GEOMETRY OF INTEGRAL SUBMANIFOLDS OF A CONTACT DISTRIBUTION

BY
D. E. Blair ${ }^{1}$ and K. Ogiue ${ }^{2}$

1. A differentiable $(2 n+1)$-dimensional manifold M is said to be a contact manifold if it carries a 1 -form η such that $\eta \wedge(d \eta)^{n} \neq 0$. This condition, roughly speaking, means that the $2 n$-dimensional "(tangent) subbundle" D defined by $\eta=0$ is as far from being integrable as possible. In particular, the maximum dimension of an integral submanifold of D is n [3]. However, not much seems to be known about the immersion of such submanifolds into the ambient space, especially from Riemannian point of view. Thus we consider in this paper a normal contact metric (Sasakian) manifold, especially one with constant ϕ-sectional curvature, and study the immersion of its n-dimensional integral submanifolds.

The main result of this paper (Theorem 4.2) is that a compact minimal integral submanifold of a Sasakian space form M is totally geodesic if the square of the length of the second fundamental form is bounded by

$$
\frac{n\{n(\tilde{c}+3)+\tilde{c}-1\}}{4(2 n-1)}
$$

where \tilde{c} is the ϕ-sectional curvature of M. In addition to giving other properties of integral submanifolds, we give examples in Section 5 of totally geodesic and minimal nontotally geodesic integral submanifolds.
2. Let M be a contact manifold with contact form η. It is well known that a contact manifold carries an associated almost contact metric structure (ϕ, ξ, η, G) where ϕ is a tensor field of type $(1,1), \xi$ a vector field, and G a Riemannian metric satisfying

$$
\begin{equation*}
\phi^{2}=-I+\xi \otimes \eta, \quad \eta(\xi)=1, \quad G(\phi X, \phi Y)=G(X, Y)-\eta(X) \eta(Y) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(X, Y)=G(X, \phi Y)=d \eta(X, Y) \tag{2.2}
\end{equation*}
$$

The existence of tensors ϕ, ξ, η, G on a differentiable manifold M satisfying equations (2.1) is equivalent to a reduction of the structural group of the tangent bundle to $U(n) \times 1$ [2].

[^0]Let $\tilde{\nabla}$ denote the Riemannian connection of G. Then M is a normal contact metric (Sasakian) manifold if

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \phi\right) Y=G(X, Y) \xi-\eta(Y) X \tag{2.3}
\end{equation*}
$$

in which case we have

$$
\begin{equation*}
\tilde{\nabla}_{X} \xi=-\phi X \tag{2.4}
\end{equation*}
$$

A plane section of the tangent space $T_{m} M$ at $m \in M$ is called a ϕ-section if it is spanned by vectors X and ϕX orthogonal to ξ.

The sectional curvature $\tilde{K}(X, \phi X)$ of a ϕ-section is called a ϕ-sectional curvature. A Sasakian manifold is called a Sasakian space form and denoted $M(\tilde{c})$ if it has constant ϕ-sectional curvature equal to \tilde{c}; in this case the curvature transformation $\tilde{R}_{X Y}=\left[\tilde{\nabla}_{X}, \tilde{\nabla}_{Y}\right]-\tilde{\nabla}_{[X, Y]}$ is given by

$$
\begin{align*}
\tilde{R}_{X Y}= & \frac{1}{4}(\tilde{c}+3)\{G(Y, Z) X-G(X, Z) Y\} \\
& +\frac{1}{4}(\tilde{c}-1)\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \tag{2.5}\\
& +G(X, Z) \eta(Y) \xi-G(Y, Z) \eta(X) \xi \\
& +\Phi(Z, Y) \phi X-\Phi(Z, X) \phi Y+2 \Phi(X, Y) \phi Z\}
\end{align*}
$$

