GEOMETRY OF INTEGRAL SUBMANIFOLDS OF A CONTACT DISTRIBUTION

BY

D. E. BLAIR¹ AND K. OGIUE²

1. A differentiable (2n + 1)-dimensional manifold M is said to be a contact manifold if it carries a 1-form η such that $\eta \wedge (d\eta)^n \neq 0$. This condition, roughly speaking, means that the 2n-dimensional "(tangent) subbundle" D defined by $\eta = 0$ is as far from being integrable as possible. In particular, the maximum dimension of an integral submanifold of D is n [3]. However, not much seems to be known about the immersion of such submanifolds into the ambient space, especially from Riemannian point of view. Thus we consider in this paper a normal contact metric (Sasakian) manifold, especially one with constant ϕ -sectional curvature, and study the immersion of its n-dimensional integral submanifolds.

The main result of this paper (Theorem 4.2) is that a compact minimal integral submanifold of a Sasakian space form M is totally geodesic if the square of the length of the second fundamental form is bounded by

$$\frac{n\{n(\tilde{c}+3)+\tilde{c}-1\}}{4(2n-1)}$$

where \tilde{c} is the ϕ -sectional curvature of M. In addition to giving other properties of integral submanifolds, we give examples in Section 5 of totally geodesic and minimal nontotally geodesic integral submanifolds.

2. Let *M* be a contact manifold with contact form η . It is well known that a contact manifold carries an *associated almost contact metric structure* (ϕ, ξ, η, G) where ϕ is a tensor field of type (1, 1), ξ a vector field, and *G* a Riemannian metric satisfying

 $\phi^2 = -I + \xi \otimes \eta, \quad \eta(\xi) = 1, \quad G(\phi X, \phi Y) = G(X, Y) - \eta(X)\eta(Y)$ (2.1) and

$$\Phi(X, Y) = G(X, \phi Y) = d\eta(X, Y).$$
(2.2)

The existence of tensors ϕ , ξ , η , G on a differentiable manifold M satisfying equations (2.1) is equivalent to a reduction of the structural group of the tangent bundle to $U(n) \times 1$ [2].

Received May 17, 1974.

¹ Partially supported by a National Science Foundation grant.

² Partially supported by a National Science Foundation grant and the Matsunaga Science Foundation.

Let $\tilde{\nabla}$ denote the Riemannian connection of G. Then M is a normal contact metric (Sasakian) manifold if

$$(\tilde{\nabla}_X \phi) Y = G(X, Y)\xi - \eta(Y)X \tag{2.3}$$

in which case we have

$$\tilde{\nabla}_X \xi = -\phi X. \tag{2.4}$$

A plane section of the tangent space $T_m M$ at $m \in M$ is called a ϕ -section if it is spanned by vectors X and ϕX orthogonal to ξ .

The sectional curvature $\tilde{K}(X, \phi X)$ of a ϕ -section is called a ϕ -sectional curvature. A Sasakian manifold is called a *Sasakian space form* and denoted $M(\tilde{c})$ if it has constant ϕ -sectional curvature equal to \tilde{c} ; in this case the curvature transformation $\tilde{R}_{XY} = [\tilde{\nabla}_X, \tilde{\nabla}_Y] - \tilde{\nabla}_{[X,Y]}$ is given by

$$\widetilde{R}_{XY} = \frac{1}{4}(\widetilde{c} + 3)\{G(Y, Z)X - G(X, Z)Y\}
+ \frac{1}{4}(\widetilde{c} - 1)\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X
+ G(X, Z)\eta(Y)\xi - G(Y, Z)\eta(X)\xi
+ \Phi(Z, Y)\phi X - \Phi(Z, X)\phi Y + 2\Phi(X, Y)\phi Z\}.$$
(2.5)

