, respectively,
V the connection in the normal bundle, and a,..., a local field of ortho-
normal normal vectors. Then the Gauss-Weingarten equations are

xY VxY + a(X, Y), x AX + V,
where a is the second fundamental form and the A,’s the Weingarten maps.
Decomposing a we have a(X, Y) h’(X, Y), where the tensors h satisfy
h’(X, Y) g(A,X, Y) and are symmetric. Letting R denote the curvature of
V, the Gauss equation is

9(RxyZ, W) G(iixyZ, W) + G(a(X, W), a(Y, Z))
(2.6)

G((x, z), (r, w)).

Finally for the second fundamental form a, we define the covariant derivative ’V
with respect to the connection in the (tangent bundle) @ (normal bundle) by

(’Vxa)(Y, Z) Vx(a(Y, Z)) a(VxY, Z) a(Y, VxZ).

3. Let M be a contact manifold, then the "(tangent) subbundle" D defined
by r/ 0 admits integral submanifolds up to and including dimension n but of
no higher dimension [3]. It is also shown in I-3] that in order for r linearly
independent vectors X1,..., X, TraM to be tangent to an r-dimensional
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integral submanifold of D, it is necessary and sufficient that r/(Xi) 0 and
dq(Xi, Xg) O, i,j 1,..., r. Moreover such integral submanifolds are quite
abundant in the sense that given X TraM belonging to D, there exists an r-
dimensional integral submanifold (1 < r < n) of D through m such that X is
tangent to it.
We first give a simple characterization of an integral submanifold of D in

terms of an associated almost contact metric structure.

PROPOSITION 3.1. Let N Mbe an immersedsubmanifold. N is an integral
submanifoM of D if and only if every tangent vector X belongs to D and dpX is
normal.

Proof If N is an integral submanifold of D and X and Y arbitrary vectors
on N, then 0 dr(X, Y) G(X, ck Y) and so Y is normal. Conversely for X
belonging to D, r/(X) 0. Also since bX and b Y are normal for X and Y
tangent, dr(X, Y) G(X, b Y) 0 and N is an integral submanifold.

In this paper we concentrate on integral submanifolds of D of dimension n.
Let t: N - M be an integral submanifold and X1,. X, a local orthonormal
basis of vector fields on N. Then we define a local field of orthonormal vectors, 0, 1,..., n by o and tkX, 1,..., n.
A contact manifold whose associated structure satisfies equation (2.4) is

called K-contact, a somewhat weaker notion than that of a Sasakian structure
(equation (2.3)).

PROPOSITION 3.2. For an integral submanifoM of a K-contact manifold, the
secondfundamentalform in the direction vanishes.

Proof h(X, Y) G(gxY, ) -G(Y, x) G(Y, cX) O.
Let ol,..., o9", ogX*,..., o9"*, o r/ be the dual basis of X, bX, ,

1,..., n. Then the first structural equation of Cartan for M is
2n

do9a o9 A o9n, n + 1 l*,etc.,
B=0

where (o9) is a real representation of a skew-Hermitian matrix and hence we
* o9 0 in whichhave o o9i Now as 0 along N we have n o A 09

n

the o] give the second fundamental form, i.e.

o Z h’kk, o E h,c (3.1)

where h h(X, X). We now obtain the following algebraic proposition.

PROPOSITION 3.3. Let N be an immersed submanifold of an almost contact

manifold M (structural group U(n) x 1) such that the condition of Proposition
3.1 holds. Then the Weingarten maps A, 1,..., n satisfy

(1) AX AX,
(2) tr (Ei A)2 i, (tr AiA)2.
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j*Proof. From (3.1) and the fact that o* o we have hjk hJik, but
hjk h(Xj, Xk) g(AXj, Xk) giving (1). For (2) we have

tr

where the sums are over all repeated indices.