Let $\imath: N \rightarrow M$ be an immersed submanifold of codimension p. If G denotes the metric on M, the induced metric g is given by $g(X, Y) \circ \imath=G\left(i_{*} X, l_{*} Y\right)$. For simplicity we shall henceforth not distinguish notationally between X and $i_{*} X$. Let ∇ and $\tilde{\nabla}$ denote the Riemannian connections of g and G, respectively, ∇^{\perp} the connection in the normal bundle, and ξ_{1}, \ldots, ξ_{p} a local field of orthonormal normal vectors. Then the Gauss-Weingarten equations are

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y), \quad \tilde{\nabla}_{X} \xi_{\alpha}=-A_{\alpha} X+\nabla_{X}^{\perp} \xi_{\alpha}
$$

where σ is the second fundamental form and the A_{α} 's the Weingarten maps. Decomposing σ we have $\sigma(X, Y)=\sum_{\alpha} h^{\alpha}(X, Y) \xi_{\alpha}$ where the tensors h^{α} satisfy $h^{\alpha}(X, Y)=g\left(A_{\alpha} X, Y\right)$ and are symmetric. Letting R denote the curvature of ∇, the Gauss equation is

$$
\begin{align*}
g\left(R_{X Y} Z, W\right)= & G\left(\widetilde{R}_{X Y} Z, W\right)+G(\sigma(X, W), \sigma(Y, Z)) \tag{2.6}\\
& -G(\sigma(X, Z), \sigma(Y, W))
\end{align*}
$$

Finally for the second fundamental form σ, we define the covariant derivative ${ }^{\prime} \nabla$ with respect to the connection in the (tangent bundle) \oplus (normal bundle) by

$$
\left({ }^{\prime} \nabla_{X} \sigma\right)(Y, Z)=\nabla_{X}^{\perp}(\sigma(Y, Z))-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right) .
$$

3. Let M be a contact manifold, then the "(tangent) subbundle" D defined by $\eta=0$ admits integral submanifolds up to and including dimension n but of no higher dimension [3]. It is also shown in [3] that in order for r linearly independent vectors $X_{1}, \ldots, X_{r} \in T_{m} M$ to be tangent to an r-dimensional
integral submanifold of D, it is necessary and sufficient that $\eta\left(X_{i}\right)=0$ and $d \eta\left(X_{i}, X_{j}\right)=0, i, j=1, \ldots, r$. Moreover such integral submanifolds are quite abundant in the sense that given $X \in T_{m} M$ belonging to D, there exists an r dimensional integral submanifold $(1 \leq r \leq n)$ of D through m such that X is tangent to it.

We first give a simple characterization of an integral submanifold of D in terms of an associated almost contact metric structure.

Proposition 3.1. Let $\imath: N \rightarrow M$ be an immersed submanifold. N is an integral submanifold of D if and only if every tangent vector X belongs to D and ϕX is normal.

Proof. If N is an integral submanifold of D and X and Y arbitrary vectors on N, then $0=d \eta(X, Y)=G(X, \phi Y)$ and so ϕY is normal. Conversely for X belonging to $D, \eta(X)=0$. Also since ϕX and ϕY are normal for X and Y tangent, $d \eta(X, Y)=G(X, \phi Y)=0$ and N is an integral submanifold.

In this paper we concentrate on integral submanifolds of D of dimension n. Let $t: N \rightarrow M$ be an integral submanifold and X_{1}, \ldots, X_{n} a local orthonormal basis of vector fields on N. Then we define a local field of orthonormal vectors $\xi_{\alpha}, \alpha=0,1, \ldots, n$ by $\xi_{0}=\xi$ and $\xi_{i}=\phi X_{i}, i=1, \ldots, n$.

A contact manifold whose associated structure satisfies equation (2.4) is called K-contact, a somewhat weaker notion than that of a Sasakian structure (equation (2.3)).

Proposition 3.2. For an integral submanifold of a K-contact manifold, the second fundamental form in the direction ξ vanishes.