Let $i: N \to M$ be an immersed submanifold of codimension p. If G denotes the metric on M, the induced metric g is given by $g(X, Y) \circ i = G(i_*X, i_*Y)$. For simplicity we shall henceforth not distinguish notationally between X and i_*X . Let ∇ and $\overline{\nabla}$ denote the Riemannian connections of g and G, respectively, ∇^{\perp} the connection in the normal bundle, and ξ_1, \ldots, ξ_p a local field of orthonormal normal vectors. Then the Gauss-Weingarten equations are

$$\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y), \quad \tilde{\nabla}_X \xi_\alpha = -A_\alpha X + \nabla^\perp_X \xi_\alpha,$$

where σ is the second fundamental form and the A_{α} 's the Weingarten maps. Decomposing σ we have $\sigma(X, Y) = \sum_{\alpha} h^{\alpha}(X, Y)\xi_{\alpha}$ where the tensors h^{α} satisfy $h^{\alpha}(X, Y) = g(A_{\alpha}X, Y)$ and are symmetric. Letting R denote the curvature of ∇ , the Gauss equation is

$$g(R_{XY}Z, W) = G(\tilde{R}_{XY}Z, W) + G(\sigma(X, W), \sigma(Y, Z)) - G(\sigma(X, Z), \sigma(Y, W)).$$
(2.6)

Finally for the second fundamental form σ , we define the covariant derivative ' ∇ with respect to the connection in the (tangent bundle) \oplus (normal bundle) by

$$(\nabla_X \sigma)(Y, Z) = \nabla^{\perp}_X(\sigma(Y, Z)) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z).$$

3. Let M be a contact manifold, then the "(tangent) subbundle" D defined by $\eta = 0$ admits integral submanifolds up to and including dimension n but of no higher dimension [3]. It is also shown in [3] that in order for r linearly independent vectors $X_1, \ldots, X_r \in T_m M$ to be tangent to an r-dimensional integral submanifold of D, it is necessary and sufficient that $\eta(X_i) = 0$ and $d\eta(X_i, X_j) = 0$, i, j = 1, ..., r. Moreover such integral submanifolds are quite abundant in the sense that given $X \in T_m M$ belonging to D, there exists an r-dimensional integral submanifold $(1 \le r \le n)$ of D through m such that X is tangent to it.

We first give a simple characterization of an integral submanifold of D in terms of an associated almost contact metric structure.

PROPOSITION 3.1. Let $\iota: N \to M$ be an immersed submanifold. N is an integral submanifold of D if and only if every tangent vector X belongs to D and ϕX is normal.

Proof. If N is an integral submanifold of D and X and Y arbitrary vectors on N, then $0 = d\eta(X, Y) = G(X, \phi Y)$ and so ϕY is normal. Conversely for X belonging to D, $\eta(X) = 0$. Also since ϕX and ϕY are normal for X and Y tangent, $d\eta(X, Y) = G(X, \phi Y) = 0$ and N is an integral submanifold.

In this paper we concentrate on integral submanifolds of D of dimension n. Let $i: N \to M$ be an integral submanifold and X_1, \ldots, X_n a local orthonormal basis of vector fields on N. Then we define a local field of orthonormal vectors $\xi_{\alpha}, \alpha = 0, 1, \ldots, n$ by $\xi_0 = \xi$ and $\xi_i = \phi X_i, i = 1, \ldots, n$.

A contact manifold whose associated structure satisfies equation (2.4) is called *K*-contact, a somewhat weaker notion than that of a Sasakian structure (equation (2.3)).

PROPOSITION 3.2. For an integral submanifold of a K-contact manifold, the second fundamental form in the direction ξ vanishes.

Proof. $h^{0}(X, Y) = G(\tilde{\nabla}_{X}Y, \xi) = -G(Y, \tilde{\nabla}_{X}\xi) = G(Y, \phi X) = 0.$

Let $\omega^1, \ldots, \omega^n, \omega^{1*}, \ldots, \omega^{n*}, \omega^0 = \eta$ be the dual basis of $X_i, \phi X_i, \xi$, $i = 1, \ldots, n$. Then the first structural equation of Cartan for M is

$$d\omega^{A} = -\sum_{B=0}^{2n} \omega_{B}^{A} \wedge \omega^{B}, \quad n+1 = 1^{*}, \text{ etc.},$$

where (ω_B^A) is a real representation of a skew-Hermitian matrix and hence we have $\omega_j^{i^*} = \omega_i^{j^*}$. Now as $\omega^{\alpha} = 0$ along N we have $\sum_B \omega_B^{\alpha} \wedge \omega^B = 0$ in which the ω_i^{α} give the second fundamental form, i.e.

$$\omega_j^{i*} = \sum_k h^i{}_{jk} \omega^k, \quad \omega_i^0 = \sum_j h^0{}_{ij} \omega^j$$
(3.1)

where $h_{ii}^{\alpha} = h^{\alpha}(X_i, X_i)$. We now obtain the following algebraic proposition.