4. In this section we study n-dimensional integral submanifolds which are
minimally immersed in a Sasakian space form M(). Let N denote the sub-
manifold and the immersion. Since r/(X) 0 for X tangent to N, we have
from equation (2.5) and the Gauss equation (2.6)

g(RxyZ W) 1/4(-, "-1" 3)(g(X, W)g(Y, Z)- g(X, Z)g(Y, W))

+ (o(AX, W)o(AY, Z) o(AX, Z)o(AY, W))
(4.1)

and hence the sectional curvature K(X, Y) of N determined by an orthonormal
pair X, Y is

K(X, Y) 1/4(5 + 3) + (g(AX, X)g(AY, Y) g(AX, y)2). (4.2)

Moreover the Ricci tensor S and the scalar curvature p ofN are given by

and

S(X, Y) 1/4(n 1)(" + 3)g(X, Y)

+ (tr A)g(AX, Y) g(AX, AY)

p [1/4n(n 1)]( + 3) + (tr A)2 I1112

h" h" is the square of the length of thewhere 2 Y tr (A2) ,,
i, j ij ij

second fundamental form. In particular, if the immersion is minimal,

S(X, Y) 1/4(n 1)( + 3)g(X, Y) E g(AX, AY), (4.3)

p [1/4n(n 1)]( + 3)- Ilall 2. (4.4)

THEOREM 4.1. Let N be an integral submanifold of a Sasakian space form
M() which is minimally immersed. Then the following are equivalent"

(a) N is totally geodesic,

(b) K 1/4( + 3),
(c) S 1/4(n 1)( -t- 3)g,
(d) p 1/4n(n 1)(E + 3).

Proof. That (a) implies (b), (c), and (d) is immediate from (4.2), (4.3), and
(4.4), respectively. That (c) and (d) each imply (a) is also immediate. For (b)
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implies (a), let X1 be an arbitrary unit vector and choose X2,. X, such that
X1, X2,..., X. is an orthonormal basis. Then

S(X,,XI) K(Xa, X,)= 1/4( + 3)(n- 1)
i=2

which is (c).

LEMMA 4.1. Let N be a minimal integral submanifold of a Sasakian space
form M(). Then

1/2 allrll2 II’Vall 2 + tr (AAs -AsAi)2- (tr AA)2

i,j i,j

+ 1/4(n(C" + 3) + - 1)llall 2

II’Vrll 2 / 2 tr (A,Aj)2- 3 (tr A,Aj)2

i,j i,j

+ 1/4(n(" + 3) + " l)lltrll 2.

Proof. In the same way as in [1 ], we have the following formula"

1/2 Allall 2 tl’Vll 2 + tr (AAp ApA)2 (tr AAa)2

+ E (4]aBijhajkhPik ]akBkhaijhBij + 2jijkjhilhki + 21ijkt’’Intit’’lnojkIa

where/aBco are the components of the curvature tensor of 9. Using equation
(2.5) the last term on the right hand side becomes

1/4(n( + 3) + " 1)ll cr 2

giving the first equality. The second follows from the first by Proposition 3.3.

LEMMA 4.2 [1]. tr (A,Aa AaA,)2 > -2(tr AZ)(tr A).
THEOREM 4.2. Let N be a compact minimal &teyral submanifold ofa Sasakian

spaceform M(), > 3. If

iltrll 2 < n{n( + 3) + " 1}
4(2n- 1)

then N is totally geodesic.

Proof Let A (tr A,Ay). Then A is a symmetric n x n matrix defined
with respect to an orthonormal basis ea,..., en at some point p M". The
corresponding matrix defined with respect to another orthonormal basis is
congruent to A. Thus, without loss of generality, we may assume that

trAiA 0 for i#j.

From Lemma 4.1 we have

1/2 AIlrll 2 II’Vrll 2 -4- tr (A,AI AIAi)2 (tr A)2

i, j

+ 1/4(n( + 3) + "- 1)[lall2;
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but using Lemma 4.2

1/2 AIlrll > -2 ] (tr A)(tr A.) ] (tr A)2

+ &(n( + 3) + - 1)11112

1
E (trA-trA)2 2- trA

+ &(n( + 3) + - 1)llall 2

-(2- )IIll" + (n( + 3)+ -1)llll 2

2n l llall2(n2( + 3) + n(- l)
n 4(2n- 1)

Ilai12

Thus we have Allall 2 0, but s Allall 2 0 so that llall 2 0 and hence
Ilall 0 giving the result.

COROLLARY. Let N be a complete minimal integral surface in a 5-dimensional
Sasakian spaceform M(O). If the sectional curvature ofN is greater than 1/3, N
is totally geodesic.