Proof. $h^{0}(X, Y)=G\left(\tilde{\nabla}_{X} Y, \xi\right)=-G\left(Y, \tilde{\nabla}_{X} \xi\right)=G(Y, \phi X)=0$.
Let $\omega^{1}, \ldots, \omega^{n}, \omega^{1^{*}}, \ldots, \omega^{n^{*}}, \omega^{0}=\eta$ be the dual basis of $X_{i}, \phi X_{i}, \xi$, $i=1, \ldots, n$. Then the first structural equation of Cartan for M is

$$
d \omega^{A}=-\sum_{B=0}^{2 n} \omega_{B}^{A} \wedge \omega^{B}, \quad n+1=1^{*}, \text { etc. }
$$

where $\left(\omega_{B}^{A}\right)$ is a real representation of a skew-Hermitian matrix and hence we have $\omega_{j}^{i^{*}}=\omega_{i}^{j^{*}}$. Now as $\omega^{\alpha}=0$ along N we have $\sum_{B} \omega_{B}^{\alpha} \wedge \omega^{B}=0$ in which the ω_{i}^{α} give the second fundamental form, i.e.

$$
\begin{equation*}
\omega_{j}^{i *}=\sum_{k} h^{i}{ }_{j k} \omega^{k}, \quad \omega_{i}^{0}=\sum_{j}{h^{0}}_{i j} \omega^{j} \tag{3.1}
\end{equation*}
$$

where $h^{\alpha}{ }_{i j}=h^{\alpha}\left(X_{i}, X_{j}\right)$. We now obtain the following algebraic proposition.
Proposition 3.3. Let N be an immersed submanifold of an almost contact manifold M (structural group $U(n) \times 1)$ such that the condition of Proposition 3.1 holds. Then the Weingarten maps $A_{i}, i=1, \ldots, n$ satisfy
(1) $A_{i} X_{j}=A_{j} X_{i}$,
(2) $\operatorname{tr}\left(\sum_{i} A_{i}^{2}\right)^{2}=\sum_{i, j}\left(\operatorname{tr} A_{i} A_{j}\right)^{2}$.

Proof. From (3.1) and the fact that $\omega_{j}^{i^{*}}=\omega_{i}^{j^{*}}$ we have $h^{i}{ }_{j k}=h^{j}{ }_{i k}$, but $h^{\alpha}{ }_{j k}=h^{\alpha}\left(X_{j}, X_{k}\right)=g\left(A_{\alpha} X_{j}, X_{k}\right)$ giving (1). For (2) we have

$$
\begin{aligned}
\operatorname{tr}\left(\sum_{i} A_{i}^{2}\right)^{2} & =\sum \operatorname{tr} A_{i}^{2} A_{j}^{2}=\sum h_{k l}^{i} h_{l m}^{i} h^{j}{ }_{m h} h^{j}{ }_{h k} \\
& =\sum h_{i l}^{k} h_{l i}^{m} h^{m}{ }_{j h} h^{k}{ }_{h j}=\sum\left(\operatorname{tr} A_{k} A_{m}\right)^{2}
\end{aligned}
$$

where the sums are over all repeated indices.
4. In this section we study n-dimensional integral submanifolds which are minimally immersed in a Sasakian space form $M(\tilde{c})$. Let N denote the submanifold and \imath the immersion. Since $\eta(X)=0$ for X tangent to N, we have from equation (2.5) and the Gauss equation (2.6)

$$
\begin{align*}
g\left(R_{X Y} Z, W\right)= & \frac{1}{4}(\tilde{c}+3)(g(X, W) g(Y, Z)-g(X, Z) g(Y, W)) \\
& +\sum_{\alpha}\left(g\left(A_{\alpha} X, W\right) g\left(A_{\alpha} Y, Z\right)-g\left(A_{\alpha} X, Z\right) g\left(A_{\alpha} Y, W\right)\right) \tag{4.1}
\end{align*}
$$

and hence the sectional curvature $K(X, Y)$ of N determined by an orthonormal pair X, Y is

$$
\begin{equation*}
K(X, Y)=\frac{1}{4}(\tilde{c}+3)+\sum_{\alpha}\left(g\left(A_{\alpha} X, X\right) g\left(A_{\alpha} Y, Y\right)-g\left(A_{\alpha} X, Y\right)^{2}\right) \tag{4.2}
\end{equation*}
$$