PROPOSITION 3.3. Let N be an immersed submanifold of an almost contact manifold M (structural group $U(n) \times 1$) such that the condition of Proposition 3.1 holds. Then the Weingarten maps A_i , i = 1, ..., n satisfy

- (1) $A_i X_j = A_j X_i$,
- (2) tr $(\sum_{i} A_{i}^{2})^{2} = \sum_{i, j} (\text{tr } A_{i}A_{j})^{2}$.

Proof. From (3.1) and the fact that $\omega_j^{i^*} = \omega_i^{j^*}$ we have $h_{jk}^i = h_{ik}^j$, but $h_{jk}^{\alpha} = h^{\alpha}(X_j, X_k) = g(A_{\alpha}X_j, X_k)$ giving (1). For (2) we have

$$\operatorname{tr}\left(\sum_{i} A_{i}^{2}\right)^{2} = \sum \operatorname{tr} A_{i}^{2} A_{j}^{2} = \sum h_{kl}^{i} h_{lm}^{i} h_{mk}^{j} h_{hk}^{j}$$
$$= \sum h_{il}^{k} h_{li}^{m} h_{li}^{m} h_{hj}^{k} = \sum (\operatorname{tr} A_{k} A_{m})^{2}$$

where the sums are over all repeated indices.

4. In this section we study *n*-dimensional integral submanifolds which are minimally immersed in a Sasakian space form $M(\tilde{c})$. Let N denote the submanifold and ι the immersion. Since $\eta(X) = 0$ for X tangent to N, we have from equation (2.5) and the Gauss equation (2.6)

$$g(R_{XY}Z, W) = \frac{1}{4}(\tilde{c} + 3)(g(X, W)g(Y, Z) - g(X, Z)g(Y, W)) + \sum_{\alpha} (g(A_{\alpha}X, W)g(A_{\alpha}Y, Z) - g(A_{\alpha}X, Z)g(A_{\alpha}Y, W))$$
(4.1)

and hence the sectional curvature K(X, Y) of N determined by an orthonormal pair X, Y is

$$K(X, Y) = \frac{1}{4}(\tilde{c} + 3) + \sum_{\alpha} (g(A_{\alpha}X, X)g(A_{\alpha}Y, Y) - g(A_{\alpha}X, Y)^2).$$
(4.2)

Moreover the Ricci tensor S and the scalar curvature ρ of N are given by

$$S(X, Y) = \frac{1}{4}(n-1)(\tilde{c}+3)g(X, Y)$$
$$+ \sum_{\alpha} (\operatorname{tr} A_{\alpha})g(A_{\alpha}X, Y) - \sum_{\alpha} g(A_{\alpha}X, A_{\alpha}Y)$$

and

$$\rho = \left[\frac{1}{4}n(n-1)\right](\tilde{c} + 3) + \sum_{\alpha} (\operatorname{tr} A_{\alpha})^{2} - \|\sigma\|^{2}$$

where $\|\sigma\|^2 = \sum_{\alpha} \operatorname{tr} (A_{\alpha}^2) = \sum_{\alpha, i, j} h^{\alpha}{}_{ij} h^{\alpha}{}_{ij}$ is the square of the length of the second fundamental form. In particular, if the immersion is minimal,

$$S(X, Y) = \frac{1}{4}(n-1)(\tilde{c}+3)g(X, Y) - \sum_{\alpha} g(A_{\alpha}X, A_{\alpha}Y), \qquad (4.3)$$

$$\rho = \left[\frac{1}{4}n(n-1)\right](\tilde{c}+3) - \|\sigma\|^2.$$
(4.4)

THEOREM 4.1. Let N be an integral submanifold of a Sasakian space form $M(\tilde{c})$ which is minimally immersed. Then the following are equivalent:

- (a) N is totally geodesic,
- (b) $K = \frac{1}{4}(\tilde{c} + 3),$
- (c) $S = \frac{1}{4}(n-1)(\tilde{c}+3)g$,
- (d) $\rho = \frac{1}{4}n(n-1)(\tilde{c}+3).$

Proof. That (a) implies (b), (c), and (d) is immediate from (4.2), (4.3), and (4.4), respectively. That (c) and (d) each imply (a) is also immediate. For (b)

implies (a), let X_1 be an arbitrary unit vector and choose X_2, \ldots, X_n such that X_1, X_2, \ldots, X_n is an orthonormal basis. Then

$$S(X_1, X_1) = \sum_{i=2}^{n} K(X_1, X_i) = \frac{1}{4}(\tilde{c} + 3)(n-1)$$

which is (c).