Proof Since N is complete and its sectional curvature greater than 1/3, N is
compact. The result now follows from equation (4.4) and the theorem.

THEOREM 4.3. Let N be a minimal integral submanifoM of a Sasakian space
form M(). If N is a space form of constant curvature c, then either c
( + 3)/4, in which case N is totally geodesic, or c < 1/(n + 1) with equality if
and only if gtr O.

Proof Since N has constant curvature c, p n(n 1)c and equation (4.4)
gives

i1112 n(n 1)(1/4( + 3) c) and c < 1/4( + 3).

Also equation (4.1) becomes

Multiplying both sides by h th k and summing on i, j, k and 1, we have

tr (Ahhm)2- (tr AhAm)2= (c- ( + 3))11112. (4.5)
h, h,

Moreover N is Einstein, so S (p/n)g and equations (4.3) and (4.4) give

h jkh kl k(n- 1)( + 3)- 6jl- 6jlI111
i, k n
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which is equivalent to ,k hJikhtki ([[all2/n)6jt by Proposition 3.3 and so

tr AjAt 6jl. (4.6)

Substituting (4.5) and (4.6) into the second equation of Lemma 4.1 we have

0 II’Vall 2 + 2(c 1/4(" / 3))llall 2 t- 1/4(n( + 3) + - 1)llall 2
n

or

I1’11 -- n(n- 1)(c- 1/4( + 3)) c
n+l

from which the result follows.

5. In this section we give examples of some integral submanifolds of
Sasakian space forms.

Consider the space Cn+ of n + complex variables and let J denote its usual
almost complex structure. Let

s2n+ {z Cn+ [z[ 1}.

We give S2n+ its usual contact structure as follows. For every z S2n+ and
X TS2n+ , set -Jz and bX JX. Let r/be the dual 1-form of and G
the standard metric on S2n+ x. Then (, , r/, G) is a Sasakian structure on
S2"+x. Let L be an (n + 1)-dimensional linear subspace of C"+ passing
through the origin and such that JL is orthogonal to L. Then S2"+ c L satis-
fies the condition of Proposition 3.1 and so is an integral submanifold of D for
the manifold S2n+ x. Clearly S2n+ c L is an n-sphere imbedded as a totally
geodesic submanifold of S2n+ x.
For a second example of a totally geodesic submanifold, consider R5 with its

usual contact structure r/ 1/2(dx x dx x4 dx2). Then D is spanned by
x (/Ox) + x(/Ox), x (/x), x (/x) + x’(/Ox), x,
(O/Ox4). The distinguished vector field is 2(O/Ox), G is given by

r (R) r + dx (R) dx

and 4 can be found from dr/and (7. With respect to the structure (4, , r/, (7),
it is well known that R is a Sasakian space form of constant @sectional curva-
ture equal to 3. Let X, Ybe independent linear combinations of the X, having
constant coefficients, such that Y is orthogonal to X. Computing IX, Y] we
find IX, Y] 0 so that X and Y determine an integral surface N on which we
may choose coordinates u and v such that X .(O/Ou) and Y .(O/Ov). Thus
N has coordinates u and v such that O/Ou and O/Ov form an orthonormal basis
with respect to the induced metric and hence N is flat. Therefore, since -3,
Theorem 4.1 shows that N is totally geodesic.
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Finally we give an example of an integral submanifold of a Sasakian space
form which is minimal but not totally geodesic. Let

S {z C" Izl 1}

be the 5-dimensional sphere with the Sasakian structure described above. If
we write z (z 1, z 2, z3), the equations Il Iz21 131 l/x/3 give an
imbedding of a 3-dimensional torus T3 in S5 which is minimal [1]. Moreover

is tangent to T3, and for X orthogonal to and tangent to T3, bX is normal
to T3 in S5. Viewing T3 as a cube with opposite faces identified, is just a
"diagonally pointing" vector field. Now consider a 2-dimensional torus T2

imbedded in T3 by log (x/3)z 2kzrx/(-1) where the logarithm is the
multi-valued one and k is an integer. Then T2 is orthogonal to in T3 and
hence an integral submanifold of S5. Since Vx -bX, T2 is totally geodesic
in T3 and hence minimal and not totally geodesic in S5.
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