Moreover the Ricci tensor S and the scalar curvature ρ of N are given by

$$
\begin{aligned}
S(X, Y)= & \frac{1}{4}(n-1)(\tilde{c}+3) g(X, Y) \\
& +\sum_{\alpha}\left(\operatorname{tr} A_{\alpha}\right) g\left(A_{\alpha} X, Y\right)-\sum_{\alpha} g\left(A_{\alpha} X, A_{\alpha} Y\right)
\end{aligned}
$$

and

$$
\rho=\left[\frac{1}{4} n(n-1)\right](\tilde{c}+3)+\sum_{\alpha}\left(\operatorname{tr} A_{\alpha}\right)^{2}-\|\sigma\|^{2}
$$

where $\|\sigma\|^{2}=\sum_{\alpha} \operatorname{tr}\left(A_{\alpha}^{2}\right)=\sum_{\alpha, i, j} h^{\alpha}{ }_{i j} h^{\alpha}{ }_{i j}$ is the square of the length of the second fundamental form. In particular, if the immersion is minimal,

$$
\begin{gather*}
S(X, Y)=\frac{1}{4}(n-1)(\tilde{c}+3) g(X, Y)-\sum_{\alpha} g\left(A_{\alpha} X, A_{\alpha} Y\right) \tag{4.3}\\
\rho=\left[\frac{1}{4} n(n-1)\right](\tilde{c}+3)-\|\sigma\|^{2} \tag{4.4}
\end{gather*}
$$

Theorem 4.1. Let N be an integral submanifold of a Sasakian space form $M(\tilde{c})$ which is minimally immersed. Then the following are equivalent:
(a) N is totally geodesic,
(b) $K=\frac{1}{4}(\tilde{c}+3)$,
(c) $S=\frac{1}{4}(n-1)(\tilde{c}+3) g$,
(d) $\rho=\frac{1}{4} n(n-1)(\tilde{c}+3)$.

Proof. That (a) implies (b), (c), and (d) is immediate from (4.2), (4.3), and (4.4), respectively. That (c) and (d) each imply (a) is also immediate. For (b)
implies (a), let X_{1} be an arbitrary unit vector and choose X_{2}, \ldots, X_{n} such that $X_{1}, X_{2}, \ldots, X_{n}$ is an orthonormal basis. Then

$$
S\left(X_{1}, X_{1}\right)=\sum_{i=2}^{n} K\left(X_{1}, X_{i}\right)=\frac{1}{4}(\tilde{c}+3)(n-1)
$$

which is (c).
Lemma 4.1. Let N be a minimal integral submanifold of a Sasakian space form $M(\tilde{c})$. Then

$$
\begin{aligned}
\frac{1}{2} \Delta\|\sigma\|^{2}= & \left\|^{\prime} \nabla \sigma\right\|^{2}+\sum_{i, j} \operatorname{tr}\left(A_{i} A_{j}-A_{j} A_{i}\right)^{2}-\sum_{i, j}\left(\operatorname{tr} A_{i} A_{j}\right)^{2} \\
& +\frac{1}{4}(n(\tilde{c}+3)+\tilde{c}-1)\|\sigma\|^{2} \\
= & \left\|^{\prime} \nabla \sigma\right\|^{2}+2 \sum_{i, j} \operatorname{tr}\left(A_{i} A_{j}\right)^{2}-3 \sum_{i, j}\left(\operatorname{tr} A_{i} A_{j}\right)^{2} \\
& +\frac{1}{4}(n(\tilde{c}+3)+\tilde{c}-1)\|\sigma\|^{2} .
\end{aligned}
$$