LEMMA 4.1. Let N be a minimal integral submanifold of a Sasakian space form $M(\tilde{c})$. Then

$$\frac{1}{2} \Delta \|\sigma\|^2 = \|'\nabla\sigma\|^2 + \sum_{i,j} \operatorname{tr} (A_iA_j - A_jA_i)^2 - \sum_{i,j} (\operatorname{tr} A_iA_j)^2 \\ + \frac{1}{4}(n(\tilde{c}+3) + \tilde{c}-1)\|\sigma\|^2 \\ = \|'\nabla\sigma\|^2 + 2\sum_{i,j} \operatorname{tr} (A_iA_j)^2 - 3\sum_{i,j} (\operatorname{tr} A_iA_j)^2 \\ + \frac{1}{4}(n(\tilde{c}+3) + \tilde{c}-1)\|\sigma\|^2.$$

Proof. In the same way as in [1], we have the following formula:

$$\frac{1}{2} \Delta \|\sigma\|^2 = \|'\nabla\sigma\|^2 + \sum_{\alpha,\beta} \operatorname{tr} (A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha})^2 - \sum_{\alpha,\beta} (\operatorname{tr} A_{\alpha}A_{\beta})^2 \\ + \sum (4\tilde{R}^{\alpha}{}_{\beta ij}h^{\alpha}{}_{jk}h^{\beta}{}_{ik} - \tilde{R}^{\alpha}{}_{k\beta k}h^{\alpha}{}_{ij}h^{\beta}{}_{ij} + 2\tilde{R}^{i}{}_{jkj}h^{\alpha}{}_{il}h^{\alpha}{}_{kl} + 2\tilde{R}^{i}{}_{jkl}h^{\alpha}{}_{il}h^{\alpha}{}_{jk})$$

where \tilde{R}^{A}_{BCD} are the components of the curvature tensor of $\tilde{\nabla}$. Using equation (2.5) the last term on the right hand side becomes

$$\frac{1}{4}(n(\tilde{c}+3)+\tilde{c}-1)\|\sigma\|^2$$

giving the first equality. The second follows from the first by Proposition 3.3.

Lemma 4.2 [1]. tr
$$(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha})^2 \geq -2(\operatorname{tr} A_{\alpha}^2)(\operatorname{tr} A_{\beta}^2)$$

THEOREM 4.2. Let N be a compact minimal integral submanifold of a Sasakian space form $M(\tilde{c})$, $\tilde{c} > -3$. If

$$\|\sigma\|^2 < \frac{n\{n(\tilde{c}+3)+\tilde{c}-1\}}{4(2n-1)}$$

then N is totally geodesic.

Proof. Let $\Lambda = (\operatorname{tr} A_i A_j)$. Then Λ is a symmetric $n \times n$ matrix defined with respect to an orthonormal basis e_1, \ldots, e_n at some point $p \in M^n$. The corresponding matrix defined with respect to another orthonormal basis is congruent to Λ . Thus, without loss of generality, we may assume that

$$\operatorname{tr} A_i A_i = 0 \quad \text{for} \quad i \neq j.$$

From Lemma 4.1 we have

$$\frac{1}{2} \Delta \|\sigma\|^2 = \|\nabla \sigma\|^2 + \sum_{i,j} \operatorname{tr} (A_i A_j - A_j A_i)^2 - \sum_i (\operatorname{tr} A_i^2)^2 + \frac{1}{4} (n(\tilde{c} + 3) + \tilde{c} - 1) \|\sigma\|^2;$$