Proof. In the same way as in [1], we have the following formula:

$$
\begin{aligned}
\frac{1}{2} \Delta\|\sigma\|^{2}= & \left\|^{\prime} \nabla \sigma\right\|^{2}+\sum_{\alpha, \beta} \operatorname{tr}\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)^{2}-\sum_{\alpha, \beta}\left(\operatorname{tr} A_{\alpha} A_{\beta}\right)^{2} \\
& +\sum\left(4 \widetilde{R}_{\beta i j}^{\alpha} h^{\alpha}{ }_{j k} h^{\beta}{ }_{i k}-\widetilde{R}_{k \beta k}^{\alpha} h_{i j}^{\alpha} h^{\beta}{ }_{i j}+2 \widetilde{R}_{j k j}^{i} h_{i l}^{\alpha} h^{\alpha}{ }_{k l}+2 \widetilde{R}_{j k l}^{i} h_{i l}^{\alpha} h^{\alpha}{ }_{j k}\right)
\end{aligned}
$$

where $\widetilde{R}^{A}{ }_{B C D}$ are the components of the curvature tensor of $\tilde{\nabla}$. Using equation (2.5) the last term on the right hand side becomes

$$
\frac{1}{4}(n(\tilde{c}+3)+\tilde{c}-1)\|\sigma\|^{2}
$$

giving the first equality. The second follows from the first by Proposition 3.3.
Lemma 4.2 [1]. $\operatorname{tr}\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)^{2} \geq-2\left(\operatorname{tr} A_{\alpha}^{2}\right)\left(\operatorname{tr} A_{\beta}^{2}\right)$.
Theorem 4.2. Let N be a compact minimal integral submanifold of a Sasakian space form $M(\tilde{c}), \tilde{c}>-3$. If

$$
\|\sigma\|^{2}<\frac{n\{n(\tilde{c}+3)+\tilde{c}-1\}}{4(2 n-1)}
$$

then N is totally geodesic.
Proof. Let $\Lambda=\left(\operatorname{tr} A_{\imath} A_{j}\right)$. Then Λ is a symmetric $n \times n$ matrix defined with respect to an orthonormal basis e_{1}, \ldots, e_{n} at some point $p \in M^{n}$. The corresponding matrix defined with respect to another orthonormal basis is congruent to Λ. Thus, without loss of generality, we may assume that

$$
\operatorname{tr} A_{i} A_{j}=0 \quad \text { for } \quad i \neq j
$$

From Lemma 4.1 we have

$$
\begin{aligned}
\frac{1}{2} \Delta\|\sigma\|^{2}= & \left\|^{\prime} \nabla \sigma\right\|^{2}+\sum_{i, j} \operatorname{tr}\left(A_{i} A_{j}-A_{j} A_{i}\right)^{2}-\sum_{i}\left(\operatorname{tr} A_{i}^{2}\right)^{2} \\
& +\frac{1}{4}(n(\tilde{c}+3)+\tilde{c}-1)\|\sigma\|^{2}
\end{aligned}
$$

but using Lemma 4.2

$$
\begin{aligned}
\frac{1}{2} \Delta\|\sigma\|^{2} \geq & -2 \sum_{i \neq j}\left(\operatorname{tr} A_{i}^{2}\right)\left(\operatorname{tr} A_{j}^{2}\right)-\sum_{i}\left(\operatorname{tr} A_{i}^{2}\right)^{2} \\
& +\frac{1}{4}(n(\tilde{c}+3)+\tilde{c}-1)\|\sigma\|^{2} \\
= & \frac{1}{n} \sum_{i<j}\left(\operatorname{tr} A_{i}^{2}-\operatorname{tr} A_{j}^{2}\right)^{2}-\left(2-\frac{1}{n}\right)\left(\sum_{i} \operatorname{tr} A_{i}^{2}\right)^{2} \\
& +\frac{1}{4}(n(\tilde{c}+3)+\tilde{c}-1)\|\sigma\|^{2} \\
\geq & -\left(2-\frac{1}{n}\right)\|\sigma\|^{4}+\frac{1}{4}(n(\tilde{c}+3)+\tilde{c}-1)\|\sigma\|^{2} \\
= & \frac{2 n-1}{n}\|\sigma\|^{2}\left(\frac{n^{2}(\tilde{c}+3)+n(\tilde{c}-1)}{4(2 n-1)}-\|\sigma\|^{2}\right)
\end{aligned}
$$

Thus we have $\Delta\|\sigma\|^{2} \geq 0$, but $\int_{N} \Delta\|\sigma\|^{2} * 1=0$ so that $\Delta\|\sigma\|^{2}=0$ and hence $\|\sigma\|=0$ giving the result.

Corollary. Let N be a complete minimal integral surface in a 5-dimensional Sasakian space form $M(\tilde{c})$. If the sectional curvature of N is greater than $1 / 3, N$ is totally geodesic.

Proof. Since N is complete and its sectional curvature greater than $1 / 3, N$ is compact. The result now follows from equation (4.4) and the theorem.

Theorem 4.3. Let N be a minimal integral submanifold of a Sasakian space form $M(\tilde{c})$. If N is a space form of constant curvature c, then either $c=$ $(\tilde{c}+3) / 4$, in which case N is totally geodesic, or $c \leq 1 /(n+1)$ with equality if and only if $\tilde{\nabla} \sigma=0$.

Proof. Since N has constant curvature $c, \rho=n(n-1) c$ and equation (4.4) gives

$$
\|\sigma\|^{2}=n(n-1)\left(\frac{1}{4}(\tilde{c}+3)-c\right) \quad \text { and } \quad c \leq \frac{1}{4}(\tilde{c}+3)
$$

Also equation (4.1) becomes

$$
\sum_{\alpha}\left(h^{\alpha}{ }_{i k} h^{\alpha}{ }_{j l}-h_{i l}^{\alpha} h^{\alpha}{ }_{j k}\right)=\left(c-\frac{1}{4}(\tilde{c}+3)\right)\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right) .
$$

Multiplying both sides by $\sum_{m} h^{m}{ }_{i l} h^{m}{ }_{j k}$ and summing on i, j, k and l, we have

$$
\begin{equation*}
\sum_{h, m} \operatorname{tr}\left(A_{h} A_{m}\right)^{2}-\sum_{h, m}\left(\operatorname{tr} A_{h} A_{m}\right)^{2}=\left(c-\frac{1}{4}(\tilde{c}+3)\right)\|\sigma\|^{2} \tag{4.5}
\end{equation*}
$$

Moreover N is Einstein, so $S=(\rho / n) g$ and equations (4.3) and (4.4) give

$$
\sum_{i, k} h_{j k}^{i} h_{k l}^{i}=\left(\frac{1}{4}(n-1)(\tilde{c}+3)-\frac{\rho}{n}\right) \delta_{j l}=\frac{\|\sigma\|^{2}}{n} \delta_{j l}
$$

which is equivalent to $\sum_{i, k} h_{i k}^{j} h_{k i}^{l}=\left(\|\sigma\|^{2} / n\right) \delta_{j l}$ by Proposition 3.3 and so

$$
\begin{equation*}
\operatorname{tr} A_{j} A_{l}=\frac{\|\sigma\|^{2}}{n} \delta_{j l} . \tag{4.6}
\end{equation*}
$$

Substituting (4.5) and (4.6) into the second equation of Lemma 4.1 we have

$$
0=\|\nabla \sigma\|^{2}+2\left(c-\frac{1}{4}(\tilde{c}+3)\right)\|\sigma\|^{2}-\frac{\|\sigma\|^{4}}{n}+\frac{1}{4}(n(\tilde{c}+3)+\tilde{c}-1)\|\sigma\|^{2}
$$

or

$$
\left\|^{\prime} \nabla \sigma\right\|^{2}=n\left(n^{2}-1\right)\left(c-\frac{1}{4}(\tilde{c}+3)\right)\left(c-\frac{1}{n+1}\right)
$$

from which the result follows.
5. In this section we give examples of some integral submanifolds of Sasakian space forms.