but using Lemma 4.2 $\frac{1}{2} \Delta \|\sigma\|^2 \ge$

$$\begin{split} \Delta \|\sigma\|^2 &\geq -2 \sum_{i \neq j} (\operatorname{tr} A_i^2) (\operatorname{tr} A_j^2) - \sum_i (\operatorname{tr} A_i^2)^2 \\ &+ \frac{1}{4} (n(\tilde{c} + 3) + \tilde{c} - 1) \|\sigma\|^2 \\ &= \frac{1}{n} \sum_{i < j} (\operatorname{tr} A_i^2 - \operatorname{tr} A_j^2)^2 - \left(2 - \frac{1}{n}\right) \left(\sum_i \operatorname{tr} A_i^2\right)^2 \\ &+ \frac{1}{4} (n(\tilde{c} + 3) + \tilde{c} - 1) \|\sigma\|^2 \\ &\geq - \left(2 - \frac{1}{n}\right) \|\sigma\|^4 + \frac{1}{4} (n(\tilde{c} + 3) + \tilde{c} - 1) \|\sigma\|^2 \\ &= \frac{2n - 1}{n} \|\sigma\|^2 \left(\frac{n^2(\tilde{c} + 3) + n(\tilde{c} - 1)}{4(2n - 1)} - \|\sigma\|^2\right). \end{split}$$

Thus we have $\Delta \|\sigma\|^2 \ge 0$, but $\int_N \Delta \|\sigma\|^2 * 1 = 0$ so that $\Delta \|\sigma\|^2 = 0$ and hence $\|\sigma\| = 0$ giving the result.

COROLLARY. Let N be a complete minimal integral surface in a 5-dimensional Sasakian space form $M(\tilde{c})$. If the sectional curvature of N is greater than 1/3, N is totally geodesic.

Proof. Since N is complete and its sectional curvature greater than 1/3, N is compact. The result now follows from equation (4.4) and the theorem.

THEOREM 4.3. Let N be a minimal integral submanifold of a Sasakian space form $M(\tilde{c})$. If N is a space form of constant curvature c, then either $c = (\tilde{c} + 3)/4$, in which case N is totally geodesic, or $c \leq 1/(n + 1)$ with equality if and only if $\nabla \sigma = 0$.

Proof. Since N has constant curvature c, $\rho = n(n - 1)c$ and equation (4.4) gives

$$\|\sigma\|^2 = n(n-1)(\frac{1}{4}(\tilde{c}+3)-c)$$
 and $c \le \frac{1}{4}(\tilde{c}+3)$

Also equation (4.1) becomes

$$\sum_{\alpha} (h^{\alpha}_{ik}h^{\alpha}_{jl} - h^{\alpha}_{il}h^{\alpha}_{jk}) = (c - \frac{1}{4}(\tilde{c} + 3))(\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}).$$

Multiplying both sides by $\sum_{m} h^{m}{}_{il}h^{m}{}_{jk}$ and summing on *i*, *j*, *k* and *l*, we have

$$\sum_{h,m} \operatorname{tr} (A_h A_m)^2 - \sum_{h,m} (\operatorname{tr} A_h A_m)^2 = (c - \frac{1}{4} (\tilde{c} + 3)) \|\sigma\|^2.$$
(4.5)

Moreover N is Einstein, so $S = (\rho/n)g$ and equations (4.3) and (4.4) give

$$\sum_{i,k} h^{i}_{jk} h^{i}_{kl} = \left(\frac{1}{4}(n-1)(\tilde{c}+3) - \frac{\rho}{n}\right) \delta_{jl} = \frac{\|\sigma\|^{2}}{n} \delta_{jl}$$

274

which is equivalent to $\sum_{i,k} h^{j}_{ik} h^{l}_{ki} = (\|\sigma\|^{2}/n) \delta_{jl}$ by Proposition 3.3 and so

$$\operatorname{tr} A_j A_l = \frac{\|\sigma\|^2}{n} \,\delta_{jl}. \tag{4.6}$$

Substituting (4.5) and (4.6) into the second equation of Lemma 4.1 we have

$$0 = \|'\nabla\sigma\|^2 + 2(c - \frac{1}{4}(\tilde{c} + 3))\|\sigma\|^2 - \frac{\|\sigma\|^4}{n} + \frac{1}{4}(n(\tilde{c} + 3) + \tilde{c} - 1)\|\sigma\|^2$$

or

$$\| \nabla \sigma \|^2 = n(n^2 - 1)(c - \frac{1}{4}(\tilde{c} + 3))\left(c - \frac{1}{n+1}\right)$$

from which the result follows.