Consider the space C^{n+1} of $n+1$ complex variables and let J denote its usual almost complex structure. Let

$$
S^{2 n+1}=\left\{z \in C^{n+1}:|z|=1\right\}
$$

We give $S^{2 n+1}$ its usual contact structure as follows. For every $z \in S^{2 n+1}$ and $X \in T_{z} S^{2 n+1}$, set $\xi=-J z$ and $\phi X=J X$. Let η be the dual 1-form of ξ and G the standard metric on $S^{2 n+1}$. Then (ϕ, ξ, η, G) is a Sasakian structure on $S^{2 n+1}$. Let L be an $(n+1)$-dimensional linear subspace of C^{n+1} passing through the origin and such that $J L$ is orthogonal to L. Then $S^{2 n+1} \cap L$ satisfies the condition of Proposition 3.1 and so is an integral submanifold of D for the manifold $S^{2 n+1}$. Clearly $S^{2 n+1} \cap L$ is an n-sphere imbedded as a totally geodesic submanifold of $S^{2 n+1}$.

For a second example of a totally geodesic submanifold, consider R^{5} with its usual contact structure $\eta=\frac{1}{2}\left(d x^{5}-x^{3} d x^{1}-x^{4} d x^{2}\right)$. Then D is spanned by $X_{1}=\left(\partial / \partial x^{1}\right)+x^{3}\left(\partial / \partial x^{5}\right), X_{2}=\left(\partial / \partial x^{3}\right), X_{3}=\left(\partial / \partial x^{2}\right)+x^{4}\left(\partial / \partial x^{5}\right), X_{4}=$ $\left(\partial / \partial x^{4}\right)$. The distinguished vector field ξ is $2\left(\partial / \partial x^{5}\right), G$ is given by

$$
\eta \otimes \eta+\frac{1}{4} \sum_{i=1}^{4} d x^{i} \otimes d x^{i}
$$

and ϕ can be found from $d \eta$ and G. With respect to the structure (ϕ, ξ, η, G), it is well known that R^{5} is a Sasakian space form of constant ϕ-sectional curvature equal to -3 . Let X, Y be independent linear combinations of the X_{i}, having constant coefficients, such that Y is orthogonal to ϕX. Computing [X, Y] we find $[X, Y]=0$ so that X and Y determine an integral surface N on which we may choose coordinates u and v such that $X=t_{*}(\partial / \partial u)$ and $Y=l_{*}(\partial / \partial v)$. Thus N has coordinates u and v such that $\partial / \partial u$ and $\partial / \partial v$ form an orthonormal basis with respect to the induced metric and hence N is flat. Therefore, since $\tilde{c}=-3$, Theorem 4.1 shows that N is totally geodesic.

Finally we give an example of an integral submanifold of a Sasakian space form which is minimal but not totally geodesic. Let

$$
S^{5}=\left\{z \in C^{3}:|z|=1\right\}
$$

be the 5 -dimensional sphere with the Sasakian structure described above. If we write $z=\left(z^{1}, z^{2}, z^{3}\right)$, the equations $\left|z^{1}\right|=\left|z^{2}\right|=\left|z^{3}\right|=1 / \sqrt{ } 3$ give an imbedding of a 3-dimensional torus T^{3} in S^{5} which is minimal [1]. Moreover ξ is tangent to T^{3}, and for X orthogonal to ξ and tangent to $T^{3}, \phi X$ is normal to T^{3} in S^{5}. Viewing T^{3} as a cube with opposite faces identified, ξ is just a "diagonally pointing" vector field. Now consider a 2 -dimensional torus T^{2} imbedded in T^{3} by $\sum_{\alpha} \log (\sqrt{ } 3) z^{\alpha}=2 k \pi \sqrt{ }(-1)$ where the logarithm is the multi-valued one and k is an integer. Then T^{2} is orthogonal to ξ in T^{3} and hence an integral submanifold of S^{5}. Since $\nabla_{X} \xi=-\phi X, T^{2}$ is totally geodesic in T^{3} and hence minimal and not totally geodesic in S^{5}.

References

1. S. S. Chern, M. P. doCarmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, pp. 59-75.
2. S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J., vol. 12 (1960), pp. 459-476.
3. -_, A characterization of contact transformations, Tohoku Math. J., vol. 16 (1964), pp. 285-290.

Michigan State University
East Lansing, Michigan

[^0]: Received May 17, 1974.
 ${ }^{1}$ Partially supported by a National Science Foundation grant.
 ${ }^{2}$ Partially supported by a National Science Foundation grant and the Matsunaga Science Foundation.