5. In this section we give examples of some integral submanifolds of Sasakian space forms.

Consider the space C^{n+1} of n + 1 complex variables and let J denote its usual almost complex structure. Let

$$S^{2n+1} = \{ z \in C^{n+1} \colon |z| = 1 \}.$$

We give S^{2n+1} its usual contact structure as follows. For every $z \in S^{2n+1}$ and $X \in T_z S^{2n+1}$, set $\xi = -Jz$ and $\phi X = JX$. Let η be the dual 1-form of ξ and G the standard metric on S^{2n+1} . Then (ϕ, ξ, η, G) is a Sasakian structure on S^{2n+1} . Let L be an (n + 1)-dimensional linear subspace of C^{n+1} passing through the origin and such that JL is orthogonal to L. Then $S^{2n+1} \cap L$ satisfies the condition of Proposition 3.1 and so is an integral submanifold of D for the manifold S^{2n+1} . Clearly $S^{2n+1} \cap L$ is an *n*-sphere imbedded as a totally geodesic submanifold of S^{2n+1} .

For a second example of a totally geodesic submanifold, consider R^5 with its usual contact structure $\eta = \frac{1}{2}(dx^5 - x^3 dx^1 - x^4 dx^2)$. Then *D* is spanned by $X_1 = (\partial/\partial x^1) + x^3(\partial/\partial x^5)$, $X_2 = (\partial/\partial x^3)$, $X_3 = (\partial/\partial x^2) + x^4(\partial/\partial x^5)$, $X_4 = (\partial/\partial x^4)$. The distinguished vector field ξ is $2(\partial/\partial x^5)$, *G* is given by

$$\eta \otimes \eta + \frac{1}{4} \sum_{i=1}^{4} dx^i \otimes dx^i$$

and ϕ can be found from $d\eta$ and G. With respect to the structure (ϕ, ξ, η, G) , it is well known that R^5 is a Sasakian space form of constant ϕ -sectional curvature equal to -3. Let X, Y be independent linear combinations of the X_i , having constant coefficients, such that Y is orthogonal to ϕX . Computing [X, Y] we find [X, Y] = 0 so that X and Y determine an integral surface N on which we may choose coordinates u and v such that $X = \iota_*(\partial/\partial u)$ and $Y = \iota_*(\partial/\partial v)$. Thus N has coordinates u and v such that $\partial/\partial u$ and $\partial/\partial v$ form an orthonormal basis with respect to the induced metric and hence N is flat. Therefore, since $\tilde{c} = -3$, Theorem 4.1 shows that N is totally geodesic. Finally we give an example of an integral submanifold of a Sasakian space form which is minimal but not totally geodesic. Let

$$S^5 = \{ z \in C^3 \colon |z| = 1 \}$$

be the 5-dimensional sphere with the Sasakian structure described above. If we write $z = (z^1, z^2, z^3)$, the equations $|z^1| = |z^2| = |z^3| = 1/\sqrt{3}$ give an imbedding of a 3-dimensional torus T^3 in S^5 which is minimal [1]. Moreover ξ is tangent to T^3 , and for X orthogonal to ξ and tangent to T^3 , ϕX is normal to T^3 in S^5 . Viewing T^3 as a cube with opposite faces identified, ξ is just a "diagonally pointing" vector field. Now consider a 2-dimensional torus T^2 imbedded in T^3 by $\sum_{\alpha} \log (\sqrt{3}) z^{\alpha} = 2k\pi \sqrt{(-1)}$ where the logarithm is the multi-valued one and k is an integer. Then T^2 is orthogonal to ξ in T^3 and hence an integral submanifold of S^5 . Since $\nabla_X \xi = -\phi X$, T^2 is totally geodesic in T^3 and hence minimal and not totally geodesic in S^5 .

REFERENCES

- S. S. CHERN, M. P. DOCARMO AND S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, pp. 59–75.
- 2. S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J., vol. 12 (1960), pp. 459-476.
- 3. ——, A characterization of contact transformations, Tohoku Math. J., vol. 16 (1964), pp. 285–290.

MICHIGAN STATE UNIVERSITY EAST LANSING, MICHIGAN